WO2019169549A1 - 一种微合金化稀土铸钢 - Google Patents

一种微合金化稀土铸钢 Download PDF

Info

Publication number
WO2019169549A1
WO2019169549A1 PCT/CN2018/078147 CN2018078147W WO2019169549A1 WO 2019169549 A1 WO2019169549 A1 WO 2019169549A1 CN 2018078147 W CN2018078147 W CN 2018078147W WO 2019169549 A1 WO2019169549 A1 WO 2019169549A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
rare earth
added
cast steel
furnace
Prior art date
Application number
PCT/CN2018/078147
Other languages
English (en)
French (fr)
Inventor
高海艇
Original Assignee
高海艇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高海艇 filed Critical 高海艇
Priority to PCT/CN2018/078147 priority Critical patent/WO2019169549A1/zh
Publication of WO2019169549A1 publication Critical patent/WO2019169549A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the invention relates to a cast steel material, in particular to a microalloyed rare earth cast steel suitable for large pressure parts in mines, cement, coal, petroleum and the like, and a smelting and heat treatment process thereof.
  • manganese steel and silicon-manganese steel have very rich resources in China, and manganese steel and silicon-manganese steel have high strength, hardness and wear resistance. Therefore, manganese steel and silicon-manganese steel are commonly used materials in large steel castings. .
  • ferrosilicon and ferromanganese are often used as alloying elements, while ferrosilicon and ferromanganese have more phosphorus elements, and when using medium frequency furnace steelmaking, it is not possible to dephosphorize and desulfurize molten steel, thereby making manganese steel,
  • the content of phosphorus in silicon-manganese steel is high, even exceeding national standards, and the performance of manganese steel and silicon-manganese steel is not fully utilized.
  • Chinese patent document CN 100999800A (Application No. 200610155704.1) discloses a cast steel containing rare earth elements and a production method thereof, wherein the chemical composition and mass percentage are: C0.24% to 0.32%, Si 1.0% to 1.6%. , Mn 1.0% to 1.6%, Cr 0.2% to 0.5%, Re 0.01% to 0.20%, Ni ⁇ 0.05%, Mo ⁇ 0.01%, P ⁇ 0.035%, S ⁇ 0.010%, B ⁇ 0.05%, The balance is iron and inevitable impurities.
  • the content of Si in the cast steel is high, which tends to cause deterioration in the ductility, toughness and cutting performance of the steel casting.
  • the total content of P plus S is relatively high, thereby further reducing the plasticity and toughness of the steel casting.
  • An object of the present invention is to provide a microalloyed rare earth cast steel capable of reducing the content of P and S elements and a method for preparing the same, which solves one or more of the above problems of the prior art.
  • a microalloyed rare earth cast steel is innovative in that the main chemical components of the cast steel include C, Si, Mn, Nb, Ti, Re, La, Ce, P, S, iron and trace impurity elements.
  • the mass percentages of the C, Si, Mn, Nb, Ti, Re, P, and S are respectively C0.40% to 0.5%, Si 0.20% to 0.30%, Mn 1.5% to 1.69%, and Nb0. .1% to 0.8%, Ti 0.05 to 0.12%, Re 0.02% to 0.22%, La 0.01% to 0.14%, Ce 0.01% to 0.19%, P ⁇ 0.045%, and S ⁇ 0.020%.
  • the total content of Nb, Ti, La, Ce is less than or equal to 0.6%.
  • a smelting method for microalloyed rare earth cast steel which is smelted by an intermediate frequency induction furnace, and the smelting process comprises the following steps:
  • the yield of alloying elements C, Si and Mn is calculated according to the yield of C, Si and Mn in ZG35SiMn low alloy cast steel.
  • the content of microalloying elements Nb, Ti, La and Ce is based on the chemical composition of steel. Request a ratio;
  • step 4 the chemical composition in the molten steel is adjusted, and the tapping temperature is controlled at 1650 ° C ⁇ 1680 ° C. Immediately after tapping, a proper amount of slag forming agent is sprinkled on the ladle liquid surface;
  • Final deoxidation the final deoxidation is carried out with pure aluminum during tapping.
  • the pure aluminum block is added to the bottom of the ladle in advance.
  • the amount of pure aluminum added is The quality of the molten steel is 0.050% to 0.125%, and the residual aluminum content in the microalloyed rare earth cast steel is 0.03% to 0.08%;
  • the ferromanganese, the ferrosilicon alloy and the rare earth Nb, Ti, La, Ce, etc. are baked and dried for 2 to 5 hours before the addition, and the baking drying temperature is 100 to 300 °C.
  • the temperature range of the pre-manganese iron and the ferrosilicon alloy is controlled at 1640 ° C to 1660 ° C.
  • the final required ferromanganese or ferrosilicon alloy is added; First, a ferromanganese alloy is added, and after the manganese-iron alloy is completely melted and the slag is completed, a ferrosilicon alloy is added.
  • the microalloying elements such as Nb, Ti, La, Ce, etc. are added to the bottom of the ladle in the form of a metal powder.
  • the normalizing treatment and the tempering treatment are two parts;
  • the normalizing treatment process is: heating in a box type electric resistance furnace at a speed of 80 ° C / h to 120 ° C / h to 860 ° C ⁇ 960 ° C, the holding time is The thickness of the steel casting (mm) ⁇ 1.5 ⁇ 1.8min / h, and then the steel castings are cooled to room temperature in air;
