CN109182691A - 一种微合金化中碳铸钢的热处理方法 - Google Patents

一种微合金化中碳铸钢的热处理方法 Download PDF

Info

Publication number
CN109182691A
CN109182691A CN201811206683.0A CN201811206683A CN109182691A CN 109182691 A CN109182691 A CN 109182691A CN 201811206683 A CN201811206683 A CN 201811206683A CN 109182691 A CN109182691 A CN 109182691A
Authority
CN
China
Prior art keywords
cast steel
carbon cast
heat treatment
treatment method
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811206683.0A
Other languages
English (en)
Other versions
CN109182691B (zh
Inventor
张永军
于文杰
乔燕芳
金培武
宋智丽
王九花
韩静涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningxia Tiandi Benniu Industrial Group Co Ltd
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201811206683.0A priority Critical patent/CN109182691B/zh
Publication of CN109182691A publication Critical patent/CN109182691A/zh
Application granted granted Critical
Publication of CN109182691B publication Critical patent/CN109182691B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明公布一种微合金化中碳铸钢的热处理方法,属于矿山冶金机械材料技术领域。该方法主要是针对主要成分及其含量为:0.26~0.35%C,0.60~0.90%Si,1.10~2.00%Mn,P≤0.020%,S≤0.020%,0.02~0.06%Nb,0.06~0.16%RE,其余含量为Fe的中碳铸钢提出的。提出的热处理方法是:对浇注后采用急冷处理的中碳铸钢进行高温扩散退火、正火、调质、低温处理。经过上述处理可以保证该中碳铸钢具有强度、韧性、耐磨性的合理匹配度,其屈服强度≥900MPa、抗拉强度≥1000MPa、断面延伸率≥15%、断面收缩率≥30%、室温冲击韧性αkv≥60J/cm2,耐磨性相同材料产品提高2.0倍以上,满足矿山冶金机械零部件对高强、高韧、耐磨的使用要求。

