WO2018018389A1 - 一种高强度微合金化稀土铸钢 - Google Patents

一种高强度微合金化稀土铸钢 Download PDF

Info

Publication number
WO2018018389A1
WO2018018389A1 PCT/CN2016/091646 CN2016091646W WO2018018389A1 WO 2018018389 A1 WO2018018389 A1 WO 2018018389A1 CN 2016091646 W CN2016091646 W CN 2016091646W WO 2018018389 A1 WO2018018389 A1 WO 2018018389A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
added
cast steel
rare earth
strength
Prior art date
Application number
PCT/CN2016/091646
Other languages
English (en)
French (fr)
Inventor
顾湘
Original Assignee
顾湘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 顾湘 filed Critical 顾湘
Priority to PCT/CN2016/091646 priority Critical patent/WO2018018389A1/zh
Publication of WO2018018389A1 publication Critical patent/WO2018018389A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the utility model relates to a cast steel material, in particular to a high-strength micro-alloyed rare earth cast steel suitable for large pressure parts in mines, cement, coal, petroleum and the like, and a smelting and heat treatment process thereof.
  • manganese steel and silicon-manganese steel have very rich resources in China, and manganese steel and silicon-manganese steel have high strength, hardness and wear resistance. Therefore, manganese steel and silicon-manganese steel are commonly used materials in large steel castings. .
  • ferrosilicon and ferromanganese are often used as alloying elements, while ferrosilicon and ferromanganese have more phosphorus elements, and when using medium frequency furnace steelmaking, it is not possible to dephosphorize and desulfurize molten steel, thereby making manganese steel,
  • the content of phosphorus in silicon-manganese steel is high, even exceeding national standards, and the performance of manganese steel and silicon-manganese steel is not fully utilized.
  • Cipheral patent document CN 100999800 A (Application No. 200610155704.1) discloses a cast steel containing rare earth elements and a production method thereof, wherein the chemical composition and mass percentage are: C 0.24% to 0.32%, Si 1.0% to 1.6%, Mn 1.0% ⁇ 1.6%, Cr 0.2% ⁇ 0.5%, Re 0.01% ⁇ 0.20%, Ni ⁇ 0.05%, Mo ⁇ 0.01%, P ⁇ 0.035%, S ⁇ 0.010%, B ⁇ 0.05%, balance is iron And inevitable impurities.
  • the content of Si in the cast steel is high, which tends to cause deterioration in the ductility, toughness and cutting performance of the steel casting.
  • the total content of P plus S is relatively high, thereby further reducing the plasticity and toughness of the steel casting.
  • the object of the present invention is to provide a high-strength microalloyed rare earth cast steel capable of reducing the content of P and S elements and a preparation method thereof, and to solve one or more of the above prior art problems.
  • a high-strength microalloyed rare earth cast steel is innovative in that the main chemical components of the cast steel include C, Si, Mn, Nb, Ti, Re, La, Ce, P, S, and iron.
  • a trace impurity element, the mass percentages of the C, Si, Mn, Nb, Ti, Re, P, and S are C 0.20% to 0.25%, Si 0.80% to 0.90%, and Mn 1.17% to 1.49%, Nb0. .01% to 0.08%, Ti 0.05 to 0.12%, Re 0.02% to 0.22%, La 0.01% to 0.14%, Ce 0.01% to 0.19%, P ⁇ 0.045%, and S ⁇ 0.020%.
  • the total content of Nb, Ti, La, Ce is less than or equal to 0.6%.
  • a smelting method for high-strength microalloyed rare earth cast steel, which is smelted by an intermediate frequency induction furnace, and the smelting process comprises the following steps:
  • the yield of alloying elements C, Si and Mn is calculated according to the yield of C, Si and Mn in ZG35SiMn low alloy cast steel.
  • the content of microalloying elements Nb, Ti, La and Ce is based on the chemical composition of steel. Request a ratio;