  • the tempering heat treatment process is: heating in a box type electric resistance furnace at a speed of 80 ° C / h to 120 ° C / h to 600 ° C ⁇ 650 ° C, the holding time is the thickness of the steel casting (mm) ⁇ 1.8 ⁇ 2.2 min / h, The steel castings are then cooled to room temperature in air; the time between normalizing and tempering does not exceed 6 h.
  • the tensile strength is greater than or equal to 720 MPa
  • the yield strength is greater than or equal to 480 MPa
  • the elongation is greater than or equal to 12%
  • the area shrinkage is greater than or equal to 14%
  • the impact test temperature is 4 ° C.
  • the work is greater than or equal to 9J.
  • An advantage of the present invention is that the microalloyed rare earth cast steel of the present invention can significantly improve yield strength and tensile strength without significantly reducing plasticity and toughness. Compared with ordinary 35SiMn steel, the microalloyed rare earth cast steel can increase the yield strength by more than 60 MPa, and the tensile strength can be increased by more than 95 MPa.
  • a microalloyed rare earth cast steel the main chemical components of the cast steel include C, Si, Mn, Nb, Ti, Re, La, Ce, P, S, iron and trace impurity elements, the C, Si, Mn,
  • the mass percentages of Nb, Ti, Re, P, and S are C0.40% to 0.5%, Si 0.20% to 0.30%, Mn 1.5% to 1.69%, and Nb 0.1% to 0.8%, Ti0. 05 ⁇ 0.12%, Re0.02% ⁇ 0.22%, La0.01% ⁇ 0.14%, Ce0.01% ⁇ 0.19%, P ⁇ 0.045%, S ⁇ 0.020%; the total content of Nb, Ti, La, Ce is less than Or equal to 0.6%.
  • a smelting method for microalloyed rare earth cast steel is carried out by using a medium frequency induction furnace for smelting, and the smelting process comprises the following steps: pretreatment: baking scrap steel, alloy elements and ladle before smelting, reducing the content of water and gas therein, and removing Mud and rust on the surface of scrap steel; Ingredients: The yield of alloying elements C, Si and Mn is calculated according to the yield of C, Si and Mn in ZG35SiMn low alloy cast steel, and the microalloying elements Nb, Ti, La and Ce The content is proportioned according to the chemical composition requirements of the steel; charging and feeding: large, medium and small metal charge is added according to about 1:4:2 during charging, large metal charge is placed in the bottom of the furnace, and small metal charge is placed The gap between the bulk metal charge and the bottom of the furnace ensures that the charge in the furnace body is tightly closed; the added charge is made of small metal material; the alloy is added: after the steel scrap is melted,
  • the final required ferromanganese and ferrosilicon alloy are added according to the test results, and the ferromanganese is added first, followed by the addition of ferrosilicon; the alloying elements such as Nb, Ti, La, and Ce Pre-add after drying The bottom of the ladle; when the steel is tapped, the carbon powder is poured into the molten steel to increase the carbon; the tapping: the chemical composition in the molten steel is adjusted according to the previous step, and the tapping temperature is controlled at 1650 ° C to 1680 ° C, immediately after tapping.
  • Ferromanganese, ferrosilicon and rare earth Nb, Ti, La, Ce, etc. should be baked and dried for 2 ⁇ 5h before baking, the baking drying temperature is 100 ⁇ 300°C, and the temperature range of pre-added ferromanganese and ferrosilicon alloy is controlled at 1640°C.
  • the final required ferromanganese and ferrosilicon alloy are added; the order of the two alloys is first added with ferromanganese alloy, after all the ferromanganese alloy is melted and the slag is completed, Further, a ferrosilicon alloy is added, and microalloying elements such as Nb, Ti, La, and Ce are added to the bottom of the ladle in the form of a metal powder.
  • Normalizing treatment and tempering treatment is: heating in a box type resistance furnace at a speed of 80 ° C / h ⁇ 120 ° C / h to 860 ° C ⁇ 960 ° C, holding time for the steel castings Thickness (mm) ⁇ 1.5 ⁇ 1.8min / h, and then the steel castings are cooled to room temperature in air; tempering heat treatment process: in a box-type resistance furnace at 80 ° C / h ⁇ 120 ° C / h speed to 600 ° C ⁇ 650 ° C, holding time is the thickness of the steel castings (mm) ⁇ 1.8 ⁇ 2.2min / h, and then the steel castings are cooled to room temperature in air; normalizing and tempering time interval not more than 6h, cast steel After heat treatment, the tensile strength is greater than or equal to 720MPa, the yield strength is greater than or equal to 480MPa, the elongation is greater than or equal to 12%, the
  • the microalloyed rare earth cast steel of the present invention can significantly improve the yield strength and the tensile strength without significantly reducing the plasticity and toughness. Compared with ordinary 35SiMn steel, the microalloyed rare earth cast steel can increase the yield strength by more than 60 MPa, and the tensile strength can be increased by more than 95 MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

