WO2018020873A1 - 後熱処理装置及び後熱処理方法 - Google Patents

後熱処理装置及び後熱処理方法 Download PDF

Info

Publication number
WO2018020873A1
WO2018020873A1 PCT/JP2017/021741 JP2017021741W WO2018020873A1 WO 2018020873 A1 WO2018020873 A1 WO 2018020873A1 JP 2017021741 W JP2017021741 W JP 2017021741W WO 2018020873 A1 WO2018020873 A1 WO 2018020873A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail
coil
coil member
heat treatment
slider
Prior art date
Application number
PCT/JP2017/021741
Other languages
English (en)
French (fr)
Inventor
健治 杉山
信彦 松本
龍太 原田
Original Assignee
第一高周波工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一高周波工業株式会社 filed Critical 第一高周波工業株式会社
Priority to US16/318,062 priority Critical patent/US11053565B2/en
Priority to JP2018511169A priority patent/JP6383511B2/ja
Priority to AU2017304972A priority patent/AU2017304972B2/en
Priority to BR112019001390-3A priority patent/BR112019001390A2/pt
Priority to CA3031913A priority patent/CA3031913A1/en
Priority to RU2019103243A priority patent/RU2019103243A/ru
Publication of WO2018020873A1 publication Critical patent/WO2018020873A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • H05B6/103Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces multiple metal pieces successively being moved close to the inductor
    • H05B6/104Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces multiple metal pieces successively being moved close to the inductor metal pieces being elongated like wires or bands
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/362Coil arrangements with flat coil conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/44Coil arrangements having more than one coil or coil segment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a post heat treatment apparatus and a post heat treatment method, and more particularly, to a post heat treatment apparatus and a post heat treatment method for automatically detecting a welded portion of a rail connected by welding and removing the residual stress of the welded portion by heating again.
  • the rail R includes a head r ⁇ b> 1 where contact with a wheel occurs, a leg r ⁇ b> 2 that contacts a sleeper, and a column part r ⁇ b> 3 that connects the head r ⁇ b> 1 and the leg r ⁇ b> 2.
  • fatigue cracks may occur in the horizontal direction starting from the column portion r3 of the rail or the column portion r3 due to repeated passage of vehicles including a heavy load freight vehicle.
  • the fatigue crack is affected by a strong tensile residual stress in the vertical direction (circumferential direction) generated in the column portion r3 in the welded portion W. This tensile residual stress is caused by a temperature gradient between the welded portion W and its periphery during welding.
  • Patent Document 1 discloses an induction heating coil that is disposed at a predetermined distance (20 mm or more and 300 mm or less) in the length direction from the rail welding center and that heats the entire circumference of the rail.
  • a post heat treatment apparatus is disclosed. According to this apparatus, the residual stress existing in the welded portion can be effectively reduced by heating at a high heating rate using the electromagnetic induction coil. Further, since the induction heating coil heats the entire circumference of the rail, an increase in residual stress in the rail length direction can be suppressed.
  • a dielectric heating coil is automatically arranged at a predetermined position based on the welded portion. It is an object of the present invention to provide a post heat treatment apparatus and a post heat treatment method capable of performing heat treatment at an appropriate position.
  • a post-heat treatment apparatus for performing post-heat treatment of a welded rail, and includes a welded portion detection unit that detects a position of a welded portion on the rail.
  • an induction heating coil having a cross-sectional similar shape of the rail is formed by being joined to each other, and all of the rail is placed at a predetermined position of the rail based on the weld detected by the weld detection means.
  • a first coil member and a second coil member arranged so as to cover the circumference; a first coil moving means for moving the first coil member to a position spaced a predetermined distance from the rail; and the second coil member.
  • a second coil moving means for moving the first coil moving position to a position at a predetermined distance from the rail and a position where it is joined to the first coil member, the first coil moving means and the second coil Clamping means for pressing down the joint between the first coil member and the second coil member that are moved by the moving means and joined together, and the first coil member and the second coil in a state where the joint is pressed down by the clamping means.
  • a current applying means for applying a predetermined current to the induction heating coil formed by the coil member.
  • the first coil moving means includes a first guide rail laid in a direction orthogonal to the rail, a first slider for moving the first coil member along the first guide rail, and the first coil A first sensor that detects a predetermined position of the slider on the first guide rail, and the second coil moving means includes a second guide rail laid in a direction orthogonal to the rail, A second slider that moves the second coil member along the second guide rail; and a second sensor that detects a predetermined position of the second slider on the second guide rail, the first sensor
  • the movement of the first slider and the second slider along the first guide rail and the second guide rail is preferably stopped based on the detection operation of the second sensor.
  • the second coil moving means is further supported by a first support member fixed to the second slider, and supported by the first support member so as to be movable back and forth in a direction perpendicular to the length direction of the rail.
  • Each of the first coil member and the second coil member includes a set of coil members each including a plurality of coil members so as to form a plurality of dielectric heating coils by being joined to each other.
  • the joint portions of the plurality of coil members are arranged by at least one stay paired with the joining partner side, and a through hole is formed in one of the paired pair and the other stay is formed in the other stay.
  • a positioning pin to be inserted into the through hole is formed.
  • the clamp means includes a clamp arm that presses the one stay against the other stay at a joint between the first coil member and the second coil member, and a link mechanism that rotatably supports the clamp arm. And a rotation driving means for rotating the clamp arm by the link mechanism.
  • the positions of the first coil member and the second coil member in the rail length direction are automatically set based on the center position. can do. Further, at the position in the rail length direction, the first coil member and the second coil member are brought into contact with each other so as to surround the entire circumference of the rail, and for example, in a through hole of a stay provided on the first coil member side The positioning pin of the stay provided on the second coil member side is inserted. Thereby, the 1st coil member and the 2nd coil member can be joined, without mutually shifting.
  • the joint portion can be brought into close contact. Furthermore, since the one stay is pressed against the other stay by the clamp arm and clamped, the first coil member and the second coil member can be firmly joined, and the formed induction heating coil is subjected to heat treatment. It is possible to apply a large current required for. In addition, since the position from the position of the welded portion to the post heat treatment of the rail can be automatically performed, a stable quality rail can be obtained after the post heat treatment.
  • the post-heat treatment method includes a first coil member and a first coil member disposed so as to cover the entire circumference of the rail at a predetermined position of the rail based on the rail welded portion.
  • a step of moving the first coil member to a position spaced a predetermined distance from the rail at a predetermined position of the rail based on the detected weld, and a second distance of the second coil member from the rail A position of the first coil member and a position where the first coil member is joined to the first coil member;
  • the step of moving the first coil member to a position spaced apart from the rail by a predetermined distance includes moving the first coil member by the first slider that is movable along the first guide rail perpendicular to the rail.
  • the second coil member is moved closer to the rail by a second slider movable along a second guide rail orthogonal to the rail.
  • a second sensor that detects a predetermined position on the second guide rail that the second slider has further advanced by a predetermined distance after the second coil member contacts the first coil member. And stopping the movement of the second slider that moves along the second guide rail based on the detection operation of the second sensor, wherein the second coil member is connected to the first coil member.
  • the first support member fixed to the second slider is used to A second support member that supports the second coil member is supported via the member, and the second coil member contacts the first coil member in a state where the elastic member is compressed. It is desirable to.
  • the positions of the first coil member and the second coil member in the rail length direction can be automatically set based on the center position. . Further, when the first coil member and the second coil member are brought into contact with each other so as to surround the entire circumference of the rail at the position in the rail length direction, the first coil member is moved by the urging force of the elastic member. Since it presses with respect to a coil member, a junction part can be stuck. Furthermore, since the joined portion is pressed and clamped by the clamp arm, the first coil member and the second coil member can be firmly joined, and a large current necessary for the heat treatment is applied to the formed induction heating coil. can do. In addition, since the position from the position of the welded portion to the post heat treatment of the rail can be automatically performed, a stable quality rail can be obtained after the post heat treatment.