  • step 4 the chemical composition in the molten steel is adjusted, and the tapping temperature is controlled at 1650 ° C ⁇ 1680 ° C. Immediately after tapping, a proper amount of slag forming agent is sprinkled on the ladle liquid surface;
  • Final deoxidation the final deoxidation is carried out with pure aluminum during tapping.
  • the pure aluminum block is added to the bottom of the ladle in advance.
  • the amount of pure aluminum added is The quality of the molten steel is 0.050% to 0.125%, and the residual aluminum content in the high strength microalloyed rare earth cast steel is 0.03% to 0.08%;
  • the ferromanganese, the ferrosilicon alloy and the rare earth Nb, Ti, La, Ce, etc. are baked and dried for 2 to 5 hours before the addition, and the baking drying temperature is 100 to 300 °C.
  • the temperature range of the pre-manganese iron and the ferrosilicon alloy is controlled at 1640 ° C to 1660 ° C.
  • the final required ferromanganese or ferrosilicon alloy is added; First, a ferromanganese alloy is added, and after the manganese-iron alloy is completely melted and the slag is completed, a ferrosilicon alloy is added.
  • the microalloying elements such as Nb, Ti, La, Ce, etc. are added to the bottom of the ladle in the form of a metal powder.
  • the normalizing treatment and the tempering treatment are two parts;
  • the normalizing treatment process is: heating in a box type electric resistance furnace at a speed of 80 ° C / h to 120 ° C / h to 860 ° C ⁇ 960 ° C, the holding time is The thickness of the steel casting (mm) ⁇ 1.5 ⁇ 1.8min / h, and then the steel castings are cooled to room temperature in air;
  • the tempering heat treatment process is: heating in a box type electric resistance furnace at a speed of 80 ° C / h to 120 ° C / h to 600 ° C ⁇ 650 ° C, the holding time is the thickness of the steel casting (mm) ⁇ 1.8 ⁇ 2.2 min / h, The steel castings are then cooled to room temperature in air; the time between normalizing and tempering does not exceed 6 h.
  • the tensile strength is greater than or equal to 720 MPa
  • the yield strength is greater than or equal to 480 MPa
  • the elongation is greater than or equal to 12%
  • the area shrinkage is greater than or equal to 14%.
  • the impact absorption work at a test temperature of 4 ° C is greater than or equal to 9 J.
  • An advantage of the present invention is that the microalloyed rare earth cast steel of the present invention can significantly improve yield strength and tensile strength without significantly reducing plasticity and toughness. Compared with ordinary 35SiMn steel, the microalloyed rare earth cast steel can increase the yield strength by more than 60 MPa, and the tensile strength can be increased by more than 95 MPa.
  • a high-strength microalloyed rare earth cast steel the main chemical components of the cast steel include C, Si, Mn, Nb, Ti, Re, La, Ce, P, S, iron and trace impurity elements, the C, Si,
  • the mass percentages of Mn, Nb, Ti, Re, P, and S are respectively C 0.20% to 0.25%, Si 0.80% to 0.90%, Mn 1.17% to 1.49%, Nb 0.01% to 0.08%, and Ti 0.05 to 0.12%, Re0.02% ⁇ 0.22%, La0.01% ⁇ 0.14%, Ce0.01% ⁇ 0.19%, P ⁇ 0.045%, S ⁇ 0.020%; the total content of Nb, Ti, La, Ce is less than or equal to 0.6%.
  • a smelting method for high-strength microalloyed rare earth cast steel is carried out by using an intermediate frequency induction furnace for smelting, and the smelting process comprises the following steps: pretreatment: baking scrap steel, alloy elements and ladle before smelting, reducing the content of water and gas therein, And remove the dirt and rust on the surface of the scrap steel; ingredients: the yield of alloying elements C, Si, Mn is calculated according to the yield of C, Si, Mn in ZG35SiMn low alloy cast steel, microalloying elements Nb, Ti, La, The content of Ce is proportioned according to the chemical composition requirements of steel; charging and feeding: large, medium and small metal charge is added according to about 1:4:2 during charging, and bulk metal charge is put into the bottom of the furnace, small piece of metal The charge is placed in the gap between the bulk metal charge and the bottom of the furnace to ensure that the charge in the furnace body is tightly closed; the added charge is made of small metal; the alloy is added: after the steel is
