WO2018020863A1 - Method for forming coating film, apparatus for forming coating film and computer-readable recording medium - Google Patents

Method for forming coating film, apparatus for forming coating film and computer-readable recording medium Download PDF

Info

Publication number
WO2018020863A1
WO2018020863A1 PCT/JP2017/021596 JP2017021596W WO2018020863A1 WO 2018020863 A1 WO2018020863 A1 WO 2018020863A1 JP 2017021596 W JP2017021596 W JP 2017021596W WO 2018020863 A1 WO2018020863 A1 WO 2018020863A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
liquid
heating
heated
coating film
Prior art date
Application number
PCT/JP2017/021596
Other languages
French (fr)
Japanese (ja)
Inventor
岡本 芳樹
哲嗣 宮本
和久 大村
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN201780045976.2A priority Critical patent/CN109478501B/en
Priority to KR1020197002302A priority patent/KR102424630B1/en
Priority to JP2018529419A priority patent/JP6771034B2/en
Publication of WO2018020863A1 publication Critical patent/WO2018020863A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like

Definitions

  • the present disclosure relates to a coating film forming method, a coating film forming apparatus, and a computer-readable recording medium.
  • Patent Document 1 discloses a method of forming a coating liquid (for example, a resist film) on an object to be processed in which convex portions (projections, protrusions, etc.) are provided on the surface of a substrate (wafer).
  • the method includes heating the object by heating means when spraying the coating liquid droplets from the nozzle while meandering the nozzle above the surface of the object.
  • the coating film is formed substantially uniformly along the surface of the object to be processed (including the surface of the convex portion) without filling the space between the convex portions with the coating liquid material.
  • the purpose is that.
  • the next coating liquid can be sprayed before the solvent of the coating liquid completely evaporates on the surface of the object to be processed where the spray areas overlap as the nozzle moves. Therefore, even if the object to be processed is heated by the heating means, the coating liquid droplet (solvent) flows before the solute of the coating liquid droplet (coating liquid material particles) is fixed on the side wall surface of the convex portion.
  • the film thickness of the coating film may increase on the base end side of the convex portion.
  • the present disclosure describes a coating film forming method, a coating film forming apparatus, and a computer-readable recording medium that can form a coating film more uniformly along the surface of the object to be processed including the protrusions. .
  • a coating film forming method includes a first step of heating an object to be processed including a substrate and a convex portion provided on the surface of the substrate, and heating the coating liquid.
  • the coating liquid when the coating liquid is sprayed on the surface of the object to be processed, the coating liquid is heated to be the first heating liquid in the second step. Therefore, when the first heated liquid is blown from the nozzle, the solvent (solvent) is volatilized immediately after that, and the concentration of the material particles (solute) in the coating liquid is increased, so that the coating liquid (first heated liquid) The fluidity of is reduced. Therefore, it is suppressed that droplets aggregate and flow on the surface (uneven surface) of the object to be processed. As a result, the material particles of the coating liquid easily adhere uniformly to the surface of the object to be processed. As described above, the coating film can be more uniformly formed along the surface of the object to be processed including the convex portion.
  • the first heating liquid is dropped on the surface of the object to be processed after being heated in the first step.
  • the solvent (solvent) of the coating liquid sprayed in the third process receives heat from the object to be processed over the entire surface of the object to be processed. Volatilizes. Therefore, it is further suppressed that droplets aggregate and flow on the surface (uneven surface) of the object to be processed. Therefore, the coating film can be formed more uniformly along the surface of the object to be processed including the convex portion.
  • the coating liquid in the second step, is set so that the temperature of the first heated liquid at the nozzle outlet is 1 ⁇ 2 or less of the boiling point of the solvent contained in the coating liquid. May be heated. Volatilization is promoted as the temperature of the coating solution solvent (solvent) increases. However, if the amount of volatilization increases too much, the droplets blown from the nozzle may solidify before reaching the surface of the object to be processed. On the other hand, when the coating liquid is heated so that the temperature of the first heating liquid at the outlet of the nozzle is 1 ⁇ 2 or less of the boiling point of the solvent contained in the coating liquid, the liquid droplets blown out from the nozzle become the surface of the workpiece. It becomes difficult to solidify before reaching.
  • the coating liquid is heated so that the temperature of the first heating liquid at the nozzle outlet is 35 ° C. to 60 ° C. Also good. In this case, the liquid droplets blown out from the nozzle are more difficult to solidify before reaching the surface of the object to be processed.
  • the coating liquid is heated by mixing the coating liquid and the heated gas in the nozzle.
  • a first heated liquid may be obtained.
  • the fluidity of the coating liquid remains high until just before the coating liquid is discharged from the nozzle. Therefore, it becomes easy to blow out the coating liquid from the nozzle in the form of droplets. Therefore, before discharging from the nozzle, it is desired to increase the fluidity of the coating liquid to generate droplets, but after discharging from the nozzle, the fluidity of the coating liquid is reduced to reduce the amount of the coating liquid on the surface of the object to be processed. It is possible to meet the conflicting demands for uniformly attaching the material particles by a simple method.
  • the coating liquid in the second step, is heated by a heater on the upstream side of the nozzle to obtain a first heating liquid. Also good.
  • the fluidity of the coating liquid can be maintained until immediately before the coating liquid is discharged from the nozzle. Therefore, it becomes easy to blow out the coating liquid from the nozzle in the form of droplets. Therefore, before discharging from the nozzle, it is desired to increase the fluidity of the coating liquid to generate droplets, but after discharging from the nozzle, the fluidity of the coating liquid is reduced to reduce the amount of the coating liquid on the surface of the object to be processed. It is possible to meet the conflicting demands for the material particles to adhere uniformly by a simple method.
  • the method according to any one of Items 1 to 5 includes a fourth step of heating the coating liquid to obtain a second heated liquid after the third step; After the step, the method further includes a fifth step of spraying the second heated liquid in a droplet state from the nozzle onto the surface of the target object on which the coating film is formed, and the second step in the fourth step.
  • the temperature of the heated liquid may be set higher than the temperature of the first heated liquid in the second step. In this case, since the temperature of the first heated liquid is relatively low and the fluidity of the droplets ejected from the nozzle tends to be high, the droplets sprayed on the surface of the object to be processed in the third step are: It becomes easy to enter a narrow concave portion of the workpiece.
  • the coating film can be formed more uniformly along the surface of the object to be processed including the convex portion.
  • a droplet is blown from the nozzle to the surface of the object to be processed, and a gas nozzle different from the nozzle
  • the nitrogen gas heated with respect to the spraying location of the droplets on the surface of the object to be processed may be sprayed from the gas nozzle while following the nozzle.
  • the solvent is dried during the spraying of the droplets, the time required for forming the coating film on the surface of the object to be processed can be shortened.
  • a coating film forming apparatus includes a first heating unit configured to heat a coating solution, a substrate, and a convex portion provided on a surface of the substrate.
  • a second heating unit configured to heat the processing body, a supply unit having a nozzle, and a control unit are provided, and the control unit controls the second heating unit to heat the object to be processed.
  • a second process is performed in which the first heated liquid is ejected from the nozzle in the form of droplets.
  • the coating film forming apparatus according to another aspect of the present disclosure has the same effects as the method according to the first item.
  • the first heating unit is applied so that the temperature of the first heating liquid at the nozzle outlet is equal to or less than 1 ⁇ 2 of the boiling point of the solvent contained in the application liquid.
  • the liquid may be heated. In this case, the same effect as the method according to the second item can be obtained.
  • the first heating unit heats the coating liquid so that the temperature of the first heating liquid at the outlet of the nozzle is 35 ° C. to 60 ° C. May be. In this case, the same effect as the method according to the third item can be obtained.
  • the first heating unit supplies the heated gas to the nozzle and mixes the gas and the coating liquid in the nozzle. It may be configured to heat the coating solution. In this case, the same effect as the method according to the fourth item can be obtained.
  • the first heating unit may be a heater that heats the coating liquid upstream of the nozzle. In this case, the same effect as the method according to the fifth aspect can be obtained.
  • the control unit controls the first heating unit and the supply unit after the second process to control the object to be processed.
  • a third process is further performed on the surface, in which a second heating liquid, which is a coating liquid heated by the first heating unit, is ejected from the nozzle in the form of droplets, and the second process in the third process is performed.
  • the temperature of the heated liquid may be set higher than the temperature of the first heated liquid in the second process. In this case, the same effect as the method according to the sixth aspect can be obtained.
  • the apparatus according to any one of items 8 to 13, further including a gas supply unit configured to discharge heated nitrogen gas from the gas nozzle, and the control unit includes: In this process, the first heating unit and the supply unit are controlled to spray droplets from the nozzles, and the gas supply unit is controlled to cause the gas nozzles to follow the nozzles, while the droplets on the surface of the object to be processed.
  • the nitrogen gas heated with respect to the spray location may be sprayed from the gas nozzle. In this case, the same effect as the method according to the seventh aspect can be obtained.
  • a computer-readable recording medium records a program for causing a coating film forming apparatus to execute the method according to any one of items 1 to 7 above. ing.
  • the computer-readable recording medium includes a non-transitory computer recording medium (for example, various main storage devices or auxiliary storage devices) and a propagation signal (transitory computer recording medium). (E.g., a data signal that can be provided over a network).
  • the coating film can be more uniformly formed along the surface of the target object including the convex portion. .
  • FIG. 1 is a perspective view showing a coating film forming apparatus.
  • 2 is a cross-sectional view taken along line II-II in FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is a block diagram showing the coating film forming apparatus.
  • FIG. 5 is a schematic diagram illustrating a hardware configuration of the controller.
  • FIG. 6 is a schematic diagram showing a liquid processing unit.
  • FIG. 7 is a partial cross-sectional view showing the vicinity of the nozzle.
  • FIG. 8 is a cross-sectional view of the heat treatment unit as viewed from the side.
  • 9 is a cross-sectional view taken along line IX-IX in FIG.
  • FIG. 10 is a flowchart for explaining a coating film forming procedure.
  • FIG. 10 is a flowchart for explaining a coating film forming procedure.
  • FIG. 11 is a schematic diagram for explaining a procedure for forming a coating film.
  • FIG. 12 is a schematic diagram partially showing another example of the liquid processing unit.
  • FIG. 13 is a schematic diagram illustrating another example of the liquid processing unit.
  • FIG. 14 is a schematic diagram illustrating another example of the liquid processing unit.
  • FIG. 15 is a schematic diagram illustrating another example of the liquid processing unit.
  • FIG. 16 is a diagram for explaining the embodiment.
  • the coating film forming apparatus 1 is an apparatus that forms a coating film R (see FIG. 6 and the like) on the surface of the workpiece W (see FIG. 6 and the like).
  • the workpiece W has a substrate (wafer) W1 and at least one convex portion W2, as shown in FIG.
  • the substrate W1 may have a disk shape, a part of a circle may be cut out, or may have a shape other than a circle, such as a polygon.
  • the substrate W1 may be, for example, a semiconductor substrate, a glass substrate, a mask substrate, an FPD (Flat Panel Display) substrate, or other various substrates.
  • the convex portion W2 is provided on the surface W1a of the substrate W1.
  • the convex part W2 should just protrude outward from the surface W1a of the board
  • the shape of the convex portion W2 may be a rectangular parallelepiped shape or other various shapes, and is not limited at all.
  • the material of the convex portion W2 may be an organic material or an inorganic material as long as the coating film R can be formed on the surface W2a (the upper surface and the outer peripheral surface exposed to the outside) of the convex portion W2. It is not limited.
  • the “surface of the object to be processed W” refers to a surface obtained by combining the surface W1a of the substrate W1 and the surface W2a of the convex portion W2.
  • the coating film R is formed on the surface of the workpiece W by the coating film forming apparatus 1.
  • the material constituting the coating film R may be a resist material, a color resist material, a polyimide material, an SOC (Spin On Carbon) material, a metal hard mask material, or other materials, and is not limited at all.
  • the resist material may be a resin material or other materials, and is not limited at all.
  • the resist material may be, for example, a photosensitive material that is sensitive to light having a predetermined wavelength.
  • the photosensitive material may be a negative type or a positive type.
  • the coating film forming apparatus 1 includes a carrier block 2, a processing block 3, and a controller (control unit) CU as shown in FIG. 1 to FIG.
  • the carrier block 2 has a carrier station 21 and a carry-in / carry-out unit 22.
  • the carrier station 21 supports a plurality of carriers 10.
  • the carrier 10 accommodates at least one workpiece W in a sealed state.
  • an opening / closing door (not shown) for taking in and out the workpiece W is provided.
  • the loading / unloading section 22 is located between the carrier station 21 and the processing block 3.
  • the carry-in / carry-out unit 22 includes a plurality of opening / closing doors 22 a.
  • the opening / closing door of the carrier 10 faces the opening / closing door 22a.
  • the carry-in / carry-out unit 22 incorporates a delivery arm A1.
  • the delivery arm A ⁇ b> 1 takes out the workpiece W from the carrier 10 and delivers it to the processing block 3, receives the workpiece W from the processing block 3, and returns it to the carrier 10.
  • the processing block 3 includes a plurality of processing modules 31, 32, a shelf 33, and a transfer arm A2.
  • the processing modules 31 and 32 are arranged so as to be aligned along the moving direction of the transfer arm A2.
  • the processing module 31 includes a plurality of liquid processing units U1 arranged in the vertical direction, a coating liquid source B1, and a nitrogen gas source B2.
  • the liquid processing unit U1 is configured to apply a liquid for forming the coating film R onto the surface of the object to be processed W.
  • the coating liquid source B1 and the nitrogen gas source B2 are disposed below the liquid processing unit U1.
  • Each of the coating liquid source B1 and the nitrogen gas source B2 contains a coating liquid and nitrogen gas (N 2 gas) to be supplied to the liquid processing unit U1.
  • the coating solution stored in the coating solution source B1 is obtained by diluting the material particles (solute) of the coating solution with a solvent (solvent).
  • the solvent is not particularly limited as long as it is a known solvent suitable for dilution of coating solution material particles.
  • IPA isopropyl alcohol
  • PGMEA propylene glycol monomethyl ether acetate
  • GBL ⁇ -butyrolactone
  • the boiling point of IPA is 82.4 ° C.
  • the boiling point of PGMEA is 146 ° C.
  • the boiling point of GBL is 204 ° C.
  • the processing module 32 includes a plurality of heat treatment units U2 (second heating units) arranged in the vertical direction, as shown in FIG.
  • the heat treatment unit U ⁇ b> 2 is configured to perform heat treatment on the workpiece W when forming the coating film R.
  • Specific examples of the heat treatment include heat treatment for volatilizing the solvent of the coating solution and curing the coating solution material.
  • the shelf 33 is disposed on the carrier block 2 side in the processing block 3.
  • the shelf 33 temporarily accommodates the workpiece W and is used for delivery of the workpiece W between the delivery arm A1 and the processing block 3.
  • the transport arm A ⁇ b> 2 transports the workpiece W between the shelf 33 and the processing modules 31 and 32 and between the processing modules 31 and 32.
  • the controller CU controls the coating film forming apparatus 1 partially or entirely.
  • the controller CU includes a reading unit M1, a storage unit M2, a processing unit M3, and an instruction unit M4 as functional modules.
  • These functional modules are merely the functions of the controller CU divided into a plurality of modules for convenience, and do not necessarily mean that the hardware configuring the controller CU is divided into such modules.
  • Each functional module is not limited to that realized by execution of a program, and is realized by a dedicated electric circuit (for example, a logic circuit) or an integrated circuit (ASIC: Application Specific Integrated Circuit) in which these are integrated. May be.
  • the reading unit M1 reads a program from the computer-readable recording medium 200.
  • the recording medium 200 records a program for causing the coating film forming apparatus 1 to execute various operations.
  • the recording medium 200 may be, for example, a semiconductor memory, an optical recording disk, a magnetic recording disk, or a magneto-optical recording disk.
  • the storage unit M2 stores various data.
  • the storage unit M2 stores, for example, setting data input from an operator via an external input device (not shown), for example, in addition to the program read by the reading unit M1.
  • the processing unit M3 processes various data. For example, the processing unit M3 generates a signal for operating the liquid processing unit U1 and the heat treatment unit U2 based on various data stored in the storage unit M2.
  • the instruction unit M4 transmits the signal generated in the processing unit M3 to the liquid processing unit U1 or the heat treatment unit U2.
  • the hardware of the controller CU is composed of, for example, one or a plurality of control computers.
  • the controller CU includes, for example, a circuit CU1 illustrated in FIG. 5 as a hardware configuration.
  • the circuit CU1 may be composed of electric circuit elements (circuitry).
  • the circuit CU1 includes a processor CU2, a memory CU3, a storage CU4, a driver CU5, and an input / output port CU6.
  • the processor CU2 configures each functional module described above by executing a program in cooperation with at least one of the memory CU3 and the storage CU4 and executing input / output of signals via the input / output port CU6.
  • the driver CU5 is a circuit that drives various devices of the coating film forming apparatus 1.
  • the input / output port CU6 inputs and outputs signals between the driver CU5 and the various apparatuses of the coating film forming apparatus 1.
  • the coating film forming apparatus 1 includes one controller CU, but may include a controller group (control unit) including a plurality of controllers CU.
  • each of the above functional modules may be realized by one controller CU, or may be realized by a combination of two or more controllers CU.
  • the controller CU is composed of a plurality of computers (circuit CU1)
  • each of the above functional modules may be realized by one computer (circuit CU1), or two or more computers (circuit CU1). ) May be realized.
  • the controller CU may have a plurality of processors CU2. In this case, each of the functional modules may be realized by one processor CU2, or may be realized by a combination of two or more processors CU2.
  • the liquid processing unit U1 includes a rotation holding unit 40, a driving unit 50, a pump P, a valve V, a heater 71, and a heat insulating material 72.
  • the rotation holding unit 40 includes a rotation unit 41 and a holding unit 42.
  • the rotating part 41 has a shaft 43 protruding upward.
  • the rotating unit 41 rotates the shaft 43 using, for example, an electric motor as a power source.
  • the holding portion 42 is provided at the tip portion of the shaft 43.
  • a workpiece W is arranged on the holding unit 42.
  • the holding unit 42 holds the workpiece W substantially horizontally, for example, by suction or the like. That is, the rotation holding unit 40 has a posture of the workpiece W substantially horizontal, and the workpiece W around an axis (rotation axis) perpendicular to the surface of the workpiece W (surface W1a of the substrate W1). Rotate.
  • the rotation axis passes through the center of the object to be processed W (substrate W1) having a circular shape, and is also the center axis.
  • the rotation holding unit 20 rotates the workpiece W clockwise as viewed from above.
  • the driving unit 50 is configured to drive the nozzle N.
  • the drive unit 50 includes a guide rail 51, a slide block 52, and an arm 53.
  • the guide rail 51 extends along the horizontal direction above the rotation holding unit 40 (object W).
  • the slide block 52 is connected to the guide rail 51 so as to be movable in the horizontal direction along the guide rail 51.
  • the arm 53 is connected to the slide block 52 so as to be movable in the vertical direction.
  • a nozzle N is connected to the lower end of the arm 53. In the arm 53, a channel through which the coating liquid can flow is formed. The flow path is connected to the coating liquid source B1 via the pump P.
  • the driving unit 50 moves the slide block 52 and the arm 53 by a power source (not shown) such as an electric motor, and moves the nozzle N accordingly.
  • a power source such as an electric motor
  • the nozzle N moves along the radial direction of the object to be processed W on a straight line perpendicular to the rotation axis of the object to be processed W when discharging the coating liquid.
