WO2018021363A1 - 細胞培養装置、及び、それを使用した細胞培養方法 - Google Patents

細胞培養装置、及び、それを使用した細胞培養方法 Download PDF

Info

Publication number
WO2018021363A1
WO2018021363A1 PCT/JP2017/026943 JP2017026943W WO2018021363A1 WO 2018021363 A1 WO2018021363 A1 WO 2018021363A1 JP 2017026943 W JP2017026943 W JP 2017026943W WO 2018021363 A1 WO2018021363 A1 WO 2018021363A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous membrane
polymer porous
cell culture
medium
cells
Prior art date
Application number
PCT/JP2017/026943
Other languages
English (en)
French (fr)
Inventor
萩原 昌彦
新作 布施
基久 清水
幸周 和田
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to EP17834365.3A priority Critical patent/EP3489346A4/en
Priority to JP2018530323A priority patent/JP6870680B2/ja
Priority to KR1020197002120A priority patent/KR20190022695A/ko
Priority to US16/319,797 priority patent/US20190276788A1/en
Priority to CN201780045821.9A priority patent/CN109496231A/zh
Publication of WO2018021363A1 publication Critical patent/WO2018021363A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/10Rotating vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/14Rotation or movement of the cells support, e.g. rotated hollow fibers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/44Multiple separable units; Modules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers

Definitions

  • the present invention relates to a cell culture apparatus provided with a polymer porous membrane.
  • the present invention also relates to a cell culture method using a cell culture device provided with a polymer porous membrane.
  • proteins such as enzymes, hormones, antibodies, cytokines, viruses (virus proteins) used for treatment and vaccines are industrially produced using cultured cells.
  • these protein production techniques are costly, which raises medical costs. Therefore, with the aim of drastically reducing costs, a technology for culturing cells at high density and an innovative technology for increasing the amount of protein production have been demanded.
  • an anchorage-dependent adherent cell that adheres to a culture substrate may be used. Since such cells proliferate in a scaffold-dependent manner, it is necessary to culture them while adhering to the surface of a petri dish, plate or chamber. Conventionally, in order to culture such adherent cells in large quantities, it has been necessary to increase the surface area for adhesion. However, in order to increase the culture area, it is necessary to increase the space, which is a factor that increases the cost.
  • a culture method using a microporous carrier, particularly a microcarrier has been developed (for example, Patent Document 1).
  • a cell culture system using microcarriers needs to be sufficiently stirred and diffused so that the microcarriers do not aggregate with each other. For this reason, there is an upper limit on the density of cells that can be cultured because a volume sufficient to sufficiently stir and diffuse the medium in which the microcarriers are dispersed is necessary. Further, in order to separate the microcarrier from the medium, it is necessary to separate the fine particles with a filter that can separate fine particles, which has been a cause of increasing costs. Under these circumstances, there has been a demand for an innovative cell culture methodology for culturing high-density cells.
  • Patent Documents 2 to 4 are particularly excellent in permeability of substances such as gas, high porosity, excellent smoothness of both surfaces, relatively high strength, and in the direction of film thickness despite high porosity.
  • a polyimide porous membrane having a large number of macrovoids having excellent proof stress against compressive stress is described. These are all polyimide porous membranes prepared via an amic acid.
  • a cell culturing method has been reported that includes culturing cells by applying them to a polyimide porous membrane (Patent Document 5).
  • a polymer porous membrane having a predetermined structure not only provides an optimal space in which cells can be cultured in a large amount, but also provides a moist environment resistant to drying.
  • An apparatus for carrying cells and culturing them while exposing them to a gas phase and a culture method using the same were completed. That is, although not necessarily limited, the present invention preferably includes the following aspects.
  • a polymer porous membrane, a cell culture part having the polymer porous film, a shaft penetrating the cell culture part, and a medium tank in which at least a part of the cell culture part is immersed
  • the polymer porous membrane has a three-layered polymer porous structure having a surface layer A and a surface layer B having a plurality of pores, and a macrovoid layer sandwiched between the surface layer A and the surface layer B
  • the average pore diameter of the pores existing in the surface layer A is smaller than the average pore diameter of the pores existing in the surface layer B
  • the macrovoid layer is bonded to the surface layers A and B.
  • the cell culture device wherein the cell culture unit rotates around the axis, and the cells supported on the polymer porous membrane are alternately cultured in a gas phase and a liquid phase.
  • the cell culture part includes a polymer porous membrane support, a polymer porous membrane stopper, Comprising: The cell culture device according to [1] or [2], wherein the polymer porous membrane is sandwiched between the polymer porous membrane support and the polymer porous membrane clamp.
  • the cell culture section is a cylindrical container, Here, the end surface of the cylindrical container includes one or more medium outlets, Here, the side surface of the cylindrical container includes one or more medium outlets,
  • the polymer porous membrane is the cell culture device according to [1] or [2], which is accommodated in the cylindrical container.
  • the polymer porous membrane is i) Folded ii) It is wound into a roll, iii) Sheets or pieces are connected by a thread-like structure, iv) tied in a rope shape and / or v) two or more are laminated,
  • the polymer porous membrane is a modular polymer porous membrane having a casing,
  • the modular polymer porous membrane is (I) Two or more independent polymer porous membranes are aggregated, (Ii) the polymer porous membrane is folded; (Iii) The polymer porous membrane is wound into a roll and / or (Iv) The polymer porous membrane is tied in a rope shape, Housed in the casing,
  • the cell culture device according to [5] or [6] wherein the modular polymer porous membrane is accommodated in the cylindrical container.
  • the cell culture device according to any one of [1] to [8], wherein two or more cell culture units are connected.
  • the cell culture device according to [16], wherein the polyimide porous membrane is a polyimide porous membrane containing polyimide obtained from tetracarboxylic dianhydride and diamine.
  • the polyimide porous membrane is then heat-treated at 250 ° C. or higher.
  • PES polyethersulfone
  • [20] A culture method using the cell culture apparatus according to any one of [1] to [19], wherein the cell culture unit is rotated around the axis and supported on the polymer porous membrane
  • a culture method comprising alternately culturing cultured cells in a gas phase and a liquid phase.
  • the present invention enables simple and efficient continuous cell culture even under conditions where the culture space and the amount of the medium are small by using a polymer porous membrane as a cell culture carrier. Further, since the polymer porous membrane of the present invention has a slightly hydrophilic porous property, the liquid is stably held in the polymer porous membrane, and a moist environment resistant to drying is maintained. Therefore, cell survival and proliferation can be achieved even with a very small amount of medium as compared with conventional cell culture devices. In addition, since a part of or all of the polymer porous membrane can be cultured even when it is exposed to air, it is possible to efficiently supply oxygen to the cells and to culture a large amount of cells. Can do.
  • the amount of medium to be used is extremely small, and the polymer porous membrane as a culture carrier can be exposed to the gas phase, so that oxygen supply to the cells can be sufficiently achieved by repeated exposure to the gas phase. To be done. Therefore, the present invention does not particularly require an oxygen supply device.
  • FIG. 1 is a perspective view illustrating a configuration example of a cell culture device according to an embodiment.
  • FIG. 2 is a perspective view illustrating a configuration example of a cell culture device according to an embodiment.
  • FIG. 3 is a diagram showing a culture tank in one embodiment.
  • A Top view
  • B Left side view
  • C Cross sectional view of ZZ 'axis in
  • A Right side view.
  • FIG. 4 is a diagram showing a cell culture unit in one embodiment.
  • B polymer porous membrane clamp (left: plan view, right: cross section).
  • FIG. 1 is a perspective view illustrating a configuration example of a cell culture device according to an embodiment.
  • FIG. 2 is a perspective view illustrating a configuration example of a cell culture device according to an embodiment.
  • FIG. 3 is a diagram showing a culture tank in one embodiment.
  • A Top view
  • B Left side view
  • C Cross sectional view of Z
  • FIG. 5 is a perspective view showing a cell culture section (cylindrical container) in one embodiment. The upper and lower figures show the same cylindrical container from different angles.
  • FIG. 6 shows a model diagram of cell culture using a polymer porous membrane.
  • FIG. 7 is a diagram showing a cell culture device in one embodiment of the present invention.
  • FIG. 8 is a diagram showing a cell culture device in one embodiment of the present invention.
  • FIG. 9 is a diagram showing a cell culture device according to one embodiment of the present invention.
  • B Cell culture part,
  • C The cell culture apparatus in one Embodiment is shown.
  • the average pore diameter of the pores present in the surface layer A (hereinafter also referred to as "A surface” or “mesh surface”) in the polymer porous membrane used in the present invention is not particularly limited, 0.01 ⁇ m or more and less than 200 ⁇ m, 0.01 to 150 ⁇ m, 0.01 to 100 ⁇ m, 0.01 to 50 ⁇ m, 0.01 ⁇ m to 40 ⁇ m, 0.01 ⁇ m to 30 ⁇ m, 0.01 ⁇ m to 20 ⁇ m, or 0.01 ⁇ m to 15 ⁇ m Preferably, it is 0.01 ⁇ m to 15 ⁇ m.
  • the average pore diameter of the pores existing in the surface layer B (hereinafter also referred to as “B surface” or “large hole surface”) in the polymer porous membrane used in the present invention is the average pore diameter of the pores existing in the surface layer A.
  • the thickness is not particularly limited as long as it is larger than 200 ⁇ m, for example, 20 ⁇ m to 100 ⁇ m, 30 ⁇ m to 100 ⁇ m, 40 ⁇ m to 100 ⁇ m, 50 ⁇ m to 100 ⁇ m, or 60 ⁇ m to 100 ⁇ m, and preferably 20 ⁇ m to 100 ⁇ m.
  • the average pore diameter on the surface of the polymer porous membrane is determined by measuring the pore area for 200 or more apertures from the scanning electron micrograph on the surface of the porous membrane, and determining the pore size according to the following formula (1)
  • the average diameter when the shape is assumed to be a perfect circle can be obtained by calculation.
  • Sa means the average value of the pore area.
  • the thickness of the surface layers A and B is not particularly limited, but is, for example, 0.01 to 50 ⁇ m, preferably 0.01 to 20 ⁇ m.
  • the average pore diameter in the plane direction of the macrovoids in the macrovoid layer in the polymer porous membrane is not particularly limited, but is, for example, 10 to 500 ⁇ m, preferably 10 to 100 ⁇ m, and more preferably 10 to 80 ⁇ m.
  • the thickness of the partition wall in the macrovoid layer is not particularly limited, but is, for example, 0.01 to 50 ⁇ m, and preferably 0.01 to 20 ⁇ m.
  • at least one partition wall in the macrovoid layer has one or more average pore diameters of 0.01 to 100 ⁇ m, preferably 0.01 to 50 ⁇ m, communicating adjacent macrovoids. Has holes.
  • the partition in the macrovoid layer has no pores.
  • the total film thickness on the surface of the polymer porous membrane used in the present invention is not particularly limited, but may be 5 ⁇ m or more, 10 ⁇ m or more, 20 ⁇ m or more, or 25 ⁇ m or more, 500 ⁇ m or less, 300 ⁇ m or less, 100 ⁇ m or less, 75 ⁇ m or less. Or 50 micrometers or less may be sufficient.
  • the thickness is preferably 5 to 500 ⁇ m, more preferably 25 to 75 ⁇ m.
  • the measurement of the thickness of the polymer porous membrane used in the present invention can be performed with a contact-type thickness meter.
  • the porosity of the polymer porous membrane used in the present invention is not particularly limited, but is, for example, 40% or more and less than 95%.
  • the porosity of the polymer porous membrane used in the present invention can be determined according to the following formula (2) from the basis weight by measuring the thickness and mass of the porous film cut to a predetermined size.
  • S represents the area of the porous film
  • d represents the total film thickness
  • w represents the measured mass
  • D represents the density of the polymer.
  • the density is 1.34 g / cm 3.
  • the polymer porous membrane used in the present invention is preferably a three-layer structure having a surface layer A and a surface layer B having a plurality of pores, and a macrovoid layer sandwiched between the surface layer A and the surface layer B.
  • the macrovoid layer includes a partition bonded to the surface layers A and B, and a plurality of macrovoids surrounded by the partition and the surface layers A and B.
  • the partition of the macrovoid layer and the surface The thicknesses of the layers A and B are 0.01 to 20 ⁇ m, the holes in the surface layers A and B communicate with the macrovoids, the total film thickness is 5 to 500 ⁇ m, and the porosity is 40% or more. Less than 95% Is mer porous membrane.
  • the at least one partition wall in the macrovoid layer has one or more pores having an average pore diameter of 0.01 to 100 ⁇ m, preferably 0.01 to 50 ⁇ m, communicating between adjacent macrovoids. Have In another embodiment, the septum does not have such holes.
  • the polymer porous membrane used in the present invention is preferably sterilized.
  • the sterilization treatment is not particularly limited, and includes any sterilization treatment such as dry heat sterilization, steam sterilization, sterilization with a disinfectant such as ethanol, and electromagnetic wave sterilization such as ultraviolet rays and gamma rays.
  • the polymer porous membrane used in the present invention is not particularly limited as long as it has the above structural characteristics, but is preferably a polyimide porous membrane or a polyethersulfone (PES) porous membrane.
  • PES polyethersulfone
  • Polyimide Porous Membrane Polyimide is a general term for polymers containing imide bonds in repeating units, and usually means an aromatic polyimide in which aromatic compounds are directly linked by imide bonds.
  • Aromatic polyimide has a conjugated structure through the imide bond between aromatic and aromatic, so it has a rigid and strong molecular structure, and the imide bond has a strong intermolecular force, so it has a very high level of heat. Has mechanical, mechanical and chemical properties.
  • the polyimide porous membrane that can be used in the present invention is preferably a polyimide porous membrane containing (obtained as a main component) a polyimide obtained from tetracarboxylic dianhydride and diamine, more preferably tetracarboxylic dianhydride. It is a polyimide porous membrane which consists of a polyimide obtained from a thing and diamine. “Containing as a main component” means that a component other than polyimide obtained from tetracarboxylic dianhydride and diamine may be essentially not included or included as a component of the polyimide porous membrane. It means that it is an additional component that does not affect the properties of the polyimide obtained from tetracarboxylic dianhydride and diamine.
  • the polyimide porous membrane that can be used in the present invention is prepared by molding a polyamic acid solution composition containing a polyamic acid solution obtained from a tetracarboxylic acid component and a diamine component and a colored precursor, and then at 250 ° C.
  • the colored polyimide porous membrane obtained by heat treatment as described above is also included.
  • Polyamic acid is obtained by polymerizing a tetracarboxylic acid component and a diamine component.
  • Polyamic acid is a polyimide precursor that can be ring-closed to form polyimide by thermal imidization or chemical imidization.
  • the polyamic acid even if a part of the amic acid is imidized, it can be used as long as it does not affect the present invention. That is, the polyamic acid may be partially thermally imidized or chemically imidized.
  • fine particles such as an imidization catalyst, an organic phosphorus-containing compound, inorganic fine particles, and organic fine particles can be added to the polyamic acid solution as necessary.
  • fine particles such as a chemical imidating agent, a dehydrating agent, inorganic fine particles, and organic fine particles, etc. can be added to a polyamic acid solution as needed. Even when the above components are added to the polyamic acid solution, it is preferable that the coloring precursor is not precipitated.
  • colored precursor means a precursor that is partially or wholly carbonized by heat treatment at 250 ° C. or higher to produce a colored product.
  • the colored precursor that can be used in the production of the polyimide porous membrane is uniformly dissolved or dispersed in a polyamic acid solution or a polyimide solution, 250 ° C. or higher, preferably 260 ° C. or higher, more preferably 280 ° C. or higher, more preferably Is thermally decomposed and carbonized by heat treatment at 300 ° C. or higher, preferably 250 ° C. or higher in the presence of oxygen such as air, preferably 260 ° C. or higher, more preferably 280 ° C. or higher, more preferably 300 ° C. or higher.
  • Those that produce colored products are preferred, those that produce black colored products are more preferred, and carbon-based colored precursors are more preferred.
  • the carbon-based coloring precursor is not particularly limited.
  • polymers such as petroleum tar, petroleum pitch, coal tar, coal pitch, or polymers obtained from monomers including pitch, coke, and acrylonitrile, ferrocene compounds (ferrocene and ferrocene derivatives). Etc.
  • the polymer and / or ferrocene compound obtained from the monomer containing acrylonitrile are preferable, and polyacrylonitrile is preferable as a polymer obtained from the monomer containing acrylonitrile.
  • the polyimide porous membrane that can be used in the present invention is obtained by molding a polyamic acid solution obtained from a tetracarboxylic acid component and a diamine component without using the above colored precursor, A polyimide porous membrane obtained by heat treatment is also included.
  • a polyimide porous membrane produced without using a colored precursor is composed of, for example, 3 to 60% by mass of a polyamic acid having an intrinsic viscosity of 1.0 to 3.0 and 40 to 97% by mass of an organic polar solvent.
  • the polyamic acid solution is cast into a film and immersed in or contacted with a coagulation solvent containing water as an essential component to produce a polyamic acid porous film, and then the polyamic acid porous film is heat-treated to form an imide. May be manufactured.
  • the coagulation solvent containing water as an essential component is water or a mixed solution of 5% by mass or more and less than 100% by mass of water and more than 0% by mass and 95% by mass or less of an organic polar solvent. May be.
  • plasma treatment may be performed on at least one surface of the obtained porous polyimide film.
  • any tetracarboxylic dianhydride can be used, and can be appropriately selected according to desired characteristics.
  • Specific examples of tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), 2,3,3 ′, 4 ′.
  • -Biphenyltetracarboxylic dianhydride such as biphenyltetracarboxylic dianhydride (a-BPDA), oxydiphthalic dianhydride, diphenylsulfone-3,4,3 ', 4'-tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) sulfide dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2, 3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, p-phenylenebis (trimellitic acid monoester acid an
  • At least one aromatic tetracarboxylic dianhydride selected from the group consisting of biphenyltetracarboxylic dianhydride and pyromellitic dianhydride is particularly preferable.
  • the biphenyltetracarboxylic dianhydride 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride can be suitably used.
  • Arbitrary diamine can be used for the diamine which can be used in manufacture of the said polyimide porous membrane.
  • diamines include the following. 1) One benzene nucleus such as 1,4-diaminobenzene (paraphenylenediamine), 1,3-diaminobenzene, 2,4-diaminotoluene, 2,6-diaminotoluene, etc .; 2) 4,4'-diaminodiphenyl ether, diaminodiphenyl ether such as 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'- Dimethyl-4,4′-diaminobiphenyl, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-dia
  • diamine to be used can be appropriately selected according to desired characteristics.
  • aromatic diamine compounds are preferable, and 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether and paraphenylenediamine, 1,3-bis (3-aminophenyl) Benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (3-aminophenyl) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-amino) Phenoxy) benzene and 1,4-bis (3-aminophenoxy) benzene can be preferably used.
  • at least one diamine selected from the group consisting of benzenediamine, diaminodiphenyl ether and bis (aminophenoxy) phenyl is preferred.
  • the polyimide porous membrane that can be used in the present invention has a glass transition temperature of 240 ° C. or higher or a clear transition point at 300 ° C. or higher from the viewpoint of heat resistance and dimensional stability at high temperatures. It is preferably formed from a polyimide obtained by combining acid dianhydride and diamine.
  • the polyimide porous membrane that can be used in the present invention is preferably a polyimide porous membrane made of the following aromatic polyimide from the viewpoints of heat resistance and dimensional stability at high temperatures.
  • an aromatic polyimide comprising at least one tetracarboxylic acid unit selected from the group consisting of a biphenyltetracarboxylic acid unit and a pyromellitic acid unit, and an aromatic diamine unit
  • an aromatic polyimide comprising a tetracarboxylic acid unit and at least one aromatic diamine unit selected from the group consisting of a benzenediamine unit, a diaminodiphenyl ether unit and a bis (aminophenoxy) phenyl unit;
  • the polyimide porous membrane used in the present invention is preferably a three-layer structure having a surface layer A and a surface layer B having a plurality of pores, and a macrovoid layer sandwiched between the surface layer A and the surface layer B.
  • the macrovoid layer includes a partition bonded to the surface layers A and B, and a plurality of macrovoids surrounded by the partition and the surface layers A and B.
  • the partition of the macrovoid layer and the surface The thicknesses of the layers A and B are 0.01 to 20 ⁇ m, the holes in the surface layers A and B communicate with the macrovoids, the total film thickness is 5 to 500 ⁇ m, and the porosity is 40% or more. Less than 95% A polyimide porous film.
  • at least one partition wall in the macrovoid layer has one or a plurality of holes having an average pore diameter of 0.01 to 100 ⁇ m, preferably 0.01 to 50 ⁇ m, which communicate adjacent macrovoids.
  • a polyimide porous film described in International Publication No. 2010/038873, Japanese Patent Application Laid-Open No. 2011-219585, or Japanese Patent Application Laid-Open No. 2011-219586 can also be used in the present invention.
  • PES porous membrane that can be used in the present invention comprises polyethersulfone and typically consists essentially of polyethersulfone.
  • Polyethersulfone may be synthesized by a method known to those skilled in the art, for example, a method of polycondensation reaction of a dihydric phenol, an alkali metal compound and a dihalogenodiphenyl compound in an organic polar solvent, An alkali metal disalt can be synthesized in advance and can be produced by a polycondensation reaction with a dihalogenodiphenyl compound in an organic polar solvent.