  • Ferroalloy after the chemical composition of the molten steel in front of the furnace is detected, the final required ferromanganese and ferrosilicon alloy are added according to the test results, and the ferromanganese is added first, followed by the addition of ferrosilicon; Nb, Ti, La, Ce, etc. After the alloying elements are dried First, add the bottom of the ladle; when the steel is tapped, pour the carbon powder into the molten steel to increase the carbon; tapping: adjust the chemical composition in the molten steel according to the previous step, and tap the steel.
  • the tapping temperature is controlled at 1650 ° C ⁇ 1680 ° C, tapping Immediately afterwards, sprinkle an appropriate amount of slag-forming agent on the ladle surface; final deoxidation: When the steel is tapped, the final deoxidation is carried out with pure aluminum.
  • the pure aluminum block is added to the bottom of the ladle in advance. When the molten steel impacts the bottom of the ladle, the pure aluminum is melted and reacted with the oxygen in the molten steel for deoxidation.
  • the amount of pure aluminum added is 0.050% of the quality of the molten steel.
  • the molten steel in the step 6 is poured into the pre-prepared mold, and the pouring temperature is controlled at 1550. °C ⁇ 1580 ° C, after cooling and removing the mold, it is a high-strength micro-alloyed rare earth cast steel.
  • Ferromanganese, ferrosilicon and rare earth Nb, Ti, La, Ce, etc. should be baked and dried for 2 ⁇ 5h before baking, the baking drying temperature is 100 ⁇ 300°C, and the temperature range of pre-added ferromanganese and ferrosilicon alloy is controlled at 1640°C.
  • the final required ferromanganese and ferrosilicon alloy are added; the order of the two alloys is first added with ferromanganese alloy, after all the ferromanganese alloy is melted and the slag is completed, Further, a ferrosilicon alloy is added, and microalloying elements such as Nb, Ti, La, and Ce are added to the bottom of the ladle in the form of a metal powder.
  • Normalizing treatment and tempering treatment is: heating in a box type resistance furnace at a speed of 80 ° C / h ⁇ 120 ° C / h to 860 ° C ⁇ 960 ° C, holding time for the steel castings Thickness (mm) ⁇ 1.5 ⁇ 1.8min / h, and then the steel castings are cooled to room temperature in air; tempering heat treatment process: in a box-type resistance furnace at 80 ° C / h ⁇ 120 ° C / h speed to 600 ° C ⁇ 650 ° C, holding time is the thickness of the steel castings (mm) ⁇ 1.8 ⁇ 2.2min / h, and then the steel castings are cooled to room temperature in air; normalizing and tempering time interval not more than 6h, cast steel After heat treatment, the tensile strength is greater than or equal to 720MPa, the yield strength is greater than or equal to 480MPa, the elongation is greater than or equal to 12%, the
  • the microalloyed rare earth cast steel of the present invention can significantly improve the yield strength and the tensile strength without significantly reducing the plasticity and toughness. Compared with ordinary 35SiMn steel, the microalloyed rare earth cast steel can increase the yield strength by more than 60 MPa, and the tensile strength can be increased by more than 95 MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