  • a dielectric heating coil in a post heat treatment apparatus that performs post heat treatment on a welded portion of a rail, can be automatically arranged at a predetermined position based on the welded portion, and heat treatment can be performed at an appropriate position on the rail.
  • a post heat treatment apparatus and a post heat treatment method can be provided.
  • FIG. 1 is a plan view of a post heat treatment apparatus of the present invention.
  • FIG. 2 is a side view of the post heat treatment apparatus of FIG.
  • FIG. 3 is a cross-sectional view of the post-heat treatment apparatus of FIG.
  • FIG. 4 is a perspective view of the first coil member and the second coil member in a separated state.
  • FIG. 5 is a perspective view of a state in which the first coil member and the second coil member are joined.
  • FIG. 6 is a flow showing a series of operations of the post-heat treatment apparatus according to the present invention.
  • FIGS. 7A to 7C are state transition diagrams showing the operation of the laser displacement meter for detecting the welded portion.
  • FIG. 8 is a side view schematically showing a laser displacement meter and a rail for explaining an operation of detecting a start point and an end point of a welded portion.
  • FIGS. 9A to 9D are state transition diagrams for explaining the clamping operation for the first coil member and the second coil member for surrounding the periphery of the rail.
  • FIG. 10 is a perspective view of rails connected by welding.
  • the post-heat treatment apparatus and post-heat treatment method according to the present invention automatically detects the welded portion of the rail connected by welding, and further performs heat treatment, thereby remaining in the rail welded portion. This is for removing the residual tensile stress.
  • FIG. 1 is a plan view of a post heat treatment apparatus of the present invention.
  • 2 is a side view of the post heat treatment apparatus of FIG. 1
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG.
  • the illustrated post-heat treatment apparatus 1 includes a first base 15 on which a rail R (target to be heat-treated) connected by welding is disposed above, and the rail R on the first base 15 (in the Y direction). And a pair of guide rails 2 laid.
  • the post-heat treatment apparatus 1 includes a second base 3 that is supported by a slider 2 a that can move along the guide rail 2 and that is long in a direction orthogonal to the guide rail 2 (X direction).
  • the second base 3 is movable along the longitudinal direction (Y direction) of the guide rail 2 by the slider 2a.
  • the guide rail 2 includes, for example, a ball screw and a stepping motor that rotates the ball screw around its axis, and the slider 2a is moved by the rotation of the ball screw.
  • the same configuration can be adopted for other guide rails and sliders that move along the guide rails.
  • a pair of guide rails 4 (first guide rail, first coil) in the direction orthogonal to the rail R (X direction) on both the left and right sides of the rail R.
  • Moving means and a pair of guard rails 5 (second guide rail, second coil moving means) are laid.
  • a box-shaped support base 6 is slidably provided via a slider 4a (first slider).
  • a third base 7 is disposed on the support base 6, and a matching transformer device 8 (high-frequency current transformer, high-frequency current transformer, which is supplied with a high-frequency current from a high-frequency inverter device (not shown) is disposed on the third base 7.
  • Current application means is arranged.
  • One side surface (on the rail R side) of the matching transformer device 8 is provided with a support plate 22 having a conductive wire connected to its output terminal, and a plurality of coil supports which are a support plate 22 and a plate-like support member.
  • the first coil member 10 ⁇ / b> A is supported by 9.
  • the coil support 9 is made of a lightweight and high strength material such as FRP.
  • the first coil member 10A Since the first coil member 10A is supported on one side of the matching transformer device 8 as described above, the first coil member 10A can move in the X direction along the guide rail 4 together with the matching transformer device 8, and can move forward and backward with respect to the rail R.
  • the first coil member 10 ⁇ / b> A has one shape obtained by dividing the cross-sectional similarity of the rail R into two parts (in this embodiment, it is not symmetrical), and is close to the rail R. The periphery of one side can be covered with a predetermined interval.
  • the matching transformer device 8 and the first coil member 10 ⁇ / b> A are electrically connected via a conductive wire provided in the support plate 22.
  • a dog shaft 20 for detecting an appropriate proximity position, and a sensor 21 (first sensor) , First coil moving means) is provided on the third base 7, when the first coil member 10A approaches the rail R.
  • the dog shaft 20 is provided so as to protrude toward the rail R, and the sensor 21 is detected by the tip of the dog shaft 20 coming into contact with the rail R (the slider 4a is in a predetermined position on the guide rail 4). To detect). Further, the position of the first coil member 10A when the sensor 21 is operated is the appropriate position.
  • a rectangular plate-like fourth base 11 is horizontally disposed via a slider 5 a (second slider), and is slidable in the X direction.
  • a bracket 12 first support member
  • a vertical surface 12a of the bracket 12 is provided as shown in FIGS. It is directed to the rail R side.
  • Dog shafts 13 projecting to the rail R side are attached to four locations on the vertical surface 12a in the vertical and horizontal directions.
  • the clamp attachment plate 14 (second support member) is supported by the distal end sides of the four dog shafts 13 so as to be able to advance and retract in the X direction within a predetermined range.
  • the distance between the vertical surface 12a of the bracket 12 and the clamp mounting plate 14 is variable within the predetermined range.
  • a spring 24 (elastic member) is provided at the center of the four dog shafts 13, one end of which is fixed to the bracket 12 and the other end is fixed to the clamp mounting plate 14. While the second clamp member 10B is not in contact with the first clamp member 10A due to the biasing force in the extension direction of the spring 24, the distance between the vertical surface 12a of the bracket 12 and the clamp mounting plate 14 is variable. It is in the maximum state.
  • the clamp mounting plate 14 is held in a state in which the one surface 14a is directed perpendicular to the rail R.
  • hydraulic clamp devices 16 and 17 (rotation drive means and clamp means) are provided on the upper and lower parts, respectively.
  • the hydraulic clamping devices 16 and 17 have clamp arms 18 and 19, respectively, which can be rotated by link mechanisms 18a and 19a.
  • a plurality of coil supports 32 made of, for example, FRP are attached to the central portion of the surface 14a of the clamp attachment plate 14, and the second coil member 10B is supported by the coil supports 32.
  • the second coil member 10 ⁇ / b> B can move in the X direction along the guide rail 4, and can advance and retreat with respect to the rail R.
  • the second coil member 10B has a shape similar to the cross-section of the rail R by being coupled to the first coil member 10A, and both of them are close to each other and joined to each other as shown in FIG.
  • the surrounding area can be completely covered with the interval of
  • the spring 24 is provided between the bracket 12 and the clamp mounting plate 14 so as to absorb the impact when the second coil member 10B comes into contact with the first coil member 10A.
  • a sensor 23 (second sensor, second coil moving means) is attached to the bracket 12.
  • the slider 5a (bracket 12) further advances a predetermined distance against the repulsive force of the spring 24, and the sensor 23 detects this (detects the position of the slider 5a on the guide rail 5).
  • the sensor 23 performs the detection operation, the movement of the slider 5 a stops, and the bracket 12 stopped together with this presses the clamp mounting plate 14 by the urging force of the spring 24.
  • the second coil member 10B is configured to be crimped to the first coil member at the joint.
  • a guide rail 31 extending in the X direction via a bracket 30 is provided on the first base 3, and a laser is placed on a slider 31 a that slides along the guide rail 31.
  • An arm 33 for holding a displacement meter 35 (welding portion detection means) is provided.
  • the laser light emitted by the laser displacement meter 35 is directed vertically downward, and the displacement can be measured by receiving the reflected light.
  • the laser displacement meter 35 can be moved in the Y direction by the guide rail 2, and can be moved in the X direction by the guide rail 31. Therefore, the laser displacement meter 35 can see the height displacement of the surface of the rail R across the rail R at any position in the length direction of the rail R.
  • FIGS. 4 is a perspective view of the first coil member and the second coil member in a separated state
  • FIG. 5 is a perspective view of a state in which the first coil member 10A and the second coil member 10B are joined.
  • the first coil member 10 ⁇ / b> A and the second coil member 10 ⁇ / b> B are divided so that, for example, four one-turn induction heating coils 10 a, 10 b, 10 c, and 10 d are formed.
  • a set of coil members 10a1, 10b1, 10c1, 10d1 made of copper pipes and a set of 10a2, 10b2, 10c2, 10d2 are provided.
  • the upper ends of the pair of coil members 10a1, 10b1, 10c1, and 10d1 are fixed to a single square bar-like stay 25 for holding them in an aligned state. It is fixed to a single square bar-like stay 26 for holding in an aligned state. Further, through holes 25 a are formed at both ends of the stay 25, and through holes 26 a are formed at both ends of the stay 26.