  • alkali metal compound examples include alkali metal carbonates, alkali metal hydroxides, alkali metal hydrides, alkali metal alkoxides, and the like.
  • sodium carbonate and potassium carbonate are preferable.
  • dihydric phenol compounds examples include hydroquinone, catechol, resorcin, 4,4′-biphenol, bis (hydroxyphenyl) alkanes (for example, 2,2-bis (hydroxyphenyl) propane, and 2,2-bis (hydroxyphenyl) Methane), dihydroxydiphenyl sulfones, dihydroxydiphenyl ethers, or at least one hydrogen of the benzene ring is a lower alkyl group such as a methyl group, an ethyl group or a propyl group, or a lower alkoxy group such as a methoxy group or an ethoxy group.
  • the substituted one is mentioned.
  • the dihydric phenol compound a mixture of two or more of the above compounds can be used.
  • the polyethersulfone may be a commercially available product.
  • a commercial item Sumika Excel 7600P, Sumika Excel 5900P (above, Sumitomo Chemical Co., Ltd. product) etc. are mentioned.
  • the logarithmic viscosity of the polyethersulfone is preferably 0.5 or more, more preferably 0.55 or more from the viewpoint of satisfactorily forming the macrovoids of the porous polyethersulfone membrane. From the viewpoint of ease, it is preferably 1.0 or less, more preferably 0.9 or less, still more preferably 0.8 or less, and particularly preferably 0.75 or less.
  • the PES porous membrane or polyethersulfone as a raw material thereof has a glass transition temperature of 200 ° C. or higher or a clear glass transition temperature from the viewpoint of heat resistance and dimensional stability at high temperatures. Preferably it is not observed.
  • the production method of the PES porous membrane that can be used in the present invention is not particularly limited.
  • a polyethersulfone solution containing 0.3% to 60% by weight of polyethersulfone having a logarithmic viscosity of 0.5 to 1.0 and 40% to 99.7% by weight of an organic polar solvent is cast into a film.
  • the PES porous membrane that can be used in the present invention preferably has a surface layer A, a surface layer B, and a macrovoid layer sandwiched between the surface layer A and the surface layer B. Because the macrovoid layer includes a partition bonded to the surface layers A and B, and a plurality of macrovoids surrounded by the partition and the surface layers A and B and having an average pore diameter of 10 ⁇ m to 500 ⁇ m in the film plane direction.
  • the partition wall of the macrovoid layer has a thickness of 0.1 ⁇ m to 50 ⁇ m
  • Each of the surface layers A and B has a thickness of 0.1 ⁇ m to 50 ⁇ m
  • one has a plurality of pores having an average pore diameter of more than 5 ⁇ m and not more than 200 ⁇ m, and the other has a plurality of pores having an average pore diameter of 0.01 ⁇ m or more and less than 200 ⁇ m
  • the surface opening ratio of one of the surface layer A and the surface layer B is 15% or more, and the surface opening ratio of the other surface layer is 10% or more
  • the pores of the surface layer A and the surface layer B communicate with the macrovoid;
  • the PES porous membrane has a total film thickness of 5 ⁇ m to 500 ⁇ m and a porosity of 50% to 95%. PES porous membrane.
  • the above-mentioned polymer porous membrane as a cell culture carrier used in the cell culture apparatus of the present invention has a micro-hydrophilic porous property, the liquid is stably retained in the polymer porous membrane, and it can be dried. A strong moist environment is maintained. Therefore, cell survival and proliferation can be achieved even with a very small amount of medium as compared with a cell culture apparatus using a conventional cell culture carrier.
  • a part of or all of the polymer porous membrane can be cultured even when it is exposed to air, it is possible to efficiently supply oxygen to the cells and to culture a large amount of cells. Can do.
  • the amount of medium used is extremely small, and the polymer porous membrane as a culture carrier can be exposed to the gas phase, so that oxygen supply to the cells is sufficiently performed by diffusion. Therefore, the present invention does not particularly require an oxygen supply means.
  • One embodiment of the present invention provides: A polymer porous membrane; A cell culture section having the polymer porous membrane; An axis penetrating the cell culture section; A medium bath in which at least a part of the cell culture section is immersed;
  • the polymer porous membrane has a three-layered polymer porous structure having a surface layer A and a surface layer B having a plurality of pores, and a macrovoid layer sandwiched between the surface layer A and the surface layer B
  • the average pore diameter of the pores existing in the surface layer A is smaller than the average pore diameter of the pores existing in the surface layer B, and the macrovoid layer is bonded to the surface layers A and B.
  • the present invention relates to a cell culture apparatus, wherein the cell culture unit rotates around the axis, and cells supported on the polymer porous membrane are alternately cultured in a gas phase and a liquid phase.
  • the cell culture device is also referred to as “the cell culture device of the present invention”.
  • FIG. 1 is a diagram showing a configuration example of a cell culture device 1 of the present invention.
  • the cell culture device 1 includes a cell culture unit 2 having the above-described polymer porous membrane, a shaft 23 penetrating the center of the cell culture unit 2, and a medium tank 3 in which at least a part of the cell culture unit 2 is immersed. ing.
  • the medium tank 3 is filled with a predetermined amount of medium.
  • the reason why cell culture is possible even in the gas phase as in this embodiment is that the polymer porous membrane used in the present invention can stably hold liquid and can provide a moist environment resistant to drying. It is. By using the porous polymer according to the present invention, the configuration of the present invention can be realized.
  • a rotary motor 6 fixed by the shaft 23 and the shaft joint 62.
  • the shaft 23 is fixed to the cell culture unit 2 by any means.
  • the rotation motor shaft 61 is rotated by the operation of the rotation motor 6, the rotation motion is transmitted to the shaft 23, and the cell culture unit 2 fixed to the shaft 23 is rotated.
  • the rotation motor 6 may be controlled by a computer or the like.
  • the rotation motor 6 can be controlled to rotate under optimum conditions for cell culture by combining rotation speed, start, stop, and the like.
  • a medium discharge line 42 is further provided, one end of the medium discharge line 42 is connected to the medium discharge pipe 33 of the medium tank 3, and the other end of the medium discharge line 42 is a medium discharge. It is connected to the tank 4. As a result, the medium discharged from the medium tank 3 is stored in the medium discharge tank 4.
  • a medium supply line 41 is further provided, one end of the medium supply line 41 is connected to the medium discharge tank 4, and the other end of the medium supply line 41 is connected to the medium supply pipe 34 of the medium tank 3. It is connected.
  • a medium supply pump 5 is provided in the middle of the medium supply line 41, and the medium in the medium discharge tank 4 is again sent to the medium tank 3 by operating the medium supply pump 5.
  • the type of the medium supply pump 5 is not particularly limited.
  • a tube pump, a perista pump, or the like can be used.
  • a part of the configuration of the cell culture device 1 is installed on the installation table 7, but the installation table 7 is not used as long as the effect of the present invention is exhibited. Also good.
  • FIG. 2 is a perspective view showing a configuration example of the cell culture device 1 of the present invention, and shows a part of members included in the configuration example of FIG. 1 in an independent state.
  • the cell culture part 2 shown in FIG. 1 is formed of a polymer porous membrane 20, a polymer porous support 21 for sandwiching the polymer porous membrane 20, and a polymer porous membrane stopper 22. 23 is penetrated.
  • the shaft 23 is provided with a flange 26 for preventing the polymer porous membrane support 21 from coming off in the direction of the rotary motor 6.
  • the polymer porous support 21 may be formed directly on the shaft 23.
  • the polymer porous membrane can be fixed by providing a stop ring 24 on the outer side of the polymer porous membrane stopper 22 stop and applying pressure toward the polymer porous membrane support 21 by the stop ring 24.
  • the retaining ring 24 may have a female thread and a male thread on at least a portion of the shaft 23 so that pressure is applied by screwing.
  • a screw hole may be provided in a part of the retaining ring 24, a male screw may be inserted into the screw hole, and screwed perpendicularly to the shaft 23.
  • One polymer porous membrane may be used, or two or more polymer porous membranes may be laminated and used. By using two or more sheets, the space for cell culture can be increased, and more cells can be grown.
  • bearing bushes (25a, 25b) are provided on the shafts 23 on both sides of the cell culture unit 2.
  • the bearing bushes (25a, 25b) are fitted into bearings (31a, 31b) provided in the medium tank 3, respectively.
  • the shaft 23 can be stably rotated without being displaced.
  • FIG. 3 is a view showing a culture tank 3 constituting the cell culture apparatus 1 of the present invention.
  • 3C is a cross-sectional view taken along the ZZ ′ axis in FIG. 3A
  • FIGS. 3B and 3D are a left side view and a right side view in FIG. 3A, respectively.
  • the bearings (31a, 31b) described above are fitted with bearing bushes (25a, 25b) and are provided with bearing recesses 310 having a depth that does not hinder the rotation of the bearing bushes (25a, 25b). Thereby, the shaft 23 is prevented from being detached from the culture tank 3.
  • a medium storage inner wall 35 is provided in a part of the medium storage section 32, and a medium storage inner wall recess 351 is provided at a plurality of locations of the medium storage inner wall 35.
  • the amount of medium accommodated in the medium reservoir is determined by the size, shape, and the like of the medium reservoir inner wall 35 and the medium reservoir inner wall recess 351.
  • the shape of the bottom surface of the culture medium storage unit 32 may be any shape that does not interfere with the flow of the culture medium when the cell culture unit 2 is applied and rotated.
  • the cell culture part 2 since the cell culture part 2 is a disk shape, it has a semi-cylindrical side shape larger than the radius of the cell culture part 2.
  • FIG. 4 is a diagram showing an embodiment of the cell culture unit 2 used in the cell culture device 1 of the present invention.
  • (A) is a plane and cross-sectional view of the polymer porous support 21, and
  • (B) is a plane and cross-sectional view of the polymer porous membrane stopper 22.
  • the polymer porous support 21 is provided with a shaft through-hole 27 through the shaft 23 at the center. The diameter of the shaft through hole 27 is not particularly limited because it is determined by the diameter of the shaft 23.
  • the polymer porous membrane support 21 is provided with a medium passage port 28 for supplying a medium and air (oxygen) to the polymer porous membrane to be fixed.
  • the shape and diameter of the medium passage port 28 are not limited to the shape shown in the figure, and any shape and area can be adopted as long as it is sufficient to supply the medium and air (oxygen) to the polymer porous membrane. is there.
  • the polymer porous membrane retainer 22 includes a plurality of spokes 22a extending radially from a polymer porous membrane retainer ring 29 having a shaft through-hole 27.
  • the length of the spoke 22a is equal to or shorter than the radius of the polymer porous membrane support 21.
  • the polymer porous membrane stopper 22 can fix the polymer porous membrane 20 by combining with the polymer porous membrane support 21.
  • the polymer porous membrane stopper 22 is not limited to the illustrated shape as long as the polymer porous membrane can be fixed by being combined with the polymer multi-rigid membrane support 21.
  • two or more polymer porous membranes 20 may be laminated and sandwiched between the polymer multi-hard membrane support 21 and the polymer porous membrane clasp 22.
  • FIG. 1 shows a cell culture apparatus 1 configured by connecting five sets of cell culture units 2.
  • FIG. 5 is a diagram showing another embodiment of the cell culture unit 2 used in the cell culture device 1 of the present invention. It is the figure which drawn the same cell culture part 2 from a different angle in both the upper stage and lower stage of FIG.
  • the cell culture part 2 of this embodiment is a cylindrical container (200, 200a, 200b, 200c).
  • the end surface 201 of the cylindrical container (200, 200a, 200b, 200c) includes one or more medium outlets 204, and the side surface 202 of the cylindrical container (200, 200a, 200b, 200c) includes One or more medium outlets 205 are provided.
  • the polymer porous membrane is accommodated in a cylindrical container (200, 200a, 200b, 200c).
  • the cell culture part 2 is in the shape of a cylindrical container (200, 200a, 200b, 200c), an arbitrary amount of the polymer porous membrane can be accommodated.
  • the shapes and areas of the medium outlet / inlet 204 and the medium outlet / inlet 205 are not limited to the shape shown in the figure, but are sufficient to supply the medium and air (oxygen) to the polymer porous membrane, and the polymer porous membrane accommodated in the inside. Any shape and area that does not drop off can be used.
  • the end surface 201 of the cylindrical container (200, 200a, 200b, 200c) has the function of a lid of the cylindrical container (200, 200a, 200b, 200c), and can be opened by the claw 203 provided on the end surface 201. It is. Thereby, a polymer porous membrane can be accommodated inside a cylindrical container (200, 200a, 200b, 200c).
  • the height of the side surface 202 may be high enough to accommodate a desired amount of the polymer porous membrane, and is not particularly limited.
  • three cylindrical containers (200, 200a, 200b, 200c) are connected, and a desired number of cylindrical containers (200, 200a, 200b, 200c) can be connected. As a result, a desired number of cells can be cultured.
  • the cylindrical container (200, 200a, 200b, 200c) of this embodiment has a shaft through-hole 206 through which the shaft 23 penetrates at the center.
  • the diameter of the shaft through hole 206 is not particularly limited because it is determined by the diameter of the shaft 23.
  • the cylindrical container (200, 200a, 200b, 200c) of the present embodiment is configured to communicate a part of one end surface of the cylindrical container (200, 200a, 200b, 200c) with a part of the other end surface.
  • the above spiral flow path 207 is provided.
  • the connected cylindrical container 200 is formed with a spiral channel 207 that is continuous in the direction of the axial through-hole 206.
  • the spiral channel 207 is also formed in each cylindrical container (200a, 200b, 200c) unit. When two or more spiral channels 207 are provided, all the spiral channels 207 are formed to be parallel. Since the spiral flow path 207 is a space that does not form the cylindrical container (200, 200a, 200b, 200c), the porous polymer membrane cannot be accommodated in the space.
  • the cylindrical container (200, 200a, 200b, 200c) provided with the spiral channel 207 is rotated in the culture medium of the culture tank 3, the medium is sent from one direction to the other direction by the spiral channel 207.
  • the medium inside the culture tank 3 is agitated. Thereby, the density
  • the cylindrical container (200, 200a, 200b, 200c) and the shaft 23 may not be fixed. . In this case, only the cylindrical container (200, 200a, 200b, 200c) rotates around the shaft 23.
  • the culture medium flows into the spiral channel 207 and causes the cylindrical containers (200, 200a, 200b, 200c) to rotate. It becomes possible.
  • the spiral channel 207 can be rotated at an arbitrary speed.
  • the cell culture section 2 and the cylindrical container (200, 200a, 200b, 200c) used in the embodiment of the present invention are, for example, polystyrene, polycarbonate, polymethyl methacrylate, polyethylene terephthalate, stainless steel (also referred to as “stainless”). There are no particular limitations as long as it is a material that does not affect cell culture.
  • the spiral channel 207 is not provided in the cylindrical container (200, 200a, 200b, 200c).
  • the cylindrical container (200, 200a, 200b, 200c) is fixed to the shaft 23 that penetrates the shaft through-hole 206.
  • the cell culture unit 2 used in another embodiment of the present invention may be a stainless steel mesh cylindrical container 2000 made of stainless steel mesh, for example, as shown in FIG. 9B. Since it has a stainless steel mesh shape, the culture medium can freely flow into and out of the stainless steel mesh cylindrical container 2000. In addition, since it is a stainless steel mesh, it can be sterilized by sterilization means such as dry heat sterilization while having a polymer porous membrane inside.
  • a droplet-formation medium supply means for supplying the medium in the form of microdroplets may be provided in the gas phase region of the cell culture unit 2.
  • the medium is supplied as microdroplets from the droplet forming medium supply means and supplied to the polymer porous in the cell culture unit 2.
  • the droplet forming medium supply means may be any means that supplies the medium in the form of droplets, and the size of the supplied droplets is not limited.
  • the dropletized medium supply means does not limit the size of the supplied droplet, and thus includes a device that supplies a shower-shaped medium from a mist-shaped medium.
  • the droplet forming medium supply means is disposed so as to be sprayable on the gas phase exposure region of the cell culture unit 2.
  • droplet-forming medium refers to a mist-like or water-dropped medium, and refers to a medium that can be sprayed or sprayed onto the polymer porous membrane used in the present invention.
  • the diameter of the droplet formation medium is not limited.
  • the droplet formation medium may be a mist-shaped droplet formation medium that is small enough to float in the air without falling freely due to gravity.
  • the diameter of the mist-like droplet forming medium may be, for example, about 1 ⁇ m to 100 ⁇ m, or may be a smaller diameter.
  • the droplet-forming medium may be, for example, a water-drop-like medium that freely falls by gravity, and may be, for example, 100 ⁇ m or more.
  • the medium As a method for forming the medium into droplets, a method for forming droplets by a known means may be used.
  • the medium may be formed using a mist nozzle, a shower nozzle, or the like.
  • the droplet formation method must be formed into droplets by a method that does not change the components of the medium. For example, the evaporation method is excluded from the droplet formation method.
  • the droplet formation medium is applied to a polymer porous membrane supporting cells.
  • the dropletized medium passes through the gas phase before reaching the polymer porous membrane, and oxygen is dissolved in the medium.
  • a medium having a sufficient amount of oxygen is continuously supplied, and the cells can be cultured without causing ischemia.
  • the medium attached to the polymer porous membrane can always take up oxygen, and culture capable of efficiently supplying oxygen becomes possible.
  • the polymer porous membrane used in embodiments of the present invention can be, for example, i) folded, ii) rolled up, iii) connected sheets or pieces with thread-like structures, and / or iv. ) It may be tied in a rope shape and applied to the cell culture unit 2. Further, the polymer porous membrane used in the embodiment of the present invention may be applied to the cell culture unit 2 by v) 2 or more being laminated. By processing the shape as in i) to v), a large number of polymer porous membranes can be placed in a fixed volume of cell culture medium.
  • the polymer porous membrane used in the embodiment of the present invention may be a modularized polymer porous membrane (hereinafter referred to as “modulated polymer porous membrane”).
  • module polymer porous membrane refers to a polymer porous membrane housed in a casing.
  • the description of “modular polymer porous membrane” can be simply referred to as “module”, and means the same even if they are mutually changed.
  • the casing provided in the modular polymer porous membrane used in the embodiment of the present invention has two or more cell culture medium outlets, and the culture medium flows into and out of the casing through the cell culture medium outlets.
  • the diameter of the cell culture medium inlet / outlet of the casing is preferably larger than the diameter of the cells so that the cells can flow into the casing.
  • the diameter of the cell culture medium outlet is preferably smaller than the diameter of the polymer porous membrane flowing out of the cell culture medium outlet.
  • the diameter smaller than the diameter from which the polymer porous membrane flows can be appropriately selected depending on the shape and size of the polymer porous membrane accommodated in the casing.
  • the polymer porous membrane has a string shape
  • it is 5 or more, preferably 10 or more, preferably 20 or more, preferably 50 or more, preferably 100 or more.
  • the cell culture medium outflow port a part or all of the casing may have a mesh structure. Further, the casing itself may be mesh-shaped.
  • the mesh-shaped structure has, for example, a vertical, horizontal, and / or diagonal lattice structure, and each mesh opening forms a cell culture medium outlet / outlet to the extent that fluid can pass through.
  • each mesh opening forms a cell culture medium outlet / outlet to the extent that fluid can pass through.
  • it is not limited to this.
  • Examples of the modular polymer porous membrane casing used in the embodiment of the present invention include metals such as polystyrene, polycarbonate, polymethylmethacrylate, polyethylene terephthalate, and stainless steel. There is no particular limitation as long as there is no material.
  • the modular polymer porous membrane used in embodiments of the present invention is: (I) Two or more independent polymer porous membranes are aggregated, (Ii) the polymer porous membrane is folded; (Iii) The polymer porous membrane is wound into a roll and / or (Iv) The polymer porous membrane is tied in a rope shape, The modular polymer porous membrane housed in the casing can be applied to the cell culture section 2.
  • two or more independent polymer porous membranes are aggregated and accommodated in a casing.
  • two or more independent polymer porous membranes are fixed by at least one location of the polymer porous membrane and at least one location in the casing by any method, and the polymer porous membrane is fixed in the casing. It may be fixed so as not to move.
  • the two or more independent polymer porous membranes may be small pieces.