一种高强度微合金化稀土铸钢,铸钢的主要化学成分包括C、Si、Mn、Nb、Ti、Re、La、Ce、P、S、铁以及微量杂质元素,所述C、Si、Mn、Nb、Ti、Re、P、S的质量百分含量分别为C0.20%~0.25%,Si0.80%~0.90%,Mn1.17%~1.49%,Nb0.01%~0.08%,Ti0.05~0.12%,Re0.02%~0.22%,La0.01%~0.14%,Ce0.01%~0.19%,P≤0.045%,S≤0.020%;Nb、Ti、La、Ce的总含量小于或等于0.6%。优点在于:微合金化稀土铸钢在不明显降低塑性和韧性的条件下,显著提高屈服强度和抗拉强度。所述微合金化稀土铸钢与普通35SiMn钢相比,其屈服强度可以提高60MPa以上,抗拉强度可以提高95MPa以上。

Description

一种高强度微合金化稀土铸钢 技术领域
本实用新型涉及一种铸钢材料,尤其是一种适合矿山、水泥、煤炭、石油等设备中的大型承压件用高强度微合金化稀土铸钢,及其冶炼、热处理工艺方法。
背景技术
大型铸钢件具有成形相对容易、生产成本较低等特点,因而广泛应用于矿山、水泥、石油、船舶等领域,但是大型铸钢件在成形过程中容易出现缩松、缩孔、气孔和裂纹等缺陷,从而影响大型铸钢件的力学性能和使用寿命,对企业和国民经济造成较大的损失,此外,由于中频炉炼钢成本较低,我国现在仍有许多企业使用中频炉炼钢,炼钢过程一般采用不氧化法,不能对钢水进行脱磷脱硫,所以冶炼出来的钢水质量较差,这导致大型铸钢件在铸造成形过程中更加容易出现组织缺陷,如铸造裂纹和气孔,从而使其力学性能和使用寿命进一步降低。
此外,硅、锰在我国具有十分丰富的资源,且锰钢、硅锰钢具有较高的强度、硬度和耐磨性,因此锰钢、硅锰钢是大型铸钢件中常用的一种材料。冶炼锰钢、硅锰钢时常以硅铁、锰铁作为合金元素,而硅铁、锰铁中磷元素含量较多,且采用中频炉炼钢时不能对钢水脱磷脱硫,从而使锰钢、硅锰钢中磷元素的含量较高,甚至超出国家标准,最终使锰钢、硅锰钢的性能得不到充分发挥。
中国专利文献CN 100999800 A(申请号200610155704.1)公开了一种含稀土元素的铸钢及其生产方法,其化学成分及质量百分含量为:C 0.24%~0.32%,Si 1.0%~1.6%,Mn 1.0%~1.6%,Cr 0.2%~0.5%,Re 0.01%~0.20%,Ni≤0.05%,Mo≤0.01%,P≤0.035%,S≤0.010%,B≤0.05%,余量为铁和不可避免的杂质。该铸钢中Si元素的含量较高,容易导致铸钢件的塑性、韧性以及切削性能降低。同时P加S的总含量偏高,从而进一步降低铸钢件的塑性和韧性。
因此,就急需研制出一种能够降低P和S元素含量的高强度微合金化 稀土铸钢及其制备方法,经检索,未发现与本发明相同或相似的技术方案。
实用新型内容
本实用新型的目的提供能够降低P和S元素含量的高强度微合金化稀土铸钢及其制备方法,解决上述现有技术问题中的一个或者多个。
根据本实用新型的一种高强度微合金化稀土铸钢,其创新点在于:铸钢的主要化学成分包括C、Si、Mn、Nb、Ti、Re、La、Ce、P、S、铁以及微量杂质元素,所述C、Si、Mn、Nb、Ti、Re、P、S的质量百分含量分别为C 0.20%~0.25%,Si 0.80%~0.90%,Mn 1.17%~1.49%,Nb0.01%~0.08%,Ti 0.05~0.12%,Re 0.02%~0.22%,La0.01%~0.14%,Ce0.01%~0.19%,P≤0.045%,S≤0.020%。