  • the upper ends of the pair of coil members 10a2, 10b2, 10c2, and 10d2 are fixed to a single rectangular bar-like stay 27 for holding them in an aligned state, and the lower ends are It is fixed to a single square bar-like stay 28 for holding them together. Further, positioning pins 27 a are provided at both ends of the stay 27, and positioning pins 28 a are provided at both ends of the stay 28.
  • the upper ends of the set of coil members 10a1, 10b1, 10c1, and 10d1 on the first coil member 10A side are the upper ends of the set of coil members 10a2, 10b2, 10c2, and 10d2 on the second coil member 10B side.
  • the upper end contacts each other.
  • the lower ends of the pair of coil members 10a1, 10b1, 10c1, and 10d1 on the first coil member 10A side are respectively in contact with the lower ends of the pair of coil members 10a2, 10b2, 10c2, and 10d2 on the second coil member 10B side. Touch.
  • the stay 25 and stay 27 on the coil upper end side make a pair
  • the stay 26 and stay 28 on the coil lower end side make a pair.
  • the positioning pins 27a at both ends of the stay 27 are inserted into the through holes 25a at both ends of the stay 25, and the positioning pins 28a at both ends of the stay 28 are inserted into the through holes 26a at both ends of the stay 26.
  • the hydraulic clamping devices 16 and 17 are operated in a state where the positioning pins 27a and 28a are inserted into the through holes 25a and 26a, and the clamp arm 18 presses the stay 25 against the stay 27 side. As a result, the stay 26 is pressed against the stay 28 (the joint is clamped).
  • a silver plate member 29 is provided at the joint between the first coil member 10A and the second coil member 10B in order to ensure electrical connection.
  • the silver plate member 29 is desirably provided so as to be replaceable in order to improve maintainability.
  • the first coil member 10A and the second coil member 10B joined as described above form the four induction heating coils 10a, 10b, 10c, and 10d as described above. These heat the entire circumference of the rail R at a predetermined position by supplying a high-frequency current.
  • the induction heating coils 10a, 10b, 10c, and 10d are disposed two on each side of the rail R with the welding center interposed therebetween, spaced apart from the welding center by a predetermined distance in the length direction. It will be.
  • the post-heat treatment apparatus 1 includes a control unit 50 (control means) including a computer that detects the position of the rail welded portion W based on the detection result of the laser displacement meter 35 and performs overall operation control.
  • the control unit 50 has, for example, an operation panel (such as a touch panel having an information display function) that can be operated by an operator, and can perform input setting of a threshold value of the bead height used for detection of the welded portion W. It is configured.
  • the control unit 50 detects that the rail R is placed by a sensor (not shown) (step S1 in FIG. 6).
  • the control unit 50 controls the slider 31a to move on the guide rail 31 toward the rail R (in the X direction) as shown in FIG. 7A in order to detect the welded portion W of the rail R.
  • the laser from the laser displacement meter 35 is stopped at a position where it hits the top surface of the rail R, for example (step S2 in FIG. 6).
  • the top surface of the rail R is irradiated with laser light, but any position other than the rail bottom surface may be used.
  • the control unit 50 moves the slider 2a along the guide rail 2 at a predetermined speed. That is, as shown in FIG. 7B, the laser displacement meter 35 is controlled to move along the rail R in a state where the laser beam is applied to the top surface of the rail R (step S3 in FIG. 6).
  • the control unit 50 can adjust the bead height as schematically shown in FIG.
  • the previous measurement point is detected as the start point of the welded portion W (step S4 in FIG. 6).
  • the previous measurement point is detected as the end of the weld W, as shown in FIG.
  • the center of the start point and the end point is recognized as the welding center, and positioning in the rail length direction is performed (step S5 in FIG. 6).
  • the control unit 50 sets the center position (in the Y direction) of the first coil member 10A and the second coil member 10B to the position (position in the Y direction).
  • the first coil member 10A is first started to move to the rail R side (along the X axis) from the state of FIG.
  • the sensor 21 is activated, and the movement of the first coil member 10A in the X direction is stopped (step S6 in FIG. 6).
  • the control unit 50 starts moving the second coil member 10B to the rail R side (along the X axis). Then, the second coil member 10B comes into contact with the first coil member 10A, the positioning pin 27a of the stay 27 is inserted into the through hole 25a of the stay 25, and the positioning pin 28a of the stay 28 is inserted into the through hole 26a of the stay 26. The Further, when the slider 5a advances a predetermined distance along the guide rail 5 against the repulsive force of the spring 24, the sensor 23 is activated and the movement of the slider 5a is stopped (step S7 in FIG. 6).
  • the spring 24 absorbs the impact, so that mechanical damage to the coil is greatly reduced, and the first coil member 10A and the first coil member after the movement stop are reduced. The positional deviation of the two-coil member 10B is prevented. Further, since the second coil member 10B is joined to the first coil member 10A in a state where the spring 24 is compressed, the second coil member 10B is crimped to the first coil member 10A by the biasing force in the extending direction of the spring 24. Is done.
  • the hydraulic clamp device 16 is operated, the clamp arm 18 is rotated by the link mechanism 18a, and the stay 25 side having the through hole 25a is pressed against the stay 27 side by the arm tip. (Clamp the joint). Further, the hydraulic clamp device 17 is operated, the clamp arm 19 is rotated by the link mechanism 19a, and the stay 26 side having the through hole 26a is pressed against the stay 28 side by the arm tip (clamping the joint portion).
  • the first coil member 10A and the second coil member 10B are firmly coupled, and the induction heating coils 10a, 10b, 10c, and 10d that cover the entire circumference of the rail R at predetermined positions. Is formed (step S8 in FIG. 6).
  • two induction heating coils 10a, 10b, 10c, and 10d are provided on both sides of the center of the welded portion W of the rail R, and a predetermined distance (for example, 20 mm to 300 mm) from the welding center in the length direction. And the following). That is, the residual stress existing in the welded portion can be effectively reduced by heating at a high heating rate using the electromagnetic induction coil from a position separated from the welding center by a predetermined distance. In addition, since the induction heating coils 10a, 10b, 10c, and 10d heat the entire circumference of the rail R, an increase in residual stress in the length direction of the rail R can be suppressed.
  • a high-frequency current is supplied from a high-frequency inverter device (not shown) to the matching transformer device 8, and the current transformed in the matching transformer device 8 is supplied to the induction heating coils 10a, 10b, 10c, and 10d.
  • part of the rail R is induction-heated (step S9 of FIG. 6).
  • step S10 in FIG. 6 the control unit 50 drives the hydraulic clamp devices 16 and 17 to rotate the clamp arms 18 and 19 to release the clamp (step S11 in FIG. 6). Then, the first coil member 10A and the second coil member 10B are retracted and separated from each other, and the operation is completed (step S12 in FIG. 6).
  • the control unit 50 detects the position of the welded portion W of the rail R using the laser displacement meter 35, the first coil member 10A and The position of the second coil member 10B in the rail length direction can be automatically set. Further, at the position in the rail length direction, the first coil member 10A and the second coil member 10B are brought into contact with each other so as to surround the entire circumference of the rail R, and the stay 25 provided on the first coil member 10A side. , 26 are inserted into positioning holes 27a, 28a of stays 27, 28 provided on the second coil member 10B side. Accordingly, the first coil member 10A and the second coil member 10B can be joined without being displaced from each other.
  • the joint portion can be brought into close contact.
  • the stays 25 and 26 are pressed against the stays 27 and 28 by the clamp arms 18 and 19 and clamped, the first coil member 10A and the second coil member 10B can be firmly joined and formed.
  • a large current required for the heat treatment can be applied to the induction heating coils 10a to 10d.
  • the process from the detection of the position of the weld W to the post-heat treatment of the rail R can be automatically performed, the rail R having a stable quality can be obtained after the post-heat treatment.
  • the present invention is not limited to this example.
  • the present invention can also be applied to a case where a plurality of welded portions of the rails connected to each other are continuously detected and post-heat treated.
  • the laser displacement meter 35 is used as the displacement detection means.
  • the present invention is not limited to displacement detection using a laser, and can be realized by using other elements such as ultrasonic waves. it can.
  • the positioning pins 27a and 28a formed on the stays 27 and 28 are inserted into the through holes 25a and 26a formed on the stays 25 and 26.
  • the present invention is not limited to this configuration, and positioning pins may be formed on the stays 25 and 26 and through holes may be formed on the stays 27 and 28.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Heat Treatment Of Articles (AREA)
  • General Induction Heating (AREA)