  • the nozzle N opens downward toward the surface of the workpiece W.
  • the nozzle N may be, for example, an internal mixing type two-fluid nozzle, an external mixing type two-fluid nozzle, or a one-fluid nozzle.
  • the nozzle N has a main body N1 having a substantially cylindrical shape and a pipe N2 connected to a side surface of the main body N1.
  • the pipe N2 is connected to the nitrogen gas source B2 via the valve V and the heater 71.
  • Flow paths N3 and N4 are formed inside the main body N1.
  • the flow path N3 communicates with the flow path of the coating liquid formed inside the arm 53.
  • the flow path N3 extends in the vertical direction in the main body N1, and the lower end communicates with the discharge port N5 of the nozzle N.
  • the flow path N4 communicates with the pipe N2.
  • the flow path N4 extends from the outer peripheral surface of the main body N1 to the vicinity of the lower end of the flow path N3 in the main body N1.
  • the coating liquid flowing through the flow path N3 and the nitrogen gas flowing through the flow path N4 collide and are mixed to form minute droplets (coating liquid) of the coating liquid. Droplet) is generated.
  • the height position of the discharge port N5 from the surface of the target object W is the size of the target object W, the flow rate of the coating liquid, and the coating
  • it can be appropriately set depending on the flow rate of the liquid, the heating temperature of the coating liquid (details will be described later), etc., for example, it may be about 50 mm to 100 mm, may be about 65 mm to 80 mm, or may be 70 mm to 75 mm. It may be a degree.
  • the pump P receives a control signal from the controller CU and sends the coating liquid from the coating liquid source B1 to the nozzle N.
  • the pump P, the arm 53, the nozzle N (flow path N3), and the coating liquid source B1 constitute a supply unit 60 for supplying the coating liquid to the workpiece W as shown in FIG.
  • the valve V receives a control signal from the controller CU and sends nitrogen gas from the nitrogen gas source B2 to the nozzle N.
  • the heater 71 receives the control signal from the controller CU and heats the nitrogen gas sent out from the nitrogen gas source B2 to a predetermined temperature (a temperature higher than room temperature). Therefore, when the nitrogen gas heated by the heater 71 merges with the coating liquid at the merging portion N6, the coating liquid is heated to become a heated liquid. That is, the heating liquid is blown out in the form of droplets from the discharge port N5 of the nozzle N.
  • the heating amount of the nitrogen gas by the heater 71 is set so that the temperature of the heating liquid (liquid droplets of the coating liquid) at the discharge port N5 of the nozzle N is equal to or less than 1 ⁇ 2 of the boiling point of the solvent (solvent) of the coating liquid. It may be set (first temperature range). Specifically, the temperature of the heated liquid at the discharge port N5 may be 41.2 ° C. or lower when the solvent is IPA, may be 73 ° C. or lower when the solvent is PGMEA, When is GBL, it may be 102 ° C. or lower.
  • the heating amount of the nitrogen gas by the heater 71 may be set so that the temperature of the heating liquid (liquid droplets of the coating liquid) at the discharge port N5 of the nozzle N is 35 ° C. to 60 ° C. (second temperature) range). Also in this case, the liquid droplets blown out from the nozzle are difficult to solidify before reaching the surface of the object to be processed.
  • the heating amount of the nitrogen gas by the heater 71 is set so that the temperature of the heating liquid (coating liquid droplet) at the discharge port N5 of the nozzle N satisfies both the first and second temperature ranges. It is also possible (third temperature range).
  • the heat insulating material 72 is arrange
  • the valve V, the pipe N2, the nozzle N (flow path N4), the nitrogen gas source B2, and the heater 71 supply the heated nitrogen gas to the nozzle N and heat supply for heating the coating liquid with the heated nitrogen gas.
  • Part 70 (first heating unit) is configured.
  • the heat treatment unit U ⁇ b> 2 includes a heating chamber 110 that heats the workpiece W and a transport mechanism 120 that transports the workpiece W in the housing 100.
  • the heating chamber 110 includes a lid portion 111 and a hot plate housing portion 112.
  • the lid portion 111 is located above the hot plate housing portion 112 and can be moved up and down between an upper position separated from the hot plate housing portion 112 and a lower position placed on the hot plate housing portion 112. It is.
  • the lid part 111 constitutes the processing chamber PR together with the hot plate accommodating part 112 when in the lower position.
  • An exhaust part 111 a is provided at the center of the lid part 111. The exhaust part 111a is used for exhausting gas from the processing chamber PR.
  • the hot plate accommodating portion 112 has a cylindrical shape, and accommodates the hot plate 113 therein.
  • the outer peripheral portion of the hot plate 113 is supported by a support member 114.
  • the outer periphery of the support member 114 is supported by a cylindrical support ring 115.
  • a gas supply port 115 a that opens upward is formed on the upper surface of the support ring 115.
  • the gas supply port 115a ejects an inert gas into the processing chamber PR.
  • the hot plate 113 is a flat plate having a circular shape as shown in FIG.
  • the outer shape of the hot plate 113 is larger than the outer shape of the workpiece W.
  • the hot plate 113 is formed with three through holes HL extending in the thickness direction (see FIG. 9).
  • On the upper surface of the hot plate 113 six support pins 113a for supporting the workpiece W are erected (see FIG. 8).
  • the height of the support pin 113a may be about 100 ⁇ m, for example.
  • a heater 116 is disposed on the lower surface of the hot plate 113.
  • the heater 116 is connected to the controller CU and is controlled based on an instruction signal from the controller CU.
  • An elevating mechanism 119 is disposed below the hot plate 113.
  • the elevating mechanism 119 includes a motor 119a disposed outside the housing 100, and three elevating pins 119b that move up and down by the motor 119a.
  • the elevating pins 119b are configured to be able to pass through the corresponding through holes HL.
  • the controller CU transmits an ascending signal or a descending signal to the motor 119a
  • the elevating pins 119b move up and down while moving in the corresponding through holes HL.
  • the tip of the lift pin 119b protrudes above the hot plate 113, the workpiece W can be placed on the tip of the lift pin 119b.
  • the workpiece W placed on the tip of the lifting pin 119b moves up and down as the lifting pin 119b moves up and down.
  • the transport mechanism 120 is located adjacent to the heating chamber 110.
  • the transport mechanism 120 includes a transport plate 121 on which the workpiece W is placed.
  • the conveyance plate 121 is a flat plate having a rectangular shape as shown in FIG.
  • An end of the transport plate 121 on the heating chamber 110 side has an arc shape protruding toward the heating chamber 110.
  • the conveyance plate 121 is attached to a rail 122 extending toward the heating chamber 110 side.
  • the transport plate 121 is driven by the drive unit 123 and can move horizontally on the rail 122.
  • the transport plate 121 moved to the heating chamber 110 side is located above the hot plate 113.
  • the transport plate 121 is formed with two slits 124 extending along the extending direction of the rail 122.
  • the slit 124 is formed so as to extend from the end of the transport plate 121 on the heating chamber 110 side to the vicinity of the center of the transport plate 121.
  • the slit 124 prevents interference between the transport plate 121 moved to the heating chamber 110 side and the lift pins 119b protruding on the heat plate 113.
  • an elevating mechanism 125 is disposed below the transport plate 121.
  • the elevating mechanism 125 includes a motor 125a disposed outside the housing 100 and three elevating pins 125b that move up and down by the motor 125a.
  • the elevating pins 125b are configured to be able to pass through the slits 124, respectively.
  • the controller CU transmits an ascending signal or a descending signal to the motor 125a
  • the elevating pin 125b moves up and down while moving in the slit 124.
  • the tip of the lift pin 125b protrudes above the transport plate 121, the workpiece W can be placed on the tip of the lift pin 125b.
  • the workpiece W placed on the tip of the elevating pin 125b moves up and down as the elevating pin 125b moves up and down.
  • the controller CU controls the delivery arm A1, and the workpiece W in the carrier 10 is conveyed to the shelf 33 by the delivery arm A1.
  • the controller CU controls the transport arm A2, takes out the workpiece W from the shelf 33 by the transport arm A2, and transports it to the heat treatment unit U2.
  • the controller CU controls the transport mechanism 120 (transport plate 121), and the workpiece W is transported into the heating chamber 110 (Step S1).
  • the controller CU controls the lifting mechanism 119 to lower the lid 111 to the lower position by the lifting mechanism 119.
  • the object to be processed W is accommodated in the processing chamber PR constituted by the lid portion 111 and the hot plate accommodating portion 112.
  • the controller CU controls the heating chamber 110 and heats the workpiece W to a predetermined temperature by the heating chamber 110 (step S2; first step; first processing).
  • the heating temperature of the target object W in the heating chamber 110 may be set to a temperature that is 0 ° C. to 30 ° C. lower than the boiling point of the solvent contained in the droplets.
  • the heating temperature of the object W to be processed in the heating chamber 110 is equal to or higher than the temperature 30 ° C. lower than the boiling point of the solvent contained in the droplets, volatilization of the solvent of the droplets sprayed in step S5 described later is facilitated. .
  • the heating temperature of the object W to be processed by the heating chamber 110 is equal to or lower than the temperature 0 ° C. lower than the boiling point of the solvent contained in the droplets (that is, a temperature equal to the boiling point), the droplets sprayed in step S5 described later It is difficult for a situation in which most of the solvent of the droplets volatilizes before reaching the surface of the workpiece W. Therefore, it is suppressed that the coating liquid material particles contained in the coating liquid droplets are successively deposited on the surface of the workpiece W while maintaining the shape.
  • the heating temperature of the workpiece W in the heating chamber 110 may be set to about 55 ° C. to 85 ° C.
  • the solvent of the coating solution is PGMEA
  • the boiling point of PGMEA is 146 ° C.
  • the heating temperature of the workpiece W in the heating chamber 110 may be set to about 110 ° C. to 150 ° C.
  • the solvent of the coating solution is GBL
  • the boiling point of GBL is 204 ° C.
  • the heating temperature of the workpiece W in the heating chamber 110 may be set to about 150 ° C. to 205 ° C.
  • the controller CU controls the elevating mechanism 119 and the transport mechanism 120 to carry out the heated workpiece W from the heating chamber 110.
  • the controller CU controls the transport arm A2, takes out the workpiece W from the heat treatment unit U2 by the transport arm A2, and transports it to the liquid processing unit U1 (step S3).
  • the time required for the workpiece W to be transported to the liquid processing unit U1 after being heated by the heating chamber 110 is, for example, about several seconds to 10 seconds. During this conveyance, the temperature of the heated object W can be lowered by about 20 ° C. to 30 ° C., for example.
  • the controller CU controls the rotating part 41 to rotate the object to be processed W (step S4).
  • the controller CU controls the drive unit 50, the pump P, the valve V, and the heater 71, and the nozzle N is on a straight line perpendicular to the rotation axis of the workpiece W along the radial direction of the workpiece W.
  • the heated coating liquid droplets are sprayed from the discharge port N5 of the nozzle N to the surface of the rotating workpiece W (step S5; FIG. 11A).
  • the material particles (coating liquid material) of the droplets adhere to the surface of the object to be processed W (see FIG. 11B).
  • a coating film having a predetermined thickness is formed on the surface of the workpiece W (see FIG. 11C).
  • the controller CU controls the transport arm A2, takes out the workpiece W from the liquid processing unit U1 by the transport arm A2, cools the workpiece W to a predetermined temperature, and transports it to the shelf 33.
  • the workpiece W may be forcibly cooled using a cooling mechanism such as a cooling plate or may be natural cooling.
  • the controller CU controls the delivery arm A1, and returns the workpiece W from the shelf 33 into the carrier 10 by the delivery arm A1 (step S6). Thereby, the formation process of the coating film R is completed.
  • the coating liquid when the coating liquid is sprayed onto the surface of the workpiece W, the coating liquid is heated to form a heated liquid. Therefore, when the heated liquid is blown out from the nozzle N, the solvent (solvent) is volatilized immediately after that, and the concentration of the material particles (solute) in the coating liquid increases, so that the fluidity of the coating liquid (heating liquid) decreases. It will be in the state. Therefore, the droplets are prevented from aggregating and flowing on the surface (uneven surface) of the workpiece W. As a result, the material particles of the coating liquid easily adhere uniformly to the surface of the workpiece W. As described above, the coating film R can be more uniformly formed along the surface of the workpiece W including the convex portion W2.
  • the object to be processed W before spraying droplets on the surface of the object to be processed W, the object to be processed W is heated in the heat treatment unit U2 in step S2. Therefore, the solvent (solvent) of the coating liquid sprayed in step S ⁇ b> 5 receives the heat from the object to be processed and volatilizes on the entire surface of the object to be processed. Therefore, it is further suppressed that droplets aggregate and flow on the surface (uneven surface) of the workpiece W. Therefore, the coating film R can be formed more uniformly along the surface of the workpiece W including the convex portion W2.
  • the heating liquid is obtained by heating the coating liquid by mixing the coating liquid and the heated nitrogen gas in the nozzle N. Therefore, the fluidity of the coating liquid remains high until immediately before the coating liquid is discharged from the nozzle N. Therefore, it becomes easy to blow the coating liquid from the nozzle N in the form of droplets.
  • the fluidity of the coating liquid is reduced to reduce the surface of the workpiece W. It is possible to meet the conflicting demands for uniformly adhering the material particles of the coating liquid with a simple method.
  • step S5 droplets are sprayed from the nozzle N onto the surface of the object to be processed W while the object to be processed W is rotated. Therefore, compared with the case where droplets are sprayed from the nozzle N onto the surface of the workpiece W while the nozzle N is meandering on the surface of the stationary workpiece W, the droplets from the nozzle N are removed from the workpiece W. It is difficult to be sprayed on the surface. Therefore, the coating film R can be formed more uniformly along the surface of the workpiece W including the convex portion W2.
  • the heat treatment unit U2 performs the process of heating the object to be processed W in the heating chamber 110 (step S2), and the process of spraying the coating liquid droplets onto the surface of the object to be processed W from the nozzle N (step S5).
  • Is performed in the liquid processing unit U1 but both processes may be performed in the processing chamber using a processing chamber having both the liquid processing unit U1 and the heat treatment unit U2. In this case, when heating the workpiece W, it is preferable to stop the rotation of the workpiece W.
  • the centrifugal force becomes smaller as it is closer to the rotation axis of the substrate W1, so that when the droplets aggregate on the surface of the workpiece W, the convexity closer to the rotation axis.
  • the coating liquid aggregated as part W2 tends to stay. Therefore, when the nozzle N is positioned in the vicinity of the rotation axis, the moving speed of the nozzle N may be increased. In this case, since the amount of droplets sprayed near the rotation axis on the surface of the workpiece W is small, the coating liquid droplets are difficult to aggregate.
  • the controller CU may control the rotating unit 41 so that the rotation speed of the workpiece W increases as the position of the nozzle N is closer to the rotation axis of the substrate W1. At this time, the controller CU may control the rotating unit 41 so that the moving speed (linear velocity) of the workpiece W immediately below the nozzle N is constant regardless of the position of the nozzle N.
  • the controller CU increases the rotational speed of the workpiece W as the position of the nozzle N is closer to the rotation axis of the substrate W1, and increases the moving speed of the nozzle N as the nozzle N is positioned closer to the rotation axis. You may perform in combination with control.
  • the controller CU may control the rotating unit 41 such that the number of rotations of the workpiece W is constant regardless of the position of the nozzle N with respect to the substrate W1.
  • the nozzle N When the area where the droplets from the nozzle N are sprayed is larger than the size of the surface of the object to be processed W, the nozzle N does not have to be moved, and the object to be processed W need not be rotated. .
  • the object to be processed W may also be heated in the process of spraying droplets from the nozzle N onto the surface of the object to be processed W (step S5). Or the process of step S2 which heats the to-be-processed object W previously does not need to be performed.
  • the liquid processing unit U1 further includes a gas nozzle GN configured to blow heated nitrogen gas (high-temperature nitrogen gas) onto the surface of the object to be processed W.
  • a gas nozzle GN configured to blow heated nitrogen gas (high-temperature nitrogen gas) onto the surface of the object to be processed W.
  • the operation of the gas nozzle GN may be controlled by the gas supply unit.
  • the controller CU controls the gas supply unit to cause the gas nozzle GN to follow the nozzle N, while supplying high-temperature nitrogen gas to the sprayed portion of the droplet on the surface of the workpiece W. You may spray from gas nozzle GN.
  • the temperature of the high-temperature nitrogen gas may be about 50 ° C. to 150 ° C.
  • the nitrogen gas is heated by the heater 71, and the coating liquid is further heated by the heated nitrogen gas.
  • a heater 81 may be provided on the upstream side of the arm 53 to directly heat the coating solution.
  • the fluidity of the coating liquid can be maintained until immediately before the coating liquid is discharged from the nozzle N. Therefore, it becomes easy to blow out the coating liquid from the nozzle N in a droplet state. Therefore, before discharging from the nozzle N, it is desired to increase the fluidity of the coating liquid to generate droplets, but after discharging from the nozzle N, the fluidity of the coating liquid is reduced to form the surface of the workpiece W. It is possible to meet the conflicting demands for the material particles of the coating solution to adhere uniformly by a simple method.
  • a bypass channel that connects the upstream side of the valve V and the downstream side of the heater 71 may be further provided, and the valve 73 may be provided in the bypass channel.
  • the controller CU controls the valves V and 73 so that the nitrogen gas heated by the heater 71 and the nitrogen gas not heated by the heater 71 (normal temperature nitrogen gas) are selectively supplied to the nozzle N. Can be supplied.
  • the controller CU closes the valve V and opens the valve 73 so that the heating liquid (first heating liquid ) May be relatively low.
  • the controller CU opens the valve V and closes the valve 73, so that the heating liquid (second heating liquid) is discharged.
  • the temperature may be relatively high (fourth step; third treatment).
  • the first droplet sprayed on the surface of the object to be processed W (third step; second process) tends to have high fluidity. It becomes easy to enter (between the convex portions W2).
  • the liquid droplets (fifth step; third treatment) sprayed on the surface of the workpiece W for the second time or later tend to have low fluidity, the droplets are formed on the side surface of the convex portion W2 of the workpiece W.
  • the coating film R can be formed more uniformly along the surface of the workpiece W including the convex portion W2.
  • the controller CU closes the valve V after the droplet spraying process from the nozzle N is performed and the valve N By opening 73, normal temperature nitrogen gas may be supplied to the nozzle N to cool the nozzle N.
  • the liquid processing unit U1 may further include a cleaning unit 82 for the nozzle N.
  • cleaning part 82 is a container which stores a solvent, for example.
  • the nozzle N that has been subjected to the droplet spraying process is immersed in the solvent in the cleaning unit 82, whereby the nozzle N is cooled and cleaned.
  • gas mixed in the coating solution various gases other than nitrogen gas (for example, inert gas, air, etc.) may be used.
  • nitrogen gas for example, inert gas, air, etc.
  • the coating film R is formed on the surface of the workpiece W using the coating film forming apparatus 1 according to this embodiment, the coating film R is uniformly formed along the surface of the workpiece W including the convex portion W2. In order to confirm that it was possible, the following test was conducted.
  • a workpiece W having a plurality of convex portions W2 provided on a disk-shaped substrate W1 having a diameter of 150 mm was prepared. Further, a resist solution in which a positive photoresist was diluted with PGMEA was prepared.
  • the workpiece W was heated at 120 ° C. for 60 seconds by the heat treatment unit U2.
  • the heated object W was transported to the liquid processing unit U1, and the prepared resist solution was sprayed from the nozzle N of the two-fluid nozzle onto the surface of the object W.
  • the rotational speed of the workpiece W by the rotation holding unit 40 was varied within the range of 60 rpm to 600 rpm so that the moving speed (linear velocity) of the workpiece W just below the nozzle N was constant.
  • the moving speed of the nozzle N was 10 mm / second to 150 mm / second.
  • the nozzle N was reciprocated 14 times on the surface of the workpiece W.
  • a resist film (coating film R) was formed on the surface of the object to be processed W.
  • SYMBOLS 1 Coating film formation apparatus, 60 ... Supply part, 70 ... Heat supply part (1st heating part), 71, 81 ... Heater, 72 ... Heat insulating material, CU ... Controller (control part), N ... Nozzle, N5 ... Discharge port, R ... coating film, U1 ... liquid processing unit, U2 ... heat treatment unit (second heating unit), W ... target object, W1 ... substrate, W1a ... surface, W2 ... convex, W2a ... surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