优选的,Nb、Ti、La、Ce的总含量小于或等于0.6%。
一种高强度微合金化稀土铸钢的冶炼方法,采用中频感应炉进行冶炼,冶炼过程包括以下步骤:
1)预处理:冶炼前对废钢、合金元素以及钢包进行烘烤,降低其中水气的含量,并清除废钢表面的泥污和铁锈;
2)配料:合金元素C、Si、Mn的收得率根据ZG35SiMn低合金铸钢中C、Si、Mn的收得率计算,微合金元素Nb、Ti、La、Ce的含量根据钢的化学成分要求进行配比;
3)装料和加料:装料时大、中、小金属炉料按照约1:4:2来添加,大块金属炉料放入炉底,小块金属炉料放入大块金属炉料与炉底之间的空隙,保证炉体中炉料下紧上松;添加炉料采用小块金属料;
4)添加合金:炉中废钢熔清后,先预加部分锰铁、硅铁合金,待检测炉前钢水的化学成分后,再根据检测结果添加最终所需的锰铁、硅铁合金,并采用先加锰铁,再加硅铁的顺序加入;Nb、Ti、La、Ce等合金元素烘干后预先加入钢包底部;出钢时往钢液中倒入碳粉增碳;
5)出钢:按照步骤4)调整好钢液中的化学成分后出钢,出钢温度控制在1650℃~1680℃,出钢后立即在钢包液面上撒入适量造渣剂;
6)终脱氧:出钢时用纯铝进行终脱氧,预先将纯铝块加入钢包底部,钢水冲击钢包底部时使纯铝融化并和钢水中的氧气发生反应进行脱氧,纯铝的加入量为钢水质量的0.050%~0.125%,并保证高强度微合金化稀土铸钢中残留的铝含量为0.03%~0.08%;
7)浇注:将步骤6)钢包中的钢水浇注于预先准备好的铸模中,浇注温度控制在1550℃~1580℃,冷却、拆除铸型后所获得的即为高强度微合金化稀土铸钢件。
优选的,锰铁、硅铁合金以及稀土Nb、Ti、La、Ce等在加入前需烘烤干燥2~5h,烘烤干燥温度为100~300℃。
优选的,预加锰铁、硅铁合金的温度范围控制在1640℃~1660℃,待检测炉前钢水化学成分后,再加入最终所需的锰铁、硅铁合金;两次加入合金的顺序均为先加锰铁合金,待锰铁合金全部熔清、扒渣完毕后,再加入硅铁合金。
优选的,Nb、Ti、La、Ce等微合金元素以金属粉末的形式加入钢包底部。
优选的,正火处理和回火处理两部分;所述正火处理工艺为:在箱式电阻炉中以80℃/h~120℃/h的速度升温至860℃~960℃,保温时间为铸钢件厚度(mm)×1.5~1.8min/h,然后将铸钢件在空气中冷却至室温;
回火热处理工艺为:在箱式电阻炉中以80℃/h~120℃/h的速度升温至600℃~650℃,保温时间为铸钢件厚度(mm)×1.8~2.2min/h,然后将铸钢件在空气中冷却至室温;正火与回火的时间间隔不超过6h。
优选的,铸钢件经热处理后,其抗拉强度大于等于720MPa,屈服强度大于等于480MPa,伸长率大于等于12%,断面收缩率大于等于14%,冲击 试验温度为4℃时的冲击吸收功大于等于9J。
本发明的优点在于:本发明的微合金化稀土铸钢可以在不明显降低塑性和韧性的条件下,显著提高屈服强度和抗拉强度。所述微合金化稀土铸钢与普通35SiMn钢相比,其屈服强度可以提高60MPa以上,抗拉强度可以提高95MPa以上。
具体实施方式