Abstract

レールの溶接部に後熱処理を行う後熱処理装置において、溶接部に基づく所定位置に誘電加熱コイルを自動的に配置し、レールの適切な位置で加熱処理を行うことのできる後熱処理装置及び後熱処理方法を提供する。レールR上の溶接部Wの位置を検出する溶接部検出手段と、誘導加熱コイルを形成する第1コイル部材10A及び第2コイル部材10Bと、前記第1コイル部材を前記レールに対し所定距離を空けた位置まで移動させる第1コイル移動手段4と、前記第2コイル部材を前記レールに対し所定距離を空けた位置であって、且つ前記第1コイル部材と接合する位置まで移動させる第2コイル移動手段5と、第1コイル部材と第2コイル部材との接合部を押さえ込むクランプ手段16,17と、形成された誘導加熱コイルに所定の電流を印加する電流印加手段8と、を備える。

Description

後熱処理装置及び後熱処理方法
 本発明は、後熱処理装置及び後熱処理方法に関し、特に溶接により繋いだレールの溶接部を自動検出し、再度加熱することにより該溶接部の残留応力を除去する後熱処理装置及び後熱処理方法に関する。
 騒音、振動等の発生の低減、或いは保守コストを低減するため、レール継ぎ目を溶接してロングレールとする技術が一般化されている。
 図10に基づき説明すると、少なくとも2本のレールR1、R2が、その端面間で溶接され、溶接部Wを有するレールRとなる。図10に示すようにレールRは、車輪との接触が生じる頭部r1、枕木と接する脚部r2、頭部r1と脚部r2とを連結する柱部r3を有する。
 溶接部Wにおいては、重荷重である貨物車両を始めとした車両の繰り返しの通過によりレールの柱部r3中に、又は柱部r3を起点として水平方向に疲労亀裂が発生する場合がある。この疲労亀裂は、溶接部Wにおいて柱部r3に生じる鉛直方向(周方向)の強い引張残留応力が影響する。この引張残留応力は、溶接の際の溶接部Wとその周辺との温度勾配により生じるものである。
 このような残留応力を低減するため、特許文献1には、レールの溶接中心から長さ方向に所定距離(20mm以上300mm以下)離間して配置され、レールの全周を加熱する誘導加熱コイルを備える後熱処理装置が開示されている。
 この装置によれば、電磁誘導コイルを用いた速い加熱速度の加熱により溶接部に存在する残留応力を効果的に低減することができる。
 また、誘導加熱コイルがレールの全周を加熱するため、レールの長さ方向の残留応力の増加を抑制することができる。
特許第5477453号公報
 ところで、特許文献1に開示された方法によりレール溶接部に対し後熱処理を施す場合、従来は作業員の手作業により溶接部中心に基づく所定位置に誘導加熱コイルを配置し加熱作業を行っていた。
 しかしながら、誘導加熱コイルの配置作業が前記のように人的作業である場合には、煩わしい上に、経験を積んだ作業員でなければ適切な位置からのずれが生じる虞があり、後熱処理後の品質が安定しないという課題があった。
 即ち、後熱処理後に安定した品質のレールを効率的に得るには、溶接部中心を基準とする所定位置において自動的に誘電加熱コイルを配置し、加熱処理することが望ましい。
 しかしながら、特許文献1に開示された装置にあっては、誘電加熱コイルを自動的に配置し後熱処理する方法については開示されていなかった。
 本発明は、前記した点に着目してなされたものであり、レールの溶接部に後熱処理を行う後熱処理装置において、溶接部に基づく所定位置に誘電加熱コイルを自動的に配置し、レールの適切な位置で加熱処理を行うことのできる後熱処理装置及び後熱処理方法を提供することを目的とする。
 前記した課題を解決するために、本発明に係る後熱処理装置は、溶接されたレールの後熱処理を行う後熱処理装置であって、前記レール上の溶接部の位置を検出する溶接部検出手段と、後熱処理の際、互いに接合されることにより前記レールの断面相似形をなす誘導加熱コイルを形成し、前記溶接部検出手段により検出された溶接部に基づくレールの所定位置に、前記レールの全周を覆うように配置される第1コイル部材及び第2コイル部材と、前記第1コイル部材を前記レールに対し所定距離を空けた位置まで移動させる第1コイル移動手段と、前記第2コイル部材を前記レールに対し所定距離を空けた位置であって、且つ前記第1コイル部材と接合する位置まで移動させる第2コイル移動手段と、前記第1コイル移動手段及び第2コイル移動手段により移動され互いに接合した第1コイル部材と第2コイル部材との接合部を押さえ込むクランプ手段と、前記クランプ手段により前記接合部が押さえ込まれた状態で、前記第1コイル部材及び前記第2コイル部材により形成された誘導加熱コイルに所定の電流を印加する電流印加手段と、を備えることに特徴を有する。
 尚、前記第1コイル移動手段は、前記レールに対し直交する方向に敷設された第1ガイドレールと、前記第1コイル部材を前記第1ガイドレールに沿って移動させる第1スライダと、前記第1スライダの前記第1ガイドレール上の所定の位置を検出する第1センサとを有し、前記第2コイル移動手段は、前記レールに対し直交する方向に敷設された第2ガイドレールと、前記第2コイル部材を前記第2ガイドレールに沿って移動させる第2スライダと、前記第2スライダの前記第2ガイドレール上の所定の位置を検出する第2センサとを有し、前記第1センサ及び第2センサの検出動作に基づき、前記第1ガイドレール及び第2ガイドレールに沿った前記第1スライダ及び第2スライダの移動が停止されることが望ましい。
 また、前記第2コイル移動手段は、更に前記第2スライダに固定された第1支持部材と、前記第1支持部材に対し前記レールの長さ方向と直交する方向に進退自在に支持されると共に前記第2コイル部材を支持する第2支持部材と、前記第1支持部材と第2支持部材との間に設けられた弾性部材とを有し、前記第2センサは、前記第1コイル部材に前記第2コイル部材が当接し、さらに前記弾性部材を圧縮しながら前記第2スライダが所定距離進んだ位置を検出し、前記第2スライダの移動が停止されることが望ましい。
 また、前記第1コイル部材及び前記第2コイル部材は、互いに接合することにより複数の誘電加熱コイルを形成するように、複数のコイル部材からなる一組のコイル部材をそれぞれ有し、前記一組のコイル部材において、複数のコイル部材の接合部は、接合相手側と対をなす少なくとも1本のステーにより配列され、前記対をなす一方のステーには、貫通孔が形成され、他方のステーには、前記貫通孔に挿入される位置決めピンが形成されていることが望ましい。
 また、前記クランプ手段は、前記第1コイル部材と第2コイル部材との接合部において前記一方のステーを他方のステーに対して押さえ込むクランプアームと、前記クランプアームを回動自在に支持するリンク機構と、前記クランプアームを前記リンク機構により回動させる回動駆動手段とを有することが望ましい。
 このような構成によれば、溶接部検出手段によりレールの溶接部の位置を検出するため、その中心位置に基づき第1コイル部材と第2コイル部材のレール長さ方向の位置を自動的に設定することができる。
 また、前記レール長さ方向の位置において、レールの全周を囲むように第1コイル部材と第2コイル部材とが互いに当接され、例えば第1コイル部材側に設けられたステーの貫通孔に第2コイル部材側に設けられたステーの位置決めピンが挿入される。これにより、第1コイル部材と第2コイル部材とを互いに位置ずれすることなく接合することができる。
 また、弾性部材の付勢力により第2コイル部材を第1コイル部材に対し押さえ付けるため、接合部を密着させることができる。
 更に、クランプアームにより前記一方のステーを他方のステー側に押さえ込みクランプ固定するため、第1コイル部材と第2コイル部材とを強固に接合することができ、形成された誘導加熱コイルに対し加熱処理に必要な大電流を印加することができる。
 また、溶接部の位置の検出からレールの後熱処理までを自動的に行うことができるため、後熱処理後に安定した品質のレールを得ることができる。
 また、前記した課題を解決するために、本発明に係る後熱処理方法は、レールの溶接部に基づくレールの所定位置において、前記レールの全周を覆うように配置される第1コイル部材及び第2コイル部材を互いに接合して前記レールの断面相似形をなす誘導加熱コイルを形成し、前記レールの後熱処理を行う後熱処理方法であって、前記レール上の溶接部の位置を検出する工程と、前記検出された溶接部に基づくレールの所定位置において、第1コイル部材を前記レールに対し所定距離を空けた位置まで移動させるステップと、第2コイル部材を前記レールに対し所定距離を空けた位置であって、且つ前記第1コイル部材と接合する位置まで移動させるステップと、前記互いに接合した第1コイル部材と第2コイル部材との接合部をクランプアームにより押さえ込み、前記レールの断面相似形をなす誘導加熱コイルを形成するステップと、前記クランプアームにより前記接合部が押さえ込まれた状態で、前記第1コイル部材及び前記第2コイル部材により形成された誘導加熱コイルに所定の電流を印加するステップと、を含むことに特徴を有する。
 尚、第1コイル部材を前記レールに対し所定距離を空けた位置まで移動させるステップは、前記レールに直交する第1ガイドレールに沿って移動可能な第1スライダにより、前記第1コイル部材を前記レールに対し近接方向に移動させるステップと、前記第1スライダの前記ガイドレール上の所定の位置を第1センサにより検出するステップと、前記第1センサの検出動作に基づき、前記第1ガイドレールに沿って移動する第1スライダの移動を停止させるステップとを含み、第2コイル部材を前記レールに対し所定距離を空けた位置であって、且つ前記第1コイル部材と接合する位置まで移動させるステップは、前記レールに直交する第2ガイドレールに沿って移動可能な第2スライダにより、前記第2コイル部材を前記レールに対し近接方向に移動させるステップと、前記第2コイル部材が前記第1コイル部材に当接した後、前記第2スライダが更に所定距離進んだ前記第2ガイドレール上の所定の位置を第2センサにより検出するステップと、前記第2センサの検出動作に基づき、前記第2ガイドレールに沿って移動する第2スライダの移動を停止させるステップと、を含み、前記第2コイル部材が前記第1コイル部材に当接した後、前記第2スライダが更に所定距離進んだ前記第2ガイドレール上の所定の位置を第2センサにより検出するステップにおいて、前記第2スライダに固定された第1支持部材により、弾性部材を介して、前記第2コイル部材を支持する第2支持部材が支持され、前記弾性部材が圧縮された状態で前記第2コイル部材が前記第1コイル部材に当接することが望ましい。
 このような方法によれば、レールの溶接部の位置を検出することにより、その中心位置に基づき第1コイル部材と第2コイル部材のレール長さ方向の位置を自動的に設定することができる。
 また、前記レール長さ方向の位置において、レールの全周を囲むように第1コイル部材と第2コイル部材とが互いに当接される際、弾性部材の付勢力により第2コイル部材を第1コイル部材に対し押さえ付けるため、接合部を密着させることができる。
 更に、クランプアームにより接合部を押さえ込みクランプ固定するため、第1コイル部材と第2コイル部材とを強固に接合することができ、形成された誘導加熱コイルに対し加熱処理に必要な大電流を印加することができる。