This method for producing a coating film comprises: a first step for heating a body W to be processed, which comprises a substrate W1 and a projected part W2 provided on the surface of the substrate W1; a second step for obtaining a heated liquid by heating a coating liquid; and a third step for spraying the heated liquid in the form of droplets from a nozzle N onto the surface of the body W to be processed, which has been heated in the first step.

Description

塗布膜形成方法、塗布膜形成装置、及びコンピュータ読み取り可能な記録媒体Coating film forming method, coating film forming apparatus, and computer-readable recording medium
 本開示は、塗布膜形成方法、塗布膜形成装置、及びコンピュータ読み取り可能な記録媒体に関する。 The present disclosure relates to a coating film forming method, a coating film forming apparatus, and a computer-readable recording medium.
 特許文献1は、基板(ウエハ)の表面に凸部(突起、突条等)が設けられた被処理体に対して、塗布液(例えば、レジスト膜)を形成する方法を開示している。当該方法は、被処理体の表面の上方においてノズルを蛇行移動させつつノズルから塗布液液滴を噴霧する際に、加熱手段により被処理体を加熱することを含む。 Patent Document 1 discloses a method of forming a coating liquid (for example, a resist film) on an object to be processed in which convex portions (projections, protrusions, etc.) are provided on the surface of a substrate (wafer). The method includes heating the object by heating means when spraying the coating liquid droplets from the nozzle while meandering the nozzle above the surface of the object.
特開2005-019560号公報JP 2005-019560 A
 特許文献1が開示する方法は、凸部同士の間の空間を塗布液材料で埋めることなく、被処理体の表面(凸部の表面を含む。)に沿って塗布膜を略均一に形成することを目的としている。しかしながら、当該方法によれば、被処理体の表面のうちノズルの移動に伴い噴霧領域が重なる箇所に対し、塗布液の溶剤が完全に揮発しきらないうちに次の塗布液が噴霧されうる。そのため、加熱手段により被処理体を加熱していたとしても、塗布液液滴の溶質(塗布液材料粒子)が凸部の側壁面に定着する前に塗布液液滴(溶剤)が流動し、凸部の基端側において特に塗布膜の膜厚が大きくなってしまうことがある。 In the method disclosed in Patent Document 1, the coating film is formed substantially uniformly along the surface of the object to be processed (including the surface of the convex portion) without filling the space between the convex portions with the coating liquid material. The purpose is that. However, according to the method, the next coating liquid can be sprayed before the solvent of the coating liquid completely evaporates on the surface of the object to be processed where the spray areas overlap as the nozzle moves. Therefore, even if the object to be processed is heated by the heating means, the coating liquid droplet (solvent) flows before the solute of the coating liquid droplet (coating liquid material particles) is fixed on the side wall surface of the convex portion. In particular, the film thickness of the coating film may increase on the base end side of the convex portion.
 そこで、本開示は、凸部を含む被処理体の表面に沿って塗布膜をより均一に形成することが可能な塗布膜形成方法、塗布膜形成装置、及びコンピュータ読み取り可能な記録媒体を説明する。 Thus, the present disclosure describes a coating film forming method, a coating film forming apparatus, and a computer-readable recording medium that can form a coating film more uniformly along the surface of the object to be processed including the protrusions. .
 [1]本開示の一つの観点に係る塗布膜形成方法は、基板と、基板の表面に設けられた凸部とを含む被処理体を加熱する第1の工程と、塗布液を加熱して第1の加熱液体を得る第2の工程と、第1の工程において加熱された後の被処理体の表面に対して、第1の加熱液体を液滴の状態にてノズルから吹き付ける第3の工程とを含む。 [1] A coating film forming method according to one aspect of the present disclosure includes a first step of heating an object to be processed including a substrate and a convex portion provided on the surface of the substrate, and heating the coating liquid. A second step of obtaining the first heated liquid, and a third step of spraying the first heated liquid from the nozzle in the form of droplets on the surface of the object to be processed after being heated in the first step Process.
 本開示の一つの観点に係る塗布膜形成方法では、塗布液を被処理体の表面に吹き付けるに際して、第2の工程において、塗布液を加熱して第1の加熱液体としている。そのため、第1の加熱液体がノズルから吹き出されると、その直後から溶媒(溶剤)が揮発して塗布液中の材料粒子(溶質)の濃度が高まるので、塗布液(第1の加熱液体)の流動性が低下した状態となる。従って、被処理体の表面(凹凸面)において、液滴同士が凝集して流動することが抑制される。その結果、被処理体の表面に塗布液の材料粒子が均一に付着しやすくなる。以上より、凸部を含む被処理体の表面に沿って塗布膜をより均一に形成することが可能となる。 In the coating film forming method according to one aspect of the present disclosure, when the coating liquid is sprayed on the surface of the object to be processed, the coating liquid is heated to be the first heating liquid in the second step. Therefore, when the first heated liquid is blown from the nozzle, the solvent (solvent) is volatilized immediately after that, and the concentration of the material particles (solute) in the coating liquid is increased, so that the coating liquid (first heated liquid) The fluidity of is reduced. Therefore, it is suppressed that droplets aggregate and flow on the surface (uneven surface) of the object to be processed. As a result, the material particles of the coating liquid easily adhere uniformly to the surface of the object to be processed. As described above, the coating film can be more uniformly formed along the surface of the object to be processed including the convex portion.
 加えて、本開示の一つの観点に係る塗布膜形成方法では、第3の工程で、第1の工程において加熱された後の被処理体の表面に対して、第1の加熱液体を液滴の状態にてノズルから吹き付けている。そのため、第3の工程の前に被処理体が加熱されているので、被処理体の表面全体において、第3の工程で吹き付けられる塗布液の溶媒(溶剤)が被処理体からの熱を受けて揮発する。そのため、被処理体の表面(凹凸面)において、液滴同士が凝集して流動することがより抑制される。従って、凸部を含む被処理体の表面に沿って塗布膜をさらに均一に形成することが可能となる。 In addition, in the coating film forming method according to one aspect of the present disclosure, in the third step, the first heating liquid is dropped on the surface of the object to be processed after being heated in the first step. In the state of spraying from the nozzle. Therefore, since the object to be processed is heated before the third process, the solvent (solvent) of the coating liquid sprayed in the third process receives heat from the object to be processed over the entire surface of the object to be processed. Volatilizes. Therefore, it is further suppressed that droplets aggregate and flow on the surface (uneven surface) of the object to be processed. Therefore, the coating film can be formed more uniformly along the surface of the object to be processed including the convex portion.
 [2]上記第1項に記載の方法において、第2の工程では、ノズルの出口における第1の加熱液体の温度が塗布液に含まれる溶剤の沸点の1/2以下となるように塗布液を加熱してもよい。塗布液の溶媒(溶剤)は温度が高くなるほど揮発が促進されるが、あまりに揮発量が多くなると、ノズルから吹き出された液滴が被処理体の表面に到達する前に固化してしまいうる。一方、ノズルの出口における第1の加熱液体の温度が塗布液に含まれる溶剤の沸点の1/2以下となるように塗布液を加熱すると、ノズルから吹き出された液滴が被処理体の表面に到達する前に固化し難くなる。 [2] In the method described in [1] above, in the second step, the coating liquid is set so that the temperature of the first heated liquid at the nozzle outlet is ½ or less of the boiling point of the solvent contained in the coating liquid. May be heated. Volatilization is promoted as the temperature of the coating solution solvent (solvent) increases. However, if the amount of volatilization increases too much, the droplets blown from the nozzle may solidify before reaching the surface of the object to be processed. On the other hand, when the coating liquid is heated so that the temperature of the first heating liquid at the outlet of the nozzle is ½ or less of the boiling point of the solvent contained in the coating liquid, the liquid droplets blown out from the nozzle become the surface of the workpiece. It becomes difficult to solidify before reaching.
 [3]上記第1項又は第2項に記載の方法において、第2の工程では、ノズルの出口における第1の加熱液体の温度が35℃~60℃となるように塗布液を加熱してもよい。この場合、ノズルから吹き出された液滴が被処理体の表面に到達する前により固化し難くなる。 [3] In the method described in the above item 1 or 2, in the second step, the coating liquid is heated so that the temperature of the first heating liquid at the nozzle outlet is 35 ° C. to 60 ° C. Also good. In this case, the liquid droplets blown out from the nozzle are more difficult to solidify before reaching the surface of the object to be processed.
 [4]上記第1項~第3項のいずれか一項に記載の方法において、第2の工程では、ノズル内において塗布液と加熱されたガスとを混合することにより塗布液を加熱して第1の加熱液体を得てもよい。この場合、塗布液がノズルから吐出される直前まで、塗布液の流動性が高いままの状態となる。そのため、ノズルから塗布液を液滴の状態で吹き出しやすくなる。従って、ノズルからの吐出前においては塗布液の流動性を高めて液滴を生成したい一方で、ノズルからの吐出後においては塗布液の流動性を低下させて被処理体の表面に塗布液の材料粒子を均一に付着させたいという相反する要求に、簡易な手法で応えることができる。 [4] In the method according to any one of items 1 to 3, in the second step, the coating liquid is heated by mixing the coating liquid and the heated gas in the nozzle. A first heated liquid may be obtained. In this case, the fluidity of the coating liquid remains high until just before the coating liquid is discharged from the nozzle. Therefore, it becomes easy to blow out the coating liquid from the nozzle in the form of droplets. Therefore, before discharging from the nozzle, it is desired to increase the fluidity of the coating liquid to generate droplets, but after discharging from the nozzle, the fluidity of the coating liquid is reduced to reduce the amount of the coating liquid on the surface of the object to be processed. It is possible to meet the conflicting demands for uniformly attaching the material particles by a simple method.
 [5]上記第1項~第3項のいずれか一項に記載の方法において、第2の工程では、ノズルよりも上流側において塗布液をヒータにより加熱して第1の加熱液体を得てもよい。この場合、塗布液がノズルから吐出される直前まで、塗布液の流動性を維持しうる。そのため、ノズルから塗布液を液滴の状態で吹き出しやすくなる。従って、ノズルからの吐出前においては塗布液の流動性を高めて液滴を生成したい一方で、ノズルからの吐出後においては塗布液の流動性を低下させて被処理体の表面に塗布液の材料粒子が均一に付着させたいという相反する要求に、簡易な手法で応えることができる。 [5] In the method according to any one of items 1 to 3, in the second step, the coating liquid is heated by a heater on the upstream side of the nozzle to obtain a first heating liquid. Also good. In this case, the fluidity of the coating liquid can be maintained until immediately before the coating liquid is discharged from the nozzle. Therefore, it becomes easy to blow out the coating liquid from the nozzle in the form of droplets. Therefore, before discharging from the nozzle, it is desired to increase the fluidity of the coating liquid to generate droplets, but after discharging from the nozzle, the fluidity of the coating liquid is reduced to reduce the amount of the coating liquid on the surface of the object to be processed. It is possible to meet the conflicting demands for the material particles to adhere uniformly by a simple method.
 [6]上記第1項~第5項のいずれか一項に記載の方法は、第3の工程の後に、塗布液を加熱して第2の加熱液体を得る第4の工程と、第4の工程の後に、塗布膜が形成された被処理体の表面に対して、第2の加熱液体を液滴の状態にてノズルから吹き付ける第5の工程をさらに含み、第4の工程における第2の加熱液体の温度は、第2の工程における第1の加熱液体の温度よりも高く設定されていてもよい。この場合、第1の加熱液体の温度が相対的に低く且つノズルから吹き出された液滴の流動性が高い傾向にあるので、第3の工程において被処理体の表面に吹き付けられる液滴は、被処理体のうち狭隘な凹部に入り込みやすくなる。一方、第2の加熱液体の温度が相対的に高く且つノズルから吹き出された液滴の流動性が低い傾向にあるので、第5の工程において被処理体の表面に吹き付けられる液滴は、被処理体の凸部の側面に付着しやすくなる。従って、凸部を含む被処理体の表面に沿って塗布膜をさらに均一に形成することが可能となる。 [6] The method according to any one of Items 1 to 5 includes a fourth step of heating the coating liquid to obtain a second heated liquid after the third step; After the step, the method further includes a fifth step of spraying the second heated liquid in a droplet state from the nozzle onto the surface of the target object on which the coating film is formed, and the second step in the fourth step. The temperature of the heated liquid may be set higher than the temperature of the first heated liquid in the second step. In this case, since the temperature of the first heated liquid is relatively low and the fluidity of the droplets ejected from the nozzle tends to be high, the droplets sprayed on the surface of the object to be processed in the third step are: It becomes easy to enter a narrow concave portion of the workpiece. On the other hand, since the temperature of the second heated liquid tends to be relatively high and the fluidity of the droplets ejected from the nozzle tends to be low, the droplets sprayed on the surface of the object to be treated in the fifth step It becomes easy to adhere to the side surface of the convex portion of the processing body. Therefore, the coating film can be formed more uniformly along the surface of the object to be processed including the convex portion.
 [7]上記第1項~第6項のいずれか一項に記載の方法において、第3の工程では、被処理体の表面に対してノズルから液滴を吹き付けると共に、ノズルとは別のガスノズルをノズルに追従させつつ、被処理体の表面のうち液滴の吹き付け箇所に対して加熱された窒素ガスをガスノズルから吹き付けてもよい。この場合、液滴の吹き付け中に溶剤の乾燥が行われるので、被処理体の表面に塗布膜を形成するのに要する時間を短縮することができる。 [7] In the method described in any one of [1] to [6] above, in the third step, a droplet is blown from the nozzle to the surface of the object to be processed, and a gas nozzle different from the nozzle The nitrogen gas heated with respect to the spraying location of the droplets on the surface of the object to be processed may be sprayed from the gas nozzle while following the nozzle. In this case, since the solvent is dried during the spraying of the droplets, the time required for forming the coating film on the surface of the object to be processed can be shortened.
 [8]本開示の他の観点に係る塗布膜形成装置は、塗布液を加熱するように構成された第1の加熱部と、基板と、基板の表面に設けられた凸部とを含む被処理体を加熱するように構成された第2の加熱部と、ノズルを有する供給部と、制御部とを備え、制御部は、第2の加熱部を制御して被処理体を加熱する第1の処理と、第1の加熱部及び供給部を制御して、第1の処理によって加熱された後の被処理体の表面に対して、第1の加熱部によって加熱された塗布液である第1の加熱液体を液滴の状態にてノズルから吹き出させる第2の処理を実行する。本開示の他の観点に係る塗布膜形成装置は、上記第1項に係る方法と同様の作用効果を奏する。 [8] A coating film forming apparatus according to another aspect of the present disclosure includes a first heating unit configured to heat a coating solution, a substrate, and a convex portion provided on a surface of the substrate. A second heating unit configured to heat the processing body, a supply unit having a nozzle, and a control unit are provided, and the control unit controls the second heating unit to heat the object to be processed. The coating liquid heated by the first heating unit with respect to the surface of the object to be processed after being heated by the first processing by controlling the first processing and the first heating unit and the supply unit A second process is performed in which the first heated liquid is ejected from the nozzle in the form of droplets. The coating film forming apparatus according to another aspect of the present disclosure has the same effects as the method according to the first item.
 [9]上記第8項に記載の装置において、第1の加熱部は、ノズルの出口における第1の加熱液体の温度が塗布液に含まれる溶剤の沸点の1/2以下となるように塗布液を加熱してもよい。この場合、上記第2項に係る方法と同様の作用効果が得られる。 [9] In the apparatus described in [8] above, the first heating unit is applied so that the temperature of the first heating liquid at the nozzle outlet is equal to or less than ½ of the boiling point of the solvent contained in the application liquid. The liquid may be heated. In this case, the same effect as the method according to the second item can be obtained.
 [10]上記第8項又は第9項に記載の装置において、第1の加熱部は、ノズルの出口における第1の加熱液体の温度が35℃~60℃となるように塗布液を加熱してもよい。この場合、上記第3項に係る方法と同様の作用効果が得られる。 [10] In the apparatus according to item 8 or 9, the first heating unit heats the coating liquid so that the temperature of the first heating liquid at the outlet of the nozzle is 35 ° C. to 60 ° C. May be. In this case, the same effect as the method according to the third item can be obtained.
 [11]上記第8項~第10項のいずれか一項に記載の装置において、第1の加熱部は、加熱されたガスをノズルに供給してノズル内においてガスと塗布液とを混合させることにより塗布液を加熱するように構成されていてもよい。この場合、上記第4項に係る方法と同様の作用効果が得られる。 [11] In the apparatus according to any one of items 8 to 10, the first heating unit supplies the heated gas to the nozzle and mixes the gas and the coating liquid in the nozzle. It may be configured to heat the coating solution. In this case, the same effect as the method according to the fourth item can be obtained.
 [12]上記第8項~第10項のいずれか一項に記載の装置において、第1の加熱部は、ノズルよりも上流側において塗布液を加熱するヒータであってもよい。この場合、上記第5項に係る方法と同様の作用効果が得られる。 [12] In the apparatus according to any one of Items 8 to 10, the first heating unit may be a heater that heats the coating liquid upstream of the nozzle. In this case, the same effect as the method according to the fifth aspect can be obtained.
 [13]上記第8項~第12項のいずれか一項に記載の装置において、制御部は、第2の処理の後に、第1の加熱部及び供給部を制御して、被処理体の表面に対して、第1の加熱部によって加熱された塗布液である第2の加熱液体を液滴の状態にてノズルから吹き出させる第3の処理をさらに実行し、第3の処理における第2の加熱液体の温度は、第2の処理における第1の加熱液体の温度よりも高く設定されていてもよい。この場合、上記第6項に係る方法と同様の作用効果が得られる。 [13] In the apparatus according to any one of items 8 to 12, the control unit controls the first heating unit and the supply unit after the second process to control the object to be processed. A third process is further performed on the surface, in which a second heating liquid, which is a coating liquid heated by the first heating unit, is ejected from the nozzle in the form of droplets, and the second process in the third process is performed. The temperature of the heated liquid may be set higher than the temperature of the first heated liquid in the second process. In this case, the same effect as the method according to the sixth aspect can be obtained.
 [14]上記第8項~第13項のいずれか一項に記載の装置は、加熱された窒素ガスをガスノズルから吐出させるように構成されたガス供給部を更に備え、制御部は、第2の処理において、第1の加熱部及び供給部を制御して、液滴をノズルから吹き付けると共に、ガス供給部を制御して、ガスノズルをノズルに追従させつつ、被処理体の表面のうち液滴の吹き付け箇所に対して加熱された窒素ガスをガスノズルから吹き付けてもよい。この場合、上記第7項に係る方法と同様の作用効果が得られる。 [14] The apparatus according to any one of items 8 to 13, further including a gas supply unit configured to discharge heated nitrogen gas from the gas nozzle, and the control unit includes: In this process, the first heating unit and the supply unit are controlled to spray droplets from the nozzles, and the gas supply unit is controlled to cause the gas nozzles to follow the nozzles, while the droplets on the surface of the object to be processed. The nitrogen gas heated with respect to the spray location may be sprayed from the gas nozzle. In this case, the same effect as the method according to the seventh aspect can be obtained.
 [15]本開示の他の観点に係るコンピュータ読み取り可能な記録媒体は、上記第1項~第7項のいずれか一項に記載の方法を塗布膜形成装置に実行させるためのプログラムを記録している。本開示の他の観点に係るコンピュータ読み取り可能な記録媒体では、上記の塗布膜形成方法と同様に、凸部を含む被処理体の表面に沿って塗布膜をより均一に形成することが可能となる。本明細書において、コンピュータ読み取り可能な記録媒体には、一時的でない有形の媒体(non-transitory computer recording medium)(例えば、各種の主記憶装置又は補助記憶装置)や、伝播信号(transitory computer recording medium)(例えば、ネットワークを介して提供可能なデータ信号)が含まれる。 [15] A computer-readable recording medium according to another aspect of the present disclosure records a program for causing a coating film forming apparatus to execute the method according to any one of items 1 to 7 above. ing. In the computer-readable recording medium according to another aspect of the present disclosure, it is possible to form the coating film more uniformly along the surface of the object to be processed including the convex portion, as in the above-described coating film forming method. Become. In this specification, a computer-readable recording medium includes a non-transitory computer recording medium (for example, various main storage devices or auxiliary storage devices) and a propagation signal (transitory computer recording medium). (E.g., a data signal that can be provided over a network).
 本開示に係る塗布膜形成方法、塗布膜形成装置、及びコンピュータ読み取り可能な記録媒体によれば、凸部を含む被処理体の表面に沿って塗布膜をより均一に形成することが可能となる。 According to the coating film forming method, the coating film forming apparatus, and the computer-readable recording medium according to the present disclosure, the coating film can be more uniformly formed along the surface of the target object including the convex portion. .