一种微合金化稀土铸钢,铸钢的主要化学成分包括C、Si、Mn、Nb、Ti、Re、La、Ce、P、S、铁以及微量杂质元素,所述C、Si、Mn、Nb、Ti、Re、P、S的质量百分含量分别为C 0.40%~0.5%,Si0.20%~0.30%,Mn 1.5%~1.69%,Nb0.1%~0.8%,Ti 0.05~0.12%,Re 0.02%~0.22%,La0.01%~0.14%,Ce0.01%~0.19%,P≤0.045%,S≤0.020%;Nb、Ti、La、Ce的总含量小于或等于0.6%。所述微合金化稀土铸钢在不明显降低塑性和韧性的条件下,显著提高屈服强度和抗拉强度。所述微合金化稀土铸钢与普通35SiMn钢相比,其屈服强度可以提高60MPa以上,抗拉强度可以提高95MPa以上。

Description

一种微合金化稀土铸钢 技术领域
本发明涉及一种铸钢材料,尤其是一种适合矿山、水泥、煤炭、石油等设备中的大型承压件用微合金化稀土铸钢,及其冶炼、热处理工艺方法。
背景技术
大型铸钢件具有成形相对容易、生产成本较低等特点,因而广泛应用于矿山、水泥、石油、船舶等领域,但是大型铸钢件在成形过程中容易出现缩松、缩孔、气孔和裂纹等缺陷,从而影响大型铸钢件的力学性能和使用寿命,对企业和国民经济造成较大的损失,此外,由于中频炉炼钢成本较低,我国现在仍有许多企业使用中频炉炼钢,炼钢过程一般采用不氧化法,不能对钢水进行脱磷脱硫,所以冶炼出来的钢水质量较差,这导致大型铸钢件在铸造成形过程中更加容易出现组织缺陷,如铸造裂纹和气孔,从而使其力学性能和使用寿命进一步降低。
此外,硅、锰在我国具有十分丰富的资源,且锰钢、硅锰钢具有较高的强度、硬度和耐磨性,因此锰钢、硅锰钢是大型铸钢件中常用的一种材料。冶炼锰钢、硅锰钢时常以硅铁、锰铁作为合金元素,而硅铁、锰铁中磷元素含量较多,且采用中频炉炼钢时不能对钢水脱磷脱硫,从而使锰钢、硅锰钢中磷元素的含量较高,甚至超出国家标准,最终使锰钢、硅锰钢的性能得不到充分发挥。
中国专利文献CN 100999800A(申请号200610155704.1)公开了一种含稀土元素的铸钢及其生产方法,其化学成分及质量百分含量为:C0.24%~0.32%,Si1.0%~1.6%,Mn1.0%~1.6%,Cr0.2%~0.5%,Re0.01%~0.20%,Ni≤0.05%,Mo≤0.01%,P≤0.035%,S≤0.010%,B≤0.05%,余量为铁和不可避免的杂质。该铸钢中Si元素的含量较高,容易导致铸钢件的塑性、韧性以及切削性能降低。同时P加S的总含量偏高,从而进一步降低铸钢件的塑性和韧性。
因此,就急需研制出一种能够降低P和S元素含量的微合金化稀土铸钢及其制备方法,经检索,未发现与本发明相同或相似的技术方案。
发明内容
本发明的目的提供能够降低P和S元素含量的微合金化稀土铸钢及其制备方法,解决上述现有技术问题中的一个或者多个。
根据本发明的一种微合金化稀土铸钢,其创新点在于:铸钢的主要化学成分包括C、Si、Mn、Nb、Ti、Re、La、Ce、P、S、铁以及微量杂质元素,所述C、Si、Mn、Nb、Ti、Re、P、S的质量百分含量分别为C0.40%~0.5%,Si0.20%~0.30%,Mn1.5%~1.69%,Nb0.1%~0.8%,Ti0.05~0.12%,Re0.02%~0.22%,La0.01%~0.14%,Ce0.01%~0.19%,P≤0.045%,S≤0.020%。