 また、溶接部の位置の検出からレールの後熱処理までを自動的に行うことができるため、後熱処理後に安定した品質のレールを得ることができる。
 本発明によれば、レールの溶接部に後熱処理を行う後熱処理装置において、溶接部に基づく所定位置に誘電加熱コイルを自動的に配置し、レールの適切な位置で加熱処理を行うことのできる後熱処理装置及び後熱処理方法を提供することができる。
図1は、本発明の後熱処理装置の平面図である。 図2は、図1の後熱処理装置の側面図である。 図3は、図1の後熱処理装置のA-A矢視断面図である。 図4は、分離状態の第1コイル部材と第2コイル部材の斜視図である。 図5は、第1コイル部材と第2コイル部材とを接合した状態の斜視図である。 図6は、本発明に係る後熱処理装置の一連の動作を示すフローである。 図7(a)~(c)は、溶接部を検出するためのレーザ変位計の動作を示す状態遷移図である。 図8は、溶接部の開始地点と終了地点を検出する動作を説明するためのレーザ変位計及びレールを模式的示した側面図である。 図9(a)~(d)は、レールの周囲を囲むための第1コイル部材と第2コイル部材とに対するクランプ動作を説明するための状態遷移図である。 図10は、溶接により繋いだレールの斜視図である。
 以下、本発明に係る後熱処理装置及び後熱処理方法の実施の形態につき、図面に基づいて説明する。尚、本発明に係る後熱処理装置及び後熱処理方法は、溶接により繋いだレールの溶接部を自動的に検出し、更に加熱処理を行うものであって、それによりレール溶接部に残存していた引張残存応力を除去するためのものである。
 図1は、本発明の後熱処理装置の平面図である。また、図2は図1の後熱処理装置の側面図であり、図3は図1のA-A矢視断面図である。
 図示する後熱処理装置1は、溶接によって連結されたレールR(被熱処理対象)が上方に配置される第一基台15と、前記第一基台15上にレールRと平行に(Y方向に)敷設された一対のガイドレール2とを備える。
 また後熱処理装置1は、前記ガイドレール2に沿って移動可能なスライダ2aによって支持され、ガイドレール2に直交する方向(X方向)に長く形成された第二基台3を備える。第二基台3は、スライダ2aによってガイドレール2の長手方向(Y方向)に沿って移動可能となされている。
 尚、図示しないが、ガイドレール2内には、例えばボールねじとそれを軸周りに回転させるステッピングモータが内蔵され、前記ボールねじの回転によりスライダ2aが移動する構造となっている。また、以下の説明において、他のガイドレールとそれに沿って移動するスライダについても同様の構成を採用することができる。
 また、図3に示すように前記第二基台3上には、レールRの左右両側において、レールRに直交する方向(X方向)に一対のガイドレール4(第1ガイドレール、第1コイル移動手段)と一対のガードレール5(第2ガイドレール、第2コイル移動手段)とがそれぞれ敷設されている。
 一対のガイドレール4上には、スライダ4a(第1スライダ)を介して箱形の支持台6がスライド移動可能に設けられている。また、支持台6の上には、第三基台7が配置され、この第三基台7上には図示しない高周波インバータ装置から高周波電流が供給される整合トランス装置8(高周波変流器、電流印加手段)が配置されている。
 整合トランス装置8の(レールR側の)一側面にはその出力端子に接続された導電線を内設した支持板22が設けられ、支持板22及び板状の支持部材である複数のコイルサポート9によって第1コイル部材10Aが支持されている。尚、コイルサポート9は、軽量かつ強度の高い材料、例えばFRPによって形成されている。
 前記のように第1コイル部材10Aは整合トランス装置8の一側面側に支持されるため、整合トランス装置8とともにガイドレール4に沿ってX方向に移動可能とされ、レールRに対し進退可能とされている。
 前記第1コイル部材10Aは、図3に示すようにレールRの断面相似形を2分割した一方の形(本実施形態では左右対称ではない)を有しており、レールRに近接することにより、その片側周囲を、所定間隔を空けて覆うことができるようになっている。前記整合トランス装置8と第1コイル部材10Aとは前記支持板22に内設された導電線を介して電気的に接続されている。
 また、図1に示すように第三基台7上には、前記第1コイル部材10AがレールRに近接する際、適切な近接位置を検出するためのドグシャフト20、及びセンサ21(第1センサ、第1コイル移動手段)が設けられている。
 前記ドグシャフト20は、レールR側に突出して設けられ、その先端がレールRに当接することによりセンサ21が検出動作するようになっている(スライダ4aがガイドレール4上の所定位置にあることを検出する)。また、センサ21が動作した際の第1コイル部材10Aの位置が、その適切な位置とされる。
 一方、ガイドレール5上には、スライダ5a(第2スライダ)を介して矩形板状の第四基台11が水平に配置され、X方向にスライド移動可能となっている。図3に示すように前記第四基台11上には、鉛直方向に高く延びるブラケット12(第1支持部材)が設けられ、図1、図3に示すようにこのブラケット12の垂直面12aがレールR側に向けられている。
 前記垂直面12aの上下左右の4箇所には、レールR側に突出するドグシャフト13が取り付けられている。また、これら4本のドグシャフト13の先端側により、クランプ取り付け板14(第2支持部材)が所定範囲内でX方向に進退自在に支持されている。そのため、ブラケット12の垂直面12aとクランプ取り付け板14との間の距離は、前記所定範囲内で可変とされている。また、前記4本のドグシャフト13の中央には、一端側がブラケット12に固定され、他端側がクランプ取り付け板14に固定されたスプリング24(弾性部材)が設けられている。前記スプリング24の伸長方向の付勢力により、第2クランプ部材10Bが第1クランプ部材10Aに当接しない間は、前記ブラケット12の垂直面12aとクランプ取り付け板14との間の距離は、可変範囲内で最大の状態となされている。
 また、前記クランプ取り付け板14は、レールRに対し垂直に片面14aを向けた状態で保持されている。前記クランプ取り付け板14のレールR側に臨む面14aにおいて、その上部及び下部には、それぞれ油圧クランプ装置16、17(回転駆動手段、クランプ手段)が設けられている。油圧クランプ装置16、17は、それぞれクランプアーム18、19を有し、それらはリンク機構18a、19aによって回動可能となっている。
 また、前記クランプ取り付け板14の面14aにおいて、その中央部には、例えばFRPからなる複数のコイルサポート32が取り付けられ、それらコイルサポート32によって第2コイル部材10Bが支持されている。第2コイル部材10Bはガイドレール4に沿ってX方向に移動可能とされ、レールRに対し進退可能とされている。
 前記第2コイル部材10Bは、第1コイル部材10Aと結合することでレールRの断面相似形となる形状となっており、双方が近接し図3のように接合することでレールRに対し所定の間隔を保った状態で、その周囲を完全に覆うことができる。
 尚、前記したように前記ブラケット12とクランプ取り付け板14との間にはスプリング24が設けられており、第2コイル部材10Bが第1コイル部材10Aに当接した際の衝撃を吸収するようになされている。
 また、前記ブラケット12には、センサ23(第2センサ、第2コイル移動手段)が取り付けられている。ガイドレール5に沿って第2コイル部材10BがレールRに近接し、第1コイル部材10Aに当接すると、スプリング24の反発力に抗して更にスライダ5a(ブラケット12)が所定距離を進みセンサ23がこれを検出するようになっている(ガイドレール5上のスライダ5aの位置を検出する)。センサ23が検出動作した際にスライダ5aの移動は停止し、これとともに停止したブラケット12がスプリング24の付勢力によりクランプ取り付け板14を押圧する。これにより第2コイル部材10Bが第1コイル部材に対し接合部において圧着されるように構成されている。
 また、図1、図2に示すように第一基台3上には、ブラケット30を介してX方向に延びるガイドレール31が設けられ、このガイドレール31に沿ってスライドするスライダ31a上にレーザ変位計35(溶接部検出手段)を保持するアーム33が設けられている。レーザ変位計35が発射するレーザ光は垂直下方に向けられており、その反射光を受光することにより変位を測定することができる。
 この構成において、レーザ変位計35は、ガイドレール2によりY方向に移動可能であり、ガイドレール31によりX方向に移動可能となっている。そのため、レーザ変位計35は、レールRの長さ方向のいずれの位置においてもレールRの上を横切って、レールR表面の高さ変位を見ることができる。
 続いて、図4、図5に基づき第1コイル部材10A、及び第2コイル部材10Bの構成についてより詳しく説明する。図4は分離状態の第1コイル部材と第2コイル部材の斜視図であり、図5は第1コイル部材10Aと第2コイル部材10Bとを接合した状態の斜視図である。
 図4、図5に示すように第1コイル部材10Aと第2コイル部材10Bとは接合した状態で例えば4つの一巻きの誘導加熱コイル10a、10b、10c、10dを形成するように、それぞれ分割された銅管からなる一組のコイル部材10a1、10b1、10c1、10d1と、一組の10a2、10b2、10c2、10d2とを有している。
 第1コイル部材10Aにおいて、一組のコイル部材10a1、10b1、10c1、10d1の上端は、それらを揃えた状態で保持するための一本の角棒状のステー25に固定され、下端は、それらを揃えた状態で保持するための一本の角棒状のステー26に固定されている。また、前記ステー25の両端部には貫通孔25aがそれぞれ形成され、ステー26の両端部には貫通孔26aがそれぞれ形成されている。
 一方、第2コイル部材10Bにおいて、一組のコイル部材10a2、10b2、10c2、10d2の上端は、それらを揃えた状態で保持するための一本の角棒状のステー27に固定され、下端は、それらを揃えて保持するための一本の角棒状のステー28に固定されている。また、前記ステー27の両端部には位置決めピン27aがそれぞれ設けられ、ステー28の両端部には位置決めピン28aがそれぞれ設けられている。
 図5に示すように、第1コイル部材10A側の一組のコイル部材10a1、10b1、10c1、10d1の上端は、第2コイル部材10B側の一組のコイル部材10a2、10b2、10c2、10d2の上端とそれぞれ互いに当接する。また、第1コイル部材10A側の一組のコイル部材10a1、10b1、10c1、10d1の下端は、第2コイル部材10B側の一組のコイル部材10a2、10b2、10c2、10d2の下端とそれぞれ互いに当接する。
 このとき、コイル上端側のステー25とステー27とは対をなし、コイル下端側のステー26とステー28とは対をなす。そして、ステー25両端の貫通孔25aにステー27両端の位置決めピン27aが挿入され、ステー26両端の貫通孔26aにステー28両端の位置決めピン28aが挿入される。これにより、4つの各誘導加熱コイル10a、10b、10c、10dの接合部の位置ずれが生じることがない構造となっている。