図1は、塗布膜形成装置を示す斜視図である。FIG. 1 is a perspective view showing a coating film forming apparatus. 図2は、図1のII-II線断面図である。2 is a cross-sectional view taken along line II-II in FIG. 図3は、図2のIII-III線断面図である。3 is a cross-sectional view taken along line III-III in FIG. 図4は、塗布膜形成装置を示すブロック図である。FIG. 4 is a block diagram showing the coating film forming apparatus. 図5は、コントローラのハードウェア構成を示す概略図である。FIG. 5 is a schematic diagram illustrating a hardware configuration of the controller. 図6は、液処理ユニットを示す模式図である。FIG. 6 is a schematic diagram showing a liquid processing unit. 図7は、ノズルの近傍を示す部分断面図である。FIG. 7 is a partial cross-sectional view showing the vicinity of the nozzle. 図8は、熱処理ユニットを側方から見た断面図である。FIG. 8 is a cross-sectional view of the heat treatment unit as viewed from the side. 図9は、図8のIX-IX線断面図である。9 is a cross-sectional view taken along line IX-IX in FIG. 図10は、塗布膜の形成手順を説明するためのフローチャートである。FIG. 10 is a flowchart for explaining a coating film forming procedure. 図11は、塗布膜の形成手順を説明するための模式図である。FIG. 11 is a schematic diagram for explaining a procedure for forming a coating film. 図12は、液処理ユニットの他の例を部分的に示す模式図である。FIG. 12 is a schematic diagram partially showing another example of the liquid processing unit. 図13は、液処理ユニットの他の例を示す模式図である。FIG. 13 is a schematic diagram illustrating another example of the liquid processing unit. 図14は、液処理ユニットの他の例を示す模式図である。FIG. 14 is a schematic diagram illustrating another example of the liquid processing unit. 図15は、液処理ユニットの他の例を示す模式図である。FIG. 15 is a schematic diagram illustrating another example of the liquid processing unit. 図16は、実施例を説明するための図である。FIG. 16 is a diagram for explaining the embodiment.
 以下に説明される本開示に係る実施形態は本発明を説明するための例示であるので、本発明は以下の内容に限定されるべきではない。以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。 The embodiments according to the present disclosure described below are examples for explaining the present invention, and the present invention should not be limited to the following contents. In the following description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.
 [塗布膜形成装置]
 まず、塗布膜形成装置1の概要について説明する。塗布膜形成装置1は、被処理体W(図6等参照)の表面上に塗布膜R(同図等参照)を形成する装置である。
[Coating film forming device]
First, an outline of the coating film forming apparatus 1 will be described. The coating film forming apparatus 1 is an apparatus that forms a coating film R (see FIG. 6 and the like) on the surface of the workpiece W (see FIG. 6 and the like).
 ここで、被処理体Wは、図6等に示されるように、基板(ウエハ)W1と少なくとも一つの凸部W2とを有する。基板W1は、円板状を呈してもよいし、円形の一部が切り欠かれていてもよいし、多角形など円形以外の形状を呈していてもよい。基板W1は、例えば、半導体基板、ガラス基板、マスク基板、FPD(Flat Panel Display)基板その他の各種基板であってもよい。凸部W2は、基板W1の表面W1a上に設けられている。凸部W2は基板W1の表面W1aから外方に向けて突出していればよい。凸部W2の形状は、直方体形状その他の種々の形状であってもよく、何ら限定されない。凸部W2の材質は、凸部W2の表面W2a(外部に露出している上面及び外周面)に塗布膜Rを形成することができれば有機材料であっても無機材料であってもよく、何ら限定されない。なお、本明細書において、「被処理体Wの表面」とは、基板W1の表面W1a及び凸部W2の表面W2aを合わせた面をいう。 Here, the workpiece W has a substrate (wafer) W1 and at least one convex portion W2, as shown in FIG. The substrate W1 may have a disk shape, a part of a circle may be cut out, or may have a shape other than a circle, such as a polygon. The substrate W1 may be, for example, a semiconductor substrate, a glass substrate, a mask substrate, an FPD (Flat Panel Display) substrate, or other various substrates. The convex portion W2 is provided on the surface W1a of the substrate W1. The convex part W2 should just protrude outward from the surface W1a of the board | substrate W1. The shape of the convex portion W2 may be a rectangular parallelepiped shape or other various shapes, and is not limited at all. The material of the convex portion W2 may be an organic material or an inorganic material as long as the coating film R can be formed on the surface W2a (the upper surface and the outer peripheral surface exposed to the outside) of the convex portion W2. It is not limited. In the present specification, the “surface of the object to be processed W” refers to a surface obtained by combining the surface W1a of the substrate W1 and the surface W2a of the convex portion W2.
 塗布膜Rは、塗布膜形成装置1によって被処理体Wの表面に形成される。塗布膜Rを構成する材料としては、レジスト材料、カラーレジスト材料、ポリイミド材料、SOC(Spin On Carbon)材料、メタルハードマスク材料その他の材料であってもよく、何ら限定されない。レジスト材料としては、樹脂材料その他の材料であってもよく、何ら限定されない。レジスト材料は、例えば、所定波長の光線に感光性を示す感光性材料であってもよい。当該感光性材料は、ネガ型であってもよいし、ポジ型であってもよい。 The coating film R is formed on the surface of the workpiece W by the coating film forming apparatus 1. The material constituting the coating film R may be a resist material, a color resist material, a polyimide material, an SOC (Spin On Carbon) material, a metal hard mask material, or other materials, and is not limited at all. The resist material may be a resin material or other materials, and is not limited at all. The resist material may be, for example, a photosensitive material that is sensitive to light having a predetermined wavelength. The photosensitive material may be a negative type or a positive type.
 塗布膜形成装置1は、図1~図3に示されるように、キャリアブロック2と、処理ブロック3と、コントローラ(制御部)CUを備える。 The coating film forming apparatus 1 includes a carrier block 2, a processing block 3, and a controller (control unit) CU as shown in FIG. 1 to FIG.
 キャリアブロック2は、キャリアステーション21と搬入搬出部22とを有する。キャリアステーション21は複数のキャリア10を支持する。キャリア10は、少なくとも一つの被処理体Wを密封状態で収容する。キャリア10の側面10aには、被処理体Wを出し入れするための開閉扉(図示せず)が設けられている。 The carrier block 2 has a carrier station 21 and a carry-in / carry-out unit 22. The carrier station 21 supports a plurality of carriers 10. The carrier 10 accommodates at least one workpiece W in a sealed state. On the side surface 10a of the carrier 10, an opening / closing door (not shown) for taking in and out the workpiece W is provided.
 搬入搬出部22は、キャリアステーション21及び処理ブロック3の間に位置している。搬入搬出部22は、図2に示されるように、複数の開閉扉22aを有する。キャリアステーション21上にキャリア10が載置される際には、キャリア10の開閉扉が開閉扉22aに面した状態とされる。開閉扉22a及び側面10aの開閉扉を同時に開放することで、キャリア10内と搬入搬出部22内とが連通する。搬入搬出部22は、受け渡しアームA1を内蔵している。受け渡しアームA1は、キャリア10から被処理体Wを取り出して処理ブロック3に渡し、処理ブロック3から被処理体Wを受け取ってキャリア10内に戻す。 The loading / unloading section 22 is located between the carrier station 21 and the processing block 3. As shown in FIG. 2, the carry-in / carry-out unit 22 includes a plurality of opening / closing doors 22 a. When the carrier 10 is placed on the carrier station 21, the opening / closing door of the carrier 10 faces the opening / closing door 22a. By opening the opening / closing door 22a and the opening / closing door on the side surface 10a at the same time, the inside of the carrier 10 and the inside of the carry-in / out unit 22 are communicated. The carry-in / carry-out unit 22 incorporates a delivery arm A1. The delivery arm A <b> 1 takes out the workpiece W from the carrier 10 and delivers it to the processing block 3, receives the workpiece W from the processing block 3, and returns it to the carrier 10.
 処理ブロック3は、図2及び図3に示されるように、複数の処理モジュール31,32、棚部33及び搬送アームA2を内蔵する。処理モジュール31,32は、例えば図2に示されるように、搬送アームA2の移動方向に沿って並ぶように配置されている。 As shown in FIGS. 2 and 3, the processing block 3 includes a plurality of processing modules 31, 32, a shelf 33, and a transfer arm A2. For example, as illustrated in FIG. 2, the processing modules 31 and 32 are arranged so as to be aligned along the moving direction of the transfer arm A2.
 処理モジュール31は、図3に示されるように、上下方向に並ぶ複数の液処理ユニットU1と、塗布液源B1と、窒素ガス源B2とを有する。液処理ユニットU1は、塗布膜Rの形成用の液体を被処理体Wの表面に塗布するように構成されている。塗布液源B1及び窒素ガス源B2は、液処理ユニットU1の下部に配置されている。塗布液源B1及び窒素ガス源B2はそれぞれ、液処理ユニットU1に供給するための塗布液及び窒素ガス(Nガス)を収容する。なお、塗布液源B1が収容する塗布液は、塗布液の材料粒子(溶質)を溶剤(溶媒)で希釈したものである。当該溶剤としては、塗布液材料粒子の希釈に適した公知のものであれば制限はないが、例えば、イソプロピルアルコール(以下、IPAと称することもある。)、プロピレングリコールモノメチルエーテルアセテート(以下、PGMEAと称することもある。)、γ-ブチロラクトン(以下、GBLと称することもある。)等を用いてもよい。IPAの沸点は82.4℃である。PGMEAの沸点は146℃である。GBLの沸点は204℃である。 As illustrated in FIG. 3, the processing module 31 includes a plurality of liquid processing units U1 arranged in the vertical direction, a coating liquid source B1, and a nitrogen gas source B2. The liquid processing unit U1 is configured to apply a liquid for forming the coating film R onto the surface of the object to be processed W. The coating liquid source B1 and the nitrogen gas source B2 are disposed below the liquid processing unit U1. Each of the coating liquid source B1 and the nitrogen gas source B2 contains a coating liquid and nitrogen gas (N 2 gas) to be supplied to the liquid processing unit U1. The coating solution stored in the coating solution source B1 is obtained by diluting the material particles (solute) of the coating solution with a solvent (solvent). The solvent is not particularly limited as long as it is a known solvent suitable for dilution of coating solution material particles. For example, isopropyl alcohol (hereinafter also referred to as IPA), propylene glycol monomethyl ether acetate (hereinafter PGMEA). And γ-butyrolactone (hereinafter sometimes referred to as GBL) may also be used. The boiling point of IPA is 82.4 ° C. The boiling point of PGMEA is 146 ° C. The boiling point of GBL is 204 ° C.
 処理モジュール32は、図3に示されるように、上下方向に並ぶ複数の熱処理ユニットU2(第2の加熱部)を有する。熱処理ユニットU2は、塗布膜Rの形成にあたり被処理体Wに対して熱処理を行うように構成されている。熱処理の具体例としては、塗布液の溶剤を揮発させたり、塗布液材料を硬化させるための加熱処理等が挙げられる。 The processing module 32 includes a plurality of heat treatment units U2 (second heating units) arranged in the vertical direction, as shown in FIG. The heat treatment unit U <b> 2 is configured to perform heat treatment on the workpiece W when forming the coating film R. Specific examples of the heat treatment include heat treatment for volatilizing the solvent of the coating solution and curing the coating solution material.
 棚部33は、図2に示されるように、処理ブロック3内のキャリアブロック2側に配置されている。棚部33は、被処理体Wを一時的に収容するものであり、受け渡しアームA1と処理ブロック3との間における被処理体Wの受け渡しに用いられる。搬送アームA2は、棚部33と処理モジュール31,32との間、及び処理モジュール31,32同士の間で被処理体Wを搬送する。 As shown in FIG. 2, the shelf 33 is disposed on the carrier block 2 side in the processing block 3. The shelf 33 temporarily accommodates the workpiece W and is used for delivery of the workpiece W between the delivery arm A1 and the processing block 3. The transport arm A <b> 2 transports the workpiece W between the shelf 33 and the processing modules 31 and 32 and between the processing modules 31 and 32.
 コントローラCUは、塗布膜形成装置1を部分的又は全体的に制御する。コントローラCUは、図4に示されるように、機能モジュールとして、読取部M1と、記憶部M2と、処理部M3と、指示部M4とを有する。これらの機能モジュールは、コントローラCUの機能を便宜上複数のモジュールに区切ったものに過ぎず、コントローラCUを構成するハードウェアがこのようなモジュールに分かれていることを必ずしも意味するものではない。各機能モジュールは、プログラムの実行により実現されるものに限られず、専用の電気回路(例えば論理回路)、又は、これを集積した集積回路(ASIC:Application Specific Integrated Circuit)により実現されるものであってもよい。 The controller CU controls the coating film forming apparatus 1 partially or entirely. As shown in FIG. 4, the controller CU includes a reading unit M1, a storage unit M2, a processing unit M3, and an instruction unit M4 as functional modules. These functional modules are merely the functions of the controller CU divided into a plurality of modules for convenience, and do not necessarily mean that the hardware configuring the controller CU is divided into such modules. Each functional module is not limited to that realized by execution of a program, and is realized by a dedicated electric circuit (for example, a logic circuit) or an integrated circuit (ASIC: Application Specific Integrated Circuit) in which these are integrated. May be.
 読取部M1は、コンピュータ読み取り可能な記録媒体200からプログラムを読み取る。記録媒体200は、塗布膜形成装置1に各種動作を実行させるためのプログラムを記録している。記録媒体200としては、例えば、半導体メモリ、光記録ディスク、磁気記録ディスク、光磁気記録ディスクであってもよい。 The reading unit M1 reads a program from the computer-readable recording medium 200. The recording medium 200 records a program for causing the coating film forming apparatus 1 to execute various operations. The recording medium 200 may be, for example, a semiconductor memory, an optical recording disk, a magnetic recording disk, or a magneto-optical recording disk.
 記憶部M2は、種々のデータを記憶する。記憶部M2は、例えば、読取部M1において読み取られたプログラムの他、例えば、外部入力装置(図示せず)を介してオペレータから入力された設定データ等を記憶する。 The storage unit M2 stores various data. The storage unit M2 stores, for example, setting data input from an operator via an external input device (not shown), for example, in addition to the program read by the reading unit M1.
 処理部M3は、各種データを処理する。処理部M3は、例えば、記憶部M2に記憶されている各種データに基づいて、液処理ユニットU1及び熱処理ユニットU2を動作させるための信号を生成する。 The processing unit M3 processes various data. For example, the processing unit M3 generates a signal for operating the liquid processing unit U1 and the heat treatment unit U2 based on various data stored in the storage unit M2.
 指示部M4は、処理部M3において生成された信号を液処理ユニットU1又は熱処理ユニットU2に送信する。 The instruction unit M4 transmits the signal generated in the processing unit M3 to the liquid processing unit U1 or the heat treatment unit U2.
 コントローラCUのハードウェアは、例えば一つ又は複数の制御用のコンピュータにより構成される。コントローラCUは、ハードウェア上の構成として、例えば図5に示す回路CU1を有する。回路CU1は、電気回路要素(circuitry)で構成されていてもよい。回路CU1は、具体的には、プロセッサCU2と、メモリCU3と、ストレージCU4と、ドライバCU5と、入出力ポートCU6とを有する。プロセッサCU2は、メモリCU3及びストレージCU4の少なくとも一方と協働してプログラムを実行し、入出力ポートCU6を介した信号の入出力を実行することで、上述した各機能モジュールを構成する。ドライバCU5は、塗布膜形成装置1の各種装置をそれぞれ駆動する回路である。入出力ポートCU6は、ドライバCU5と塗布膜形成装置1の各種装置との間で、信号の入出力を行う。 The hardware of the controller CU is composed of, for example, one or a plurality of control computers. The controller CU includes, for example, a circuit CU1 illustrated in FIG. 5 as a hardware configuration. The circuit CU1 may be composed of electric circuit elements (circuitry). Specifically, the circuit CU1 includes a processor CU2, a memory CU3, a storage CU4, a driver CU5, and an input / output port CU6. The processor CU2 configures each functional module described above by executing a program in cooperation with at least one of the memory CU3 and the storage CU4 and executing input / output of signals via the input / output port CU6. The driver CU5 is a circuit that drives various devices of the coating film forming apparatus 1. The input / output port CU6 inputs and outputs signals between the driver CU5 and the various apparatuses of the coating film forming apparatus 1.
 本実施形態では、塗布膜形成装置1は、一つのコントローラCUを備えているが、複数のコントローラCUで構成されるコントローラ群(制御部)を備えていてもよい。塗布膜形成装置1がコントローラ群を備えている場合には、上記の機能モジュールがそれぞれ、一つのコントローラCUによって実現されていてもよいし、2個以上のコントローラCUの組み合わせによって実現されていてもよい。コントローラCUが複数のコンピュータ(回路CU1)で構成されている場合には、上記の機能モジュールがそれぞれ、一つのコンピュータ(回路CU1)によって実現されていてもよいし、2つ以上のコンピュータ(回路CU1)の組み合わせによって実現されていてもよい。コントローラCUは、複数のプロセッサCU2を有していてもよい。この場合、上記の機能モジュールがそれぞれ、一つのプロセッサCU2によって実現されていてもよいし、2つ以上のプロセッサCU2の組み合わせによって実現されていてもよい。 In the present embodiment, the coating film forming apparatus 1 includes one controller CU, but may include a controller group (control unit) including a plurality of controllers CU. When the coating film forming apparatus 1 includes a controller group, each of the above functional modules may be realized by one controller CU, or may be realized by a combination of two or more controllers CU. Good. When the controller CU is composed of a plurality of computers (circuit CU1), each of the above functional modules may be realized by one computer (circuit CU1), or two or more computers (circuit CU1). ) May be realized. The controller CU may have a plurality of processors CU2. In this case, each of the functional modules may be realized by one processor CU2, or may be realized by a combination of two or more processors CU2.
 [液処理ユニットの構成]
 続いて、図6及び図7を参照して、液処理ユニットU1についてさらに詳しく説明する。液処理ユニットU1は、図6に示されるように、回転保持部40と、駆動部50と、ポンプPと、バルブVと、ヒータ71と、断熱材72とを備える。
[Configuration of liquid processing unit]
Subsequently, the liquid processing unit U1 will be described in more detail with reference to FIGS. As shown in FIG. 6, the liquid processing unit U1 includes a rotation holding unit 40, a driving unit 50, a pump P, a valve V, a heater 71, and a heat insulating material 72.
 回転保持部40は、回転部41と、保持部42とを有する。回転部41は、上方に突出したシャフト43を有する。回転部41は、例えば電動モータ等を動力源としてシャフト43を回転させる。保持部42は、シャフト43の先端部に設けられている。保持部42上には被処理体Wが配置される。保持部42は、例えば吸着等により被処理体Wを略水平に保持する。すなわち、回転保持部40は、被処理体Wの姿勢が略水平の状態で、被処理体Wの表面(基板W1の表面W1a)に対して垂直な軸(回転軸)周りで被処理体Wを回転させる。本実施形態では、回転軸は、円形状を呈する被処理体W(基板W1)の中心を通っているので、中心軸でもある。本実施形態では、図6に示されるように、回転保持部20は、上方から見て時計回りに被処理体Wを回転させる。 The rotation holding unit 40 includes a rotation unit 41 and a holding unit 42. The rotating part 41 has a shaft 43 protruding upward. The rotating unit 41 rotates the shaft 43 using, for example, an electric motor as a power source. The holding portion 42 is provided at the tip portion of the shaft 43. A workpiece W is arranged on the holding unit 42. The holding unit 42 holds the workpiece W substantially horizontally, for example, by suction or the like. That is, the rotation holding unit 40 has a posture of the workpiece W substantially horizontal, and the workpiece W around an axis (rotation axis) perpendicular to the surface of the workpiece W (surface W1a of the substrate W1). Rotate. In the present embodiment, the rotation axis passes through the center of the object to be processed W (substrate W1) having a circular shape, and is also the center axis. In the present embodiment, as shown in FIG. 6, the rotation holding unit 20 rotates the workpiece W clockwise as viewed from above.
 駆動部50は、ノズルNを駆動するように構成されている。駆動部50は、ガイドレール51と、スライドブロック52と、アーム53とを有する。ガイドレール51は、回転保持部40(被処理体W)の上方において水平方向に沿って延びている。スライドブロック52は、ガイドレール51に沿って水平方向に移動可能となるように、ガイドレール51に接続されている。アーム53は、上下方向に移動可能となるように、スライドブロック52に接続されている。アーム53の下端にはノズルNが接続されている。アーム53内には、塗布液が流通可能な流路が形成されている。当該流路は、ポンプPを介して塗布液源B1と接続されている。 The driving unit 50 is configured to drive the nozzle N. The drive unit 50 includes a guide rail 51, a slide block 52, and an arm 53. The guide rail 51 extends along the horizontal direction above the rotation holding unit 40 (object W). The slide block 52 is connected to the guide rail 51 so as to be movable in the horizontal direction along the guide rail 51. The arm 53 is connected to the slide block 52 so as to be movable in the vertical direction. A nozzle N is connected to the lower end of the arm 53. In the arm 53, a channel through which the coating liquid can flow is formed. The flow path is connected to the coating liquid source B1 via the pump P.
 駆動部50は、例えば電動モータ等の動力源(図示せず)により、スライドブロック52及びアーム53を移動させ、これに伴ってノズルNを移動させる。平面視において、ノズルNは、塗布液の吐出時において、被処理体Wの回転軸に直交する直線上を被処理体Wの径方向に沿って移動する。 The driving unit 50 moves the slide block 52 and the arm 53 by a power source (not shown) such as an electric motor, and moves the nozzle N accordingly. In plan view, the nozzle N moves along the radial direction of the object to be processed W on a straight line perpendicular to the rotation axis of the object to be processed W when discharging the coating liquid.
 ノズルNは、被処理体Wの表面に向けて下方に開口している。ノズルNは、例えば、内部混合式の2流体ノズルであってもよいし、外部混合式の2流体ノズルであってもよいし、1流体ノズルであってもよい。本明細書では、内部混合式の2流体ノズルを例にとって、図7を参照しつつノズルNの構造を説明する。ノズルNは、略円柱状を呈する本体N1と、本体N1の側面に接続された配管N2とを有する。配管N2は、バルブV及びヒータ71を介して窒素ガス源B2と接続されている。 The nozzle N opens downward toward the surface of the workpiece W. The nozzle N may be, for example, an internal mixing type two-fluid nozzle, an external mixing type two-fluid nozzle, or a one-fluid nozzle. In the present specification, the structure of the nozzle N will be described with reference to FIG. 7, taking an internal mixing type two-fluid nozzle as an example. The nozzle N has a main body N1 having a substantially cylindrical shape and a pipe N2 connected to a side surface of the main body N1. The pipe N2 is connected to the nitrogen gas source B2 via the valve V and the heater 71.