  • the shape of the small piece may be any shape such as a circle, an ellipse, a square, a triangle, a polygon, and a string, but is preferably a substantially square.
  • the size of the small piece can be any size, but when it is approximately square, the length may be any length, but for example, the width may be 80 mm or less, preferably 50 mm or less. More preferably 30 mm or less, even more preferably 20 mm or less, and may be 10 mm or less.
  • the polymer porous membrane piece is substantially square, the length of one side thereof is along the inner wall of the casing or on one side of the inner wall so that the polymer porous membrane does not move in the casing. It may be formed shorter than the length (for example, shorter by about 0.1 mm to 1 mm). This prevents stress from being applied to cells grown in the polymer porous membrane.
  • the “folded polymer porous membrane” is folded in the casing, so that the frictional force between each surface of the polymer porous membrane and / or the surface in the casing is increased in the casing.
  • This is a porous polymer membrane that is in a state of not moving.
  • “folded” may be a state in which the polymer porous membrane is creased or a state in which no crease is present.
  • the “polymer porous film wound in a roll shape” means that the polymer porous film is wound in a roll shape, and friction between each surface of the polymer porous film and / or the surface in the casing.
  • the polymer porous membrane knitted in a rope shape is, for example, a plurality of strip-shaped polymer porous membranes knitted in a rope shape by an arbitrary method, and the friction force between the polymer porous membranes.
  • the state in which the polymer porous membrane does not move in the casing means that the polymer porous membrane is continuously formed when the modular polymer porous membrane is cultured in a cell culture medium.
  • the state accommodated in a casing so that it may not change.
  • the polymer porous membrane itself is in a state of being suppressed by the fluid so as not to continuously move. Since the polymer porous membrane is kept stationary in the casing, stress is prevented from being applied to the cells growing in the polymer porous membrane, and the cells can be cultured stably without being killed. It becomes.
  • A an embodiment comprising a step of seeding cells on the surface of the porous polymer membrane;
  • B A cell suspension is placed on the dried surface of the porous polymer membrane, Leave or move the polymer porous membrane to promote fluid outflow, or stimulate a portion of the surface to draw cell suspension into the membrane; and The cells in the cell suspension are retained in the membrane, and the water flows out.
  • An embodiment comprising steps; and
  • C Wetting one or both sides of the polymer porous membrane with a cell culture medium or a sterilized liquid, Loading the wet polymer porous membrane with a cell suspension; and The cells in the cell suspension are retained in the membrane, and the water flows out.
  • a mode comprising the steps.
  • the mode includes directly seeding cells and cell clusters on the surface of the porous polymer membrane.
  • a mode in which a polymer porous membrane is placed in a cell suspension and a cell culture medium is infiltrated from the surface of the membrane is also included.
  • the cells seeded on the surface of the polymer porous membrane adhere to the polymer porous membrane and enter the inside of the pore.
  • the cells adhere to the polymer porous membrane without any physical or chemical force applied from the outside.
  • Cells seeded on the surface of the polymer porous membrane can stably grow and proliferate on the surface and / or inside of the membrane. Cells can take a variety of different forms depending on the location of the membrane in which they grow and multiply.
  • the cell suspension is placed on the dried surface of the polymer porous membrane.
  • the cell suspension is sucked into the membrane, Cell suspension penetrates into the membrane. Without being bound by theory, it is thought that this is due to the properties derived from the surface shape of the polymer porous membrane.
  • the cells are sucked and seeded at the portion of the membrane where the cell suspension is loaded.
  • one or both sides or the whole of the polymer porous membrane is wetted with a cell culture medium or a sterilized liquid, and then the cell suspension is applied to the wet polymer porous membrane. May be loaded. In this case, the passage speed of the cell suspension is greatly improved.
  • a method of wetting a part of the membrane electrode for the main purpose of preventing the scattering of the membrane (hereinafter referred to as “one-point wet method”) can be used.
  • the one-point wet method is substantially similar to the dry method (the embodiment (B)) that does not substantially wet the film.
  • a method in which a cell suspension is loaded into a polymer porous membrane that has been sufficiently wetted on one or both sides hereinafter referred to as “wet membrane”).
  • this Is described as “wet film method”.
  • the passage speed of the cell suspension is greatly improved in the entire polymer porous membrane.
  • the cells in the cell suspension are retained in the membrane and the water is allowed to flow out.
  • processing such as concentrating the concentration of cells in the cell suspension or allowing unnecessary components other than cells to flow out together with moisture.
  • the mode of (A) may be referred to as “natural sowing” (B) and the mode of (C) as “suction sowing”.
  • the living cells selectively remain in the polymer porous membrane.
  • live cells remain in the polymer porous membrane and dead cells preferentially flow out with moisture.
  • the sterilized liquid used in the embodiment (C) is not particularly limited, but is a sterilized buffer or sterilized water.
  • the buffer include (+) and ( ⁇ ) Dulbecco ’s PBS, (+) and ( ⁇ ) Hank's Balanced Salt Solution. Examples of buffer solutions are shown in Table 1 below.
  • the cell is applied to the polymer porous membrane in such a manner that the cells adhere to the membrane by allowing the adherent cells in a suspended state to coexist with the polymer porous membrane (entanglement). )
  • a cell culture medium cells and one or more of the polymer porous membranes may be placed in a cell culture vessel.
  • the cell culture medium is liquid
  • the polymer porous membrane is in a suspended state in the cell culture medium. Due to the nature of the polymer porous membrane, cells can adhere to the polymer porous membrane.
  • the polymer porous membrane can be cultured in a suspended state in the cell culture medium.
  • the cells adhere to the polymeric porous membrane. “Spontaneously adheres” means that the cells remain on or inside the porous polymer membrane without any physical or chemical force applied from the outside.
  • the above-described application of the cell to the polymer porous membrane may be performed by combining two or more methods.
  • the cells may be applied to the polymer porous membrane by combining two or more of the embodiments (A) to (C). It is possible to apply the polymer porous membrane supporting the cells to the cell culture unit 2 in the cell culture apparatus 1 and culture the cells.
  • a medium containing suspended cells may be dropped from the cell supply means 3 and seeded in advance in the cell culture unit 2 in which the polymer porous membrane is accommodated.
  • the “suspended cell” means, for example, a cell obtained by forcibly suspending an adherent cell in a medium by a proteolytic enzyme such as trypsin, or a known acclimation step.
  • the cells contain adherent cells that can be suspended in the medium.
  • the types of cells that can be used in the present invention are selected from the group consisting of animal cells, insect cells, plant cells, yeasts, and bacteria, for example.
  • Animal cells are roughly classified into cells derived from animals belonging to the vertebrate phylum and cells derived from invertebrates (animals other than animals belonging to the vertebrate phylum).
  • the origin of the animal cell is not particularly limited.
  • Vertebrates include the maxilla and maxilla, and the maxilla includes mammals, birds, amphibians, reptiles, and the like.
  • it is a cell derived from an animal belonging to the mammal class generally called a mammal. Mammals are not particularly limited, but preferably include mice, rats, humans, monkeys, pigs, dogs, sheep, goats and the like.
  • the types of animal cells that can be used in the present invention are not limited, but are preferably selected from the group consisting of pluripotent stem cells, tissue stem cells, somatic cells, and germ cells.
  • pluripotent stem cell is intended to be a generic term for stem cells having the ability to differentiate into cells of any tissue (differentiated pluripotency).
  • the pluripotent stem cells include, but are not limited to, embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), embryonic germ stem cells (EG cells), germ stem cells (GS cells), and the like. .
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • EG cells embryonic germ stem cells
  • GS cells germ stem cells
  • Any known pluripotent stem cell can be used.
  • the pluripotent stem cell described in International Publication No. 2009/123349 PCT / JP2009 / 057041
  • PCT / JP2009 / 057041 can be used.
  • tissue stem cell means a stem cell that has the ability to differentiate into various cell types (differentiated pluripotency) although the cell line that can be differentiated is limited to a specific tissue.
  • hematopoietic stem cells in the bone marrow become blood cells, and neural stem cells differentiate into nerve cells.
  • the tissue stem cells are selected from mesenchymal stem cells, hepatic stem cells, pancreatic stem cells, neural stem cells, skin stem cells, or hematopoietic stem cells.
  • somatic cells refers to cells other than germ cells among the cells constituting multicellular organisms. In sexual reproduction, it is not passed on to the next generation.
  • the somatic cells are hepatocytes, pancreatic cells, muscle cells, bone cells, osteoblasts, osteoclasts, chondrocytes, adipocytes, skin cells, fibroblasts, pancreatic cells, kidney cells, lung cells, or , Lymphocytes, erythrocytes, leukocytes, monocytes, macrophages or megakaryocyte blood cells.
  • Reproductive cells means cells that have a role in transmitting genetic information to the next generation in reproduction. For example, gametes for sexual reproduction, ie eggs, egg cells, sperm, sperm cells, spores for asexual reproduction, and the like.
  • the cells may be selected from the group consisting of sarcoma cells, established cells and transformed cells.
  • “Sarcoma” is a cancer that develops in connective tissue cells derived from non-epithelial cells such as bone, cartilage, fat, muscle, blood, etc., and includes soft tissue sarcoma, malignant bone tumor and the like.
  • Sarcoma cells are cells derived from sarcomas.
  • the “established cell” means a cultured cell that has been maintained outside the body for a long period of time, has a certain stable property, and is capable of semi-permanent subculture.
  • PC12 cells derived from rat adrenal medulla
  • CHO cells derived from Chinese hamster ovary
  • HEK293 cells derived from human fetal kidney
  • HL-60 cells derived from human leukocyte cells
  • HeLa cells derived from human cervical cancer
  • Vero cells Derived from African green monkey kidney epithelial cells
  • MDCK cells derived from canine kidney tubular epithelial cells
  • HepG2 cells human hepatoma-derived cell line
  • BHK cells neonatal hamster kidney cells
  • NIH3T3 cells derived from mouse fetal fibroblasts
  • a “transformed cell” means a cell in which a nucleic acid (DNA or the like) has been introduced from the outside of the cell to change its genetic properties.
  • adherent cells are generally cells that need to adhere to an appropriate surface for proliferation, and are also referred to as adherent cells or anchorage-dependent cells.
  • the cells used are adherent cells.
  • the cells used in the present invention are adherent cells, and more preferably cells that can be cultured even in a state suspended in a medium.
  • Adherent cells capable of suspension culture can be obtained by acclimating adherent cells to a state suitable for suspension culture by a known method. For example, CHO cells, HEK293 cells, Vero cells, NIH3T3 cells And cell lines derived from these cells.
  • FIG. 1 is a diagram for assisting understanding, and each element is not an actual size.
  • the cell culturing method of the present invention by applying cells to the polymer porous membrane and culturing, a large number of cells grow on the multifaceted connected porous portion and the surface of the polymer porous membrane, A large amount of cells can be cultured easily. Moreover, in the cell culturing method of the present invention, a large amount of cells can be cultured while the amount of medium used for cell culturing is greatly reduced as compared with the conventional method.
  • the total volume of the cell culture medium contained in the cell culture container can be significantly reduced with respect to the total volume of the polymer porous membrane including the cell survival area.
  • the volume occupied by the polymer porous membrane containing no cells in the space including the volume of the internal gap is referred to as “apparent polymer porous membrane volume” (see FIG. 6). Then, when the cells are applied to the polymer porous membrane and the cells are supported on and inside the polymer porous membrane, the polymer porous membrane, the cells, and the medium infiltrated into the polymer porous membrane are entirely space.
  • the volume occupied therein is referred to as “polymer porous membrane volume including cell viability zone” (see FIG. 6).
  • the polymer porous membrane volume including the cell survival area is apparently about 50% larger than the polymer porous membrane volume at the maximum.
  • a plurality of polymer porous membranes can be accommodated and cultured in one cell culture vessel.
  • the cell survival area for each of the plurality of polymer porous membranes carrying cells is sometimes simply referred to as “the total volume of the polymer porous membrane including the cell viability zone”.
  • the method of the present invention even if the total volume of the cell culture medium contained in the cell culture container is 10,000 times or less than the total volume of the polymer porous membrane including the cell viability area, It becomes possible to culture well. In addition, cells can be cultured well over a long period of time even under conditions where the total volume of the cell culture medium contained in the cell culture vessel is 1000 times or less than the total volume of the polymer porous membrane including the cell survival area. . Furthermore, even when the total volume of the cell culture medium contained in the cell culture vessel is 100 times or less than the total volume of the polymer porous membrane including the cell survival area, the cells can be cultured well over a long period of time. . And even if the total volume of the cell culture medium contained in the cell culture container is 10 times or less than the total volume of the polymer porous membrane including the cell survival area, the cells can be cultured well over a long period of time. .
  • the space (container) for cell culture can be miniaturized to the limit as compared with the conventional cell culture apparatus for performing two-dimensional culture. Moreover, when it is desired to increase the number of cells to be cultured, it is possible to increase the volume of cell culture flexibly by a simple operation such as increasing the number of polymer porous membranes to be laminated. If it is a cell culture apparatus provided with the polymer porous membrane used for this invention, it becomes possible to isolate
  • the space (container) in which the cell culture medium is stored may be enlarged or reduced according to the purpose, or may be a replaceable container, and is not particularly limited.
  • the number of cells contained in the cell culture container after the culture using the polymer porous membrane is uniformly dispersed in the cell culture medium contained in the cell culture container.
  • a method for measuring the number of cells during or after the culture various known methods can be used.
  • a method for measuring the number of cells contained in a cell culture vessel after culturing using a polymer porous membrane as if all the cells are uniformly dispersed in the cell culture medium contained in the cell culture vessel Any known method can be used as appropriate.
  • a cell count method using CCK8 can be suitably used.
  • Cell Counting Kit 8; a solution reagent manufactured by Dojindo Laboratories (hereinafter referred to as “CCK8”) was used to measure the number of cells in a normal culture without using a polymer porous membrane, and the absorbance was measured. The correlation coefficient with the actual cell number is obtained.
  • the polymer porous membrane, to which the cells were applied and cultured was transferred to a medium containing CCK8, stored in an incubator for 1 to 3 hours, the supernatant was extracted, and the absorbance was measured at a wavelength of 480 nm. The number of cells is calculated from the obtained correlation coefficient.
  • the mass culture of cells means, for example, that the number of cells contained per 1 cm 2 of the polymer porous membrane after the culture using the polymer porous membrane is 1.0 ⁇ 10 5 or more, 2.0 ⁇ 10 5 or more, 1.0 ⁇ 10 6 or more, 2.0 ⁇ 10 6 or more, 5.0 ⁇ 10 6 or more, 1.0 ⁇ 10 7 or more, 2.0 ⁇ 10 7 or more , 5.0 ⁇ 10 7 or more, 1.0 ⁇ 10 8 or more, 2.0 ⁇ 10 8 or more, or 5.0 ⁇ 10 8 or more.
  • the number of cells contained per square centimeter of the polymer porous membrane can be appropriately measured using a known method such as a cell counter.
  • the polyimide porous membrane used in the following examples is composed of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) which is a tetracarboxylic acid component and 4,4 which is a diamine component. It was prepared by molding a polyamic acid solution composition containing a polyamic acid solution obtained from '-diaminodiphenyl ether (ODA) and a polyacrylamide as a coloring precursor, and then heat-treating it at 250 ° C. or higher.
  • s-BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • the obtained polyimide porous film is a three-layer polyimide porous film having a surface layer A and a surface layer B having a plurality of pores, and a macrovoid layer sandwiched between the surface layer A and the surface layer B.
  • the average pore size of the pores existing in the surface layer A was 6 ⁇ m
  • the average pore size of the pores existing in the surface layer B was 46 ⁇ m
  • the film thickness was 25 ⁇ m
  • the porosity was 73%.
  • Cells conditioned and suspended from anti-human IL-8 antibody-producing CHO-DP12 cells are suspended in culture using a medium (BalanCD TM CHO GROWTH A) and the number of living cells per ml is increased. The culture was continued until 1.3 ⁇ 10 6 .
  • a jacket (casing) is formed with a nylon mesh (30 #, opening 547 ⁇ m) inside a gas-phase-exposure rotary culture apparatus (saddle drum type, without spiral flow path) shown in FIG.
  • a fixed amount (20 cm 2 per module) was added and 18 sealed modules were installed and prepared to be rotatable. After 40 ml of the above suspension culture solution was poured into the upper reservoir (corresponding to the culture tank 3 in FIG.
  • Example 2 Vapor phase exposure type rotary culture equipment
  • Cells conditioned and suspended from anti-human IL-8 antibody-producing CHO-DP12 cells are suspended in culture using a medium (BalanCD TM CHO GROWTH A) and the number of living cells per ml is increased. The culture was continued until 1.3 ⁇ 10 6 .
  • a mantle (casing) is formed with nylon mesh (30 #, aperture 547 ⁇ m) inside the gas phase rotary culture apparatus (cut-drum type, with spiral channel) shown in FIGS.
  • a fixed amount of membrane (20 cm 2 per module) is added and 18 sealed modules are installed and prepared for rotation. After 40 ml of the above suspension culture was poured into the upper reservoir, it was wetted in the suspension culture at a slow rate of 6 revolutions per minute.
  • the entire device including the rotating part is left overnight in a CO 2 incubator, and then the floating culture solution in the upper liquid reservoir (corresponding to the culture tank 3 in FIG. 1) is removed, and the module is kept rotating while the 500 ml From the lower liquid reservoir (corresponding to the medium discharge tank 4 in FIG. 1) storing the medium (IMDM containing 2% FBS), the medium was circulated at a rate of 10 ml per minute via a tube pump.
  • IMDM containing 2% FBS the medium was circulated at a rate of 10 ml per minute via a tube pump.
  • Example 3 ⁇ Production of Modular Polymer Porous Membrane with Stainless Steel Casing (hereinafter referred to as “Metal Module”) and Stainless Steel Cell Culture Section (hereinafter referred to as “Metal Drum”)>
  • Metal Module consisting of a casing made of stainless steel mesh, an insole, and a polyimide porous membrane in order to make the most of the heat resistance of the polyimide porous membrane and complete the sterilization by simple dry heat sterilization was manufactured (see FIG. 9A).
  • a 1 cm ⁇ 1 cm polyimide porous membrane and a laminate of polyimide porous membrane and stainless steel mesh (referred to as “insole”; not shown) having the same area (3 polyimide porous, 1 insole) 4 layers of porous polyimide, 1 sheet of insole and 3 sheets of porous polyimide) were sealed with a stainless steel mesh casing to produce a metal module (FIG. 9A).
  • the work was performed non-sterilely in an open space.
  • a metal drum for operating this metal module was similarly made of a stainless steel mesh (FIG. 9B) and assembled non-sterilely with 20 metal modules inside. Thereafter, the metal drum including the metal module was wrapped in aluminum foil, sterilized by dry heat at 190 degrees Celsius for 80 minutes, and allowed to cool.
  • ⁇ Gas phase exposure type rotary culture device Cells conditioned and suspended from anti-human IL-8 antibody-producing CHO-DP12 cells (ATCC CRL-12445) are suspended in culture using a medium (BalanCD TM CHO GROWTH A) and the number of living cells per ml is increased. The culture was continued until 1.1 ⁇ 10 6 . As shown in FIG. 9C, a metal drum including a metal module was sterilized and prepared so as to be rotatable in a clean environment (FIG. 9C). 34 ml of the medium obtained by suspension culture of the cells as described above and 6 ml of fresh medium (BalanCD TM CHO GROWTH A) were poured into the upper reservoir (corresponding to the culture tank 3 in FIG.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Clinical Laboratory Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Molecular Biology (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、ポリマー多孔質膜と、前記ポリマー多孔質膜を有する細胞培養部と、前記細胞培養部を貫通した軸と、前記細胞培養部の少なくとも一部を浸漬する培地槽と、を備え、ここで、前記ポリマー多孔質膜が、複数の孔を有する表面層A及び表面層Bと、前記表面層A及び表面層Bの間に挟まれたマクロボイド層とを有する三層構造のポリマー多孔質膜であって、ここで前記表面層Aに存在する孔の平均孔径は、前記表面層Bに存在する孔の平均孔径よりも小さく、前記マクロボイド層は、前記表面層A及びBに結合した隔壁と、当該隔壁並びに前記表面層A及びBに囲まれた複数のマクロボイドとを有し、前記表面層A及びBにおける孔が前記マクロボイドに連通し、前記軸を中心として前記細胞培養部が回転し、細胞が気相及び液相において交互に培養されることを特徴とする、細胞培養装置を提供する。