Description

一种微合金化中碳铸钢的热处理方法
技术领域
本发明属于矿山冶金机械材料技术领域,涉及一种实现微合金化中碳铸钢强度、韧性、耐磨性合理匹配的热处理方法。
背景技术
中碳铸钢作为结构材料应用广泛在矿山冶金机械中,例如刮板输送机的中部槽,其材质主要ZG30MnSi。通常每台刮板输送机都具有100多节中部槽,无论是按重量计,还是按成本计,都占整个刮板输送机的70%~80%,因此中部槽是使用量和消耗量最大的部件。每节中部槽在结构上普遍采用整体铸造铲板槽帮、挡板槽帮与高强度耐磨合金中板及底板组焊而成。其中,槽帮位于中部槽的两侧,包括铲板中碳、挡板中碳和少量异型槽帮,在结构上由整体铸造而成。
目前,槽帮材料普遍采用的是ZG30MnSi,或在此基础上添加Cr、Mo和Nb、RE等合金元素,然而由这些材料制备出的槽帮,其过煤量一般在600万t左右,低于国外1 500万t以上的水平,难以满足大采高采煤工作面的要求。究其原因,是中碳的强韧性较低,或强韧性匹配不合理,如强度高、韧性低等。
上述槽帮采用正火+调质热处理工艺(蔡明华.SGZ1000/3×855刮板输送机中碳铸造工艺研究[J].铸造设备与工艺,2013,(6):35-37),并未针对槽帮的成分特点及其微观结构的结晶特点,尤其是钢中添加了合金元素后制定有针对性的有效热处理方法,即并未将合金元素的作用充分发挥出来。
发明内容
本发明是根据中碳铸钢微观结构特点,以及铌、稀土的微合金化后的中碳铸钢的成分特点,针对实现铌、稀土复合微合金化中碳铸钢强度、韧性和耐磨性的合理匹配而提出的一种热处理方法,即该方法可在保证材料一定强韧性的基础上,获得高的耐磨性。
本发明通过以下技术措施实现:
一种微合金化中碳铸钢的热处理方法,其特征在于:所述中碳铸钢化学成分及其质量百分比含量为0.26~0.35%C,0.60~0.90%Si,1.10~2.00%Mn,P≤0.020%,S≤0.020%,0.02~0.06%Nb,0.06~0.16%RE,其余含量为Fe,热处理方法包括4个步骤;
1)高温扩散退火:在高温热处理炉中进行的成分、组织均匀化处理;
2)正火:在中温热处理炉内对高温扩散退火后的中碳铸钢进行组织细化处理;
3)调质:在中温热处理炉内对正火后的中碳铸钢进行组织性能处理,包括淬火加高温回火两种处理方式;
4)低温处理:对调质处理后的中碳铸钢在低温热处理炉内进行的组织性能处理。
进一步地,所述热处理方法适用于浇注成型急冷处理的中碳铸钢,其冷却速度控制在10~30℃/s。
进一步地,所述的高温扩散退火温度范围为:1120~1220℃;保温时间按照3~5min/mm壁厚选定。
进一步地,所述的正火温度范围为:880~930℃;保温时间按照2~3min/mm壁厚选定。
进一步地,所述调质处理中,淬火温度范围为:880~930℃;保温时间按照1.5~2.5min/mm壁厚选定;回火温度范围为:560~630℃;保温时间按照2~3min/mm壁厚选定。
进一步地,所述的低温处理温度范围为:180~300℃;保温时间按照1.5~3.0h/mm壁厚选定,随炉冷却至室温后出炉。
本发明的有益效果:
利用本发明提出的热处理方法处理的中碳铸钢,具有强度、韧性、耐磨性的合理匹配度,其屈服强度≥900MPa、抗拉强度≥1000MPa、断面延伸率≥15%、断面收缩率≥30%、室温冲击韧性αkv≥60J/cm2,耐磨性较同类产品提高2.0倍以上。即该方法可在保证材料一定强韧性的基础上,获得高的耐磨性,从而满足如槽帮等矿山冶金机械零部件对高强、高韧、耐磨的使用要求。
附图说明
图1是本发明所采用的技术路线图。
具体实施方式
现将本发明的实施例具体叙述于后。