 本体N1の内部には、流路N3,N4が形成されている。流路N3は、アーム53の内部に形成されている塗布液の流路に連通している。流路N3は、本体N1内において上下方向に延びており、下端がノズルNの吐出口N5と連通している。流路N4は、配管N2と連通している。流路N4は、本体N1内において本体N1の外周面から流路N3の下端近傍まで延びている。流路N4が流路N3と合流する合流部N6では、流路N3を流通する塗布液と流路N4を流通する窒素ガスとが衝突して混合され、塗布液の微小な液滴(塗布液液滴)が生成される。吐出口N5からは、当該液滴が被処理体Wの表面に向けて吹き出される(噴霧される)。吐出口N5の被処理体Wの表面からの高さ位置(鉛直方向における吐出口N5と被処理体Wの表面との直線距離)は、被処理体Wの大きさ、塗布液の流量、塗布液の流速、塗布液の加熱温度(詳しくは後述する)等によって適宜設定しうるが、例えば、50mm~100mm程度であってもよいし、65mm~80mm程度であってもよいし、70mm~75mm程度であってもよい。 Flow paths N3 and N4 are formed inside the main body N1. The flow path N3 communicates with the flow path of the coating liquid formed inside the arm 53. The flow path N3 extends in the vertical direction in the main body N1, and the lower end communicates with the discharge port N5 of the nozzle N. The flow path N4 communicates with the pipe N2. The flow path N4 extends from the outer peripheral surface of the main body N1 to the vicinity of the lower end of the flow path N3 in the main body N1. In the merging portion N6 where the flow path N4 joins the flow path N3, the coating liquid flowing through the flow path N3 and the nitrogen gas flowing through the flow path N4 collide and are mixed to form minute droplets (coating liquid) of the coating liquid. Droplet) is generated. From the discharge port N5, the droplet is blown out (sprayed) toward the surface of the workpiece W. The height position of the discharge port N5 from the surface of the target object W (the linear distance between the discharge port N5 and the surface of the target object W in the vertical direction) is the size of the target object W, the flow rate of the coating liquid, and the coating Although it can be appropriately set depending on the flow rate of the liquid, the heating temperature of the coating liquid (details will be described later), etc., for example, it may be about 50 mm to 100 mm, may be about 65 mm to 80 mm, or may be 70 mm to 75 mm. It may be a degree.
 ポンプPは、図6に示されるように、コントローラCUからの制御信号を受けて、塗布液を塗布液源B1からノズルNに送り出す。ポンプP、アーム53、ノズルN(流路N3)及び塗布液源B1は、図7に示されるように、塗布液を被処理体Wに供給するための供給部60を構成している。 As shown in FIG. 6, the pump P receives a control signal from the controller CU and sends the coating liquid from the coating liquid source B1 to the nozzle N. The pump P, the arm 53, the nozzle N (flow path N3), and the coating liquid source B1 constitute a supply unit 60 for supplying the coating liquid to the workpiece W as shown in FIG.
 バルブVは、図6に示されるように、コントローラCUからの制御信号を受けて、窒素ガスを窒素ガス源B2からノズルNに送り出す。 As shown in FIG. 6, the valve V receives a control signal from the controller CU and sends nitrogen gas from the nitrogen gas source B2 to the nozzle N.
 ヒータ71は、コントローラCUからの制御信号を受けて、窒素ガス源B2から送り出された窒素ガスを所定温度(室温よりも高い温度)に加熱する。そのため、ヒータ71によって加熱された窒素ガスが合流部N6で塗布液と合流すると、塗布液が加熱されて加熱液体となる。すなわち、ノズルNの吐出口N5からは、加熱液体が液滴の状態で吹き出される。 The heater 71 receives the control signal from the controller CU and heats the nitrogen gas sent out from the nitrogen gas source B2 to a predetermined temperature (a temperature higher than room temperature). Therefore, when the nitrogen gas heated by the heater 71 merges with the coating liquid at the merging portion N6, the coating liquid is heated to become a heated liquid. That is, the heating liquid is blown out in the form of droplets from the discharge port N5 of the nozzle N.
 ここで、ノズルNの吐出口N5における加熱液体(塗布液の液滴)の温度が塗布液の溶媒(溶剤)の沸点の1/2以下となるように、ヒータ71による窒素ガスの加熱量を設定してもよい(第1の温度範囲)。具体的には、吐出口N5における加熱液体の温度は、溶剤がIPAのときは41.2℃以下であってもよいし、溶剤がPGMEAのときは73℃以下であってもよいし、溶剤がGBLのときは102℃以下であってもよい。この場合、加熱された窒素ガスと混合した後の塗布液が高温となり難いので、溶媒(溶剤)の揮発量が多くなりすぎることが抑制され、ノズルNから吹き出された液滴が被処理体Wの表面に到達する前に固化し難くなる。 Here, the heating amount of the nitrogen gas by the heater 71 is set so that the temperature of the heating liquid (liquid droplets of the coating liquid) at the discharge port N5 of the nozzle N is equal to or less than ½ of the boiling point of the solvent (solvent) of the coating liquid. It may be set (first temperature range). Specifically, the temperature of the heated liquid at the discharge port N5 may be 41.2 ° C. or lower when the solvent is IPA, may be 73 ° C. or lower when the solvent is PGMEA, When is GBL, it may be 102 ° C. or lower. In this case, since the coating liquid after mixing with the heated nitrogen gas is unlikely to become high temperature, it is suppressed that the volatilization amount of the solvent (solvent) is excessive, and the droplets blown out from the nozzle N are to be processed W It becomes difficult to solidify before reaching the surface.
 あるいは、ノズルNの吐出口N5における加熱液体(塗布液の液滴)の温度が35℃~60℃となるように、ヒータ71による窒素ガスの加熱量を設定してもよい(第2の温度範囲)。この場合も、ノズルから吹き出された液滴が被処理体の表面に到達する前に固化し難くなる。あるいは、ノズルNの吐出口N5における加熱液体(塗布液の液滴)の温度が上記の第1及び第2の温度範囲の双方を満たすように、ヒータ71による窒素ガスの加熱量を設定してもよい(第3の温度範囲)。 Alternatively, the heating amount of the nitrogen gas by the heater 71 may be set so that the temperature of the heating liquid (liquid droplets of the coating liquid) at the discharge port N5 of the nozzle N is 35 ° C. to 60 ° C. (second temperature) range). Also in this case, the liquid droplets blown out from the nozzle are difficult to solidify before reaching the surface of the object to be processed. Alternatively, the heating amount of the nitrogen gas by the heater 71 is set so that the temperature of the heating liquid (coating liquid droplet) at the discharge port N5 of the nozzle N satisfies both the first and second temperature ranges. It is also possible (third temperature range).
 断熱材72は、配管N2の周りに配置されており、配管N2の内外において熱の移動を抑制する。そのため、断熱材72は、ヒータ71によって加熱された塗布液(加熱液体)が吐出口N5から吐出するまでの間において、加熱液体の温度の低下を抑制する。 The heat insulating material 72 is arrange | positioned around the piping N2, and suppresses the movement of heat inside and outside the piping N2. Therefore, the heat insulating material 72 suppresses a decrease in the temperature of the heated liquid until the coating liquid (heated liquid) heated by the heater 71 is discharged from the discharge port N5.
 バルブV、配管N2、ノズルN(流路N4)、窒素ガス源B2及びヒータ71は、加熱された窒素ガスをノズルNに供給すると共に加熱された窒素ガスによって塗布液を加熱するための加熱供給部70(第1の加熱部)を構成している。 The valve V, the pipe N2, the nozzle N (flow path N4), the nitrogen gas source B2, and the heater 71 supply the heated nitrogen gas to the nozzle N and heat supply for heating the coating liquid with the heated nitrogen gas. Part 70 (first heating unit) is configured.
 [熱処理ユニットの構成]
 続いて、図8及び図9を参照して、熱処理ユニットU2の構成について説明する。熱処理ユニットU2は、筐体100内に、被処理体Wを加熱する加熱室110と、被処理体Wを搬送する搬送機構120とを有する。筐体100のうち搬送機構120に対応する部分の両側壁には、被処理体Wを筐体100の内部に搬入すると共に被処理体Wを筐体100外へと搬出するための搬入出口101が形成されている。
[Configuration of heat treatment unit]
Then, with reference to FIG.8 and FIG.9, the structure of the heat processing unit U2 is demonstrated. The heat treatment unit U <b> 2 includes a heating chamber 110 that heats the workpiece W and a transport mechanism 120 that transports the workpiece W in the housing 100. A loading / unloading port 101 for carrying the workpiece W into the casing 100 and carrying the workpiece W out of the casing 100 on both side walls of the portion corresponding to the transport mechanism 120 in the casing 100. Is formed.
 加熱室110は、蓋部111と、熱板収容部112とを有する。蓋部111は、熱板収容部112の上方に位置しており、熱板収容部112から離間した上方位置と熱板収容部112上に載置される下方位置との間で上下動が可能である。蓋部111は、下方位置にあるときに熱板収容部112とともに処理室PRを構成する。蓋部111の中央には、排気部111aが設けられている。排気部111aは、処理室PRから気体を排気するために用いられる。 The heating chamber 110 includes a lid portion 111 and a hot plate housing portion 112. The lid portion 111 is located above the hot plate housing portion 112 and can be moved up and down between an upper position separated from the hot plate housing portion 112 and a lower position placed on the hot plate housing portion 112. It is. The lid part 111 constitutes the processing chamber PR together with the hot plate accommodating part 112 when in the lower position. An exhaust part 111 a is provided at the center of the lid part 111. The exhaust part 111a is used for exhausting gas from the processing chamber PR.
 熱板収容部112は、円筒状を呈しており、その内部に熱板113を収容する。熱板113の外周部は、支持部材114によって支持されている。支持部材114の外周は、筒状を呈するサポートリング115によって支持されている。サポートリング115の上面には、上方に向けて開口したガス供給口115aが形成されている。ガス供給口115aは、処理室PR内に不活性ガスを噴き出す。 The hot plate accommodating portion 112 has a cylindrical shape, and accommodates the hot plate 113 therein. The outer peripheral portion of the hot plate 113 is supported by a support member 114. The outer periphery of the support member 114 is supported by a cylindrical support ring 115. A gas supply port 115 a that opens upward is formed on the upper surface of the support ring 115. The gas supply port 115a ejects an inert gas into the processing chamber PR.
 熱板113は、図9に示されるように、円形状を呈する平板である。熱板113の外形は、被処理体Wの外形よりも大きい。熱板113には、その厚さ方向に貫通して延びる貫通孔HLが3つ形成されている(図9参照)。熱板113の上面には、被処理体Wを支持する6つの支持ピン113aが立設されている(図8参照)。支持ピン113aの高さは、例えば100μm程度であってもよい。 The hot plate 113 is a flat plate having a circular shape as shown in FIG. The outer shape of the hot plate 113 is larger than the outer shape of the workpiece W. The hot plate 113 is formed with three through holes HL extending in the thickness direction (see FIG. 9). On the upper surface of the hot plate 113, six support pins 113a for supporting the workpiece W are erected (see FIG. 8). The height of the support pin 113a may be about 100 μm, for example.
 図8に戻って、熱板113の下面には、ヒータ116が配置されている。ヒータ116は、コントローラCUに接続されており、コントローラCUからの指示信号に基づき制御される。 Returning to FIG. 8, a heater 116 is disposed on the lower surface of the hot plate 113. The heater 116 is connected to the controller CU and is controlled based on an instruction signal from the controller CU.
 熱板113の下方には、昇降機構119が配置されている。昇降機構119は、筐体100外に配置されたモータ119aと、モータ119aによって上下動する3つの昇降ピン119bとを有する。昇降ピン119bはそれぞれ、対応する貫通孔HLを通過可能に構成されている。コントローラCUがモータ119aに上昇信号又は下降信号を送信すると、昇降ピン119bは対応する貫通孔HL内を移動しつつ上下する。昇降ピン119bの先端が熱板113の上方に突出している場合、昇降ピン119bの先端上に被処理体Wを載置可能である。昇降ピン119bの先端上に載置された被処理体Wは、昇降ピン119bの上下動に伴い昇降する。 An elevating mechanism 119 is disposed below the hot plate 113. The elevating mechanism 119 includes a motor 119a disposed outside the housing 100, and three elevating pins 119b that move up and down by the motor 119a. The elevating pins 119b are configured to be able to pass through the corresponding through holes HL. When the controller CU transmits an ascending signal or a descending signal to the motor 119a, the elevating pins 119b move up and down while moving in the corresponding through holes HL. When the tip of the lift pin 119b protrudes above the hot plate 113, the workpiece W can be placed on the tip of the lift pin 119b. The workpiece W placed on the tip of the lifting pin 119b moves up and down as the lifting pin 119b moves up and down.
 搬送機構120は、加熱室110に隣接して位置している。搬送機構120は、被処理体Wが載置される搬送板121を有する。搬送板121は、図9に示されるように矩形状を呈する平板である。搬送板121のうち加熱室110側の端部は、加熱室110に向けて突出した円弧状を呈している。 The transport mechanism 120 is located adjacent to the heating chamber 110. The transport mechanism 120 includes a transport plate 121 on which the workpiece W is placed. The conveyance plate 121 is a flat plate having a rectangular shape as shown in FIG. An end of the transport plate 121 on the heating chamber 110 side has an arc shape protruding toward the heating chamber 110.
 搬送板121は、加熱室110側に向かって延伸するレール122に取付けられている。搬送板121は、駆動部123により駆動され、レール122上を水平移動可能である。加熱室110側まで移動した搬送板121は、熱板113の上方に位置する。 The conveyance plate 121 is attached to a rail 122 extending toward the heating chamber 110 side. The transport plate 121 is driven by the drive unit 123 and can move horizontally on the rail 122. The transport plate 121 moved to the heating chamber 110 side is located above the hot plate 113.
 搬送板121には、レール122の延在方向に沿って延びる2本のスリット124が形成されている。スリット124は、搬送板121における加熱室110側の端部から搬送板121の中央部付近まで延びるように形成されている。スリット124により、加熱室110側に移動した搬送板121と熱板113上に突出した昇降ピン119bとの干渉が防止される。 The transport plate 121 is formed with two slits 124 extending along the extending direction of the rail 122. The slit 124 is formed so as to extend from the end of the transport plate 121 on the heating chamber 110 side to the vicinity of the center of the transport plate 121. The slit 124 prevents interference between the transport plate 121 moved to the heating chamber 110 side and the lift pins 119b protruding on the heat plate 113.
 図8に示されるように、搬送板121の下方には昇降機構125が配置されている。昇降機構125は、筐体100外に配置されたモータ125aと、モータ125aによって上下動する3つの昇降ピン125bとを有する。昇降ピン125bはそれぞれ、スリット124を通過可能に構成されている。コントローラCUがモータ125aに上昇信号又は下降信号を送信すると、昇降ピン125bはスリット124内を移動しつつ上下する。昇降ピン125bの先端が搬送板121の上方に突出している場合、昇降ピン125bの先端上に被処理体Wを載置可能である。昇降ピン125bの先端上に載置された被処理体Wは、昇降ピン125bの上下動に伴い昇降する。 As shown in FIG. 8, an elevating mechanism 125 is disposed below the transport plate 121. The elevating mechanism 125 includes a motor 125a disposed outside the housing 100 and three elevating pins 125b that move up and down by the motor 125a. The elevating pins 125b are configured to be able to pass through the slits 124, respectively. When the controller CU transmits an ascending signal or a descending signal to the motor 125a, the elevating pin 125b moves up and down while moving in the slit 124. When the tip of the lift pin 125b protrudes above the transport plate 121, the workpiece W can be placed on the tip of the lift pin 125b. The workpiece W placed on the tip of the elevating pin 125b moves up and down as the elevating pin 125b moves up and down.
 [塗布膜の形成方法]
 続いて、塗布膜Rを被処理体Wの表面に形成する方法(塗布膜形成方法)について、図10及び図11を参照して説明する。まず、コントローラCUが受け渡しアームA1を制御して、受け渡しアームA1によってキャリア10内の被処理体Wを棚部33に搬送する。次に、コントローラCUが搬送アームA2を制御して、搬送アームA2によって被処理体Wを棚部33から取り出し、熱処理ユニットU2に搬送する。熱処理ユニットU2では、コントローラCUが搬送機構120(搬送板121)を制御して、被処理体Wが加熱室110内に搬送される(ステップS1)。被処理体Wが熱板113上に載置されると、コントローラCUが昇降機構119を制御して、昇降機構119によって蓋部111を下方位置に降下させる。これにより、蓋部111と熱板収容部112とで構成される処理室PR内に被処理体Wが収容される。
[Method of forming coating film]
Subsequently, a method of forming the coating film R on the surface of the workpiece W (coating film forming method) will be described with reference to FIGS. 10 and 11. First, the controller CU controls the delivery arm A1, and the workpiece W in the carrier 10 is conveyed to the shelf 33 by the delivery arm A1. Next, the controller CU controls the transport arm A2, takes out the workpiece W from the shelf 33 by the transport arm A2, and transports it to the heat treatment unit U2. In the heat treatment unit U2, the controller CU controls the transport mechanism 120 (transport plate 121), and the workpiece W is transported into the heating chamber 110 (Step S1). When the workpiece W is placed on the hot plate 113, the controller CU controls the lifting mechanism 119 to lower the lid 111 to the lower position by the lifting mechanism 119. As a result, the object to be processed W is accommodated in the processing chamber PR constituted by the lid portion 111 and the hot plate accommodating portion 112.
 次に、コントローラCUが加熱室110を制御して、加熱室110により被処理体Wを所定温度まで加熱する(ステップS2;第1の工程;第1の処理)。加熱室110における被処理体Wの加熱温度は、液滴に含まれる溶剤の沸点よりも0℃~30℃低い温度に設定されていてもよい。加熱室110による被処理体Wの加熱温度が、液滴に含まれる溶剤の沸点よりも30℃低い温度以上であると、後述のステップS5で吹き付けられる液滴の溶剤の揮発が促進されやすくなる。そのため、液滴が被処理体Wの凹部(凸部W2の間)に溜まって、凸部W2の基端側において特に塗布膜Rの膜厚が大きくなってしまうことが抑制される。加熱室110による被処理体Wの加熱温度が、液滴に含まれる溶剤の沸点よりも0℃低い温度(すなわち、沸点と等しい温度)以下であると、後述のステップS5で吹き付けられる液滴が被処理体Wの表面に到達する前に液滴の溶剤のほとんどが揮発してしまうような事態が生じ難い。そのため、塗布液液滴に含まれる塗布液材料粒子がその形状を保持したまま被処理体Wの表面に次々と堆積してしまうことが抑制される。 Next, the controller CU controls the heating chamber 110 and heats the workpiece W to a predetermined temperature by the heating chamber 110 (step S2; first step; first processing). The heating temperature of the target object W in the heating chamber 110 may be set to a temperature that is 0 ° C. to 30 ° C. lower than the boiling point of the solvent contained in the droplets. When the heating temperature of the object W to be processed in the heating chamber 110 is equal to or higher than the temperature 30 ° C. lower than the boiling point of the solvent contained in the droplets, volatilization of the solvent of the droplets sprayed in step S5 described later is facilitated. . Therefore, it is possible to prevent the droplets from collecting in the concave portions (between the convex portions W2) of the workpiece W and increasing the film thickness of the coating film R particularly on the base end side of the convex portions W2. If the heating temperature of the object W to be processed by the heating chamber 110 is equal to or lower than the temperature 0 ° C. lower than the boiling point of the solvent contained in the droplets (that is, a temperature equal to the boiling point), the droplets sprayed in step S5 described later It is difficult for a situation in which most of the solvent of the droplets volatilizes before reaching the surface of the workpiece W. Therefore, it is suppressed that the coating liquid material particles contained in the coating liquid droplets are successively deposited on the surface of the workpiece W while maintaining the shape.
 塗布液の溶剤がIPAである場合には、IPAの沸点が82.4℃であるから、加熱室110における被処理体Wの加熱温度が55℃~85℃程度に設定されてもよい。塗布液の溶剤がPGMEAである場合には、PGMEAの沸点が146℃であるから、加熱室110における被処理体Wの加熱温度が110℃~150℃程度に設定されてもよい。塗布液の溶剤がGBLである場合には、GBLの沸点が204℃であるから、加熱室110における被処理体Wの加熱温度が150℃~205℃程度に設定されてもよい。 When the solvent of the coating solution is IPA, since the boiling point of IPA is 82.4 ° C., the heating temperature of the workpiece W in the heating chamber 110 may be set to about 55 ° C. to 85 ° C. When the solvent of the coating solution is PGMEA, since the boiling point of PGMEA is 146 ° C., the heating temperature of the workpiece W in the heating chamber 110 may be set to about 110 ° C. to 150 ° C. When the solvent of the coating solution is GBL, since the boiling point of GBL is 204 ° C., the heating temperature of the workpiece W in the heating chamber 110 may be set to about 150 ° C. to 205 ° C.
 次に、コントローラCUが昇降機構119及び搬送機構120を制御して、加熱された被処理体Wを加熱室110から搬出する。次に、コントローラCUが搬送アームA2を制御して、搬送アームA2によって被処理体Wを熱処理ユニットU2から取り出し、液処理ユニットU1に搬送する(ステップS3)。被処理体Wが加熱室110によって加熱されてから液処理ユニットU1に搬送されるまでに要する時間は、例えば、数秒~10秒程度である。この搬送の際、加熱された被処理体Wの温度は、例えば20℃~30℃程度低下しうる。 Next, the controller CU controls the elevating mechanism 119 and the transport mechanism 120 to carry out the heated workpiece W from the heating chamber 110. Next, the controller CU controls the transport arm A2, takes out the workpiece W from the heat treatment unit U2 by the transport arm A2, and transports it to the liquid processing unit U1 (step S3). The time required for the workpiece W to be transported to the liquid processing unit U1 after being heated by the heating chamber 110 is, for example, about several seconds to 10 seconds. During this conveyance, the temperature of the heated object W can be lowered by about 20 ° C. to 30 ° C., for example.
 被処理体Wが液処理ユニットU1に搬送され、回転保持部40の保持部42に保持されると、コントローラCUが回転部41を制御して、被処理体Wを回転駆動させる(ステップS4)。この状態で、コントローラCUが駆動部50、ポンプP、バルブV及びヒータ71を制御して、ノズルNが被処理体Wの回転軸に直交する直線上を被処理体Wの径方向に沿って移動しながら、回転している被処理体Wの表面に対してノズルNの吐出口N5から加熱された塗布液の液滴(加熱液体の液滴)を吹き付ける(ステップS5;図11(a)参照;第3の工程:第2の処理)。 When the object to be processed W is conveyed to the liquid processing unit U1 and is held by the holding part 42 of the rotation holding part 40, the controller CU controls the rotating part 41 to rotate the object to be processed W (step S4). . In this state, the controller CU controls the drive unit 50, the pump P, the valve V, and the heater 71, and the nozzle N is on a straight line perpendicular to the rotation axis of the workpiece W along the radial direction of the workpiece W. While moving, the heated coating liquid droplets (heated liquid droplets) are sprayed from the discharge port N5 of the nozzle N to the surface of the rotating workpiece W (step S5; FIG. 11A). Reference; third step: second treatment).
 このとき、ヒータ71によって加熱された窒素ガスがノズルNに供給され、塗布液と混合されて加熱液体(第1の加熱液体)が形成されている(第2の工程;第2の処理)。そのため、図11(a)に示されるように、液滴がノズルNから吹き出された直後から液滴の溶剤が揮発して、液滴(塗布液)の流動性が低下する。また、このとき、ステップS2において被処理体Wが加熱され、被処理体Wの表面が所定の温度となっている。そのため、被処理体Wに付着する直前の液滴又は被処理体Wに付着した液滴の溶剤が被処理体Wから熱を受けて揮発する。これにより、液滴の材料粒子(塗布液材料)が被処理体Wの表面に付着する(図11(b)参照)。ノズルNが被処理体Wの表面を1回又は複数回往復移動することにより、被処理体Wの表面上に所定の厚さの塗布膜が形成される(図11(c)参照)。 At this time, nitrogen gas heated by the heater 71 is supplied to the nozzle N and mixed with the coating liquid to form a heating liquid (first heating liquid) (second process; second process). For this reason, as shown in FIG. 11A, the solvent of the droplets volatilizes immediately after the droplets are blown from the nozzle N, and the fluidity of the droplets (coating liquid) decreases. At this time, the object to be processed W is heated in step S2, and the surface of the object to be processed W is at a predetermined temperature. Therefore, the liquid droplet immediately before adhering to the object to be processed W or the solvent of the liquid droplet adhering to the object to be processed W is volatilized by receiving heat from the object to be processed W. Thereby, the material particles (coating liquid material) of the droplets adhere to the surface of the object to be processed W (see FIG. 11B). As the nozzle N reciprocates once or a plurality of times on the surface of the workpiece W, a coating film having a predetermined thickness is formed on the surface of the workpiece W (see FIG. 11C).