Description

細胞培養装置、及び、それを使用した細胞培養方法
 本発明は、ポリマー多孔質膜を備えた細胞培養装置に関する。また、ポリマー多孔質膜を備えた細胞培養装置を使用した細胞培養方法に関する。
 近年、治療やワクチンに用いられる酵素、ホルモン、抗体、サイトカイン、ウイルス(ウイルスタンパク質)等のタンパク質が培養細胞を用いて工業的に産生されている。しかし、こうしたタンパク質の生産技術はコストが高く、それが医療費を引き上げていた。そのため、大幅なコスト削減を目指して、高密度に細胞を培養する技術や、タンパク質の産生量を増大させるような革新的な技術が求められていた。
 タンパク質を産生させる細胞として、培養基材に接着する足場依存性の接着細胞が用いられることがある。こうした細胞は、足場依存的に増殖するため、シャーレ、プレート又はチャンバーの表面に接着させて培養する必要がある。従来、こうした接着細胞を大量に培養するためには、接着するための表面積を大きくする必要があった。ところが、培養面積を大きくするには、空間を必然的に増大させる必要があり、それがコストを増大させる要因となっていた。
 培養空間を小さくしつつ、接着細胞を大量に培養する方法として、微小多孔を有する担体、特に、マイクロキャリアを用いた培養法が開発されている(例えば、特許文献1)。マイクロキャリアを用いた細胞培養系は、マイクロキャリアが互いに凝集しないようにするために十分に攪拌・拡散される必要がある。そのため、マイクロキャリアを分散させた培地を十分に攪拌・拡散することができるだけの容積が必要となるため、培養できる細胞の密度には上限がある。また、マイクロキャリアと培地とを分離するためには、細かな粒子を分別できるフィルターで分離させる必要があり、それがコストを増大させる原因ともなっていた。こうした状況から、高密度の細胞を培養する革新的な細胞培養の方法論が希求されていた。
 <ポリイミド多孔質膜>
 ポリイミド多孔質膜は、本出願前よりフィルター、低誘電率フィルム、燃料電池用電解質膜など、特に電池関係を中心とする用途のために利用されてきた。特許文献2~4は、特に、気体などの物質透過性に優れ、空孔率の高い、両表面の平滑性が優れ、相対的に強度が高く、高空孔率にもかかわらず、膜厚み方向への圧縮応力に対する耐力に優れるマクロボイドを多数有するポリイミド多孔質膜を記載している。これらはいずれも、アミック酸を経由して作成されたポリイミド多孔質膜である。
 細胞をポリイミド多孔質膜に適用して培養することを含む、細胞の培養方法が報告されている(特許文献5)。
国際公開第2003/054174号 国際公開第2010/038873号 特開2011-219585号公報 特開2011-219586号公報 国際公開第2015/012415号
 本発明は、ポリマー多孔質膜を備えた細胞培養装置を提供することを目的とする。また、本発明は、ポリマー多孔質膜を備えた細胞培養装置を使用した細胞培養方法を提供することを目的とする。
 本発明者らは、所定の構造を有するポリマー多孔質膜が、細胞を大量に培養可能な最適な空間を提供するのみならず、乾燥に強い湿潤環境を提供することを見出し、ポリマー多孔質膜に細胞を担持させ、気相暴露しながら培養する装置及びそれを使用する培養方法を完成させた。すなわち、限定されるわけではないが、本発明は好ましくは以下の態様を含む。
[1] ポリマー多孔質膜と、前記ポリマー多孔質膜を有する細胞培養部と、前記細胞培養部を貫通した軸と、前記細胞培養部の少なくとも一部を浸漬する培地槽と、を備え、
 ここで、前記ポリマー多孔質膜が、複数の孔を有する表面層A及び表面層Bと、前記表面層A及び表面層Bの間に挟まれたマクロボイド層とを有する三層構造のポリマー多孔質膜であって、ここで前記表面層Aに存在する孔の平均孔径は、前記表面層Bに存在する孔の平均孔径よりも小さく、前記マクロボイド層は、前記表面層A及びBに結合した隔壁と、当該隔壁並びに前記表面層A及びBに囲まれた複数のマクロボイドとを有し、前記表面層A及びBにおける孔が前記マクロボイドに連通し、
 前記軸を中心として前記細胞培養部が回転し、前記ポリマー多孔質膜に担持された細胞が気相及び液相において交互に培養されることを特徴とする、細胞培養装置。
[2] さらに、前記軸を回転するための回転モータを備えた、[1]に記載の細胞培養装置。
[3] 前記細胞培養部が、ポリマー多孔質膜支持体と、ポリマー多孔質膜留めと、
を備えるものであって、
 ここで、前記ポリマー多孔質膜は、前記ポリマー多孔質膜支持体及び前記ポリマー多孔質膜留めによって挟持されている、[1]又は[2]に記載の細胞培養装置。
[4] 前記ポリマー多孔質膜が、2枚以上積層されて挟持されている、[3]に記載の細胞培養装置。
[5] 前記細胞培養部が、円筒形容器であって、
ここで、前記円筒形容器の端面は、1以上の培地流出入口を備え、
ここで、前記円筒形容器の側面は、1以上の培地流出入口を備え、
ここで、前記ポリマー多孔質膜は、前記円筒形容器内に収容されている、[1]又は[2]に記載の細胞培養装置。
[6] 前記円筒形容器が、前記円筒形容器の一方の端面の一部と、他方の端面の一部とを連通する1以上の螺旋状流路を備えた、[5]に記載の細胞培養装置。
[7] 前記ポリマー多孔質膜が、
 i)折り畳まれて、
 ii)ロール状に巻き込まれて、
 iii)シートもしくは小片を糸状の構造体で連結されて、
 iv)縄状に結まれて、及び/又は
 v)2以上が積層されて、
前記円筒形容器に収容されている、[5]又は[6]に記載の細胞培養装置。
[8] 前記ポリマー多孔質膜が、ケーシングを備えたモジュール化ポリマー多孔質膜であって、
 ここで、前記モジュール化ポリマー多孔質膜が、
 (i)2以上の独立した前記ポリマー多孔質膜が、集約されて、
 (ii)前記ポリマー多孔質膜が、折り畳まれて、
 (iii)前記ポリマー多孔質膜が、ロール状に巻き込まれて、及び/又は、
 (iv)前記ポリマー多孔質膜が、縄状に結ばれて、
前記ケーシング内に収容されたものであって、
 ここで、前記モジュール化ポリマー多孔質膜が、前記円筒形容器に収容されている、[5]又は[6]に記載の細胞培養装置。
[9] 前記細胞培養部が、2以上連結された、[1]~[8]のいずれか1項に記載の細胞培養装置。
[10] 前記培地槽と一端部で連通した培地排出ラインと、前記培地排出ラインの他端部と連通した培地排出槽と、前記培地排出槽と一端部で連通した培地供給ラインと、前記培地供給ラインの途中に設けられた培地供給ポンプと、をさらに備えた、[1]~[9]のいずれか1項に記載の細胞培養装置。
[11] さらに、液滴化培地供給手段を備え、前記ポリマー多孔質膜に液滴化培地を供給することを特徴とする、[1]~[10]のいずれか1項に記載の細胞培養装置。
[12] 前記ポリマー多孔質膜が、平均孔径0.01~100μmの複数の細孔を有する、[1]~[11]のいずれか1項に記載の細胞培養装置。
[13] 前記表面層Aの平均孔径が、0.01~50μmである、[1]~[12]のいずれか1項に記載の細胞培養装置。
[14] 前記表面層Bの平均孔径が、20~100μmである、[1]~[13]のいずれか1項に記載の細胞培養装置。
[15] 前記ポリマー多孔質膜の総膜厚が、5~500μmである、[1]~[14]のいずれか1項に記載の細胞培養装置。
[16] 前記ポリマー多孔質膜が、ポリイミド多孔質膜である、[1]~[15]のいずれか1項に記載の細胞培養装置。
[17] 前記ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリイミドを含む、ポリイミド多孔質膜である、[16]に記載の細胞培養装置。
[18] 前記ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリアミック酸溶液と着色前駆体とを含むポリアミック酸溶液組成物を成形した後、250℃以上で熱処理することにより得られる着色したポリイミド多孔質膜である、[16]又は[17]に記載の細胞培養装置。
[19] 前記ポリマー多孔質膜が、ポリエーテルスルホン(PES)多孔質膜である、[1]~[15]のいずれか1項に記載の細胞培養装置。
[20] [1]~[19]のいずれか1項に記載の細胞培養装置を用いた培養方法であって、前記軸を中心として前記細胞培養部を回転し、前記ポリマー多孔質膜に担持された細胞を気相及び液相において交互に培養することを特徴とする、培養方法。
 本発明は、細胞培養担体としてポリマー多孔質膜を用いることにより、培養スペースや培地の量が少ない条件下でも、簡便かつ効率的な連続型細胞培養を可能とする。また、本発明のポリマー多孔質膜は、微親水性の多孔質特性を有するため、ポリマー多孔質膜内に安定した液保持がなされ、乾燥にも強い湿潤環境が保たれる。そのため、従来の細胞培養装置と比較しても極めて少量の培地でも、細胞の生存及び増殖を達成することができる。また、ポリマー多孔質膜の一部又はすべてが空気に露出した状態であっても培養が可能であるため、細胞に対して効率的な酸素供給を行うことができ、大量の細胞を培養することができる。
 本発明によれば、用いる培地の量が極めて少なく、また、培養担体であるポリマー多孔質膜を気相に露出することができるため、細胞への酸素供給は繰り返される気相への露出によって十分に行われる。したがって、本発明では特に酸素供給装置を必要としない。
[規則91に基づく訂正 01.08.2017] 
図1は、一実施形態における細胞培養装置の構成例を示す斜視図である。 図2は、一実施形態における細胞培養装置の構成例を示す斜視図である。 図3は、一実施形態における培養槽を示す図である。(A)平面図、(B)左側面図、(C)(A)におけるZ-Z´軸の断面図、(D)右側面図。 図4は、一実施形態における細胞培養部を示す図である。(A)ポリマー多孔質膜支持体(左:平面図、右:断面図)、(B)ポリマー多孔質膜留め(左:平面図、右:断面図)。 図5は、一実施形態における細胞培養部(円筒形容器)を示す斜視図である。上下の図は、同一の円筒形容器を違う角度から示した図である。 図6は、ポリマー多孔質膜を用いた細胞培養のモデル図を示す。 図7は、本発明の一実施形態における細胞培養装置を示す図である。 図8は、本発明の一実施形態における細胞培養装置を示す図である。 図9は、本発明の一実施形態における細胞培養装置を示す図である。(A)モジュール、(B)細胞培養部、(C)一実施形態における細胞培養装置、を示す。
 以下、本発明の実施形態について、必要に応じて図面を参照しながら説明する。実施形態の構成は例示であり、本発明の構成は、実施形態の具体的構成に限定されない。
 1.ポリマー多孔質膜
 本発明で使用されるポリマー多孔質膜中の表面層A(以下で、「A面」又は「メッシュ面」とも呼ぶ)に存在する孔の平均孔径は、特に限定されないが、例えば、0.01μm以上200μm未満、0.01~150μm、0.01~100μm、0.01~50μm、0.01μm~40μm、0.01μm~30μm、0.01μm~20μm、又は0.01μm~15μmであり、好ましくは、0.01μm~15μmである。
 本発明で使用されるポリマー多孔質膜中の表面層B(以下で、「B面」又は「大穴面」とも呼ぶ)に存在する孔の平均孔径は、表面層Aに存在する孔の平均孔径よりも大きい限り特に限定されないが、例えば、5μm超200μm以下、20μm~100μm、30μm~100μm、40μm~100μm、50μm~100μm、又は60μm~100μmであり、好ましくは、20μm~100μmである。
 ポリマー多孔質膜表面の平均孔径は、多孔質膜表面の走査型電子顕微鏡写真より、200点以上の開孔部について孔面積を測定し、該孔面積の平均値から下式(1)に従って孔の形状が真円であるとした際の平均直径を計算より求めることができる。
Figure JPOXMLDOC01-appb-M000001
(式中、Saは孔面積の平均値を意味する。)
 表面層A及びBの厚さは、特に限定されないが、例えば0.01~50μmであり、好ましくは0.01~20μmである。
 ポリマー多孔質膜におけるマクロボイド層中のマクロボイドの膜平面方向の平均孔径は、特に限定されないが、例えば10~500μmであり、好ましくは10~100μmであり、より好ましくは10~80μmである。また、当該マクロボイド層中の隔壁の厚さは、特に限定されないが、例えば0.01~50μmであり、好ましくは、0.01~20μmである。一の実施形態において、当該マクロボイド層中の少なくとも1つの隔壁は、隣接するマクロボイド同士を連通する、平均孔径0.01~100μmの、好ましくは0.01~50μmの、1つ又は複数の孔を有する。別の実施形態において、当該マクロボイド層中の隔壁は孔を有さない。
 本発明で使用されるポリマー多孔質膜表面の総膜厚は、特に限定されないが、5μm以上、10μm以上、20μm以上又は25μm以上であってもよく、500μm以下、300μm以下、100μm以下、75μm以下又は50μm以下であってもよい。好ましくは、5~500μmであり、より好ましくは25~75μmである。
 本発明で使用されるポリマー多孔質膜の膜厚の測定は、接触式の厚み計で行うことができる。
 本発明で使用されるポリマー多孔質膜の空孔率は特に限定されないが、例えば、40%以上95%未満である。
 本発明において用いられるポリマー多孔質膜の空孔率は、所定の大きさに切り取った多孔質フィルムの膜厚及び質量を測定し、目付質量から下式(2)に従って求めることができる。
Figure JPOXMLDOC01-appb-M000002
(式中、Sは多孔質フィルムの面積、dは総膜厚、wは測定した質量、Dはポリマーの密度をそれぞれ意味する。ポリマーがポリイミドである場合は、密度は1.34g/cm3とする。)
 本発明において用いられるポリマー多孔質膜は、好ましくは、複数の孔を有する表面層A及び表面層Bと、前記表面層A及び表面層Bの間に挟まれたマクロボイド層とを有する三層構造のポリマー多孔質膜であって、ここで前記表面層Aに存在する孔の平均孔径は0.01μm~15μmであり、前記表面層Bに存在する孔の平均孔径は20μm~100μmであり、前記マクロボイド層は、前記表面層A及びBに結合した隔壁と、当該隔壁並びに前記表面層A及びBに囲まれた複数のマクロボイドとを有し、前記マクロボイド層の隔壁、並びに前記表面層A及びBの厚さは0.01~20μmであり、前記表面層A及びBにおける孔がマクロボイドに連通しており、総膜厚が5~500μmであり、空孔率が40%以上95%未満である、ポリマー多孔質膜である。一の実施形態において、マクロボイド層中の少なくとも1つの隔壁は、隣接するマクロボイド同士を連通する、平均孔径0.01~100μmの、好ましくは0.01~50μmの、1つ又は複数の孔を有する。別の実施形態において、隔壁は、そのような孔を有さない。
 本発明において用いられるポリマー多孔質膜は、滅菌されていることが好ましい。滅菌処理としては、特に限定されないが、乾熱滅菌、蒸気滅菌、エタノール等消毒剤による滅菌、紫外線やガンマ線等の電磁波滅菌等任意の滅菌処理などが挙げられる。
 本発明で使用されるポリマー多孔質膜は、上記した構造的特徴を備える限り、特に限定されないが、好ましくはポリイミド多孔質膜、又はポリエーテルスルホン(PES)多孔質膜である。
 1-1.ポリイミド多孔質膜
 ポリイミドとは、繰り返し単位にイミド結合を含む高分子の総称であり、通常は、芳香族化合物が直接イミド結合で連結された芳香族ポリイミドを意味する。芳香族ポリイミドは芳香族と芳香族とがイミド結合を介して共役構造を持つため、剛直で強固な分子構造を持ち、かつ、イミド結合が強い分子間力を持つために非常に高いレベルの熱的、機械的、化学的性質を有する。
 本発明で使用され得るポリイミド多孔質膜は、好ましくは、テトラカルボン酸二無水物とジアミンとから得られるポリイミドを(主たる成分として)含むポリイミド多孔質膜であり、より好ましくはテトラカルボン酸二無水物とジアミンとから得られるポリイミドからなるポリイミド多孔質膜である。「主たる成分として含む」とは、ポリイミド多孔質膜の構成成分として、テトラカルボン酸二無水物とジアミンとから得られるポリイミド以外の成分は、本質的に含まない、あるいは含まれていてもよいが、テトラカルボン酸二無水物とジアミンとから得られるポリイミドの性質に影響を与えない付加的な成分であることを意味する。
 一実施形態において、本発明で使用され得るポリイミド多孔質膜は、テトラカルボン酸成分とジアミン成分とから得られるポリアミック酸溶液と着色前駆体とを含むポリアミック酸溶液組成物を成形した後、250℃以上で熱処理することにより得られる着色したポリイミド多孔質膜も含まれる。
 ポリアミック酸は、テトラカルボン酸成分とジアミン成分とを重合して得られる。ポリアミック酸は、熱イミド化又は化学イミド化することにより閉環してポリイミドとすることができるポリイミド前駆体である。
 ポリアミック酸は、アミック酸の一部がイミド化していても、本発明に影響を及ぼさない範囲であればそれを用いることができる。すなわち、ポリアミック酸は、部分的に熱イミド化又は化学イミド化されていてもよい。
 ポリアミック酸を熱イミド化する場合は、必要に応じて、イミド化触媒、有機リン含有化合物、無機微粒子、有機微粒子等の微粒子等をポリアミック酸溶液に添加することができる。また、ポリアミック酸を化学イミド化する場合は、必要に応じて、化学イミド化剤、脱水剤、無機微粒子、有機微粒子等の微粒子等をポリアミック酸溶液に添加することができる。ポリアミック酸溶液に前記成分を配合しても、着色前駆体が析出しない条件で行うことが好ましい。
 本明細書において、「着色前駆体」とは、250℃以上の熱処理により一部または全部が炭化して着色化物を生成する前駆体を意味する。
 上記ポリイミド多孔質膜の製造において使用され得る着色前駆体としては、ポリアミック酸溶液又はポリイミド溶液に均一に溶解または分散し、250℃以上、好ましくは260℃以上、更に好ましくは280℃以上、より好ましくは300℃以上の熱処理、好ましくは空気等の酸素存在下での250℃以上、好ましくは260℃以上、更に好ましくは280℃以上、より好ましくは300℃以上の熱処理により熱分解し、炭化して着色化物を生成するものが好ましく、黒色系の着色化物を生成するものがより好ましく、炭素系着色前駆体がより好ましい。
 着色前駆体は、加熱していくと一見炭素化物に見えるものになるが、組織的には炭素以外の異元素を含み、層構造、芳香族架橋構造、四面体炭素を含む無秩序構造のものを含む。
 炭素系着色前駆体は特に制限されず、例えば、石油タール、石油ピッチ、石炭タール、石炭ピッチ等のタール又はピッチ、コークス、アクリロニトリルを含むモノマーから得られる重合体、フェロセン化合物(フェロセン及びフェロセン誘導体)等が挙げられる。これらの中では、アクリロニトリルを含むモノマーから得られる重合体及び/又はフェロセン化合物が好ましく、アクリロニトリルを含むモノマーから得られる重合体としてはポリアクリルニトリルが好ましい。
 また、別の実施形態において、本発明で使用され得るポリイミド多孔質膜は、上記の着色前駆体を使用せずに、テトラカルボン酸成分とジアミン成分とから得られるポリアミック酸溶液を成形した後、熱処理することにより得られる、ポリイミド多孔質膜も含まれる。
 着色前駆体を使用せずに製造されるポリイミド多孔質膜は、例えば、極限粘度数が1.0~3.0であるポリアミック酸3~60質量%と有機極性溶媒40~97質量%とからなるポリアミック酸溶液をフィルム状に流延し、水を必須成分とする凝固溶媒に浸漬又は接触させて、ポリアミック酸の多孔質膜を作製し、その後当該ポリアミック酸の多孔質膜を熱処理してイミド化することにより製造されてもよい。この方法において、水を必須成分とする凝固溶媒が、水であるか、又は5質量%以上100質量%未満の水と0質量%を超え95質量%以下の有機極性溶媒との混合液であってもよい。また、上記イミド化の後、得られた多孔質ポリイミド膜の少なくとも片面にプラズマ処理を施してもよい。
 上記ポリイミド多孔質膜の製造において使用され得るテトラカルボン酸二無水物は、任意のテトラカルボン酸二無水物を用いることができ、所望の特性などに応じて適宜選択することができる。テトラカルボン酸二無水物の具体例として、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA)などのビフェニルテトラカルボン酸二無水物、オキシジフタル酸二無水物、ジフェニルスルホン-3,4,3’,4’-テトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、p-ビフェニレンビス(トリメリット酸モノエステル酸無水物)、m-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、p-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ビフェニル二無水物、2,2-ビス〔(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物等を挙げることができる。また、2,3,3’,4’-ジフェニルスルホンテトラカルボン酸等の芳香族テトラカルボン酸を用いることも好ましい。これらは単独でも、2種以上を組み合わせて用いることもできる。
 これらの中でも、特に、ビフェニルテトラカルボン酸二無水物及びピロメリット酸二無水物からなる群から選ばれる少なくとも一種の芳香族テトラカルボン酸二無水物が好ましい。ビフェニルテトラカルボン酸二無水物としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を好適に用いることができる。
 上記ポリイミド多孔質膜の製造において使用され得るジアミンは、任意のジアミンを用いることができる。ジアミンの具体例として、以下のものを挙げることができる。
 1)1,4-ジアミノベンゼン(パラフェニレンジアミン)、1,3-ジアミノベンゼン、2,4-ジアミノトルエン、2,6-ジアミノトルエンなどのベンゼン核1つのべンゼンジアミン;
 2)4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテルなどのジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジカルボキシ-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、ビス(4-アミノフェニル)スルフィド、4,4’-ジアミノベンズアニリド、3,3’-ジクロロベンジジン、3,3’-ジメチルベンジジン、2,2’-ジメチルベンジジン、3,3’-ジメトキシベンジジン、2,2’-ジメトキシベンジジン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,3’-ジアミノ-4,4’-ジクロロベンゾフェノン、3,3’-ジアミノ-4,4’-ジメトキシベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシドなどのベンゼン核2つのジアミン;
 3)1,3-ビス(3-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(3-アミノフェニル)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)-4-トリフルオロメチルベンゼン、3,3’-ジアミノ-4-(4-フェニル)フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジ(4-フェニルフェノキシ)ベンゾフェノン、1,3-ビス(3-アミノフェニルスルフィド)ベンゼン、1,3-ビス(4-アミノフェニルスルフィド)ベンゼン、1,4-ビス(4-アミノフェニルスルフィド)ベンゼン、1,3-ビス(3-アミノフェニルスルホン)ベンゼン、1,3-ビス(4-アミノフェニルスルホン)ベンゼン、1,4-ビス(4-アミノフェニルスルホン)ベンゼン、1,3-ビス〔2-(4-アミノフェニル)イソプロピル〕ベンゼン、1,4-ビス〔2-(3-アミノフェニル)イソプロピル〕ベンゼン、1,4-ビス〔2-(4-アミノフェニル)イソプロピル〕ベンゼンなどのベンゼン核3つのジアミン;
 4)3,3’-ビス(3-アミノフェノキシ)ビフェニル、3,3’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス〔3-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔3-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔3-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔3-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔3-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔3-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔3-(3-アミノフェノキシ)フェニル〕メタン、ビス〔3-(4-アミノフェノキシ)フェニル〕メタン、ビス〔4-(3-アミノフェノキシ)フェニル〕メタン、ビス〔4-(4-アミノフェノキシ)フェニル〕メタン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパンなどのベンゼン核4つのジアミン。
 これらは単独でも、2種以上を混合して用いることもできる。用いるジアミンは、所望の特性などに応じて適宜選択することができる。