实施例对本发明的技术方案做进一步描述。实施例仅用于说明本发明,而不是以任何方式来限制本发明。本发明提出的一种实现微合金化中碳铸钢强度、韧性、耐磨性合理匹配的热处理方法,主要是对化学成分及其质量百分比含量为0.26~0.35%C,0.60~0.90%Si,1.10~2.00%Mn,P≤0.020%,S≤0.020%,0.02~0.06%Nb,0.06~0.16%RE,其余含量为Fe;且在浇注成型后以10~30℃/s为冷速进行急冷处理的中碳铸钢进行的,其具体的热处理方法包括高温扩散退火、正火、调质、低温处理4个过程。其中,高温扩散退火是在高温热处理炉内进行,其温度范围为:1120~1220℃,保温时间按照3~5min/mm壁厚选定;正火是在中温热处理炉内进行的,其温度范围为:880~930℃,保温时间按照2~3min/mm壁厚选定;调质是在中温热处理炉内进行的,调质处理中的淬火温度范围为:880~930℃,保温时间按照1.5~2.5min/mm壁厚选定;调质处理中的回火温度范围为:560~630℃,保温时间按照2~3min/mm壁厚选定;所述的低温处理是在低温热处理炉内进行的组织性能处理,低温处理温度范围为:180~300℃;保温时间按照1.5~3.0h/mm壁厚选定,随炉冷却至室温后出炉。
实施例1
本实施例选用的中碳铸钢的化学成分为(质量分数/%)为:0.26C,0.7Si,1.23Mn,0.010S,0.011P,0.037Nb,0.075RE,且其浇注后采用冷速为26℃/s的急冷处理。急冷处理后的中碳室温装入高温热处炉进行温度为1200℃高温扩散退火处理,其保温时间按照3.5/mm壁厚选定;高温扩散退火处理后的中碳铸钢再室温装入中温热处理炉进行温度为920℃的正火处理,其保温时间按照2.1/mm壁厚选定;正火处理后的中碳铸钢再室温装入中温热处理炉进行温度为910℃的淬火处理,其保温时间按照1.6/mm壁厚选定;淬火处理的中碳铸钢再室温装入中温热处理炉进行温度为620℃的回火处理,其保温时间按照2.1/mm壁厚选定。之后在低温热处理炉内进行低温处理,其温度为260℃;保温时间按照1.8h/mm壁厚选定,随炉冷却至室温后出炉。
对上述方法制备的中碳铸钢进行力学性能测试,结果显示,其抗拉强度超过930MPa,室温冲击韧性αkv达到65J/cm2,耐磨性较未按照本申请提出的热处理方法进行的相同材料产品提高2.2倍。表明按上述方法制备的中碳铸钢具有强度、韧性、耐磨性的合理匹配度。
实施例2
本实施例选用的中碳铸钢的化学成分为(质量分数/%)为:0.33C,0.8Si,1.63Mn,0.011S,0.012P,0.046Nb,0.12RE,且其浇注后采用冷速为18℃/s的急冷处理。急冷处理后的中碳室温装入高温热处炉进行温度为1160℃高温扩散退火处理,其保温时间按照3.5/mm壁厚选定;高温扩散退火处理后的中碳铸钢再室温装入中温热处理炉进行温度为900℃的正火处理,其保温时间按照2.1/mm壁厚选定;正火处理后的中碳铸钢再室温装入中温热处理炉进行温度为890℃的淬火处理,其保温时间按照1.6/mm壁厚选定;淬火处理的中碳铸钢再室温装入中温热处理炉进行温度为600℃的回火处理,其保温时间按照2.1/mm壁厚选定。之后在低温热处理炉内进行低温处理,其温度为200℃;保温时间按照2.6h/mm壁厚选定,随炉冷却至室温后出炉。对上述方法制备的中碳进行力学性能测试,结果显示,其抗拉强度超过1020MPa,室温冲击韧性αkv达到62J/cm2,耐磨性较未按照本申请提出的热处理方法进行的相同材料产品提高2.6倍。表明按上述方法制备的中碳铸钢具有强度、韧性、耐磨性的合理匹配度。
由实施例可见,采用本发明提出的一种实现微合金化中碳铸钢强度、韧性、耐磨性合理匹配的热处理方法,使中碳铸钢获得高的强韧性指标和耐磨性能,具有合理的强度、韧性、耐磨性的匹配度,即该方法可在保证材料一定强韧性的基础上,获得高的耐磨性,从而满足矿山冶金机械零部件对高强、高韧、耐磨的使用要求。