 次に、コントローラCUが搬送アームA2を制御して、搬送アームA2によって被処理体Wを液処理ユニットU1から取り出し、被処理体Wが所定温度まで冷めた後に、棚部33に搬送する。このとき、冷却板等の冷却機構を用いて被処理体Wを強制的に冷却してもよいし、自然冷却であってもよい。その後、コントローラCUが受け渡しアームA1を制御して、受け渡しアームA1によって被処理体Wを棚部33からキャリア10内に戻す(ステップS6)。これにより、塗布膜Rの形成処理が完了する。 Next, the controller CU controls the transport arm A2, takes out the workpiece W from the liquid processing unit U1 by the transport arm A2, cools the workpiece W to a predetermined temperature, and transports it to the shelf 33. At this time, the workpiece W may be forcibly cooled using a cooling mechanism such as a cooling plate or may be natural cooling. Thereafter, the controller CU controls the delivery arm A1, and returns the workpiece W from the shelf 33 into the carrier 10 by the delivery arm A1 (step S6). Thereby, the formation process of the coating film R is completed.
 [作用]
 以上のような本実施形態では、塗布液を被処理体Wの表面に吹き付けるに際して、塗布液を加熱して加熱液体としている。そのため、加熱液体がノズルNから吹き出されると、その直後から溶媒(溶剤)が揮発して塗布液中の材料粒子(溶質)の濃度が高まるので、塗布液(加熱液体)の流動性が低下した状態となる。従って、被処理体Wの表面(凹凸面)において、液滴同士が凝集して流動することが抑制される。その結果、被処理体Wの表面に塗布液の材料粒子が均一に付着しやすくなる。以上より、凸部W2を含む被処理体Wの表面に沿って塗布膜Rをより均一に形成することが可能となる。
[Action]
In the present embodiment as described above, when the coating liquid is sprayed onto the surface of the workpiece W, the coating liquid is heated to form a heated liquid. Therefore, when the heated liquid is blown out from the nozzle N, the solvent (solvent) is volatilized immediately after that, and the concentration of the material particles (solute) in the coating liquid increases, so that the fluidity of the coating liquid (heating liquid) decreases. It will be in the state. Therefore, the droplets are prevented from aggregating and flowing on the surface (uneven surface) of the workpiece W. As a result, the material particles of the coating liquid easily adhere uniformly to the surface of the workpiece W. As described above, the coating film R can be more uniformly formed along the surface of the workpiece W including the convex portion W2.
 加えて、加熱液体がノズルNから吹き出された直後から溶媒(溶剤)の揮発が促進されるので、被処理体Wの表面に到達した液滴の溶媒(溶剤)を完全に揮発させるために被処理体Wを熱処理ユニットU2に搬送させる必要がない。そのため、被処理体Wの表面に所望の厚さの塗布膜Rを形成するために、被処理体Wを液処理ユニットU1と熱処理ユニットU2との間で往復させる必要がない。従って、被処理体Wに塗布膜Rを形成する時間を極めて短縮することが可能となる。 In addition, since the volatilization of the solvent (solvent) is promoted immediately after the heated liquid is blown from the nozzle N, the solvent (solvent) in the droplets reaching the surface of the workpiece W is completely volatilized. There is no need to transport the treatment body W to the heat treatment unit U2. Therefore, in order to form the coating film R having a desired thickness on the surface of the object to be processed W, it is not necessary to reciprocate the object to be processed W between the liquid processing unit U1 and the heat treatment unit U2. Therefore, the time for forming the coating film R on the workpiece W can be extremely shortened.
 本実施形態では、被処理体Wの表面に液滴を吹き付ける前に、ステップS2において被処理体Wを熱処理ユニットU2において加熱している。そのため、被処理体Wの表面全体において、ステップS5で吹き付けられる塗布液の溶媒(溶剤)が被処理体Wからの熱を受けて揮発する。そのため、被処理体Wの表面(凹凸面)において、液滴同士が凝集して流動することがより抑制される。従って、凸部W2を含む被処理体Wの表面に沿って塗布膜Rをさらに均一に形成することが可能となる。 In this embodiment, before spraying droplets on the surface of the object to be processed W, the object to be processed W is heated in the heat treatment unit U2 in step S2. Therefore, the solvent (solvent) of the coating liquid sprayed in step S <b> 5 receives the heat from the object to be processed and volatilizes on the entire surface of the object to be processed. Therefore, it is further suppressed that droplets aggregate and flow on the surface (uneven surface) of the workpiece W. Therefore, the coating film R can be formed more uniformly along the surface of the workpiece W including the convex portion W2.
 本実施形態では、ノズルN内において塗布液と加熱された窒素ガスとを混合することにより塗布液を加熱して加熱液体を得ている。そのため、塗布液がノズルNから吐出される直前まで、塗布液の流動性が高いままの状態となる。従って、ノズルNから塗布液を液滴の状態で吹き出しやすくなる。その結果、ノズルNからの吐出前においては塗布液の流動性を高めて液滴を生成したい一方で、ノズルNからの吐出後においては塗布液の流動性を低下させて被処理体Wの表面に塗布液の材料粒子を均一に付着させたいという相反する要求に、簡易な手法で応えることができる。 In the present embodiment, the heating liquid is obtained by heating the coating liquid by mixing the coating liquid and the heated nitrogen gas in the nozzle N. Therefore, the fluidity of the coating liquid remains high until immediately before the coating liquid is discharged from the nozzle N. Therefore, it becomes easy to blow the coating liquid from the nozzle N in the form of droplets. As a result, before discharging from the nozzle N, it is desired to increase the fluidity of the coating liquid to generate droplets, but after discharging from the nozzle N, the fluidity of the coating liquid is reduced to reduce the surface of the workpiece W. It is possible to meet the conflicting demands for uniformly adhering the material particles of the coating liquid with a simple method.
 本実施形態では、ステップS5において、被処理体Wを回転させた状態で被処理体Wの表面に対して液滴をノズルNから吹き付けている。そのため、静止した被処理体Wの表面上においてノズルNを蛇行させながらノズルNから液滴を被処理体Wの表面に吹き付けるときと比較して、ノズルNからの液滴が被処理体Wの表面に重複して吹き付けられ難い。従って、凸部W2を含む被処理体Wの表面に沿って塗布膜Rをいっそう均一に形成することが可能となる。 In the present embodiment, in step S5, droplets are sprayed from the nozzle N onto the surface of the object to be processed W while the object to be processed W is rotated. Therefore, compared with the case where droplets are sprayed from the nozzle N onto the surface of the workpiece W while the nozzle N is meandering on the surface of the stationary workpiece W, the droplets from the nozzle N are removed from the workpiece W. It is difficult to be sprayed on the surface. Therefore, the coating film R can be formed more uniformly along the surface of the workpiece W including the convex portion W2.
 [他の実施形態]
 以上、本開示に係る実施形態について詳細に説明したが、本発明の要旨の範囲内で種々の変形を上記の実施形態に加えてもよい。例えば、本実施形態では、被処理体Wを加熱室110により加熱する処理(ステップS2)を熱処理ユニットU2で行い、被処理体Wの表面に塗布液液滴をノズルNから吹き付ける処理(ステップS5)を液処理ユニットU1で行っていたが、液処理ユニットU1及び熱処理ユニットU2の双方の構成を有する処理室を用いて、双方の処理を当該処理室で行ってもよい。この場合、被処理体Wを加熱する際には、被処理体Wの回転を停止させておくとよい。
[Other Embodiments]
As mentioned above, although embodiment concerning this indication was described in detail, you may add various deformation | transformation to said embodiment within the range of the summary of this invention. For example, in the present embodiment, the heat treatment unit U2 performs the process of heating the object to be processed W in the heating chamber 110 (step S2), and the process of spraying the coating liquid droplets onto the surface of the object to be processed W from the nozzle N (step S5). ) Is performed in the liquid processing unit U1, but both processes may be performed in the processing chamber using a processing chamber having both the liquid processing unit U1 and the heat treatment unit U2. In this case, when heating the workpiece W, it is preferable to stop the rotation of the workpiece W.
 基板W1の径方向に複数の凸部W2が存在する場合、基板W1の回転軸に近いほど遠心力が小さくなるので、液滴が被処理体Wの表面で凝集すると、当該回転軸寄りの凸部W2ほど凝集した塗布液が滞留しやすい。そのため、ノズルNが当該回転軸の近傍に位置するときに、ノズルNの移動速度を速くしてもよい。この場合、被処理体Wの表面のうち当該回転軸寄りにおいて、液滴の吹き付け量が少なくなるので、塗布液液滴が凝集し難くなる。 In the case where there are a plurality of convex portions W2 in the radial direction of the substrate W1, the centrifugal force becomes smaller as it is closer to the rotation axis of the substrate W1, so that when the droplets aggregate on the surface of the workpiece W, the convexity closer to the rotation axis. The coating liquid aggregated as part W2 tends to stay. Therefore, when the nozzle N is positioned in the vicinity of the rotation axis, the moving speed of the nozzle N may be increased. In this case, since the amount of droplets sprayed near the rotation axis on the surface of the workpiece W is small, the coating liquid droplets are difficult to aggregate.
 コントローラCUは、ノズルNの位置が基板W1の回転軸に近いほど被処理体Wの回転数を大きくするように、回転部41を制御してもよい。このとき、コントローラCUは、ノズルNの直下での被処理体Wの移動速度(線速度)がノズルNの位置にかかわらず一定になるように、回転部41を制御してもよい。コントローラCUは、ノズルNの位置が基板W1の回転軸に近いほど被処理体Wの回転数を大きくする制御と、ノズルNが当該回転軸の近傍に位置するほどノズルNの移動速度を早くする制御とを組み合わせて実行してもよい。コントローラCUは、ノズルNの基板W1に対する位置にかかわらず、被処理体Wの回転数が一定となるように、回転部41を制御してもよい。 The controller CU may control the rotating unit 41 so that the rotation speed of the workpiece W increases as the position of the nozzle N is closer to the rotation axis of the substrate W1. At this time, the controller CU may control the rotating unit 41 so that the moving speed (linear velocity) of the workpiece W immediately below the nozzle N is constant regardless of the position of the nozzle N. The controller CU increases the rotational speed of the workpiece W as the position of the nozzle N is closer to the rotation axis of the substrate W1, and increases the moving speed of the nozzle N as the nozzle N is positioned closer to the rotation axis. You may perform in combination with control. The controller CU may control the rotating unit 41 such that the number of rotations of the workpiece W is constant regardless of the position of the nozzle N with respect to the substrate W1.
 ノズルNからの液滴の吹き付け領域が被処理体Wの表面の大きさ以上である等の場合には、ノズルNを移動させなくてもよいし、被処理体Wを回転させなくてもよい。 When the area where the droplets from the nozzle N are sprayed is larger than the size of the surface of the object to be processed W, the nozzle N does not have to be moved, and the object to be processed W need not be rotated. .
 ステップS2に加えて、被処理体Wの表面に液滴をノズルNから吹き付ける処理(ステップS5)の際にも、被処理体Wを加熱してもよい。あるいは、被処理体Wを予め加熱するステップS2の処理を行わなくてもよい。 In addition to step S2, the object to be processed W may also be heated in the process of spraying droplets from the nozzle N onto the surface of the object to be processed W (step S5). Or the process of step S2 which heats the to-be-processed object W previously does not need to be performed.
 例えば、図12に示されるように、液処理ユニットU1は、加熱された窒素ガス(高温窒素ガス)を被処理体Wの表面に吹き付けるように構成されたガスノズルGNを更に有し、コントローラCUからの指示に基づいてガスノズルGNの動作をガス供給部によって制御してもよい。具体的には、ステップS5において、コントローラCUがガス供給部を制御して、ガスノズルGNをノズルNに追従させつつ、被処理体Wの表面のうち液滴の吹き付け箇所に対して高温窒素ガスをガスノズルGNから吹き付けてもよい。この場合、液滴の吹き付け中に、ガスノズルGNからの高温窒素ガスによって溶剤の乾燥が行われるので、被処理体Wの表面に塗布膜Rを形成するのに要する時間を短縮することができる。なお、当該高温窒素ガスの温度は、50℃~150℃程度であってもよい。 For example, as shown in FIG. 12, the liquid processing unit U1 further includes a gas nozzle GN configured to blow heated nitrogen gas (high-temperature nitrogen gas) onto the surface of the object to be processed W. From the controller CU Based on the instruction, the operation of the gas nozzle GN may be controlled by the gas supply unit. Specifically, in step S5, the controller CU controls the gas supply unit to cause the gas nozzle GN to follow the nozzle N, while supplying high-temperature nitrogen gas to the sprayed portion of the droplet on the surface of the workpiece W. You may spray from gas nozzle GN. In this case, since the solvent is dried by the high-temperature nitrogen gas from the gas nozzle GN during the spraying of the droplets, the time required to form the coating film R on the surface of the workpiece W can be shortened. The temperature of the high-temperature nitrogen gas may be about 50 ° C. to 150 ° C.
 上記の実施形態では、ヒータ71によって窒素ガスを加熱し、加熱した窒素ガスによってさらに塗布液を加熱していたが、図13に示されるように、ヒータ71に代えてポンプPの下流側で且つアーム53の上流側にヒータ81を設け、塗布液を直接加熱してもよい。この場合も、塗布液がノズルNから吐出される直前まで、塗布液の流動性を維持しうる。そのため、ノズルNから塗布液を液滴の状態で吹き出しやすくなる。従って、ノズルNからの吐出前においては塗布液の流動性を高めて液滴を生成したい一方で、ノズルNからの吐出後においては塗布液の流動性を低下させて被処理体Wの表面に塗布液の材料粒子が均一に付着させたいという相反する要求に、簡易な手法で応えることができる。 In the above embodiment, the nitrogen gas is heated by the heater 71, and the coating liquid is further heated by the heated nitrogen gas. However, as shown in FIG. A heater 81 may be provided on the upstream side of the arm 53 to directly heat the coating solution. Also in this case, the fluidity of the coating liquid can be maintained until immediately before the coating liquid is discharged from the nozzle N. Therefore, it becomes easy to blow out the coating liquid from the nozzle N in a droplet state. Therefore, before discharging from the nozzle N, it is desired to increase the fluidity of the coating liquid to generate droplets, but after discharging from the nozzle N, the fluidity of the coating liquid is reduced to form the surface of the workpiece W. It is possible to meet the conflicting demands for the material particles of the coating solution to adhere uniformly by a simple method.
 図14に示されるように、バルブVの上流側とヒータ71の下流側とを接続するバイパス流路をさらに設けると共に、当該バイパス流路にバルブ73を設けてもよい。この場合、コントローラCUがバルブV,73を制御することにより、ヒータ71によって加熱された窒素ガスと、ヒータ71によって加熱されていない窒素ガス(常温の窒素ガス)とを、選択的にノズルNに供給することができる。具体的には、被処理体Wの表面に液滴を吹き出す処理が1回目の場合には、コントローラCUがバルブVを閉鎖し且つバルブ73を開放することで、加熱液体(第1の加熱液体)の温度を相対的に低くしてもよい。一方、被処理体Wの表面に液滴を吹き出す処理が2回目以降の場合には、コントローラCUがバルブVを開放し且つバルブ73を閉鎖することで、加熱液体(第2の加熱液体)の温度を相対的に高くしてもよい(第4の工程;第3の処理)。このようにすると、被処理体Wの表面に1回目に吹き付けられる液滴(第3の工程;第2の処理)は、流動性が高い傾向にあるので、被処理体のWうち狭隘な凹部(凸部W2の間)に入り込みやすくなる。一方、被処理体Wの表面に2回目以降に吹き付けられる液滴(第5の工程;第3の処理)は、流動性が低い傾向にあるので、被処理体Wの凸部W2の側面に付着しやすくなる。従って、凸部W2を含む被処理体Wの表面に沿って塗布膜Rをさらに均一に形成することが可能となる。また、ノズルN内において塗布液の材料粒子が固化し、ノズルNが詰まることを抑制するために、ノズルNからの液滴の吹き付け処理が行われた後にコントローラCUがバルブVを閉鎖し且つバルブ73を開放することで、常温の窒素ガスをノズルNに供給して、ノズルNを冷却してもよい。 As shown in FIG. 14, a bypass channel that connects the upstream side of the valve V and the downstream side of the heater 71 may be further provided, and the valve 73 may be provided in the bypass channel. In this case, the controller CU controls the valves V and 73 so that the nitrogen gas heated by the heater 71 and the nitrogen gas not heated by the heater 71 (normal temperature nitrogen gas) are selectively supplied to the nozzle N. Can be supplied. Specifically, when the process of ejecting droplets to the surface of the object to be processed W is the first time, the controller CU closes the valve V and opens the valve 73 so that the heating liquid (first heating liquid ) May be relatively low. On the other hand, when the process of ejecting droplets to the surface of the workpiece W is performed for the second time or later, the controller CU opens the valve V and closes the valve 73, so that the heating liquid (second heating liquid) is discharged. The temperature may be relatively high (fourth step; third treatment). In this case, the first droplet sprayed on the surface of the object to be processed W (third step; second process) tends to have high fluidity. It becomes easy to enter (between the convex portions W2). On the other hand, since the liquid droplets (fifth step; third treatment) sprayed on the surface of the workpiece W for the second time or later tend to have low fluidity, the droplets are formed on the side surface of the convex portion W2 of the workpiece W. It becomes easy to adhere. Therefore, the coating film R can be formed more uniformly along the surface of the workpiece W including the convex portion W2. In addition, in order to prevent the material particles of the coating liquid from solidifying in the nozzle N and blocking the nozzle N, the controller CU closes the valve V after the droplet spraying process from the nozzle N is performed and the valve N By opening 73, normal temperature nitrogen gas may be supplied to the nozzle N to cool the nozzle N.
 図15に示されるように、ノズルN内において塗布液の材料粒子が固化し、ノズルNが詰まることを抑制するために、液処理ユニットU1がノズルNの洗浄部82をさらに有していてもよい。洗浄部82は、例えば、溶剤を貯留する容器である。液滴の吹き付け処理が行われたノズルNを洗浄部82内の溶剤に浸漬することにより、ノズルNの冷却及び洗浄が行われる。 As shown in FIG. 15, in order to prevent the material particles of the coating liquid from solidifying in the nozzle N and clogging the nozzle N, the liquid processing unit U1 may further include a cleaning unit 82 for the nozzle N. Good. The washing | cleaning part 82 is a container which stores a solvent, for example. The nozzle N that has been subjected to the droplet spraying process is immersed in the solvent in the cleaning unit 82, whereby the nozzle N is cooled and cleaned.
 塗布液に混合されるガスとしては、窒素ガス以外の種々のガス(例えば、不活性ガス、空気等)を用いてもよい。 As the gas mixed in the coating solution, various gases other than nitrogen gas (for example, inert gas, air, etc.) may be used.
 本実施形態に係る塗布膜形成装置1を用いて塗布膜Rを被処理体Wの表面に形成した場合に、凸部W2を含む被処理体Wの表面に沿って塗布膜Rを均一に形成できることを確認するため、下記の試験を行った。 When the coating film R is formed on the surface of the workpiece W using the coating film forming apparatus 1 according to this embodiment, the coating film R is uniformly formed along the surface of the workpiece W including the convex portion W2. In order to confirm that it was possible, the following test was conducted.
 直径150mmの円板状の基板W1上に複数の凸部W2が設けられた被処理体Wを用意した。また、ポジ型フォトレジストをPGMEAで希釈したレジスト液を用意した。 A workpiece W having a plurality of convex portions W2 provided on a disk-shaped substrate W1 having a diameter of 150 mm was prepared. Further, a resist solution in which a positive photoresist was diluted with PGMEA was prepared.
 次に、熱処理ユニットU2により被処理体Wを120℃で60秒間加熱した。次に、加熱後の被処理体Wを液処理ユニットU1に搬送し、用意したレジスト液を2流体ノズルのノズルNから被処理体Wの表面に吹き付けた。このとき、ノズルNの直下における被処理体Wの移動速度(線速度)が一定になるように、回転保持部40による被処理体Wの回転数を60rpm~600rpmの範囲内で変動させた。また、ノズルNの移動速度は10mm/秒~150mm/秒であった。さらに、被処理体Wの表面においてノズルNを14回往復させた。以上により、被処理体Wの表面にレジスト膜(塗布膜R)を形成した。 Next, the workpiece W was heated at 120 ° C. for 60 seconds by the heat treatment unit U2. Next, the heated object W was transported to the liquid processing unit U1, and the prepared resist solution was sprayed from the nozzle N of the two-fluid nozzle onto the surface of the object W. At this time, the rotational speed of the workpiece W by the rotation holding unit 40 was varied within the range of 60 rpm to 600 rpm so that the moving speed (linear velocity) of the workpiece W just below the nozzle N was constant. The moving speed of the nozzle N was 10 mm / second to 150 mm / second. Further, the nozzle N was reciprocated 14 times on the surface of the workpiece W. Thus, a resist film (coating film R) was formed on the surface of the object to be processed W.
 次に、任意の2つの凸部W2について、断面の様子を電子顕微鏡にて観察した。図16(a),(b)において、当該2つの凸部W2の電子顕微鏡写真を模式的に図示した。試どちらの凸部W2においても、凸部W2を含む被処理体Wの表面に沿ってレジスト膜(塗布膜R)が極めて均一に形成されていたことが確認された。 Next, the state of the cross section of any two convex portions W2 was observed with an electron microscope. In FIG. 16 (a), (b), the electron micrograph of the said 2 convex part W2 was shown typically. It was confirmed that the resist film (coating film R) was formed extremely uniformly along the surface of the workpiece W including the convex portion W2 in any of the trial convex portions W2.
 1…塗布膜形成装置、60…供給部、70…加熱供給部(第1の加熱部)、71,81…ヒータ、72…断熱材、CU…コントローラ(制御部)、N…ノズル、N5…吐出口、R…塗布膜、U1…液処理ユニット、U2…熱処理ユニット(第2の加熱部)、W…被処理体、W1…基板、W1a…表面、W2…凸部、W2a…表面。 DESCRIPTION OF SYMBOLS 1 ... Coating film formation apparatus, 60 ... Supply part, 70 ... Heat supply part (1st heating part), 71, 81 ... Heater, 72 ... Heat insulating material, CU ... Controller (control part), N ... Nozzle, N5 ... Discharge port, R ... coating film, U1 ... liquid processing unit, U2 ... heat treatment unit (second heating unit), W ... target object, W1 ... substrate, W1a ... surface, W2 ... convex, W2a ... surface.