一种高强度微合金化稀土铸钢,铸钢的主要化学成分包括C、Si、Mn、Nb、Ti、Re、La、Ce、P、S、铁以及微量杂质元素,所述C、Si、Mn、Nb、Ti、Re、P、S的质量百分含量分别为C 0.20%~0.25%,Si 0.80%~0.90%,Mn 1.17%~1.49%,Nb0.01%~0.08%,Ti 0.05~0.12%,Re0.02%~0.22%,La0.01%~0.14%,Ce0.01%~0.19%,P≤0.045%,S≤0.020%;Nb、Ti、La、Ce的总含量小于或等于0.6%。
一种高强度微合金化稀土铸钢的冶炼方法,采用中频感应炉进行冶炼,冶炼过程包括以下步骤:预处理:冶炼前对废钢、合金元素以及钢包进行烘烤,降低其中水气的含量,并清除废钢表面的泥污和铁锈;配料:合金元素C、Si、Mn的收得率根据ZG35SiMn低合金铸钢中C、Si、Mn的收得率计算,微合金元素Nb、Ti、La、Ce的含量根据钢的化学成分要求进行配比;装料和加料:装料时大、中、小金属炉料按照约1:4:2来添加,大块金属炉料放入炉底,小块金属炉料放入大块金属炉料与炉底之间的空隙,保证炉体中炉料下紧上松;添加炉料采用小块金属料;添加合金:炉中废钢熔清后,先预加部分锰铁、硅铁合金,待检测炉前钢水的化学成分后,再根据检测结果添加最终所需的锰铁、硅铁合金,并采用先加锰铁,再加硅铁的顺序加入;Nb、Ti、La、Ce等合金元素烘干后预先加入钢包底部;出钢时往钢液中倒入碳粉增碳;出钢:按照上一步调整好钢液中的化学成分后出钢,出钢温度控制在1650℃~1680℃,出钢后立即在钢包液面上撒入适量造渣剂;终脱氧: 出钢时用纯铝进行终脱氧,预先将纯铝块加入钢包底部,钢水冲击钢包底部时使纯铝融化并和钢水中的氧气发生反应进行脱氧,纯铝的加入量为钢水质量的0.050%~0.125%,并保证高强度微合金化稀土铸钢中残留的铝含量为0.03%~0.08%;浇注:将步骤6)钢包中的钢水浇注于预先准备好的铸模中,浇注温度控制在1550℃~1580℃,冷却、拆除铸型后所获得的即为高强度微合金化稀土铸钢件。
锰铁、硅铁合金以及稀土Nb、Ti、La、Ce等在加入前需烘烤干燥2~5h,烘烤干燥温度为100~300℃,预加锰铁、硅铁合金的温度范围控制在1640℃~1660℃,待检测炉前钢水化学成分后,再加入最终所需的锰铁、硅铁合金;两次加入合金的顺序均为先加锰铁合金,待锰铁合金全部熔清、扒渣完毕后,再加入硅铁合金,Nb、Ti、La、Ce等微合金元素以金属粉末的形式加入钢包底部。
正火处理和回火处理两部分;所述正火处理工艺为:在箱式电阻炉中以80℃/h~120℃/h的速度升温至860℃~960℃,保温时间为铸钢件厚度(mm)×1.5~1.8min/h,然后将铸钢件在空气中冷却至室温;回火热处理工艺为:在箱式电阻炉中以80℃/h~120℃/h的速度升温至600℃~650℃,保温时间为铸钢件厚度(mm)×1.8~2.2min/h,然后将铸钢件在空气中冷却至室温;正火与回火的时间间隔不超过6h,铸钢件经热处理后,其抗拉强度大于等于720MPa,屈服强度大于等于480MPa,伸长率大于等于12%,断面收缩率大于等于14%,冲击试验温度为4℃时的冲击吸收功大于等于9J。
本发明的微合金化稀土铸钢可以在不明显降低塑性和韧性的条件下,显著提高屈服强度和抗拉强度。所述微合金化稀土铸钢与普通35SiMn钢相比,其屈服强度可以提高60MPa以上,抗拉强度可以提高95MPa以上。
以上所述仅是本实用新型的优选方式,应当指出,对于本领域普通技术人员来说,在不脱离本实用新型创造构思的前提下,还可以做出若干相似的变形和改进,这些也应视为本实用新型的保护范围之内。