 また、前記貫通孔25a、26aに位置決めピン27a、28aが挿入された状態で、前記の油圧クランプ装置16、17が作動し、クランプアーム18によりステー25をステー27側に押さえ付け、クランプアーム19によりステー26をステー28側に押さえ付ける(接合部をクランプする)ようになっている。
 また、第1コイル部材10Aと第2コイル部材10Bとの接合部には、電気的接続を確実なものとするために銀板部材29が設けられている。この銀板部材29はメンテナンス性向上のために取替自在に設けられることが望ましい。
 前記のようにして接合された第1コイル部材10Aと第2コイル部材10Bは、前記のように4つの誘導加熱コイル10a、10b、10c、10dを形成する。これらは、高周波電流が供給されることによりレールRの所定位置の全周を加熱するものである。
 これらの誘導加熱コイル10a、10b、10c、10dを使用する際には、レールRの溶接中心を挟んだ両側にそれぞれ2つずつ、この溶接中心から長さ方向に所定距離離間して配置されることになる。
 また、後熱処理装置1は、前記レーザ変位計35の検出結果に基づきレール溶接部Wの位置検出を行うとともに、全体の動作制御を行うコンピュータからなる制御部50(制御手段)を備えている。
 制御部50は、例えば作業員が操作できる操作パネル(情報表示機能を備えたタッチパネルなど)を有し、溶接部Wの検出に用いるビード高さの閾値の入力設定などを行うことができるように構成されている。
 続いて、本発明に係る後熱処理装置の動作について図6のフローに基づき、図7(a)~(c)並びに図8(a)~(d)の状態遷移の図を用いながら説明する。
 先ず、後熱処理装置1上に被後熱処理対象であるレールRが配置されると、制御部50は、図示しないセンサによりレールRが配置されたことを検出する(図6のステップS1)。
 次いで、制御部50は、レールRの溶接部Wを検出するために図7(a)に示すようにスライダ31aがガイドレール31上をレールRに向けて(X方向に)移動するよう制御し、レーザ変位計35からのレーザが例えばレールRの頭頂面に当たる位置で停止させる(図6のステップS2)。尚、本実施の形態ではレールRの頭頂面にレーザ光を照射するものとするが、レール底面以外であれば、いずれの位置でもよい。
 レーザ変位計35のX方向の位置が決定すると、制御部50はスライダ2aをガイドレール2に沿って所定速度で移動させる。即ち、図7(b)に示すようにレーザ変位計35がレールRの頭頂面に対しレーザ光を当てた状態でレールRに沿って移動するよう制御する(図6のステップS3)。
 ここで、レーザ変位計35の送りピッチをp、溶接部Wのビード高さ閾値をt、ビード幅閾値を5pとした場合、制御部50は、図8に模式的に示すようにビード高さ閾値tよりも大きな変化が5回(5pの長さ分)連続した場合に、5つ前の測定地点を溶接部Wの開始地点として検出する(図6のステップS4)。
 その後、ビード高さ閾値tよりも小さな変化が5回(5pの長さ分)連続した場合に、5つ前の測定地点を溶接部Wの終了として検出し、図7(c)に示すようにそれら開始地点と終了地点の中央を溶接中心と認識してレール長さ方向の位置決めを行う(図6のステップS5)。
 尚、このようなレーザ光を用いた検出方法によれば、一般的なビード高さ1mmよりも低い溶接部の場合であっても、ビード高さ閾値tを0.5mm程度まで引き下げることにより、より低い高さの溶接部にも対応することができる。
 また、ビード高さ閾値tよりも大きな変化が5pの長さ続いた場合に溶接部Wを認識するため、図8に示すスパッタなどの幅の小さい異物の誤検出を防止することができる。
 溶接部Wのレール長さ方向中心位置が決定されると、制御部50はその位置(Y方向の位置)に第1コイル部材10A、及び第2コイル部材10Bの(Y方向の)中心位置を合わせ、図9(a)の状態から先ず第1コイル部材10Aを(X軸に沿って)レールR側に移動開始させる。
 図9(b)に示すようにドグシャフト20がレールRに当接するとセンサ21が作動し、第1コイル部材10AのX方向の移動が停止される(図6のステップS6)。
 一方、制御部50は第2コイル部材10Bを(X軸に沿って)レールR側に移動開始させる。そして、第2コイル部材10Bが第1コイル部材10Aに当接し、ステー25の貫通孔25aにステー27の位置決めピン27aが挿入され、ステー26の貫通孔26aにステー28の位置決めピン28aが挿入される。更に、スプリング24の反発力に抗してスライダ5aがガイドレール5に沿って所定距離進むと、センサ23が作動しスライダ5aの移動が停止される(図6のステップS7)。
 ここで、第2コイル部材10Bが第1コイル部材10Aに接触する際、スプリング24が衝撃を吸収するため、コイルに対する機械的ダメージは大幅に軽減され、移動停止後の第1コイル部材10A及び第2コイル部材10Bの位置ずれが防止される。
 また、スプリング24が圧縮された状態で第2コイル部材10Bが第1コイル部材10Aに接合されるため、スプリング24の伸長方向の付勢力により第2コイル部材10Bは第1コイル部材10Aに対し圧着される。
 次いで、図9(c)に示すように油圧クランプ装置16が作動し、リンク機構18aによってクランプアーム18が回動し、アーム先端によって貫通孔25aを有するステー25側をステー27側に対して押さえ込む(接合部をクランプする)。また、油圧クランプ装置17が作動し、リンク機構19aによってクランプアーム19が回動し、アーム先端によって貫通孔26aを有するステー26側をステー28側に対して押さえ込む(接合部をクランプする)。
 これにより図9(d)に示すように、強固に第1コイル部材10Aと第2コイル部材10Bとが結合され、レールRの所定位置の全周を覆う誘導加熱コイル10a、10b、10c、10dが形成される(図6のステップS8)。
 また、このとき、誘導加熱コイル10a、10b、10c、10dは、レールRの溶接部Wの中心を挟んだ両側にそれぞれ2つずつ、この溶接中心から長さ方向に所定距離(例えば20mm以上300mm以下)離間して配置されることになる。即ち、このように溶接中心から所定距離離間した位置からの電磁誘導コイルを用いた速い加熱速度の加熱により、溶接部に存在する残留応力を効果的に低減することができる。また、誘導加熱コイル10a、10b、10c、10dがレールRの全周を加熱するため、レールRの長さ方向の残留応力の増加を抑制することができる。
 続いて、図示しない高周波インバータ装置から整合トランス装置8に高周波電流が供給され、整合トランス装置8において変流された電流が誘導加熱コイル10a、10b、10c、10dに供給される。これによりレールRの所定部位が誘導加熱される(図6のステップS9)。
 加熱処理が終了すると(図6のステップS10)、制御部50は油圧クランプ装置16、17を駆動し、クランプアーム18、19を回動させてクランプを解除する(図6のステップS11)。
 そして、第1コイル部材10Aと第2コイル部材10Bとをそれぞれ後退させて分離し、作業完了となる(図6のステップS12)。
 以上のように本発明に係る実施の形態によれば、制御部50がレーザ変位計35を用いてレールRの溶接部Wの位置を検出するため、その中心位置に基づき第1コイル部材10Aと第2コイル部材10Bのレール長さ方向の位置を自動的に設定することができる。
 また、前記レール長さ方向の位置において、レールRの全周を囲むように第1コイル部材10Aと第2コイル部材10Bとが互いに当接され、第1コイル部材10A側に設けられたステー25,26の貫通孔25a、26aに第2コイル部材10B側に設けられたステー27,28の位置決めピン27a、28aが挿入される。これにより、第1コイル部材10Aと第2コイル部材10Bとを互いに位置ずれすることなく接合することができる。
 また、スプリング24の付勢力により第2コイル部材10Bを第1コイル部材10Aに対し押さえ付けるため、接合部を密着させることができる。
 更に、クランプアーム18、19により前記ステー25、26をステー27、28側に押さえ込みクランプ固定するため、第1コイル部材10Aと第2コイル部材10Bとを強固に接合することができ、形成された誘導加熱コイル10a~10dに対し加熱処理に必要な大電流を印加することができる。
 また、溶接部Wの位置の検出からレールRの後熱処理までを自動的に行うことができるため、後熱処理後に安定した品質のレールRを得ることができる。
 尚、前記実施の形態においては、2本を繋いだレールの1つの溶接部Wを検出し、後熱処理する例を示したが、本発明にあっては、その例に限定されず、複数本を繋いだレールの複数の溶接部を連続的に検出し、それを後熱処理する場合にも適用することができる。
 また、本実施の形態においては、変位検出手段としてレーザ変位計35を用いるものとしたが、レーザを用いた変位検出に限定されず、超音波等、その他の素子を用いても実現することができる。
 また、前記実施の形態においては、ステー25,26に形成された貫通孔25a、26aに、ステー27,28に形成された位置決めピン27a、28aを挿入するものとしたが、本発明にあっては、その構成に限定されず、ステー25、26に位置決めピンを形成し、ステー27、28に貫通孔を形成するようにしてもよい。
 1     後熱処理装置
 2     ガイドレール
 2a    スライダ
 3     第二基台
 4     ガイドレール(第1ガイドレール)
 5     ガイドレール(第2ガイドレール)
 6     支持台
 7     第三基台
 8     整合トランス装置(電流印加手段)
 9     コイルサポート
 10A   第1コイル部材
 10B   第2コイル部材
 10a   誘導加熱コイル
 10b   誘導加熱コイル
 10c   誘導加熱コイル
 10d   誘導加熱コイル
 11    第四基台
 12    ブラケット(第1支持部材)
 13    ドグシャフト
 14    クランプ取り付け板(第2支持部材)
 15    第一基台
 16    油圧クランプ装置(回動駆動手段、クランプ手段)
 17    油圧クランプ装置(回動駆動手段、クランプ手段)
 18    クランプアーム
 18a   リンク機構
 19    クランプアーム
 19a   リンク機構
 20    ドグシャフト
 21    センサ(第1センサ)
 22    支持板
 23    センサ(第2センサ)
 24    スプリング(弾性部材)
 25    ステー
 25a   貫通孔
 26    ステー
 26a   位置決めピン
 27    ステー
 27a   貫通孔
 28    ステー
 28a   位置決めピン
 29    銀板部材
 30    ブラケット
 31    ガイドレール
 31a   スライダ
 32    コイルサポート
 33    アーム
 35    レーザ変位計(溶接部検出手段)
 50    制御部
 R     レール
 W     溶接部