优选的,Nb、Ti、La、Ce的总含量小于或等于0.6%。
一种微合金化稀土铸钢的冶炼方法,采用中频感应炉进行冶炼,冶炼过程包括以下步骤:
1)预处理:冶炼前对废钢、合金元素以及钢包进行烘烤,降低其中水气的含量,并清除废钢表面的泥污和铁锈;
2)配料:合金元素C、Si、Mn的收得率根据ZG35SiMn低合金铸钢中C、Si、Mn的收得率计算,微合金元素Nb、Ti、La、Ce的含量根据钢的化学成分要求进行配比;
3)装料和加料:装料时大、中、小金属炉料按照约1:4:2来添加,大块金属炉料放入炉底,小块金属炉料放入大块金属炉料与炉底之间的空隙,保证炉体中炉料下紧上松;添加炉料采用小块金属料;
4)添加合金:炉中废钢熔清后,先预加部分锰铁、硅铁合金,待检测炉前钢水的化学成分后,再根据检测结果添加最终所需的锰铁、硅铁合金,并采用先加锰铁,再加硅铁的顺序加入;Nb、Ti、La、Ce等合金元素烘干后预先加入钢包底部;出钢时往钢液中倒入碳粉增碳;
5)出钢:按照步骤4)调整好钢液中的化学成分后出钢,出钢温度控制 在1650℃~1680℃,出钢后立即在钢包液面上撒入适量造渣剂;
6)终脱氧:出钢时用纯铝进行终脱氧,预先将纯铝块加入钢包底部,钢水冲击钢包底部时使纯铝融化并和钢水中的氧气发生反应进行脱氧,纯铝的加入量为钢水质量的0.050%~0.125%,并保证微合金化稀土铸钢中残留的铝含量为0.03%~0.08%;
7)浇注:将步骤6)钢包中的钢水浇注于预先准备好的铸模中,浇注温度控制在1550℃~1580℃,冷却、拆除铸型后所获得的即为微合金化稀土铸钢件。
优选的,锰铁、硅铁合金以及稀土Nb、Ti、La、Ce等在加入前需烘烤干燥2~5h,烘烤干燥温度为100~300℃。
优选的,预加锰铁、硅铁合金的温度范围控制在1640℃~1660℃,待检测炉前钢水化学成分后,再加入最终所需的锰铁、硅铁合金;两次加入合金的顺序均为先加锰铁合金,待锰铁合金全部熔清、扒渣完毕后,再加入硅铁合金。
优选的,Nb、Ti、La、Ce等微合金元素以金属粉末的形式加入钢包底部。
优选的,正火处理和回火处理两部分;所述正火处理工艺为:在箱式电阻炉中以80℃/h~120℃/h的速度升温至860℃~960℃,保温时间为铸钢件厚度(mm)×1.5~1.8min/h,然后将铸钢件在空气中冷却至室温;
回火热处理工艺为:在箱式电阻炉中以80℃/h~120℃/h的速度升温至600℃~650℃,保温时间为铸钢件厚度(mm)×1.8~2.2min/h,然后将铸钢件在空气中冷却至室温;正火与回火的时间间隔不超过6h。
优选的,铸钢件经热处理后,其抗拉强度大于等于720MPa,屈服强度大于等于480MPa,伸长率大于等于12%,断面收缩率大于等于14%,冲击试验温度为4℃时的冲击吸收功大于等于9J。
本发明的优点在于:本发明的微合金化稀土铸钢可以在不明显降低塑性 和韧性的条件下,显著提高屈服强度和抗拉强度。所述微合金化稀土铸钢与普通35SiMn钢相比,其屈服强度可以提高60MPa以上,抗拉强度可以提高95MPa以上。
具体实施方式