 これらの中でも、芳香族ジアミン化合物が好ましく、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル及びパラフェニレンジアミン、1,3-ビス(3-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(3-アミノフェニル)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼンを好適に用いることができる。特に、ベンゼンジアミン、ジアミノジフェニルエーテル及びビス(アミノフェノキシ)フェニルからなる群から選ばれる少なくとも一種のジアミンが好ましい。
 本発明で使用され得るポリイミド多孔質膜は、耐熱性、高温下での寸法安定性の観点から、ガラス転移温度が240℃以上であるか、又は300℃以上で明確な転移点がないテトラカルボン酸二無水物とジアミンとを組み合わせて得られるポリイミドから形成されていることが好ましい。
 本発明で使用され得るポリイミド多孔質膜は、耐熱性、高温下での寸法安定性の観点から、以下の芳香族ポリイミドからなるポリイミド多孔質膜であることが好ましい。
 (i)ビフェニルテトラカルボン酸単位及びピロメリット酸単位からなる群から選ばれる少なくとも一種のテトラカルボン酸単位と、芳香族ジアミン単位とからなる芳香族ポリイミド、
 (ii)テトラカルボン酸単位と、ベンゼンジアミン単位、ジアミノジフェニルエーテル単位及びビス(アミノフェノキシ)フェニル単位からなる群から選ばれる少なくとも一種の芳香族ジアミン単位とからなる芳香族ポリイミド、
及び/又は、
 (iii)ビフェニルテトラカルボン酸単位及びピロメリット酸単位からなる群から選ばれる少なくとも一種のテトラカルボン酸単位と、ベンゼンジアミン単位、ジアミノジフェニルエーテル単位及びビス(アミノフェノキシ)フェニル単位からなる群から選ばれる少なくとも一種の芳香族ジアミン単位とからなる芳香族ポリイミド。
 本発明において用いられるポリイミド多孔質膜は、好ましくは、複数の孔を有する表面層A及び表面層Bと、前記表面層A及び表面層Bの間に挟まれたマクロボイド層とを有する三層構造のポリイミド多孔質膜であって、ここで前記表面層Aに存在する孔の平均孔径は0.01μm~15μmであり、前記表面層Bに存在する孔の平均孔径は20μm~100μmであり、前記マクロボイド層は、前記表面層A及びBに結合した隔壁と、当該隔壁並びに前記表面層A及びBに囲まれた複数のマクロボイドとを有し、前記マクロボイド層の隔壁、並びに前記表面層A及びBの厚さは0.01~20μmであり、前記表面層A及びBにおける孔がマクロボイドに連通しており、総膜厚が5~500μmであり、空孔率が40%以上95%未満である、ポリイミド多孔質膜である。ここで、マクロボイド層中の少なくとも1つの隔壁は、隣接するマクロボイド同士を連通する、平均孔径0.01~100μmの、好ましくは0.01~50μmの、1つ又は複数の孔を有する。
 例えば、国際公開第2010/038873号、特開2011-219585号公報、又は特開2011-219586号公報に記載されているポリイミド多孔質膜も、本発明に使用可能である。
 1-2.ポリエーテルスルホン(PES)多孔質膜
 本発明で使用され得るPES多孔質膜は、ポリエーテルスルホンを含み、典型的には実質的にポリエーテルスルホンからなる。ポリエーテルスルホンは当業者に公知の方法で合成されたものであってよく、例えば、二価フェノール、アルカリ金属化合物及びジハロゲノジフェニル化合物を有機極性溶媒中で重縮合反応させる方法、二価フェノールのアルカリ金属二塩を予め合成しジハロゲノジフェニル化合物と有機極性溶媒中で重縮合反応させる方法等によって製造できる。
 アルカリ金属化合物としては、アルカリ金属炭酸塩、アルカリ金属水酸化物、アルカリ金属水素化物、アルカリ金属アルコキシド等が挙げられる。特に、炭酸ナトリウム及び炭酸カリウムが好ましい。
 二価フェノール化合物としては、ハイドロキノン、カテコール、レゾルシン、4,4’-ビフェノール、ビス(ヒドロキシフェニル)アルカン類(例えば2,2-ビス(ヒドロキシフェニル)プロパン、及び2,2-ビス(ヒドロキシフェニル)メタン)、ジヒドロキシジフェニルスルホン類、ジヒドロキシジフェニルエーテル類、又はそれらのベンゼン環の水素の少なくとも1つが、メチル基、エチル基、プロピル基等の低級アルキル基、又はメトキシ基、エトキシ基等の低級アルコキシ基で置換されたものが挙げられる。二価フェノール化合物としては、上記の化合物を二種類以上混合して用いることができる。
 ポリエーテルスルホンは市販品であってもよい。市販品の例としては、スミカエクセル7600P、スミカエクセル5900P(以上、住友化学(株)製)等が挙げられる。
 ポリエーテルスルホンの対数粘度は、多孔質ポリエーテルスルホン膜のマクロボイドを良好に形成する観点で、好ましくは0.5以上、より好ましくは0.55以上であり、多孔質ポリエーテルスルホン膜の製造容易性の観点から、好ましくは1.0以下、より好ましくは0.9以下、更に好ましくは0.8以下、特に好ましくは0.75以下である。
 また、PES多孔質膜、又はその原料としてのポリエーテルスルホンは、耐熱性、高温下での寸法安定性の観点から、ガラス転移温度が、200℃以上であるか、又は明確なガラス転移温度が観察されないことが好ましい。
 本発明で使用され得るPES多孔質膜の製造方法は特に限定されないが、例えば、
 対数粘度0.5~1.0のポリエーテルスルホンの0.3質量%~60質量%と有機極性溶媒40質量%~99.7質量%とを含むポリエーテルスルホン溶液を、フィルム状に流延し、ポリエーテルスルホンの貧溶媒又は非溶媒を必須成分とする凝固溶媒に浸漬又は接触させて、空孔を有する凝固膜を作製する工程、及び
 前記工程で得られた空孔を有する凝固膜を熱処理して前記空孔を粗大化させて、PES多孔質膜を得る工程
を含み、前記熱処理は、前記空孔を有する凝固膜を、前記ポリエーテルスルホンのガラス転移温度以上、若しくは240℃以上まで昇温させることを含む、方法で製造されてもよい。
 本発明で使用され得るPES多孔質膜は、好ましくは、表面層A、表面層B、及び前記表面層Aと前記表面層Bとの間に挟まれたマクロボイド層、を有するPES多孔質膜であって、
 前記マクロボイド層は、前記表面層A及びBに結合した隔壁と、当該隔壁並びに前記表面層A及びBに囲まれた、膜平面方向の平均孔径が10μm~500μmである複数のマクロボイドとを有し、
 前記マクロボイド層の隔壁は、厚さが0.1μm~50μmであり、
 前記表面層A及びBはそれぞれ、厚さが0.1μm~50μmであり、
 前記表面層A及びBのうち、一方が平均孔径5μm超200μm以下の複数の細孔を有し、かつ他方が平均孔径0.01μm以上200μm未満の複数の細孔を有し、
 表面層A及び表面層Bの、一方の表面開口率が15%以上であり、他方の表面層の表面開口率が10%以上であり、
 前記表面層A及び前記表面層Bの前記細孔が前記マクロボイドに連通しており、
 前記PES多孔質膜は、総膜厚が5μm~500μmであり、かつ空孔率が50%~95%である、
PES多孔質膜である。
 本発明の細胞培養装置に用いられる、細胞培養担体としての上述のポリマー多孔質膜は、微親水性の多孔質特性を有するため、ポリマー多孔質膜内に安定した液保持がなされ、乾燥にも強い湿潤環境が保たれる。そのため、従来の細胞培養担体を用いる細胞培養装置と比較して、極めて少量の培地でも細胞の生存及び増殖を達成することができる。また、ポリマー多孔質膜の一部又はすべてが空気に露出した状態であっても培養が可能であるため、細胞に対して効率的な酸素供給を行うことができ、大量の細胞を培養することができる。
 本発明によれば、用いる培地の量が極めて少なく、また、培養担体であるポリマー多孔質膜を気相に露出することができるため、細胞への酸素供給は拡散によって十分に行われる。したがって、本発明では特に酸素供給手段を必要としない。
2.細胞培養装置
 本発明の一態様は、
 ポリマー多孔質膜と、
 前記ポリマー多孔質膜を有する細胞培養部と、
 前記細胞培養部を貫通した軸と、
 前記細胞培養部の少なくとも一部を浸漬する培地槽と、
を備え、
 ここで、前記ポリマー多孔質膜が、複数の孔を有する表面層A及び表面層Bと、前記表面層A及び表面層Bの間に挟まれたマクロボイド層とを有する三層構造のポリマー多孔質膜であって、ここで前記表面層Aに存在する孔の平均孔径は、前記表面層Bに存在する孔の平均孔径よりも小さく、前記マクロボイド層は、前記表面層A及びBに結合した隔壁と、当該隔壁並びに前記表面層A及びBに囲まれた複数のマクロボイドとを有し、
 前記軸を中心として前記細胞培養部が回転し、前記ポリマー多孔質膜に担持された細胞が気相及び液相において交互に培養されることを特徴とする、細胞培養装置に関する。該細胞培養装置を、以下で、「本発明の細胞培養装置」とも呼ぶ。以下に本発明の細胞培養装置の実施態様について、図を示しながら説明する。
 図1は、本発明の細胞培養装置1の構成例を示す図である。細胞培養装置1は、上述のポリマー多孔質膜を有する細胞培養部2と、細胞培養部2の中心を貫通した軸23と、細胞培養部2の少なくとも一部を浸漬する培地槽3とを備えている。培地槽3には、所定量の培地が充填されている。軸23を中心として細胞培養部2が回転することにより、細胞培養部2の一部分が定期的に培地に浸漬される。これにより、ポリマー多孔質膜に担持された細胞が気相及び液相において交互に培養される。本実施形態のように、気相においても細胞培養が可能であるのは、本発明において使用されるポリマー多孔質膜に安定した液保持がなされ、乾燥にも強い湿潤環境が提供可能であるからである。本発明のポリマー多孔質を使用することで、本発明の構成を実現することが可能となった。
 本実施形態では、さらに、軸23と軸接合部62で固定された回転モータ6を備えている。本実施形態において、軸23は細胞培養部2と任意の手段によって固定されている。これにより、回転モータ6が動作することで回転モータ軸61が回転し、軸23へ回転運動が伝わって、軸23に固定された細胞培養部2が回転する。回転モータ6は、コンピュータ等によって制御されていてもよく、例えば、回転スピード、始動、停止等を組み合わせることにより、細胞培養に最適な条件で回転制御することが可能である。
 本実施形態においては、培地排出ライン42をさらに備えており、培地排出ライン42の一端部は、培地槽3の培地排出管33と接続されており、培地排出ライン42の他端部は培地排出槽4に接続されている。これにより、培地槽3から排出される培地が培地排出槽4に貯留される。本実施形態においては、さらに培地供給ライン41を備え、培地供給ライン41の一端部は培地排出槽4に接続されており、培地供給ライン41の他端部は培地槽3の培地供給管34へ接続されている。また、培地供給ライン41の途中には培地供給ポンプ5が備えられており、該培地供給ポンプ5が動作することによって、培地排出槽4の培地が再び培地槽3へと送り出される。培地供給ポンプ5の種類は、特に限定されないが、例えば、チューブポンプ、ペリスタポンプ等が使用可能である。本実施態様においては、細胞培養装置1の構成の一部が、設置台7の上に設置されているが、本発明の効果を発揮される形態であれば、設置台7は使用されなくてもよい。
 図2は、本発明の細胞培養装置1の構成例を示す斜視図であり、図1の構成例に含まれる一部の部材をそれぞれ独立させた状態で示している。本実施態様において、図1で示された細胞培養部2は、ポリマー多孔質膜20と、それを挟持するためのポリマー多孔質支持体21及びポリマー多孔質膜留め22から形成され、それぞれが軸23に貫通されている。軸23には、ポリマー多孔質膜支持体21が、回転モータ6方向へ外れることを防止するフランジ26が設けられている。ポリマー多孔質支持体21は軸23に直接形成されたものであってもよい。ポリマー多孔質膜留め22止めの外側に止めリング24を設け、該止めリング24によってポリマー多孔質膜支持体21方向へ圧力をかけることで、ポリマー多孔質膜を固定することができる。他の実施形態では、螺着によって圧力がかけられるように、止めリング24は雌ねじを有し、軸23の少なくとも一部に雄ねじを有する構造であってもよい。他の実施形態では、例えば、止めリング24の一部にねじ穴を有し、該ねじ穴へ雄ねじを挿入し、軸23に垂直に螺着してもよい。
 ポリマー多孔質膜は、1枚使用されてもよく、2以上積層されて使用されてもよい。2枚以上使用することにより、細胞培養可能な空間が増大し、より多くの細胞を生育可能となる。
 本発明の実施形態において、細胞培養部2の両側の軸23には、軸受ブッシュ(25a、25b)が設けられている。軸受ブッシュ(25a、25b)はそれぞれ、培地槽3に設けられた軸受(31a、31b)に嵌め込まれる。軸受(31a、31b)によって、軸23がずれることなく安定して回転可能となる。
 図3は、本発明の細胞培養装置1を構成する培養槽3を示す図である。図3(A)のZZ’軸で切断した断面図が図3(C)であり、図3(B)及び(D)は、それぞれ図3(A)の左側面及び右側面図である。上述の軸受(31a、31b)には、軸受ブッシュ(25a、25b)が嵌まり、軸受ブッシュ(25a、25b)の回転を妨害しない程度の深さの軸受凹部310を備えている。これにより、軸23が培養槽3から外れることが防止される。培地貯留部32の一部には、培地貯留内壁35が設けられており、培地貯留内壁35の複数箇所に培地貯留内壁凹部351を備えている。培地貯留内壁35及び培地貯留内壁凹部351の大きさ、形状等によって、培地貯留部に収容される培地量が決定される。細胞培養部2を設置した際、細胞培養部2の体積分の培地が、培地オーバーフロー部へあふれ出す。あふれた培地は、培地オーバーフロー部36に設けられた培地排出孔37を通って培地排出管33から培地槽3の外へ排出される。培地排出孔37の周囲は、テーパ38を形成し、培地が排出されやすいように加工されている。培地貯留部32の底面の形状は、細胞培養部2を適用して回転させた場合、培地の流れを邪魔しない形状であればよい。本実施態様においては、細胞培養部2が円盤形状であるため、細胞培養部2の半径よりも大きい半円柱の側面形状を有している。
 図4は、本発明の細胞培養装置1に使用される細胞培養部2の一実施形態を示す図である。(A)はポリマー多孔質支持体21の平面及び断面図、(B)はポリマー多孔質膜留め22の平面及び断面図である。ポリマー多孔質支持体21は、中心に、軸23を貫通するための軸貫通口27が設けられている。軸貫通口27の径は、軸23の径によって決定されるため、特に限定されない。ポリマー多孔質膜支持体21は、固定するポリマー多孔質膜に培地及び空気(酸素)を供給するための培地通過口28が設けられている。培地通過口28の形状及び径は図の形状に限定されず、ポリマー多孔質膜に培地及び空気(酸素)を供給するために十分であれば、任意の形状、面積を採用することが可能である。
 本実施態様において、ポリマー多孔質膜留め22は、軸貫通口27を有するポリマー多孔質膜留めリング29から放射状に伸びた複数のスポーク22aを備える。スポーク22aの長さは、ポリマー多孔質膜支持体21の半径と同等又はそれよりも短い。ポリマー多孔質膜留め22は、ポリマー多孔質膜支持体21と組み合わせることによって、ポリマー多孔質膜20を固定することが可能である。ポリマー多孔質膜留め22は、ポリマー多硬質膜支持体21と組み合わせることでポリマー多孔質膜を固定できればよく、図示した形状に限定されない。例えば、ポリマー多孔質膜20が、2枚以上積層されてポリマー多硬質膜支持体21及びポリマー多孔質膜留め22に挟持されていてもよい。ポリマー多孔質膜20とポリマー多孔質膜支持体21とポリマー多孔質膜留め22とを一組とした細胞培養部2を、2以上連結して培養することも可能である。図1には、細胞培養部2を5組連結させて構成した細胞培養装置1を示す。
 図5は、本発明の細胞培養装置1に使用される細胞培養部2の他の実施形態を示す図である。図5の上段及び下段ともに、同一の細胞培養部2を異なる角度から描いた図である。本実施態様の細胞培養部2は、円筒形容器(200、200a、200b、200c)である。円筒形容器(200、200a、200b、200c)の端面201には、1以上の培地流出入口204を備えており、かつ、円筒形容器(200、200a、200b、200c)の側面202には、1以上の培地流出入口205を備えている。ここでは図示されないが、ポリマー多孔質膜が、円筒形容器(200、200a、200b、200c)内に収容されている。細胞培養部2が、円筒形容器(200、200a、200b、200c)の形状であるため、任意の量のポリマー多孔質膜を収容可能となる。培地流出入口204及び培地流出入口205の形状及び面積は図の形状に限定されないが、ポリマー多孔質膜に培地及び空気(酸素)を供給するために十分であり、内部に収容したポリマー多孔質膜が脱落しない程度の形状、面積であれば採用することが可能である。
 円筒形容器(200、200a、200b、200c)の端面201は、円筒形容器(200、200a、200b、200c)の蓋の機能を有し、端面201に備えられた爪203によって開けることが可能である。これにより、円筒形容器(200、200a、200b、200c)内部へポリマー多孔質膜を収容することができる。側面202の高さは、所望の量のポリマー多孔質膜を収容可能な程度の高さであってよく、特に限定されない。図5では、円筒形容器(200、200a、200b、200c)を3つ連結したものであり、所望の個数の円筒形容器(200、200a、200b、200c)を連結可能である。これによって、所望の細胞数を培養可能となる。
 本実施形態の円筒形容器(200、200a、200b、200c)は、その中心に軸23が貫通する軸貫通口206を有する。軸貫通口206の径は、軸23の径によって決定されるため、特に限定されない。
 本実施形態の円筒形容器(200、200a、200b、200c)は、円筒形容器(200、200a、200b、200c)の一方の端面の一部と、他方の端面の一部とを連通する1以上の螺旋状流路207を備えている。本実施形態において、連結した円筒形容器200には、軸貫通口206方向に連続した螺旋状流路207が形成されている。螺旋状流路207は、それぞれの円筒形容器(200a、200b、200c)単位においても形成されている。螺旋状流路207が2以上設けられた場合、全ての螺旋状流路207は、平行となるように形成される。螺旋状流路207は、円筒形容器(200、200a、200b、200c)を形成しない空間であるため、当該空間にはポリマー多孔質膜を収容できない。螺旋状流路207を備えた円筒形容器(200、200a、200b、200c)を培養槽3の培地中で回転させた場合、螺旋状流路207によって、一方向から他方向へ培地が送られ、培養槽3内部の培地が攪拌される。これによって、培養槽3の培地の各種成分の濃度が一定となる。
 円筒形容器(200、200a、200b、200c)に螺旋状流路207が設けられている場合、円筒形容器(200、200a、200b、200c)と軸23とは、固定されていなくてもよい。この場合、軸23を中心として、円筒形容器(200、200a、200b、200c)のみが回転することとなる。培養槽3内の一方向から他方向へ発生させた培地の流れによって、螺旋状流路207に培地が流入し、円筒形容器(200、200a、200b、200c)に回転運動を生じさせることが可能となる。螺旋状流路207の数、角度、形状等を適宜調整することによって、任意の速度で回転させることが可能となる。
 本発明の実施態様で使用される細胞培養部2及び円筒形容器(200、200a、200b、200c)は、例えば、ポリスチレン、ポリカーボネート、ポリメチルメタクリレート、ポリエチレンテレフタレート、ステンレス鋼(「ステンレス」ともいう)などの金属などが挙げられるが、細胞の培養に影響を与えない素材であれば特に限定されない。
 本発明の別の実施態様において、螺旋状流路207は、円筒形容器(200、200a、200b、200c)に設けられていない。この場合、円筒形容器(200、200a、200b、200c)は、軸貫通口206を貫通する軸23と固定されている。
 本発明の別の実施態様において使用される細胞培養部2は、図9(B)で示されるように、例えばステンレス鋼のメッシュによって作製されたステンレス鋼メッシュ円筒形容器2000であってもよい。ステンレス鋼のメッシュ形状を有しているため、培地を自由にステンレス鋼メッシュ円筒形容器2000の内部に流出入させることができる。また、ステンレス鋼メッシュであるために、内部にポリマー多孔質膜を有したままで、乾熱滅菌等の滅菌手段によって滅菌することが可能である。
 図示されないが、本発明の別の実施形態において、細胞培養部2の気相領域に、培地を微小液滴の状態で供給する液滴化培地供給手段を備えても良い。液滴化培地供給手段から培地が微小液滴として供給され、細胞培養部2内のポリマー多孔質に供給される。これにより、細胞が生育するポリマー多孔質膜は、気相に暴露されつつ培地も供給されることとなる。本発明において、液滴化培地供給手段は、培地が液滴の状態で供給される手段であればよく、供給される液滴のサイズは限定されない。本明細書において、液滴化培地供給手段とは、供給される液滴のサイズを限定しないため、ミスト状の培地からシャワー状の培地を供給するデバイスもその意味に含む。好ましくは、液滴化培地供給手段は、細胞培養部2の気相暴露領域に噴霧可能なように配置される。
 本明細書において、「液滴化培地」とは、ミスト状化又は水滴化された培地をいい、本発明に用いられるポリマー多孔質膜に噴射又は噴霧可能な状態の培地をいう。液滴化培地の径は限定されないが、例えば、重力によって自由落下せず、空気中に浮遊可能な程度に小さいミスト状の液滴化培地であってもよい。ミスト状の液滴化培地の径は、例えば、1μm~100μm程度であってもよく、さらに小さい径であってもよい。また、液滴化培地は、例えば、重力によって自由落下する水滴状の培地であってもよく、例えば、100μm以上であってもよい。培地を液滴化する方法については、公知の手段により液滴化する方法を用いればよく、例えば、ミスト状ノズルやシャワーノズル等を用いて液滴化させればよい。ただし、液滴化方法は、培地の成分を変化させない方法によって液滴化されなければならず、例えば、液滴化させる方法からは、蒸発させる方法は除かれる。
 本発明の実施態様において、液滴化培地は、細胞を担持したポリマー多孔質膜へ適用される。液滴化した培地は、ポリマー多孔質膜へ到達するまでの間に気相を通過し、培地中に酸素が溶け込むことになる。これにより、十分な量の酸素を有する培地が、継続的に供給されることとなり、細胞が虚血に陥ることなく、培養することが可能となる。また、ポリマー多孔質膜が常に気相に暴露されているため、ポリマー多孔質膜に付着している培地も常に酸素を取り込むことが可能となり、酸素を効率的に供給できる培養が可能となる。
 本発明の実施形態で使用されるポリマー多孔質膜は、例えば、i)折り畳んで、ii)ロール状に巻き込んで、iii)シートもしくは小片を糸状の構造体で連結させて、及び/又は、iv)縄状に結んで、細胞培養部2に適用されてもよい。また、本発明の実施形態で使用されるポリマー多孔質膜は、v)2以上が積層されて、細胞培養部2に適用されてもよい。i)~v)のように形状を加工することにより、一定容量の細胞培養培地中に多くのポリマー多孔質膜を入れることができる。
 本発明の実施態様で使用されるポリマー多孔質膜は、モジュール化されたポリマー多孔質膜(以下、「モジュール化ポリマー多孔質膜」という。)が使用されてもよい。本明細書において「モジュール化ポリマー多孔質膜」とは、ケーシングに収容されたポリマー多孔質膜をいう。本明細書において、「モジュール化ポリマー多孔質膜」との記載は、単に「モジュール」と記載することができ、相互に変更しても同一のことを意味する。
 本発明の実施態様で使用されるモジュール化ポリマー多孔質膜が備えるケーシングは、2以上の細胞培地流出入口を有し、該細胞培地流出入口によって培地がケーシングの内外へ流出入する。該ケーシングの細胞培地流出入口の径は、ケーシングの内部へ細胞が流入可能であるように、前記細胞の径よりも大きいことが好ましい。また、細胞培地流出入口の径が、該細胞培地流出入口よりポリマー多孔質膜が流出する径よりも小さいことが好ましい。ポリマー多孔質膜が流出する径よりも小さい径は、ケーシングに収容されたポリマー多孔質膜の形状、大きさによって適宜選択可能である。例えば、ポリマー多孔質膜がひも状である場合、該ポリマー多孔質膜の短辺の幅より小さく、該ポリマー多孔質膜が流出しない適度の径であれば特に限定されない。該細胞培地流出入口の数は、細胞培地がケーシング内外へ供給及び/又は排出されやすいように、出来るだけ多く設けられていることが好ましい。好ましくは、5以上、好ましくは10以上、好ましくは20以上、好ましくは50以上、好ましくは100以上である。細胞培地流出入口は、ケーシングの一部又は全部が、メッシュ状の構造を有していてもよい。また、該ケーシング自体がメッシュ状であってもよい。本発明において、メッシュ形状の構造とは、例えば、縦、横、及び/又は斜めの格子状の構造を有するものであって、各目開きが、流体が通過出来る程度に細胞培地流出入口を形成するものであるが、これに限定されない。
 本発明の実施態様で使用されるモジュール化ポリマー多孔質膜のケーシングは、例えば、ポリスチレン、ポリカーボネート、ポリメチルメタクリレート、ポリエチレンテレフタレート、ステンレス鋼などの金属などが挙げられるが、細胞の培養に影響を与えない素材であれば特に限定されない。
 本発明の実施態様で使用されるモジュール化ポリマー多孔質膜は、
 (i)2以上の独立した前記ポリマー多孔質膜が、集約されて、
 (ii)前記ポリマー多孔質膜が、折り畳まれて、
 (iii)前記ポリマー多孔質膜が、ロール状に巻き込まれて、及び/又は、
 (iv)前記ポリマー多孔質膜が、縄状に結ばれて、
該ケーシング内に収容されたものであって、該モジュール化ポリマー多孔質膜を細胞培養部2へ適用することが可能である。