Claims (7)

  1.  溶接されたレールの後熱処理を行う後熱処理装置であって、
     前記レール上の溶接部の位置を検出する溶接部検出手段と、
     後熱処理の際、互いに接合されることにより前記レールの断面相似形をなす誘導加熱コイルを形成し、前記溶接部検出手段により検出された溶接部に基づくレールの所定位置に、前記レールの全周を覆うように配置される第1コイル部材及び第2コイル部材と、
     前記第1コイル部材を前記レールに対し所定距離を空けた位置まで移動させる第1コイル移動手段と、
     前記第2コイル部材を前記レールに対し所定距離を空けた位置であって、且つ前記第1コイル部材と接合する位置まで移動させる第2コイル移動手段と、
     前記第1コイル移動手段及び第2コイル移動手段により移動され互いに接合した第1コイル部材と第2コイル部材との接合部を押さえ込むクランプ手段と、
     前記クランプ手段により前記接合部が押さえ込まれた状態で、前記第1コイル部材及び前記第2コイル部材により形成された誘導加熱コイルに所定の電流を印加する電流印加手段と、
     を備えることを特徴とする後熱処理装置。
  2.  前記第1コイル移動手段は、
     前記レールに対し直交する方向に敷設された第1ガイドレールと、前記第1コイル部材を前記第1ガイドレールに沿って移動させる第1スライダと、前記第1スライダの前記第1ガイドレール上の所定の位置を検出する第1センサとを有し、
     前記第2コイル移動手段は、
     前記レールに対し直交する方向に敷設された第2ガイドレールと、前記第2コイル部材を前記第2ガイドレールに沿って移動させる第2スライダと、前記第2スライダの前記第2ガイドレール上の所定の位置を検出する第2センサとを有し、
     前記第1センサ及び第2センサの検出動作に基づき、前記第1ガイドレール及び第2ガイドレールに沿った前記第1スライダ及び第2スライダの移動が停止されることを特徴とする請求項1に記載された後熱処理装置。
  3.  前記第2コイル移動手段は、
     更に前記第2スライダに固定された第1支持部材と、前記第1支持部材に対し前記レールの長さ方向と直交する方向に進退自在に支持されると共に前記第2コイル部材を支持する第2支持部材と、前記第1支持部材と第2支持部材との間に設けられた弾性部材とを有し、
     前記第2センサは、前記第1コイル部材に前記第2コイル部材が当接し、さらに前記弾性部材を圧縮しながら前記第2スライダが所定距離進んだ位置を検出し、前記第2スライダの移動が停止されることを特徴とする請求項2に記載された後熱処理装置。
  4.  前記第1コイル部材及び前記第2コイル部材は、互いに接合することにより複数の誘電加熱コイルを形成するように、複数のコイル部材からなる一組のコイル部材をそれぞれ有し、
     前記一組のコイル部材において、複数のコイル部材の接合部は、接合相手側と対をなす少なくとも1本のステーにより配列され、
     前記対をなす一方のステーには、貫通孔が形成され、他方のステーには、前記貫通孔に挿入される位置決めピンが形成されていることを特徴とする請求項1乃至請求項3のいずれかに記載された後熱処理装置。
  5.  前記クランプ手段は、
     前記第1コイル部材と第2コイル部材との接合部において前記一方のステーを他方のステーに対して押さえ込むクランプアームと、
     前記クランプアームを回動自在に支持するリンク機構と、
     前記クランプアームを前記リンク機構により回動させる回動駆動手段とを有することを特徴とする請求項4に記載された後熱処理装置。
  6.  レールの溶接部に基づくレールの所定位置において、前記レールの全周を覆うように配置される第1コイル部材及び第2コイル部材を互いに接合して前記レールの断面相似形をなす誘導加熱コイルを形成し、前記レールの後熱処理を行う後熱処理方法であって、
     前記レール上の溶接部の位置を検出する工程と、
     前記検出された溶接部に基づくレールの所定位置において、第1コイル部材を前記レールに対し所定距離を空けた位置まで移動させるステップと、
     第2コイル部材を前記レールに対し所定距離を空けた位置であって、且つ前記第1コイル部材と接合する位置まで移動させるステップと、
     前記互いに接合した第1コイル部材と第2コイル部材との接合部をクランプアームにより押さえ込み、前記レールの断面相似形をなす誘導加熱コイルを形成するステップと、
     前記クランプアームにより前記接合部が押さえ込まれた状態で、前記第1コイル部材及び前記第2コイル部材により形成された誘導加熱コイルに所定の電流を印加するステップと、
     を含むことを特徴とする後熱処理方法。
  7.  第1コイル部材を前記レールに対し所定距離を空けた位置まで移動させるステップは、
     前記レールに直交する第1ガイドレールに沿って移動可能な第1スライダにより、前記第1コイル部材を前記レールに対し近接方向に移動させるステップと、
     前記第1スライダの前記ガイドレール上の所定の位置を第1センサにより検出するステップと、
     前記第1センサの検出動作に基づき、前記第1ガイドレールに沿って移動する第1スライダの移動を停止させるステップとを含み、
     第2コイル部材を前記レールに対し所定距離を空けた位置であって、且つ前記第1コイル部材と接合する位置まで移動させるステップは、
     前記レールに直交する第2ガイドレールに沿って移動可能な第2スライダにより、前記第2コイル部材を前記レールに対し近接方向に移動させるステップと、
     前記第2コイル部材が前記第1コイル部材に当接した後、前記第2スライダが更に所定距離進んだ前記第2ガイドレール上の所定の位置を第2センサにより検出するステップと、
     前記第2センサの検出動作に基づき、前記第2ガイドレールに沿って移動する第2スライダの移動を停止させるステップと、を含み、
     前記第2コイル部材が前記第1コイル部材に当接した後、前記第2スライダが更に所定距離進んだ前記第2ガイドレール上の所定の位置を第2センサにより検出するステップにおいて、
     前記第2スライダに固定された第1支持部材により、弾性部材を介して、前記第2コイル部材を支持する第2支持部材が支持され、前記弾性部材が圧縮された状態で前記第2コイル部材が前記第1コイル部材に当接することを特徴とする請求項6に記載された後熱処理方法。
PCT/JP2017/021741 2016-07-27 2017-06-13 後熱処理装置及び後熱処理方法 WO2018020873A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/318,062 US11053565B2 (en) 2016-07-27 2017-06-13 Post-heating treatment device and post-heating treatment method
JP2018511169A JP6383511B2 (ja) 2016-07-27 2017-06-13 後熱処理装置及び後熱処理方法
AU2017304972A AU2017304972B2 (en) 2016-07-27 2017-06-13 Post-heat treatment device and post-heat treatment method
BR112019001390-3A BR112019001390A2 (pt) 2016-07-27 2017-06-13 dispositivo de tratamento de pós aquecimento e método de tratamento de pós aquecimento
CA3031913A CA3031913A1 (en) 2016-07-27 2017-06-13 Post-heating treatment device and post-heating treatment method
RU2019103243A RU2019103243A (ru) 2016-07-27 2017-06-13 Способ и устройство для посттермической обработки