一种微合金化稀土铸钢,铸钢的主要化学成分包括C、Si、Mn、Nb、Ti、Re、La、Ce、P、S、铁以及微量杂质元素,所述C、Si、Mn、Nb、Ti、Re、P、S的质量百分含量分别为C0.40%~0.5%,Si0.20%~0.30%,Mn1.5%~1.69%,Nb0.1%~0.8%,Ti0.05~0.12%,Re0.02%~0.22%,La0.01%~0.14%,Ce0.01%~0.19%,P≤0.045%,S≤0.020%;Nb、Ti、La、Ce的总含量小于或等于0.6%。
一种微合金化稀土铸钢的冶炼方法,采用中频感应炉进行冶炼,冶炼过程包括以下步骤:预处理:冶炼前对废钢、合金元素以及钢包进行烘烤,降低其中水气的含量,并清除废钢表面的泥污和铁锈;配料:合金元素C、Si、Mn的收得率根据ZG35SiMn低合金铸钢中C、Si、Mn的收得率计算,微合金元素Nb、Ti、La、Ce的含量根据钢的化学成分要求进行配比;装料和加料:装料时大、中、小金属炉料按照约1:4:2来添加,大块金属炉料放入炉底,小块金属炉料放入大块金属炉料与炉底之间的空隙,保证炉体中炉料下紧上松;添加炉料采用小块金属料;添加合金:炉中废钢熔清后,先预加部分锰铁、硅铁合金,待检测炉前钢水的化学成分后,再根据检测结果添加最终所需的锰铁、硅铁合金,并采用先加锰铁,再加硅铁的顺序加入;Nb、Ti、La、Ce等合金元素烘干后预先加入钢包底部;出钢时往钢液中倒入碳粉增碳;出钢:按照上一步调整好钢液中的化学成分后出钢,出钢温度控制在1650℃~1680℃,出钢后立即在钢包液面上撒入适量造渣剂;终脱氧:出钢时用纯铝进行终脱氧,预先将纯铝块加入钢包底部,钢水冲击钢包底部时使纯铝融化并和钢水中的氧气发生反应进行脱氧,纯铝的加入量为钢水质量 的0.050%~0.125%,并保证微合金化稀土铸钢中残留的铝含量为0.03%~0.08%;浇注:将步骤6)钢包中的钢水浇注于预先准备好的铸模中,浇注温度控制在1550℃~1580℃,冷却、拆除铸型后所获得的即为微合金化稀土铸钢件。
锰铁、硅铁合金以及稀土Nb、Ti、La、Ce等在加入前需烘烤干燥2~5h,烘烤干燥温度为100~300℃,预加锰铁、硅铁合金的温度范围控制在1640℃~1660℃,待检测炉前钢水化学成分后,再加入最终所需的锰铁、硅铁合金;两次加入合金的顺序均为先加锰铁合金,待锰铁合金全部熔清、扒渣完毕后,再加入硅铁合金,Nb、Ti、La、Ce等微合金元素以金属粉末的形式加入钢包底部。
正火处理和回火处理两部分;所述正火处理工艺为:在箱式电阻炉中以80℃/h~120℃/h的速度升温至860℃~960℃,保温时间为铸钢件厚度(mm)×1.5~1.8min/h,然后将铸钢件在空气中冷却至室温;回火热处理工艺为:在箱式电阻炉中以80℃/h~120℃/h的速度升温至600℃~650℃,保温时间为铸钢件厚度(mm)×1.8~2.2min/h,然后将铸钢件在空气中冷却至室温;正火与回火的时间间隔不超过6h,铸钢件经热处理后,其抗拉强度大于等于720MPa,屈服强度大于等于480MPa,伸长率大于等于12%,断面收缩率大于等于14%,冲击试验温度为4℃时的冲击吸收功大于等于9J。
本发明的微合金化稀土铸钢可以在不明显降低塑性和韧性的条件下,显著提高屈服强度和抗拉强度。所述微合金化稀土铸钢与普通35SiMn钢相比,其屈服强度可以提高60MPa以上,抗拉强度可以提高95MPa以上。
以上所述仅是本发明的优选方式,应当指出,对于本领域普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干相似的变形和改进,这些也应视为本发明的保护范围之内。