Claims (15)

  1.  基板と、前記基板の表面に設けられた凸部とを含む被処理体を加熱する第1の工程と、
     塗布液を加熱して第1の加熱液体を得る第2の工程と、
     前記第1の工程において加熱された後の前記被処理体の表面に対して、前記第1の加熱液体を液滴の状態にてノズルから吹き付ける第3の工程とを含む、塗布膜形成方法。
    A first step of heating an object to be processed including a substrate and a convex portion provided on the surface of the substrate;
    A second step of heating the coating liquid to obtain a first heated liquid;
    And a third step of spraying the first heated liquid in a droplet state from the nozzle onto the surface of the object to be processed after being heated in the first step.
  2.  前記第2の工程では、前記ノズルの出口における前記第1の加熱液体の温度が前記塗布液に含まれる溶剤の沸点の1/2以下となるように前記塗布液を加熱する、請求項1に記載の塗布膜形成方法。 The said 2nd process WHEREIN: The said coating liquid is heated so that the temperature of the said 1st heating liquid in the exit of the said nozzle may become 1/2 or less of the boiling point of the solvent contained in the said coating liquid. The coating film formation method of description.
  3.  前記第2の工程では、前記ノズルの出口における前記第1の加熱液体の温度が35℃~60℃となるように前記塗布液を加熱する、請求項1に記載の塗布膜形成方法。 The coating film forming method according to claim 1, wherein, in the second step, the coating liquid is heated so that a temperature of the first heating liquid at an outlet of the nozzle becomes 35 ° C to 60 ° C.
  4.  前記第2の工程では、前記ノズル内において前記塗布液と加熱されたガスとを混合することにより前記塗布液を加熱して前記第1の加熱液体を得る、請求項1に記載の塗布膜形成方法。 2. The coating film formation according to claim 1, wherein, in the second step, the coating liquid is heated to obtain the first heated liquid by mixing the coating liquid and a heated gas in the nozzle. Method.
  5.  前記第2の工程では、前記ノズルよりも上流側において前記塗布液をヒータにより加熱して前記第1の加熱液体を得る、請求項1に記載の塗布膜形成方法。 The coating film forming method according to claim 1, wherein, in the second step, the first heating liquid is obtained by heating the coating liquid with a heater on the upstream side of the nozzle.
  6.  前記第3の工程の後に、前記塗布液を加熱して第2の加熱液体を得る第4の工程と、
     前記第4の工程の後に、塗布膜が形成された前記被処理体の前記表面に対して、前記第2の加熱液体を液滴の状態にて前記ノズルから吹き付ける第5の工程をさらに含み、
     前記第4の工程における前記第2の加熱液体の温度は、前記第2の工程における前記第1の加熱液体の温度よりも高く設定されている、請求項1に記載の塗布膜形成方法。
    After the third step, a fourth step of heating the coating liquid to obtain a second heated liquid;
    After the fourth step, the method further includes a fifth step of spraying the second heating liquid from the nozzle in the form of droplets on the surface of the object to be processed on which the coating film is formed,
    2. The coating film forming method according to claim 1, wherein the temperature of the second heating liquid in the fourth step is set higher than the temperature of the first heating liquid in the second step.
  7.  前記第3の工程では、前記被処理体の前記表面に対して前記ノズルから前記液滴を吹き付けると共に、前記ノズルとは別のガスノズルを前記ノズルに追従させつつ、前記被処理体の前記表面のうち前記液滴の吹き付け箇所に対して加熱された窒素ガスを前記ガスノズルから吹き付ける、請求項1に記載の塗布膜形成方法。 In the third step, the droplets are sprayed from the nozzle onto the surface of the object to be processed, and a gas nozzle different from the nozzle is made to follow the nozzle while the surface of the object to be processed is The coating film forming method according to claim 1, wherein a heated nitrogen gas is sprayed from the gas nozzle to a location where the droplets are sprayed.
  8.  塗布液を加熱するように構成された第1の加熱部と、
     基板と、前記基板の表面に設けられた凸部とを含む被処理体を加熱するように構成された第2の加熱部と、
     ノズルを有する供給部と、
     制御部とを備え、
     前記制御部は、
      前記第2の加熱部を制御して前記被処理体を加熱する第1の処理と、
      前記第1の加熱部及び前記供給部を制御して、前記第1の処理によって加熱された後の前記被処理体の表面に対して、前記第1の加熱部によって加熱された前記塗布液である第1の加熱液体を液滴の状態にて前記ノズルから吹き出させる第2の処理を実行する、塗布膜形成装置。
    A first heating unit configured to heat the coating solution;
    A second heating unit configured to heat an object to be processed including a substrate and a convex portion provided on the surface of the substrate;
    A supply unit having a nozzle;
    A control unit,
    The controller is
    A first process for controlling the second heating unit to heat the object to be processed;
    By controlling the first heating unit and the supply unit, the coating liquid heated by the first heating unit is applied to the surface of the object to be processed after being heated by the first processing. A coating film forming apparatus that executes a second process in which a certain first heated liquid is ejected from the nozzle in a droplet state.
  9.  前記第1の加熱部は、前記ノズルの出口における前記第1の加熱液体の温度が前記塗布液に含まれる溶剤の沸点の1/2以下となるように前記塗布液を加熱する、請求項8に記載の塗布膜形成装置。 The said 1st heating part heats the said coating liquid so that the temperature of the said 1st heating liquid in the exit of the said nozzle may become 1/2 or less of the boiling point of the solvent contained in the said coating liquid. The coating film forming apparatus as described in 2. above.
  10.  前記第1の加熱部は、前記ノズルの出口における前記第1の加熱液体の温度が35℃~60℃となるように前記塗布液を加熱する、請求項8に記載の塗布膜形成装置。 The coating film forming apparatus according to claim 8, wherein the first heating unit heats the coating liquid so that a temperature of the first heating liquid at an outlet of the nozzle becomes 35 ° C to 60 ° C.
  11.  前記第1の加熱部は、加熱されたガスを前記ノズルに供給して前記ノズル内において前記ガスと前記塗布液とを混合させることにより前記塗布液を加熱するように構成されている、請求項8に記載の塗布膜形成装置。 The said 1st heating part is comprised so that the said coating liquid may be heated by supplying the heated gas to the said nozzle and mixing the said gas and the said coating liquid in the said nozzle. 8. The coating film forming apparatus according to 8.
  12.  前記第1の加熱部は、前記ノズルよりも上流側において前記塗布液を加熱するヒータである、請求項8に記載の塗布膜形成装置。 The coating film forming apparatus according to claim 8, wherein the first heating unit is a heater that heats the coating liquid upstream of the nozzle.
  13.  前記制御部は、前記第2の処理の後に、前記第1の加熱部及び前記供給部を制御して、前記被処理体の前記表面に対して、前記第1の加熱部によって加熱された前記塗布液である第2の加熱液体を液滴の状態にて前記ノズルから吹き出させる第3の処理をさらに実行し、
     前記第3の処理における前記第2の加熱液体の温度は、前記第2の処理における前記第1の加熱液体の温度よりも高く設定されている、請求項8に記載の塗布膜形成装置。
    The control unit controls the first heating unit and the supply unit after the second processing, and the surface of the object to be processed is heated by the first heating unit. Further executing a third process of blowing the second heating liquid, which is a coating liquid, from the nozzle in the form of droplets;
    The coating film forming apparatus according to claim 8, wherein a temperature of the second heating liquid in the third process is set higher than a temperature of the first heating liquid in the second process.
  14.  加熱された窒素ガスをガスノズルから吐出させるように構成されたガス供給部を更に備え、
     前記制御部は、前記第2の処理において、前記第1の加熱部及び前記供給部を制御して、前記液滴を前記ノズルから吹き付けると共に、前記ガス供給部を制御して、前記ガスノズルを前記ノズルに追従させつつ、前記被処理体の前記表面のうち前記液滴の吹き付け箇所に対して加熱された窒素ガスを前記ガスノズルから吹き付ける、請求項8に記載の塗布膜形成装置。
    A gas supply unit configured to discharge the heated nitrogen gas from the gas nozzle;
    In the second process, the control unit controls the first heating unit and the supply unit to spray the droplets from the nozzles, and also controls the gas supply unit to control the gas nozzles. The coating film forming apparatus according to claim 8, wherein nitrogen gas heated from the gas nozzle is blown from a portion of the surface of the object to be blown while the nozzle is followed.
  15.  請求項1に記載の塗布膜形成方法を塗布膜形成装置に実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium storing a program for causing a coating film forming apparatus to execute the coating film forming method according to claim 1.
PCT/JP2017/021596 2016-07-27 2017-06-12 Method for forming coating film, apparatus for forming coating film and computer-readable recording medium WO2018020863A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780045976.2A CN109478501B (en) 2016-07-27 2017-06-12 Coating film forming method, coating film forming apparatus, and computer-readable storage medium
KR1020197002302A KR102424630B1 (en) 2016-07-27 2017-06-12 Coating film forming method, coating film forming apparatus, and computer-readable recording medium
JP2018529419A JP6771034B2 (en) 2016-07-27 2017-06-12 Coating film forming method, coating film forming apparatus, and computer-readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016147625 2016-07-27
JP2016-147625 2016-07-27