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016147355 2016-07-27
JP2016-147355 2016-07-27

Publications (1)

Publication Number Publication Date
WO2018020873A1 true WO2018020873A1 (ja) 2018-02-01

Family

ID=61017293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021741 WO2018020873A1 (ja) 2016-07-27 2017-06-13 後熱処理装置及び後熱処理方法

Country Status (7)

Country Link
US (1) US11053565B2 (ja)
JP (1) JP6383511B2 (ja)
AU (1) AU2017304972B2 (ja)
BR (1) BR112019001390A2 (ja)
CA (1) CA3031913A1 (ja)
RU (1) RU2019103243A (ja)
WO (1) WO2018020873A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021001367A (ja) * 2019-06-21 2021-01-07 電気興業株式会社 高周波誘導加熱装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2019103243A (ru) * 2016-07-27 2020-08-27 Ниппон Стил Корпорейшн Способ и устройство для посттермической обработки

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225687A (en) * 1975-08-21 1977-02-25 Nippon Steel Corp Method of detecting weld zones of seamwelded steel pipes
JPH04371523A (ja) * 1991-06-18 1992-12-24 Sumitomo Metal Ind Ltd 電縫鋼管溶接部の熱処理装置
JPH1012365A (ja) * 1996-04-23 1998-01-16 Daido Steel Co Ltd 分割型加熱コイルおよびそれを用いた誘導加熱装置ならびに誘導加熱方法
JPH11304985A (ja) * 1998-04-27 1999-11-05 Toshiba Corp ジェットポンプ保全装置
JP2001105158A (ja) * 1999-10-13 2001-04-17 Daido Steel Co Ltd 鉄道レール拡散接合用誘導加熱コイル、およびそれを用いた鉄道レールの拡散接合方法
JP2014101533A (ja) * 2012-11-16 2014-06-05 Nippon Steel & Sumitomo Metal 後熱処理装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803313A3 (en) 1996-04-23 2000-01-12 Daido Tokushuko Kabushiki Kaisha Method and apparatus for diffusion bonding
CN101927395B (zh) 2010-07-26 2013-01-16 清华大学 焊缝跟踪检测设备及方法
US9334546B2 (en) * 2011-11-29 2016-05-10 Evraz Inc. Na Canada Method and apparatus for treatment of a rail weld
JP5477453B1 (ja) 2012-11-16 2014-04-23 新日鐵住金株式会社 後熱処理装置
CA2880953C (en) 2012-11-16 2017-10-10 Nippon Steel & Sumitomo Metal Corporation Stress-relief heat treatment apparatus comprising induction heating coils
US9585201B1 (en) * 2013-07-02 2017-02-28 Inductotherm Corp. Electric induction heating of rails
US11365458B2 (en) * 2016-07-27 2022-06-21 Dai-Ichi High Frequency Co., Ltd. Post-heating treatment device and post-heating treatment method
RU2019103243A (ru) * 2016-07-27 2020-08-27 Ниппон Стил Корпорейшн Способ и устройство для посттермической обработки

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225687A (en) * 1975-08-21 1977-02-25 Nippon Steel Corp Method of detecting weld zones of seamwelded steel pipes
JPH04371523A (ja) * 1991-06-18 1992-12-24 Sumitomo Metal Ind Ltd 電縫鋼管溶接部の熱処理装置
JPH1012365A (ja) * 1996-04-23 1998-01-16 Daido Steel Co Ltd 分割型加熱コイルおよびそれを用いた誘導加熱装置ならびに誘導加熱方法
JPH11304985A (ja) * 1998-04-27 1999-11-05 Toshiba Corp ジェットポンプ保全装置
JP2001105158A (ja) * 1999-10-13 2001-04-17 Daido Steel Co Ltd 鉄道レール拡散接合用誘導加熱コイル、およびそれを用いた鉄道レールの拡散接合方法
JP2014101533A (ja) * 2012-11-16 2014-06-05 Nippon Steel & Sumitomo Metal 後熱処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021001367A (ja) * 2019-06-21 2021-01-07 電気興業株式会社 高周波誘導加熱装置
JP7330774B2 (ja) 2019-06-21 2023-08-22 電気興業株式会社 高周波誘導加熱装置

Also Published As

Publication number Publication date
JP6383511B2 (ja) 2018-08-29
RU2019103243A (ru) 2020-08-27
CA3031913A1 (en) 2018-02-01
BR112019001390A2 (pt) 2019-04-30
US20190233916A1 (en) 2019-08-01
JPWO2018020873A1 (ja) 2018-08-16
RU2019103243A3 (ja) 2020-09-22
US11053565B2 (en) 2021-07-06
AU2017304972B2 (en) 2020-01-30
AU2017304972A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP6383511B2 (ja) 後熱処理装置及び後熱処理方法
KR102617169B1 (ko) 이중 캠 서보 용접 스플라이서
WO1997017159B1 (en) Laser butt-welding apparatus including edge gauging device
KR101382867B1 (ko) 용접다이
DE102011106693A1 (de) Induktionsheizungsunterstützte/s Vibrationsschweissverfahren und -einrichtung
CN110640276A (zh) 一种埋弧焊装置及其焊接方法
KR20190142867A (ko) 용접용 지지장치
US4734552A (en) Induction heated pressure welding
JP6324650B1 (ja) 後熱処理装置及び後熱処理方法
US8907242B2 (en) Machine for flash-butt welding of rails
JP2000288789A (ja) 溶接ビード研削装置
US3036204A (en) Welding machine
RU2366550C1 (ru) Машина для контактной стыковой сварки рельсов
CA2916004C (en) Resistance welding method for sucker rod
US6720517B2 (en) Resistance welding head and resistance welding apparatus and method using the head
JP7416562B2 (ja) デュアル・カム・サーボ溶接スプライサ
US10960489B2 (en) Wire termination welder and method
GB1568934A (en) Welding apparatus
MX2010012711A (es) Metodo y aparato para unir paneles que constituyen componentes de carrocerias de vehiculos de motor, con control de calidad.
CN113199120B (zh) 用于控制将第一基板焊接到第二基板的夹具系统和方法
JP2016221525A (ja) 自動予熱装置
JP2787838B2 (ja) ロウ付方法とその装置
CN218050919U (zh) 一种用于铁丝过滤网的自动焊接装置
JP5965145B2 (ja) スポット溶接装置の作動制御方法
CN106695185A (zh) 一种快速焊接装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018511169

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833883

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3031913

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019001390

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017304972

Country of ref document: AU

Date of ref document: 20170613

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019001390

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190123

122 Ep: pct application non-entry in european phase

Ref document number: 17833883

Country of ref document: EP

Kind code of ref document: A1