 本明細書において、「ケーシング内に2以上の独立した該ポリマー多孔質膜が集約されて収容されている」とは、互いに独立した2以上のポリマー多孔性膜が、ケーシングで囲まれた一定空間内に集約されて収容されている状態を指す。本発明において、2以上の独立した該ポリマー多孔質膜は、該ポリマー多孔質膜の少なくとも1カ所と該ケーシング内の少なくとも1カ所とを任意の方法によって固定され、該ポリマー多孔質膜がケーシング内で動かない状態に固定されたものであってもよい。また、2以上の独立したポリマー多孔質膜は、小片であってもよい。小片の形状は、例えば、円、楕円形、四角、三角、多角形、ひも状など、任意の形をとりうるが、略正方形が好ましい。本発明において、小片の大きさは、任意の大きさをとりうるが、略正方形である場合、長さは任意の長さでよいが、例えば、幅は、80mm以下がよく、好ましくは50mm以下がよく、より好ましくは30mm以下がよく、さらにより好ましくは20mm以下がよよく、10mm以下であってもよい。また、ポリマー多孔性膜の小片が略正方形である場合、その一辺の長さは、ポリマー多孔質膜がケーシング内で動かない状態となるように、ケーシングの内壁に沿って、又は内壁の一辺の長さより短く(例えば、0.1mm~1mm程度短い)形成されたものであってもよい。これによって、ポリマー多孔質膜内で生育される細胞にストレスが加えられることが防止される。
 本明細書において、「折り畳まれたポリマー多孔質膜」とは、該ケーシング内にて折り畳まれていることで、ポリマー多孔質膜の各面及び/又はケーシング内の表面との摩擦力によってケーシング内で動かない状態となったポリマー多孔質膜である。本明細書において、「折り畳まれた」とは、ポリマー多孔膜に折り目がついた状態であってもよく、折り目がついていない状態であってもよい。
 本明細書において、「ロール状に巻き込まれたポリマー多孔質膜」とは、ポリマー多孔質膜が、ロール状に巻き込まれて、ポリマー多孔質膜の各面及び/又はケーシング内の表面との摩擦力によってケーシング内で動かない状態となったポリマー多孔性膜をいう。また、本発明おいて、縄状に編み込まれたポリマー多孔質膜とは、例えば短冊状の複数のポリマー多孔質膜を、任意の方法によって縄状に編み込み、ポリマー多孔質膜同士の摩擦力によって互いに動かない状態のポリマー多孔質膜をいう。(i)2以上の独立した前記ポリマー多孔質膜が集約されたポリマー多孔質膜、(ii)折り畳まれたポリマー多孔質膜、(iii)ロール状に巻き込まれたポリマー多孔質膜、及び(iv)縄状に結ばれたポリマー多孔質膜、が、組み合わせられてケーシング内に収容されていてもよい。
 本明細書において、「該ポリマー多孔質膜がケーシング内で動かない状態」とは、該モジュール化ポリマー多孔質膜を細胞培養培地中で培養する場合に、該ポリマー多孔質膜が継続的に形態変化しない状態になるようにケーシング内に収容されている状態をいう。換言すれば、該ポリマー多孔質膜自体が、流体によって、継続的に波打つ動きを行わないように抑制された状態である。ポリマー多孔質膜がケーシング内で動かない状態を保つため、ポリマー多孔質膜内で生育されている細胞にストレスが加えられることが防止され、細胞が死滅されることなく安定的に細胞が培養可能となる。
3.細胞培養装置を使用した細胞培養方法
<細胞をポリマー多孔質膜へ適用する工程>
 本発明で使用される細胞のポリマー多孔質膜への適用の具体的な工程は特に限定されない。本明細書に記載の工程、あるいは、細胞を膜状の担体に適用するのに適した任意の手法を採用することが可能である。限定されるわけではないが、本発明の方法において、細胞のポリマー多孔質膜への適用は、例えば、以下のような態様を含む。
 (A)細胞を前記ポリマー多孔質膜の表面に播種する工程を含む、態様;
 (B)前記ポリマー多孔質膜の乾燥した表面に細胞縣濁液を載せ、
 放置するか、あるいは前記ポリマー多孔質膜を移動して液の流出を促進するか、あるいは表面の一部を刺激して、細胞縣濁液を前記膜に吸い込ませ、そして、
 細胞縣濁液中の細胞を前記膜内に留め、水分は流出させる、
工程を含む、態様;並びに、
 (C)前記ポリマー多孔質膜の片面又は両面を、細胞培地又は滅菌された液体で湿潤し、
 前記湿潤したポリマー多孔質膜に細胞縣濁液を装填し、そして、
 細胞縣濁液中の細胞を前記膜内に留め、水分は流出させる、
工程を含む、態様。
 (A)の態様は、ポリマー多孔質膜の表面に細胞、細胞塊を直接播種することを含む。あるいは、ポリマー多孔質膜を細胞縣濁液中に入れて、膜の表面から細胞培地を浸潤させる態様も含む。
 ポリマー多孔質膜の表面に播種された細胞は、ポリマー多孔質膜に接着し、多孔の内部に入り込んでいく。好ましくは、特に外部から物理的又は化学的な力を加えなくても、細胞はポリマー多孔質膜に接着する。ポリマー多孔質膜の表面に播種された細胞は、膜の表面及び/又は内部において安定して生育・増殖することが可能である。細胞は生育・増殖する膜の位置に応じて、種々の異なる形態をとりうる。
 (B)の態様において、ポリマー多孔質膜の乾燥した表面に細胞縣濁液を載せる。ポリマー多孔質膜を放置するか、あるいは前記ポリマー多孔質膜を移動して液の流出を促進するか、あるいは表面の一部を刺激して、細胞縣濁液を前記膜に吸い込ませることにより、細胞縣濁液が膜中に浸透する。理論に縛られるわけではないが、これはポリマー多孔質膜の各表面形状等に由来する性質によるものであると考えられる。本態様により、膜の細胞縣濁液が装填された箇所に細胞が吸い込まれて播種される。
 あるいは、(C)の態様のように、前記ポリマー多孔質膜の片面又は両面の部分又は全体を、細胞培地又は滅菌された液体で湿潤してから、湿潤したポリマー多孔質膜に細胞縣濁液を装填してもよい。この場合、細胞懸濁液の通過速度は大きく向上する。
 例えば、膜の飛散防止を主目的として膜極一部を湿潤させる方法(以後、これを「一点ウェット法」と記載する)を用いることができる。一点ウェット法は、実質上は膜を湿潤させないドライ法((B)の態様)にほぼ近いものである。ただし、湿潤させた小部分については、細胞液の膜透過が迅速になると考えられる。また、ポリマー多孔質膜の片面又は両面の全体を十分に湿潤させたもの(以後、これを「ウェット膜」と記載する)に細胞懸濁液を装填する方法も用いることができる(以後、これを「ウェット膜法」と記載する)。この場合、ポリマー多孔質膜の全体において、細胞懸濁液の通過速度が大きく向上する。
 (B)及び(C)の態様において、細胞縣濁液中の細胞を前記膜内に留め、水分は流出させる。これにより細胞縣濁液中の細胞の濃度を濃縮する、細胞以外の不要な成分を水分とともに流出させる、などの処理も可能になる。
 (A)の態様を「自然播種」(B)及び(C)の態様を「吸込み播種」と呼称する場合がある。
 限定されるわけではないが、好ましくは、ポリマー多孔質膜には生細胞が選択的に留まる。よって、本発明の方法の好ましい実施形態において、生細胞が前記ポリマー多孔質膜内に留まり、死細胞は優先的に水分とともに流出する。
 態様(C)において用いる滅菌された液体は特に限定されないが、滅菌された緩衝液若しくは滅菌水である。緩衝液は、例えば、(+)及び(-)Dulbecco’s PBS 、(+)及び(-)Hank's Balanced Salt Solution等である。緩衝液の例を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000003
 さらに、本発明の方法において、細胞のポリマー多孔質膜への適用は、浮遊状態にある接着性細胞をポリマー多孔質膜と縣濁的に共存させることにより細胞を膜に付着させる態様(絡め取り)も含む。例えば、本発明の方法において、細胞をポリマー多孔質膜に適用するために、細胞培養容器中に、細胞培養培地、細胞及び1又はそれ以上の前記ポリマー多孔質膜を入れてもよい。細胞培養培地が液体の場合、ポリマー多孔質膜は細胞培養培地中に浮遊した状態である。ポリマー多孔質膜の性質から、細胞はポリマー多孔質膜に接着しうる。よって、生来浮遊培養に適さない細胞であっても、ポリマー多孔質膜は細胞培養培地中に浮遊した状態で培養することが可能である。好ましくは、細胞は、ポリマー多孔質膜に接着する。「自発的に接着する」とは、特に外部から物理的又は化学的な力を加えなくても、細胞がポリマー多孔質膜の表面又は内部に留まることを意味する。
 上述した細胞のポリマー多孔質膜への適用は、2種類又はそれより多くの方法を組み合わせて用いてもよい。例えば、態様(A)~(C)のうち、2つ以上の方法を組み合わせてポリマー多孔質膜に細胞を適用してもよい。細胞を担持させたポリマー多孔質膜を、上述の細胞培養装置1における、細胞培養部2へ適用して、培養することが可能である。
 その他、予め、ポリマー多孔質膜が収容された細胞培養部2に、懸濁された細胞が含まれる培地を、細胞供給手段3より滴下して播種してもよい。
 本明細書において、「懸濁された細胞」とは、例えば、トリプシン等のタンパク質分解酵素によって、接着細胞を強制的に浮遊させて培地中に懸濁して得られた細胞や、公知の馴化工程によって、培地中に浮遊培養可能となった接着細胞などを含んでいる。
 本発明に利用し得る細胞の種類は、例えば、動物細胞、昆虫細胞、植物細胞、酵母菌及び細菌からなる群から選択される。動物細胞は、脊椎動物門に属する動物由来の細胞と無脊椎動物(脊椎動物門に属する動物以外の動物)由来の細胞とに大別される。本明細書における、動物細胞の由来は特に限定されない。好ましくは、脊椎動物門に属する動物由来の細胞を意味する。脊椎動物門は、無顎上綱と顎口上綱を含み、顎口上綱は、哺乳綱、鳥綱、両生綱、爬虫綱などを含む。好ましくは、一般に、哺乳動物と言われる哺乳綱に属する動物由来の細胞である。哺乳動物は、特に限定されないが、好ましくは、マウス、ラット、ヒト、サル、ブタ、イヌ、ヒツジ、ヤギなどを含む。
 本発明に利用しうる動物細胞の種類は、限定されるわけではないが、好ましくは、多能性幹細胞、組織幹細胞、体細胞、及び生殖細胞からなる群から選択される。
 本明細書において「多能性幹細胞」とは、あらゆる組織の細胞へと分化する能力(分化多能性)を有する幹細胞の総称することを意図する。限定されるわけではないが、多能性幹細胞は、胚性幹細胞(ES細胞)、人工多能性幹細胞(iPS細胞)、胚性生殖幹細胞(EG細胞)、生殖幹細胞(GS細胞)等を含む。好ましくは、ES細胞又はiPS細胞である。iPS細胞は倫理的な問題もない等の理由により特に好ましい。多能性幹細胞としては公知の任意のものを使用可能であるが、例えば、国際公開第2009/123349号(PCT/JP2009/057041)に記載の多能性幹細胞を使用可能である。
 「組織幹細胞」とは、分化可能な細胞系列が特定の組織に限定されているが、多様な細胞種へ分化可能な能力(分化多能性)を有する幹細胞を意味する。例えば骨髄中の造血幹細胞は血球のもととなり、神経幹細胞は神経細胞へと分化する。このほかにも肝臓をつくる肝幹細胞、皮膚組織になる皮膚幹細胞などさまざまな種類がある。好ましくは、組織幹細胞は、間葉系幹細胞、肝幹細胞、膵幹細胞、神経幹細胞、皮膚幹細胞、又は造血幹細胞から選択される。
 「体細胞」とは、多細胞生物を構成する細胞のうち生殖細胞以外の細胞のことを言う。有性生殖においては次世代へは受け継がれない。好ましくは、体細胞は、肝細胞、膵細胞、筋細胞、骨細胞、骨芽細胞、破骨細胞、軟骨細胞、脂肪細胞、皮膚細胞、線維芽細胞、膵細胞、腎細胞、肺細胞、又は、リンパ球、赤血球、白血球、単球、マクロファージ若しくは巨核球の血球細胞から選択される。
 「生殖細胞」は、生殖において遺伝情報を次世代へ伝える役割を持つ細胞を意味する。例えば、有性生殖のための配偶子、即ち卵子、卵細胞、精子、精細胞、無性生殖のための胞子などを含む。
 細胞は、肉腫細胞、株化細胞及び形質転換細胞からなる群から選択してもよい。「肉腫」とは、骨、軟骨、脂肪、筋肉、血液等の非上皮性細胞由来の結合組織細胞に発生する癌で、軟部肉腫、悪性骨腫瘍などを含む。肉腫細胞は、肉腫に由来する細胞である。「株化細胞」とは、長期間にわたって体外で維持され、一定の安定した性質をもつに至り、半永久的な継代培養が可能になった培養細胞を意味する。PC12細胞(ラット副腎髄質由来)、CHO細胞(チャイニーズハムスター卵巣由来)、HEK293細胞(ヒト胎児腎臓由来)、HL-60細胞(ヒト白血球細胞由来)、HeLa細胞(ヒト子宮頸癌由来)、Vero細胞(アフリカミドリザル腎臓上皮細胞由来)、MDCK細胞(イヌ腎臓尿細管上皮細胞由来)、HepG2細胞(ヒト肝癌由来細胞株)、BHK細胞(新生児ハムスター腎臓細胞)、NIH3T3細胞(マウス胎児線維芽細胞由来)などヒトを含む様々な生物種の様々な組織に由来する細胞株が存在する。「形質転換細胞」は、細胞外部から核酸(DNA等)を導入し、遺伝的性質を変化させた細胞を意味する。
 本明細書において、「接着細胞」とは、一般に、増殖のために適切な表面に自身を接着させる必要がある細胞であって、付着細胞又は足場依存性細胞ともいわれる。本発明のいくつかの実施形態では、使用する細胞は接着細胞である。本発明に用いられる細胞は、接着細胞であって、より好ましくは、培地中に懸濁した状態でも培養可能な細胞である。懸濁培養可能な接着細胞とは、公知の方法によって、接着細胞を懸濁培養に適した状態へ馴化させることによって得ることが可能であり、例えば、CHO細胞、HEK293細胞、Vero細胞、NIH3T3細胞などや、これらの細胞から派生して得られた細胞株が挙げられる。
 ポリマー多孔質膜を用いた細胞培養のモデル図を図1に示す。図1は理解を助けるための図であり、各要素は実寸ではない。本発明の細胞の培養方法では、ポリマー多孔質膜に細胞を適用し、培養することにより、ポリマー多孔質膜の有する内部の多面的な連結多孔部分や表面に、大量の細胞が生育するため、大量の細胞を簡便に培養することが可能となる。また、本発明の細胞の培養方法では、細胞培養に用いる培地の量を従来の方法よりも大幅に減らしつつ、大量の細胞を培養することが可能となる。例えば、ポリマー多孔質膜の一部分又は全体が、細胞培養培地の液相と接触していない状態であっても、大量の細胞を長期にわたって培養することができる。また、細胞生存域を含むポリマー多孔質膜体積の総和に対して、細胞培養容器中に含まれる細胞培養培地の総体積を著しく減らすことも可能となる。
 本明細書において、細胞を含まないポリマー多孔質膜がその内部間隙の体積も含めて空間中に占める体積を「見かけ上ポリマー多孔質膜体積」と呼称する(図6参照)。そして、ポリマー多孔質膜に細胞を適用し、ポリマー多孔質膜の表面及び内部に細胞が担持された状態において、ポリマー多孔質膜、細胞、及びポリマー多孔質膜内部に浸潤した培地が全体として空間中に占める体積を「細胞生存域を含むポリマー多孔質膜体積」と呼称する(図6参照)。膜厚25μmのポリマー多孔質膜の場合、細胞生存域を含むポリマー多孔質膜体積は、見かけ上ポリマー多孔質膜体積より、最大で50%程度大きな値となる。本発明の方法では、1つの細胞培養容器中に複数のポリマー多孔質膜を収容して培養することができるが、その場合、細胞を担持した複数のポリマー多孔質膜のそれぞれについての細胞生存域を含むポリマー多孔質膜体積の総和を、単に「細胞生存域を含むポリマー多孔質膜体積の総和」と記載することがある。
 本発明の方法を用いることにより、細胞培養容器中に含まれる細胞培養培地の総体積が、細胞生存域を含むポリマー多孔質膜体積の総和の10000倍又はそれより少ない条件でも、細胞を長期にわたって良好に培養することが可能となる。また、細胞培養容器中に含まれる細胞培養培地の総体積が、細胞生存域を含むポリマー多孔質膜体積の総和の1000倍又はそれより少ない条件でも、細胞を長期にわたって良好に培養することができる。さらに、細胞培養容器中に含まれる細胞培養培地の総体積が、細胞生存域を含むポリマー多孔質膜体積の総和の100倍又はそれより少ない条件でも、細胞を長期にわたって良好に培養することができる。そして、細胞培養容器中に含まれる細胞培養培地の総体積が、細胞生存域を含むポリマー多孔質膜体積の総和の10倍又はそれより少ない条件でも、細胞を長期にわたって良好に培養することができる。
 つまり、本発明によれば、細胞培養する空間(容器)を従来の二次元培養を行う細胞培養装置に比べて極限まで小型化可能となる。また、培養する細胞の数を増やしたい場合は、積層するポリマー多孔質膜の枚数を増やす等の簡便な操作により、柔軟に細胞培養する体積を増やすことが可能となる。本発明に用いられるポリマー多孔質膜を備えた細胞培養装置であれば、細胞を培養する空間(容器)と細胞培養培地を貯蔵する空間(容器)とを分離することが可能となり、培養する細胞数に応じて、必要となる量の細胞培養培地を準備することが可能となる。細胞培養培地を貯蔵する空間(容器)は、目的に応じて大型化又は小型化してもよく、あるいは取り替え可能な容器であってもよく、特に限定されない。
 本発明の細胞の培養方法において、例えば、ポリマー多孔質膜を用いた培養後に細胞培養容器中に含まれる細胞の数が、細胞がすべて細胞培養容器中に含まれる細胞培養培地に均一に分散しているものとして、培地1ミリリットルあたり1.0×105個以上、1.0×106個以上、2.0×106個以上、5.0×106個以上、1.0×107個以上、2.0×107個以上、5.0×107個以上、1.0×108個以上、2.0×108個以上、5.0×108個以上、1.0×109個以上、2.0×109個以上、または5.0×109個以上となるまで培養することをいう。
 なお、培養中または培養後の細胞数を計測する方法としては、種々の公知の方法を用いることができる。例えば、ポリマー多孔質膜を用いた培養後に細胞培養容器中に含まれる細胞の数を、細胞がすべて細胞培養容器中に含まれる細胞培養培地に均一に分散しているものとして計測する方法としては、公知の方法を適宜用いることができる。例えば、CCK8を用いた細胞数計測法を好適に用いることができる。具体的には、Cell Countinig Kit8;同仁化学研究所製溶液試薬(以下、「CCK8」と記載する。)を用いて、ポリマー多孔質膜を用いない通常の培養における細胞数を計測し、吸光度と実際の細胞数との相関係数を求める。その後、細胞を適用し、培養したポリマー多孔質膜を、CCK8を含む培地に移し、1~3時間インキュベータ内で保存し、上清を抜き出して480nmの波長にて吸光度を測定して、先に求めた相関係数から細胞数を計算する。
 また、別の観点からは、細胞の大量培養とは、例えば、ポリマー多孔質膜を用いた培養後にポリマー多孔質膜1平方センチメートルあたりに含まれる細胞数が1.0×105個以上、2.0×105個以上、1.0×106個以上、2.0×106個以上、5.0×106個以上、1.0×107個以上、2.0×107個以上、5.0×107個以上、1.0×108個以上、2.0×108個以上、または5.0×108個以上となるまで培養することをいう。ポリマー多孔質膜1平方センチメートルあたりに含まれる細胞数は、セルカウンター等の公知の方法を用いて適宜計測することが可能である。
 以下、本発明を実施例に基づいて、より具体的に説明する。なお本発明はこれらの実施例に限定されるものではない。当業者は本明細書の記載に基づいて容易に本発明に修飾・変更を加えることができ、それらは本発明の技術的範囲に含まれる。
 以下の実施例で使用されたポリイミド多孔質膜は、テトラカルボン酸成分である3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)とジアミン成分である4,4’-ジアミノジフェニルエーテル(ODA)とから得られるポリアミック酸溶液と、着色前駆体であるポリアクリルアミドとを含むポリアミック酸溶液組成物を成形した後、250℃以上で熱処理することにより、調製された。得られたポリイミド多孔質膜は、複数の孔を有する表面層A及び表面層Bと、当該表面層A及び表面層Bの間に挟まれたマクロボイド層とを有する三層構造のポリイミド多孔質膜であり、表面層Aに存在する孔の平均孔径は6μmであり、表面層Bに存在する孔の平均孔径は46μmであり、膜厚が25μmであり、空孔率が73%であった。
(実施例1)
 気相露出型回転培養装置
 抗ヒトIL-8抗体産生CHO-DP12細胞(ATCC CRL-12445)を馴化・浮遊化した細胞を、培地(BalanCD(商標) CHO GROWTH A)を用いて浮遊培養し、1mlあたりの生細胞数が、1.3×10になるまで培養を継続した。図7に示す気相露出型回転培養装置(竪ドラム式、螺旋状流路無し)内部にナイロンメッシュ(30#、目開き547μm)にて外套(ケーシング)を形成し滅菌的にポリイミド多孔質膜を一定量(1モジュールあたり20cm)加えて封じたモジュール18個を据え付け、回転可能な状態に準備した。上記浮遊培養液を上部液溜め(図1の培養槽3に相当)に40ml注加した後、毎分6回転のゆっくりした速度で浮遊培養液に湿潤させた。この回転部を含む機器全体を、COインキュベータ内で5時間放置した後、上部液溜めの浮遊培養液を排除し、モジュールの回転は継続させたまま、500mlの培地を(FBS2%を含むIMDM)貯留した下部液溜め(図1の培地排出槽4に相当)より、同培地をチューブポンプ経由で毎分10mlの速度で循環させた。7日間培養した時点で、細胞密度3.2×10Cells/cmで総細胞数1.0×10個の細胞が観察された。
(実施例2)
 気相露出型回転培養装置
 抗ヒトIL-8抗体産生CHO-DP12細胞(ATCC CRL-12445)を馴化・浮遊化した細胞を、培地(BalanCD(商標) CHO GROWTH A)を用いて浮遊培養し、1mlあたりの生細胞数が、1.3×10になるまで培養を継続した。図5及び図8に示す気相回転培養装置(切れ込みドラム式、螺旋状流路有り)内部にナイロンメッシュ(30#、目開き547μm)にて外套(ケーシング)を形成し滅菌的にポリイミド多孔質膜を一定量(1モジュールあたり20cm)加えて封じたモジュール18個を据え付け、回転可能な状態に準備する。上記浮遊培養液を上部液溜めに40ml注加した後、毎分6回転のゆっくりした速度で浮遊培養液に湿潤させた。この回転部を含む機器全体を、CO2インキュベータ内で終夜放置した後、上部液溜め(図1の培養槽3に相当)の浮遊培養液を排除し、モジュールの回転は継続させたまま、500mlの培地を(FBS2%を含むIMDM)貯留した下部液溜め(図1の培地排出槽4に相当)より、同培地をチューブポンプ経由で毎分10mlの速度で循環させた。7日間培養した時点で、細胞密度2.4×10Cells/cmで総細胞数8.5×10個の細胞が観察された。
(実施例3)
<ステンレス綱製ケーシングを有するモジュール化ポリマー多孔質膜(以下、「メタルモジュール」という)及びステンレス綱製細胞培養部(以下、「メタルドラム」という)の作製>
 ポリイミド多孔質膜の有する耐熱性を最大限に活用し、簡単な全体乾熱滅菌で滅菌作業を完了すべく、ステンレス鋼メッシュ製のケーシング、中敷、及びポリイミド多孔質膜で構成されるメタルモジュールを作製した(図9(A)を参照)。具体的には、1cm×1cmのポリイミド多孔質膜及びポリイミド多孔質膜と同面積のステンレス鋼メッシュ(「中敷」という。図示しない)を積層したもの(ポリイミド多孔質3枚、中敷1枚、ポリイミド多孔質4枚、中敷1枚、ポリイミド多孔質3枚、の順番で積層)を、ステンレスメッシュ製のケーシングで封止して、メタルモジュールを作製した(図9(A))。作業は、開放空間下で非滅菌的に実施した。このメタルモジュールを運用するためのメタルドラムも、同様にステンレス綱メッシュにて作製し(図9(B))、内部にメタルモジュール20個を入れた状態で、非滅菌的に組み立てた。その後、メタルモジュールを含むメタルドラムをアルミホイルで包み、摂氏190度にて80分間乾熱滅菌し、放冷した。
<気相露出型回転培養装置>
 抗ヒトIL-8抗体産生CHO-DP12細胞(ATCC CRL-12445)を馴化・浮遊化した細胞を、培地(BalanCD(商標) CHO GROWTH A)を用いて浮遊培養し、1mlあたりの生細胞数が、1.1×10になるまで培養を継続した。図9(C)に示す様にメタルモジュールを含むメタルドラムを滅菌的に据え付け、クリーン環境下で回転可能な状態に準備した(図9(C))。上記のように細胞を浮遊培養して得た培地34mlと、新鮮な培地(BalanCD(商標) CHO GROWTH A)6mlを上部液溜め(図1の培養槽3に相当)に注加した後、メタルドラムを毎分1回転の速度で回転させ、ポリイミド多孔質膜に培地を湿潤させた。この装置全体を、COインキュベータ内で21時間放置した後、上部液溜めの培地を排除し、メタルドラムの回転は継続させたまま、200mlの培地(KBM-270)を貯留した下部液溜め(図1の培地排出槽4に相当)より、同培地をチューブポンプ経由で毎分10mlの速度で循環させた。4日間培養した時点で、細胞密度3.9×10Cells/cmで総細胞数7.8×10個の細胞が観察された。その後、上部液溜め及び下部液溜め全量の培地を新鮮な培地(KBM-270)に交換し、更に2日間同条件で培養を継続した。その時点で細胞密度1.3×10Cells/cm、総細胞数2.6×10個の細胞が観察された。
 1  細胞培養装置
 2  細胞培養部
 20  ポリマー多孔質膜
 21  ポリマー多孔質膜支持体
 22  ポリマー多孔質膜留め
 22a  スポーク
 23  軸
 24  止めリング
 25a、25b  軸受ブッシュ
 26  フランジ
 27  軸貫通口
 28  培地通過口
 29  ポリマー多孔質膜留めリング
 200、200a、200b、200c  円筒形容器
 201  端面
 202  側面
 203  爪
 204、205  培地流出入口
 206  軸貫通口
 207  螺旋状流路
 2000  ステンレス鋼メッシュ円筒形容器
 2023  軸
 3  培地槽
 31a、31b  軸受
 310  軸受凹部
 32  培地貯留部
 33  培地排出管
 34  培地供給管
 35  培地貯留内壁
 351  培地貯留内壁凹部
 36  培地オーバーフロー部
 37  培地排出孔
 38  テーパ部
 4  培地排出槽
 41  培地供給ライン
 42  培地排出ライン
 5  ポンプ
 6  回転モータ
 61  回転モータ軸
 62  軸接合部
 7  設置台
 8  モジュール化ポリマー多孔質膜
 81  ステンレス鋼メッシュ