Claims (8)

  1. 一种微合金化稀土铸钢,其特征在于:所述铸钢的主要化学成分包括C、Si、Mn、Nb、Ti、Re、La、Ce、P、S、铁以及微量杂质元素,所述C、Si、Mn、Nb、Ti、Re、P、S的质量百分含量分别为C 0.40%~0.5%,Si 0.20%~0.30%,Mn 1.5%~1.69%,Nb 0.1%~0.8%,Ti 0.05~0.12%,Re 0.02%~0.22%,La 0.01%~0.14%,Ce 0.01%~0.19%,P≤0.045%,S≤0.020%。
  2. 根据权利要求1所述的一种微合金化稀土铸钢,其特征在于:所述Nb、Ti、La、Ce的总含量小于或等于0.6%。
  3. 如权利要求1所述的一种微合金化稀土铸钢的冶炼方法,采用中频感应炉进行冶炼,其特征在于冶炼过程包括以下步骤:
    1)预处理:冶炼前对废钢、合金元素以及钢包进行烘烤,降低其中水气的含量,并清除废钢表面的泥污和铁锈;
    2)配料:合金元素C、Si、Mn的收得率根据ZG35SiMn低合金铸钢中C、Si、Mn的收得率计算,微合金元素Nb、Ti、La、Ce的含量根据钢的化学成分要求进行配比;
    3)装料和加料:装料时大、中、小金属炉料按照约1:4:2来添加,大块金属炉料放入炉底,小块金属炉料放入大块金属炉料与炉底之间的空隙,保证炉体中炉料下紧上松;添加炉料采用小块金属料;
    4)添加合金:炉中废钢熔清后,先预加部分锰铁、硅铁合金,待检测炉前钢水的化学成分后,再根据检测结果添加最终所需的锰铁、硅铁合金,并采用先加锰铁,再加硅铁的顺序加入;Nb、Ti、La、Ce等合金元素烘干后预先加入钢包底部;出钢时往钢液中倒入碳粉增碳;
    5)出钢:按照步骤4)调整好钢液中的化学成分后出钢,出钢温度控制在1650℃~1680℃,出钢后立即在钢包液面上撒入适量造渣剂;
    6)终脱氧:出钢时用纯铝进行终脱氧,预先将纯铝块加入钢包底部,钢水冲击钢包底部时使纯铝融化并和钢水中的氧气发生反应进行脱氧,纯铝的加入量为钢水质量的0.050%~0.125%,并保证微合金化稀土铸钢中残留的铝含量为0.03%~0.08%;
    7)浇注:将步骤6)钢包中的钢水浇注于预先准备好的铸模中,浇注温度控制在1550℃~1580℃,冷却、拆除铸型后所获得的即为微合金化稀土铸钢件。
  4. 根据权利要求3所述的一种一种微合金化稀土铸钢的冶炼方法,其特征在于:所述锰铁、硅铁合金以及稀土Nb、Ti、La、Ce等在加入前需烘烤干燥2~5h,烘烤干燥温度为100~300℃。
  5. 根据权利要求3所述的一种微合金化稀土铸钢的冶炼方法,其特征在于:所述预加锰铁、硅铁合金的温度范围控制在1640℃~1660℃,待检测炉前钢水化学成分后,再加入最终所需的锰铁、硅铁合金;两次加入合金的顺序均为先加锰铁合金,待锰铁合金全部熔清、扒渣完毕后,再加入硅铁合金。
  6. 根据权利要求3所述的一种微合金化稀土铸钢的冶炼方法,其特征在于:所述Nb、Ti、La、Ce等微合金元素以金属粉末的形式加入钢包底部。
  7. 一种如权利要求1所述的一种微合金化稀土铸钢的热处理方法,其特征在于:包括正火处理和回火处理两部分;所述正火处理工艺为:在箱式电阻炉中以80℃/h~120℃/h的速度升温至860℃~960℃,保温时间为铸钢件厚度(mm)×1.5~1.8min/h,然后将铸钢件在空气中冷却至室温;
    所述回火热处理工艺为:在箱式电阻炉中以80℃/h~120℃/h的速度升温至600℃~650℃,保温时间为铸钢件厚度(mm)×1.8~2.2min/h,然后将铸钢件在空气中冷却至室温;正火与回火的时间间隔不超过6h。