Publications (1)

Publication Number Publication Date
WO2018020863A1 true WO2018020863A1 (en) 2018-02-01

Family

ID=61016578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021596 WO2018020863A1 (en) 2016-07-27 2017-06-12 Method for forming coating film, apparatus for forming coating film and computer-readable recording medium

Country Status (5)

Country Link
JP (1) JP6771034B2 (en)
KR (1) KR102424630B1 (en)
CN (1) CN109478501B (en)
TW (2) TWI776749B (en)
WO (1) WO2018020863A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323161A (en) * 2018-03-30 2019-10-11 芝浦机械电子株式会社 Organic membrane formation device and organic film manufacturing method
JP2020161714A (en) * 2019-03-27 2020-10-01 株式会社東京精密 Rotary coating applicator and rotary coating application method
JP2020161713A (en) * 2019-03-27 2020-10-01 株式会社東京精密 Rotary coating applicator and rotary coating application method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7117923B2 (en) * 2018-07-13 2022-08-15 株式会社Screenホールディングス COATING PROCESSING APPARATUS AND COATING PROCESSING METHOD
KR102278561B1 (en) * 2019-08-23 2021-07-19 세메스 주식회사 Method for treating a substrate and an apparatus for treating a substrate
KR20210024387A (en) * 2019-08-23 2021-03-05 세메스 주식회사 Method for treating a substrate and an apparatus for treating a substrate
KR102353648B1 (en) * 2020-10-21 2022-01-21 주식회사 나래나노텍 Slot die coating device and method for printing substrate
KR102548479B1 (en) * 2022-06-17 2023-06-27 대광기업 주식회사 A choke for ship

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151295A (en) * 1992-11-13 1994-05-31 Matsushita Electric Ind Co Ltd Method and device for manufacturing semiconductor device
JPH07335537A (en) * 1994-06-03 1995-12-22 Dainippon Printing Co Ltd Spray device and method for controlling temperature of spray liquid
JP2003523614A (en) * 1999-01-14 2003-08-05 ステアーグ アール ティ ピー システムズ インコーポレイテッド Method of depositing photoresist on a support
JP2005019560A (en) * 2003-06-24 2005-01-20 D S Giken:Kk Coating device
JP2006007164A (en) * 2004-06-29 2006-01-12 Alps Electric Co Ltd Spray coating method and spray coating apparatus
JP2010153807A (en) * 2008-11-20 2010-07-08 Shibaura Mechatronics Corp Substrate treatment apparatus, and substrate treatment method
JP2011159656A (en) * 2010-01-29 2011-08-18 Tokyo Electron Ltd Substrate processing apparatus and substrate processing method
JP2015115462A (en) * 2013-12-11 2015-06-22 東京応化工業株式会社 Coater and coating method
JP2016101563A (en) * 2014-11-28 2016-06-02 株式会社Screenホールディングス Coating method and coating device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI242663B (en) * 2002-07-09 2005-11-01 Seiko Epson Corp Jetting method of liquid, jetting apparatus of liquid, production method of substrate for electro-optical apparatus and production method of electro-optical apparatus
JP3890025B2 (en) * 2003-03-10 2007-03-07 東京エレクトロン株式会社 Coating processing apparatus and coating processing method
JP2008016660A (en) * 2006-07-06 2008-01-24 Dainippon Screen Mfg Co Ltd Method for treating substrate and substrate treating apparatus
JP4803821B2 (en) * 2007-03-23 2011-10-26 大日本スクリーン製造株式会社 Substrate processing equipment
JP5231072B2 (en) * 2008-04-09 2013-07-10 東京応化工業株式会社 Film formation method
JP4844702B1 (en) * 2010-05-10 2011-12-28 トヨタ自動車株式会社 Masking jig, substrate heating apparatus, and film forming method
JP5632860B2 (en) * 2012-01-05 2014-11-26 東京エレクトロン株式会社 Substrate cleaning method, substrate cleaning apparatus, and substrate cleaning storage medium
TW201513942A (en) * 2013-10-03 2015-04-16 Leap Co Ltd Spray coating device
JP6267141B2 (en) * 2014-06-04 2018-01-24 東京エレクトロン株式会社 Liquid coating method, liquid coating apparatus, and computer-readable recording medium

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151295A (en) * 1992-11-13 1994-05-31 Matsushita Electric Ind Co Ltd Method and device for manufacturing semiconductor device
JPH07335537A (en) * 1994-06-03 1995-12-22 Dainippon Printing Co Ltd Spray device and method for controlling temperature of spray liquid
JP2003523614A (en) * 1999-01-14 2003-08-05 ステアーグ アール ティ ピー システムズ インコーポレイテッド Method of depositing photoresist on a support
JP2005019560A (en) * 2003-06-24 2005-01-20 D S Giken:Kk Coating device
JP2006007164A (en) * 2004-06-29 2006-01-12 Alps Electric Co Ltd Spray coating method and spray coating apparatus
JP2010153807A (en) * 2008-11-20 2010-07-08 Shibaura Mechatronics Corp Substrate treatment apparatus, and substrate treatment method
JP2011159656A (en) * 2010-01-29 2011-08-18 Tokyo Electron Ltd Substrate processing apparatus and substrate processing method
JP2015115462A (en) * 2013-12-11 2015-06-22 東京応化工業株式会社 Coater and coating method
JP2016101563A (en) * 2014-11-28 2016-06-02 株式会社Screenホールディングス Coating method and coating device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323161A (en) * 2018-03-30 2019-10-11 芝浦机械电子株式会社 Organic membrane formation device and organic film manufacturing method
CN110323161B (en) * 2018-03-30 2023-06-06 芝浦机械电子株式会社 Organic film forming apparatus and organic film manufacturing method
JP2020161714A (en) * 2019-03-27 2020-10-01 株式会社東京精密 Rotary coating applicator and rotary coating application method
JP2020161713A (en) * 2019-03-27 2020-10-01 株式会社東京精密 Rotary coating applicator and rotary coating application method
JP7261055B2 (en) 2019-03-27 2023-04-19 株式会社東京精密 Spin coating device and spin coating method
JP7261970B2 (en) 2019-03-27 2023-04-21 株式会社東京精密 Spin coating device and spin coating method

Also Published As

Publication number Publication date
KR102424630B1 (en) 2022-07-25
TW201816518A (en) 2018-05-01
CN109478501A (en) 2019-03-15
KR20190037237A (en) 2019-04-05
TWI775762B (en) 2022-09-01
JP6771034B2 (en) 2020-10-21
JPWO2018020863A1 (en) 2019-05-30
TW202211995A (en) 2022-04-01
CN109478501B (en) 2023-06-06
TWI776749B (en) 2022-09-01

Similar Documents

Publication Publication Date Title
WO2018020863A1 (en) Method for forming coating film, apparatus for forming coating film and computer-readable recording medium
JP5681560B2 (en) Substrate drying method and substrate processing apparatus
JP5832397B2 (en) Substrate processing apparatus and substrate processing method
JP2017005230A (en) Substrate processing method and substrate processing device
JP5941023B2 (en) Substrate cleaning apparatus, substrate cleaning method, and computer-readable recording medium
US8978671B2 (en) Substrate processing method and substrate processing apparatus
JP2010219168A (en) Substrate treatment apparatus, substrate treatment method, coating and developing apparatus, coating and developing method, and storage medium
KR102559412B1 (en) Substrate processing apparatus, substrate processing method, and storage medium
KR102261616B1 (en) Substrate treating apparatus, dummy dispensing method and computer readable storage medium
JP2005235950A (en) Apparatus and method of processing application
JP6504996B2 (en) Coating film forming method, coating film forming apparatus, and computer readable recording medium
CN107045262B (en) Substrate processing method and substrate processing apparatus
JP2008034428A (en) Equipment and method for processing substrate
JP6807162B2 (en) Substrate cleaning method, substrate cleaning equipment and computer-readable recording medium
WO2019138911A1 (en) Substrate processing device, substrate processing method, and computer readable recording medium
US11036138B2 (en) Substrate processing apparatus, substrate processing method, and computer-readable recording medium
JP2020170801A (en) Substrate processing method and substrate processing apparatus
JP2013110324A (en) Substrate processing apparatus and substrate processing method
JP7486984B2 (en) Substrate processing apparatus and substrate processing method
US20220068670A1 (en) Substrate processing method and substrate processing apparatus
TWI735012B (en) Substrate processing method and substrate processing device
JP2010171266A (en) Substrate processing apparatus, and substrate processing method
WO2020039835A1 (en) Substrate processing method and substrate processing device
JP6626734B2 (en) Substrate processing apparatus, substrate processing method, and computer-readable recording medium
JP2011198895A (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833873

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018529419

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197002302

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833873

Country of ref document: EP

Kind code of ref document: A1