Claims (8)

  1. 一种高强度微合金化稀土铸钢,其特征在于:所述铸钢的主要化学成分包括C、Si、Mn、Nb、Ti、Re、La、Ce、P、S、铁以及微量杂质元素,所述C、Si、Mn、Nb、Ti、Re、P、S的质量百分含量分别为C0.20%~0.25%,Si0.80%~0.90%,Mn1.17%~1.49%,Nb0.01%~0.08%,Ti0.05~0.12%,Re0.02%~0.22%,La0.01%~0.14%,Ce0.01%~0.19%,P≤0.045%,S≤0.020%。
  2. 根据权利要求1所述的一种高强度微合金化稀土铸钢,其特征在于:所述Nb、Ti、La、Ce的总含量小于或等于0.6%。
  3. 如权利要求1所述的一种高强度微合金化稀土铸钢的冶炼方法,采用中频感应炉进行冶炼,其特征在于冶炼过程包括以下步骤:
    1)预处理:冶炼前对废钢、合金元素以及钢包进行烘烤,降低其中水气的含量,并清除废钢表面的泥污和铁锈;
    2)配料:合金元素C、Si、Mn的收得率根据ZG35SiMn低合金铸钢中C、Si、Mn的收得率计算,微合金元素Nb、Ti、La、Ce的含量根据钢的化学成分要求进行配比;
    3)装料和加料:装料时大、中、小金属炉料按照约1:4:2来添加,大块金属炉料放入炉底,小块金属炉料放入大块金属炉料与炉底之间的空隙,保证炉体中炉料下紧上松;添加炉料采用小块金属料;
    4)添加合金:炉中废钢熔清后,先预加部分锰铁、硅铁合金,待检测炉前钢水的化学成分后,再根据检测结果添加最终所需的锰铁、硅铁合金,并采用先加锰铁,再加硅铁的顺序加入;Nb、Ti、La、Ce等合金元素烘干后预先加入钢包底部;出钢时往钢液中倒入碳粉增碳;
    5)出钢:按照步骤4)调整好钢液中的化学成分后出钢,出钢温度控制在1650℃~1680℃,出钢后立即在钢包液面上撒入适量造渣剂;
    6)终脱氧:出钢时用纯铝进行终脱氧,预先将纯铝块加入钢包底部,钢水冲击钢包底部时使纯铝融化并和钢水中的氧气发生反应进行脱氧,纯铝的加入量为钢水质量的0.050%~0.125%,并保证高强度微合金化稀土铸钢中残留的铝含量为0.03%~0.08%;
    7)浇注:将步骤6)钢包中的钢水浇注于预先准备好的铸模中,浇注温度控制在1550℃~1580℃,冷却、拆除铸型后所获得的即为高强度微合金化稀土铸钢件。
  4. 根据权利要求3所述的一种一种高强度微合金化稀土铸钢的冶炼方法,其特征在于:所述锰铁、硅铁合金以及稀土Nb、Ti、La、Ce等在加入前需烘烤干燥2~5h,烘烤干燥温度为100~300℃。
  5. 根据权利要求3所述的一种高强度微合金化稀土铸钢的冶炼方法,其特征在于:所述预加锰铁、硅铁合金的温度范围控制在1640℃~1660℃,待检测炉前钢水化学成分后,再加入最终所需的锰铁、硅铁合金;两次加入合金的顺序均为先加锰铁合金,待锰铁合金全部熔清、扒渣完毕后,再加入硅铁合金。
  6. 根据权利要求3所述的一种高强度微合金化稀土铸钢的冶炼方法,其特征在于:所述Nb、Ti、La、Ce等微合金元素以金属粉末的形式加入钢包底部。
  7. 一种如权利要求1所述的一种高强度微合金化稀土铸钢的热处理方法,其特征在于:包括正火处理和回火处理两部分;所述正火处理工艺为:在箱式电阻炉中以80℃/h~120℃/h的速度升温至860℃~960℃,保温时间为铸钢件厚度(mm)×1.5~1.8min/h,然后将铸钢件在空气中冷却至室温;
    所述回火热处理工艺为:在箱式电阻炉中以80℃/h~120℃/h的速度升温至600℃~650℃,保温时间为铸钢件厚度(mm)×1.8~2.2min/h, 然后将铸钢件在空气中冷却至室温;正火与回火的时间间隔不超过6h。
  8. 根据权利要求7所述的一种高强度微合金化稀土铸钢的热处理方法,其特征在于:所述铸钢件经热处理后,其抗拉强度大于等于720MPa,屈服强度大于等于480MPa,伸长率大于等于12%,断面收缩率大于等于14%,冲击试验温度为4℃时的冲击吸收功大于等于9J。
PCT/CN2016/091646 2016-07-25 2016-07-25 一种高强度微合金化稀土铸钢 WO2018018389A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/091646 WO2018018389A1 (zh) 2016-07-25 2016-07-25 一种高强度微合金化稀土铸钢

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/091646 WO2018018389A1 (zh) 2016-07-25 2016-07-25 一种高强度微合金化稀土铸钢

Publications (1)

Publication Number Publication Date
WO2018018389A1 true WO2018018389A1 (zh) 2018-02-01

Family

ID=61015216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091646 WO2018018389A1 (zh) 2016-07-25 2016-07-25 一种高强度微合金化稀土铸钢

Country Status (1)