  8. 根据权利要求7所述的一种微合金化稀土铸钢的热处理方法,其特征 在于:所述铸钢件经热处理后,其抗拉强度大于等于720MPa,屈服强度大于等于480MPa,伸长率大于等于12%,断面收缩率大于等于14%,冲击试验温度为4℃时的冲击吸收功大于等于9J。
PCT/CN2018/078147 2018-03-06 2018-03-06 一种微合金化稀土铸钢 WO2019169549A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/078147 WO2019169549A1 (zh) 2018-03-06 2018-03-06 一种微合金化稀土铸钢

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/078147 WO2019169549A1 (zh) 2018-03-06 2018-03-06 一种微合金化稀土铸钢

Publications (1)

Publication Number Publication Date
WO2019169549A1 true WO2019169549A1 (zh) 2019-09-12

Family

ID=67846445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078147 WO2019169549A1 (zh) 2018-03-06 2018-03-06 一种微合金化稀土铸钢

Country Status (1)

Country Link
WO (1) WO2019169549A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876553A (zh) * 2020-08-05 2020-11-03 内蒙古科技大学 一种基于碳载体吸附稀土元素在钢铁材料中微合金化的方法
CN112322959A (zh) * 2020-09-17 2021-02-05 中车长江铜陵车辆有限公司 一种铸钢牌号G20Mn5N的中频炉熔炼和电窑热处理工艺
CN112828279A (zh) * 2020-12-31 2021-05-25 昆明理工大学 一种金属粉末气相脱氧方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298909A (ja) * 2004-04-13 2005-10-27 Nippon Steel Corp 表面割れの少ない鋳片
WO2010074710A2 (en) * 2008-12-16 2010-07-01 L. E. Jones Company Superaustenitic stainless steel and method of making and use thereof
CN104818426A (zh) * 2015-05-19 2015-08-05 海安海太铸造有限公司 一种高强度微合金化稀土铸钢及其制备方法
CN105088087A (zh) * 2015-09-18 2015-11-25 湖南大学 一种高韧性适焊微合金化铸钢及其制备方法
CN105648345A (zh) * 2016-03-02 2016-06-08 上海市环境工程设计科学研究院有限公司 一种焚烧炉炉排用高强韧高温耐磨耐蚀铸钢及其制备方法
WO2018018389A1 (zh) * 2016-07-25 2018-02-01 顾湘 一种高强度微合金化稀土铸钢