Claims (20)

  1.  ポリマー多孔質膜と、
     前記ポリマー多孔質膜を有する細胞培養部と、
     前記細胞培養部を貫通した軸と、
     前記細胞培養部の少なくとも一部を浸漬する培地槽と、
    を備え、
     ここで、前記ポリマー多孔質膜が、複数の孔を有する表面層A及び表面層Bと、前記表面層A及び表面層Bの間に挟まれたマクロボイド層とを有する三層構造のポリマー多孔質膜であって、ここで前記表面層Aに存在する孔の平均孔径は、前記表面層Bに存在する孔の平均孔径よりも小さく、前記マクロボイド層は、前記表面層A及びBに結合した隔壁と、当該隔壁並びに前記表面層A及びBに囲まれた複数のマクロボイドとを有し、前記表面層A及びBにおける孔が前記マクロボイドに連通し、
     前記軸を中心として前記細胞培養部が回転し、前記ポリマー多孔質膜に担持された細胞が気相及び液相において交互に培養されることを特徴とする、細胞培養装置。
  2.  さらに、前記軸を回転するための回転モータを備えた、請求項1に記載の細胞培養装置。
  3.  前記細胞培養部が、ポリマー多孔質膜支持体と、ポリマー多孔質膜留めと、
    を備えるものであって、
     ここで、前記ポリマー多孔質膜は、前記ポリマー多孔質膜支持体及び前記ポリマー多孔質膜留めによって挟持されている、請求項1又は2に記載の細胞培養装置。
  4.  前記ポリマー多孔質膜が、2枚以上積層されて挟持されている、請求項3に記載の細胞培養装置。
  5.  前記細胞培養部が、円筒形容器であって、
    ここで、前記円筒形容器の端面は、1以上の培地流出入口を備え、
    ここで、前記円筒形容器の側面は、1以上の培地流出入口を備え、
    ここで、前記ポリマー多孔質膜は、前記円筒形容器内に収容されている、請求項1又は2に記載の細胞培養装置。
  6.  前記円筒形容器が、前記円筒形容器の一方の端面の一部と、他方の端面の一部とを連通する1以上の螺旋状流路を備えた、請求項5に記載の細胞培養装置。
  7.  前記ポリマー多孔質膜が、
     i)折り畳まれて、
     ii)ロール状に巻き込まれて、
     iii)シートもしくは小片を糸状の構造体で連結されて、
     iv)縄状に結まれて、及び/又は
     v)2以上が積層されて、
    前記円筒形容器に収容されている、請求項5又は6に記載の細胞培養装置。
  8.  前記ポリマー多孔質膜が、ケーシングを備えたモジュール化ポリマー多孔質膜であって、
     ここで、前記モジュール化ポリマー多孔質膜が、
     (i)2以上の独立した前記ポリマー多孔質膜が、集約されて、
     (ii)前記ポリマー多孔質膜が、折り畳まれて、
     (iii)前記ポリマー多孔質膜が、ロール状に巻き込まれて、及び/又は、
     (iv)前記ポリマー多孔質膜が、縄状に結ばれて、
    前記ケーシング内に収容されたものであって、
     ここで、前記モジュール化ポリマー多孔質膜が、前記円筒形容器に収容されている、請求項5又は6に記載の細胞培養装置。
  9.  前記細胞培養部が、2以上連結された、請求項1~8のいずれか1項に記載の細胞培養装置。
  10.  前記培地槽と一端部で連通した培地排出ラインと、
     前記培地排出ラインの他端部と連通した培地排出槽と、
     前記培地排出槽と一端部で連通した培地供給ラインと、
     前記培地供給ラインの途中に設けられた培地供給ポンプと、
    をさらに備えた、請求項1~9のいずれか1項に記載の細胞培養装置。
  11.  さらに、液滴化培地供給手段を備え、前記ポリマー多孔質膜に液滴化培地を供給することを特徴とする、請求項1~10のいずれか1項に記載の細胞培養装置。
  12.  前記ポリマー多孔質膜が、平均孔径0.01~100μmの複数の細孔を有する、請求項1~11のいずれか1項に記載の細胞培養装置。
  13.  前記表面層Aの平均孔径が、0.01~50μmである、請求項1~12のいずれか1項に記載の細胞培養装置。
  14.  前記表面層Bの平均孔径が、20~100μmである、請求項1~13のいずれか1項に記載の細胞培養装置。
  15.  前記ポリマー多孔質膜の総膜厚が、5~500μmである、請求項1~14のいずれか1項に記載の細胞培養装置。
  16.  前記ポリマー多孔質膜が、ポリイミド多孔質膜である、請求項1~15のいずれか1項に記載の細胞培養装置。
  17.  前記ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリイミドを含む、ポリイミド多孔質膜である、請求項16に記載の細胞培養装置。
  18.  前記ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリアミック酸溶液と着色前駆体とを含むポリアミック酸溶液組成物を成形した後、250℃以上で熱処理することにより得られる着色したポリイミド多孔質膜である、請求項16又は17に記載の細胞培養装置。
  19.  前記ポリマー多孔質膜が、ポリエーテルスルホン(PES)多孔質膜である、請求項1~15のいずれか1項に記載の細胞培養装置。
  20.  請求項1~19のいずれか1項に記載の細胞培養装置を用いた培養方法であって、
     前記軸を中心として前記細胞培養部を回転し、前記ポリマー多孔質膜に担持された細胞を気相及び液相において交互に培養することを特徴とする、培養方法。
PCT/JP2017/026943 2016-07-25 2017-07-25 細胞培養装置、及び、それを使用した細胞培養方法 WO2018021363A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17834365.3A EP3489346A4 (en) 2016-07-25 2017-07-25 CELL CULTIVATION DEVICE AND CELL CULTURE METHOD WITH USE THEREOF
JP2018530323A JP6870680B2 (ja) 2016-07-25 2017-07-25 細胞培養装置、及び、それを使用した細胞培養方法
KR1020197002120A KR20190022695A (ko) 2016-07-25 2017-07-25 세포 배양 장치 및 그것을 사용한 세포 배양 방법
US16/319,797 US20190276788A1 (en) 2016-07-25 2017-07-25 Cell cultivation device and cell cultivation method using same
CN201780045821.9A CN109496231A (zh) 2016-07-25 2017-07-25 细胞培养装置、及使用其的细胞培养方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-145815 2016-07-25
JP2016145815 2016-07-25

Publications (1)

Publication Number Publication Date
WO2018021363A1 true WO2018021363A1 (ja) 2018-02-01

Family

ID=61016028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026943 WO2018021363A1 (ja) 2016-07-25 2017-07-25 細胞培養装置、及び、それを使用した細胞培養方法

Country Status (6)

Country Link
US (1) US20190276788A1 (ja)
EP (1) EP3489346A4 (ja)
JP (1) JP6870680B2 (ja)
KR (1) KR20190022695A (ja)
CN (1) CN109496231A (ja)
WO (1) WO2018021363A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314633B2 (ja) * 1971-11-29 1978-05-18
JPS55111785A (en) * 1979-02-16 1980-08-28 Makoto Shoda Cell fixing-type continuous culture tank
JPH0541984A (ja) * 1990-09-07 1993-02-23 Dow Chem Co:The 攪拌容器における中空繊維においての細胞の増殖
JP2002159288A (ja) * 2000-11-28 2002-06-04 Nicca Chemical Co Ltd 回転円板型バイオリアクターおよび好気性微生物の反応による菌体外生産物の製造方法。
JP2009538617A (ja) * 2006-06-01 2009-11-12 シーエイチエーバイオテック カンパニー,リミテッド ヒト胚芽幹細胞の培養方法
JP2012503688A (ja) * 2008-09-25 2012-02-09 ガンブロ・ルンディア・エービー 細胞の増大のための照射膜
WO2015012415A1 (ja) * 2013-07-26 2015-01-29 宇部興産株式会社 細胞の培養方法、細胞培養装置及びキット

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162225A (en) * 1989-03-17 1992-11-10 The Dow Chemical Company Growth of cells in hollow fibers in an agitated vessel
DE19546542C1 (de) * 1995-12-13 1997-05-07 Heraeus Instr Gmbh Verfahren zur Kultivierung adhärenter Zellen, dafür geeigneter Träger und den Träger enthaltendes Zellkultivierungsgefäß
JP2003054174A (ja) 2001-08-13 2003-02-26 Masayuki Inami メモクリップの紙固定構造
JP5223532B2 (ja) 2008-08-08 2013-06-26 株式会社Ihi 水柱観測装置及び水柱観測方法
WO2010139337A1 (en) * 2009-06-03 2010-12-09 Aarhus Universitet Submerged perfusion bioreactor
US8501468B2 (en) * 2010-03-01 2013-08-06 Wheaton Industries, Inc. Culturing cells in a compartmentalized roller bottle
JP5577804B2 (ja) 2010-04-07 2014-08-27 宇部興産株式会社 多孔質ポリイミド膜及びその製造方法
JP5577803B2 (ja) 2010-04-07 2014-08-27 宇部興産株式会社 多孔質ポリイミド膜及びその製造方法
JP6262455B2 (ja) 2013-06-28 2018-01-17 株式会社メガチップス 係数テーブルの作成方法および画像の拡大縮小処理装置
JP6841282B2 (ja) * 2016-07-25 2021-03-10 宇部興産株式会社 細胞培養モジュール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314633B2 (ja) * 1971-11-29 1978-05-18
JPS55111785A (en) * 1979-02-16 1980-08-28 Makoto Shoda Cell fixing-type continuous culture tank
JPH0541984A (ja) * 1990-09-07 1993-02-23 Dow Chem Co:The 攪拌容器における中空繊維においての細胞の増殖
JP2002159288A (ja) * 2000-11-28 2002-06-04 Nicca Chemical Co Ltd 回転円板型バイオリアクターおよび好気性微生物の反応による菌体外生産物の製造方法。
JP2009538617A (ja) * 2006-06-01 2009-11-12 シーエイチエーバイオテック カンパニー,リミテッド ヒト胚芽幹細胞の培養方法
JP2012503688A (ja) * 2008-09-25 2012-02-09 ガンブロ・ルンディア・エービー 細胞の増大のための照射膜
WO2015012415A1 (ja) * 2013-07-26 2015-01-29 宇部興産株式会社 細胞の培養方法、細胞培養装置及びキット

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DIEDERICHS S ET AL.: "Dynamic cultivation of human mesenchymal stem cells in a rotating bed bioreactor system based on the ZRP platform", BIOTECHNOL. PROG., vol. 25, no. 6, 2009, pages 1762 - 1771, XP055063556 *
See also references of EP3489346A4 *
SUCK K ET AL.: "A rotating bed system bioreactor enables cultivation of primary osteoblasts on well-characterized Sponceram regarding structural and flow properties", BIOTECHNOL. PROG., vol. 26, no. 3, 2010, pages 671 - 678, XP055459226 *

Also Published As

Publication number Publication date
EP3489346A1 (en) 2019-05-29
KR20190022695A (ko) 2019-03-06
CN109496231A (zh) 2019-03-19
JPWO2018021363A1 (ja) 2019-06-13
JP6870680B2 (ja) 2021-05-12
EP3489346A4 (en) 2020-04-01
US20190276788A1 (en) 2019-09-12

Similar Documents

Publication Publication Date Title
KR101983486B1 (ko) 폴리이미드 다공질막을 이용하는 세포의 대량 배양 방법, 장치 및 키트
JP6897680B2 (ja) サイフォン式培養法
KR102216979B1 (ko) 세포의 배양 방법, 현탁된 세포의 제거 방법 및 현탁된 세포를 사멸시키는 방법
WO2018021368A1 (ja) 細胞培養モジュール
JP6777149B2 (ja) 細胞培養装置、及び、それを使用した細胞培養方法
JP6969614B2 (ja) 細胞培養装置、及びそれを使用した細胞培養方法
JP2021027821A (ja) 細胞培養装置及びそれを使用した細胞培養方法
JP6787402B2 (ja) 多重流路培養法
JP6907477B2 (ja) 細胞培養方法及び細胞培養装置
WO2018021363A1 (ja) 細胞培養装置、及び、それを使用した細胞培養方法
JP2019126299A (ja) 細胞培養装置、及び、それを使用した細胞培養方法
WO2018174186A1 (ja) 神経幹細胞の分化を抑制する方法、神経幹細胞を調製する方法、及び神経幹細胞を分化誘導する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197002120

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018530323

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017834365

Country of ref document: EP

Effective date: 20190225