Country Link
WO (1) WO2018018389A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182691A (zh) * 2018-10-17 2019-01-11 北京科技大学 一种微合金化中碳铸钢的热处理方法
WO2019169549A1 (zh) * 2018-03-06 2019-09-12 高海艇 一种微合金化稀土铸钢
CN114107842A (zh) * 2020-08-28 2022-03-01 中国科学院金属研究所 微合金化的高强度高硬度预硬性塑料模具钢及其制备方法
CN115747646A (zh) * 2022-11-08 2023-03-07 内蒙古中天宏远稀土新材料股份公司 衬板及其生产方法
CN115896394A (zh) * 2022-11-14 2023-04-04 有研稀土新材料股份有限公司 一种稀土铁合金包芯线及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002095081A1 (en) * 2001-05-24 2002-11-28 Wescast Industries, Inc. High temperature oxidation resistant ductile iron
WO2008070360A2 (en) * 2006-11-01 2008-06-12 Nucor Corporation Refinement of steel
CN103981449A (zh) * 2014-05-28 2014-08-13 河南理工大学 一种利用电弧炉制备低合金高韧耐磨铸钢的方法
CN104818426A (zh) * 2015-05-19 2015-08-05 海安海太铸造有限公司 一种高强度微合金化稀土铸钢及其制备方法
CN104911504A (zh) * 2015-06-15 2015-09-16 三明市毅君机械铸造有限公司 用于特大型破碎机的高强度高抗磨铸钢件及其生产工艺
CN105088087A (zh) * 2015-09-18 2015-11-25 湖南大学 一种高韧性适焊微合金化铸钢及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002095081A1 (en) * 2001-05-24 2002-11-28 Wescast Industries, Inc. High temperature oxidation resistant ductile iron
WO2008070360A2 (en) * 2006-11-01 2008-06-12 Nucor Corporation Refinement of steel
CN103981449A (zh) * 2014-05-28 2014-08-13 河南理工大学 一种利用电弧炉制备低合金高韧耐磨铸钢的方法
CN104818426A (zh) * 2015-05-19 2015-08-05 海安海太铸造有限公司 一种高强度微合金化稀土铸钢及其制备方法
CN104911504A (zh) * 2015-06-15 2015-09-16 三明市毅君机械铸造有限公司 用于特大型破碎机的高强度高抗磨铸钢件及其生产工艺
CN105088087A (zh) * 2015-09-18 2015-11-25 湖南大学 一种高韧性适焊微合金化铸钢及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019169549A1 (zh) * 2018-03-06 2019-09-12 高海艇 一种微合金化稀土铸钢
CN109182691A (zh) * 2018-10-17 2019-01-11 北京科技大学 一种微合金化中碳铸钢的热处理方法
CN114107842A (zh) * 2020-08-28 2022-03-01 中国科学院金属研究所 微合金化的高强度高硬度预硬性塑料模具钢及其制备方法
CN115747646A (zh) * 2022-11-08 2023-03-07 内蒙古中天宏远稀土新材料股份公司 衬板及其生产方法
CN115747646B (zh) * 2022-11-08 2023-12-12 内蒙古中天宏远稀土新材料股份公司 衬板及其生产方法
CN115896394A (zh) * 2022-11-14 2023-04-04 有研稀土新材料股份有限公司 一种稀土铁合金包芯线及其制备方法

Similar Documents

Publication Publication Date Title
WO2021017520A1 (zh) 一种表面质量优良的耐磨钢及其制备方法
CN102330021B (zh) 低温取向硅钢生产全工艺
CN101289731B (zh) CrMnTi系窄淬透性带齿轮钢及其制造方法
CN104120332B (zh) 高强度高韧性球墨铸铁600-10及其生产工艺
CN102277534B (zh) 气瓶用热轧型钢的生产方法
WO2018018389A1 (zh) 一种高强度微合金化稀土铸钢
WO2019169548A1 (zh) 一种低强度微合金化稀土铸钢
CN110499452B (zh) 合金铸钢、其制作方法及应用
CN102268608B (zh) 大容量高压气瓶钢及其生产方法
CN109402498B (zh) 一种高温渗碳齿轮钢及其制造方法
CN104818426B (zh) 一种高强度微合金化稀土铸钢及其制备方法
CN110273105B (zh) 一种高速工具钢及其制备方法
CN112410664A (zh) 一种炉底辊用高强度、抗结瘤cnre稀土耐热钢及其制备方法
WO2019169549A1 (zh) 一种微合金化稀土铸钢
JP2024515134A (ja) 高温浸炭ギヤシャフト用鋼および鋼の製造方法
CN102978511B (zh) 低成本生产汽车大梁钢用热轧钢板的方法
CN103952632B (zh) 石油钻采设备泥浆泵承压件用铸钢及制备方法
CN104988400A (zh) 一种微钛处理的含硼钢及其冶炼方法
JP5708349B2 (ja) 溶接熱影響部靭性に優れた鋼材
WO2019029533A1 (zh) 铸钢、铸钢的制备方法及其应用
LU502587B1 (en) Low-cost, high-strength ferritic nodular cast iron, and preparation method and use thereof
CN103031488B (zh) 一种热轧钢制造方法及热轧钢
CN113136526B (zh) 一种桥梁用大规格钢拉杆用钢35CrNiMo及其生产方法
CN110468329B (zh) ZG-SY09MnCrNiMo RE钢及铸件制备方法
CN105112787A (zh) 一种球磨机用稀土铬钼钒合金钢球及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909970

Country of ref document: EP

Kind code of ref document: A1