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298909A (ja) * 2004-04-13 2005-10-27 Nippon Steel Corp 表面割れの少ない鋳片
WO2010074710A2 (en) * 2008-12-16 2010-07-01 L. E. Jones Company Superaustenitic stainless steel and method of making and use thereof
CN104818426A (zh) * 2015-05-19 2015-08-05 海安海太铸造有限公司 一种高强度微合金化稀土铸钢及其制备方法
CN105088087A (zh) * 2015-09-18 2015-11-25 湖南大学 一种高韧性适焊微合金化铸钢及其制备方法
CN105648345A (zh) * 2016-03-02 2016-06-08 上海市环境工程设计科学研究院有限公司 一种焚烧炉炉排用高强韧高温耐磨耐蚀铸钢及其制备方法
WO2018018389A1 (zh) * 2016-07-25 2018-02-01 顾湘 一种高强度微合金化稀土铸钢

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876553A (zh) * 2020-08-05 2020-11-03 内蒙古科技大学 一种基于碳载体吸附稀土元素在钢铁材料中微合金化的方法
CN112322959A (zh) * 2020-09-17 2021-02-05 中车长江铜陵车辆有限公司 一种铸钢牌号G20Mn5N的中频炉熔炼和电窑热处理工艺
CN112322959B (zh) * 2020-09-17 2022-02-25 中车长江铜陵车辆有限公司 一种铸钢牌号G20Mn5N的中频炉熔炼和电窑热处理工艺
CN112828279A (zh) * 2020-12-31 2021-05-25 昆明理工大学 一种金属粉末气相脱氧方法
CN112828279B (zh) * 2020-12-31 2022-08-12 昆明理工大学 一种金属粉末气相脱氧方法

Similar Documents

Publication Publication Date Title
CN102330021B (zh) 低温取向硅钢生产全工艺
CN101289731B (zh) CrMnTi系窄淬透性带齿轮钢及其制造方法
CN102277534B (zh) 气瓶用热轧型钢的生产方法
CN104862443B (zh) 一种低碳低硅焊丝钢的冶炼方法
WO2018018389A1 (zh) 一种高强度微合金化稀土铸钢
CN110499452B (zh) 合金铸钢、其制作方法及应用
WO2019169548A1 (zh) 一种低强度微合金化稀土铸钢
CN102268608B (zh) 大容量高压气瓶钢及其生产方法
CN109402498B (zh) 一种高温渗碳齿轮钢及其制造方法
CN108193136A (zh) 一种40Cr热轧圆钢及其生产方法
CN110273105B (zh) 一种高速工具钢及其制备方法
CN104818426B (zh) 一种高强度微合金化稀土铸钢及其制备方法
JP6990337B1 (ja) 表面性状に優れたNi基合金およびその製造方法
CN112410664A (zh) 一种炉底辊用高强度、抗结瘤cnre稀土耐热钢及其制备方法
WO2019169549A1 (zh) 一种微合金化稀土铸钢
JP2024515134A (ja) 高温浸炭ギヤシャフト用鋼および鋼の製造方法
CN112962025A (zh) 一种低成本保探伤低合金结构钢中厚板的生产方法
CN102703809A (zh) 一种热轧钢及其制造方法
CN104988400A (zh) 一种微钛处理的含硼钢及其冶炼方法
JP5708349B2 (ja) 溶接熱影響部靭性に優れた鋼材
CN114293101A (zh) 一种经济型高等级焊丝钢h04e及其制备方法
WO2019029533A1 (zh) 铸钢、铸钢的制备方法及其应用
CN108165892A (zh) 一种低温压力容器用35-50mm厚Q420R高强钢及其生产方法
LU502587B1 (en) Low-cost, high-strength ferritic nodular cast iron, and preparation method and use thereof
CN103031488B (zh) 一种热轧钢制造方法及热轧钢

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908374

Country of ref document: EP

Kind code of ref document: A1