Claims (7)

1.一种微合金化中碳铸钢的热处理方法,其特征在于:所述中碳铸钢化学成分及其质量百分比含量为0.26~0.35%C,0.60~0.90%Si,1.10~2.00%Mn,P≤0.020%,S≤0.020%,0.02~0.06%Nb,0.06~0.16%RE,其余含量为Fe,热处理方法包括4个步骤;
1)高温扩散退火:在高温热处理炉中进行的成分、组织均匀化处理;
2)正火:在中温热处理炉内对高温扩散退火后的中碳铸钢进行组织细化处理;
3)调质:在中温热处理炉内对正火后的中碳铸钢进行组织性能处理,包括淬火加高温回火两种处理方式;
4)低温处理:对调质处理后的中碳铸钢在低温热处理炉内进行的组织性能处理。
2.根据权利要求1所述一种微合金化中碳铸钢的热处理方法,其特征在于:所述热处理方法适用于浇注成型急冷处理的中碳铸钢,其冷却速度控制在10~30℃/s。
3.根据权利要求1所述的一种微合金化中碳铸钢的热处理方法,其特征在于:所述的高温扩散退火温度范围为:1120~1220℃;保温时间按照3~5min/mm壁厚选定。
4.根据权利要求1、所述的一种微合金化中碳铸钢的热处理方法,其特征在于:所述的正火温度范围为:880~930℃;保温时间按照2~3min/mm壁厚选定。
5.根据权利要求1所述的一种微合金化中碳铸钢的热处理方法,其特征在于:所述调质处理中,淬火温度范围为:880~930℃;保温时间按照1.5~2.5min/mm壁厚选定;回火温度范围为:560~630℃;保温时间按照2~3min/mm壁厚选定。
6.根据权利要求1所述的一种微合金化中碳铸钢的热处理方法,其特征在于:所述的低温处理温度范围为:180~300℃;保温时间按照1.5~3.0h/mm壁厚选定,随炉冷却至室温后出炉。
7.根据权利要求1所述的一种微合金化中碳铸钢热处理方法,其特征在于:经过上述方法处理的中碳铸钢具有强度、韧性、耐磨性的合理匹配度,其屈服强度≥900MPa、抗拉强度≥1000MPa、断面延伸率≥15%、断面收缩率≥30%、室温冲击韧性αkv≥60J/cm2,耐磨性较相同材料产品提高2.0倍以上。即该方法能在保证材料一定强韧性的基础上,获得高的耐磨性。
CN201811206683.0A 2018-10-17 2018-10-17 一种微合金化中碳铸钢的热处理方法 Active CN109182691B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811206683.0A CN109182691B (zh) 2018-10-17 2018-10-17 一种微合金化中碳铸钢的热处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811206683.0A CN109182691B (zh) 2018-10-17 2018-10-17 一种微合金化中碳铸钢的热处理方法

Publications (2)

Publication Number Publication Date
CN109182691A true CN109182691A (zh) 2019-01-11
CN109182691B CN109182691B (zh) 2020-02-07

Family

ID=64945474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811206683.0A Active CN109182691B (zh) 2018-10-17 2018-10-17 一种微合金化中碳铸钢的热处理方法

Country Status (1)

Country Link
CN (1) CN109182691B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110202118A (zh) * 2019-05-20 2019-09-06 北京科技大学 一种钒、钛微合金化中碳槽帮铸钢的制备方法
CN111850246A (zh) * 2020-06-30 2020-10-30 锦州捷通铁路机械股份有限公司 一种提高c级钢断后伸长率的热处理方法
CN112430713A (zh) * 2019-08-24 2021-03-02 兰州兰石集团有限公司铸锻分公司 一种适用于低温条件的矿用车架的热处理工艺
CN114032366A (zh) * 2019-12-27 2022-02-11 安徽应流集团霍山铸造有限公司 一种1e4904型中碳低合金钢的热处理方法
CN115652185A (zh) * 2022-11-07 2023-01-31 中煤张家口煤矿机械有限责任公司 一种高强度低合金耐磨铸钢的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368717A (ja) * 1989-08-05 1991-03-25 Kurimoto Ltd シュレッダーハンマーの製造方法
CN104120364A (zh) * 2014-08-16 2014-10-29 西安煤矿机械有限公司 一种采煤机摇臂用合金调质铸钢及其制备方法
CN106834936A (zh) * 2016-12-29 2017-06-13 兰州兰石集团有限公司 农机深松铲用耐磨铸钢及其热处理工艺
CN107598086A (zh) * 2017-09-06 2018-01-19 中煤张家口煤矿机械有限责任公司 刮板输送机中部槽的整体铸造方法
WO2018018389A1 (zh) * 2016-07-25 2018-02-01 顾湘 一种高强度微合金化稀土铸钢
CN108060356A (zh) * 2017-12-13 2018-05-22 北京科技大学 一种铌氮微合金化槽帮铸钢的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368717A (ja) * 1989-08-05 1991-03-25 Kurimoto Ltd シュレッダーハンマーの製造方法
CN104120364A (zh) * 2014-08-16 2014-10-29 西安煤矿机械有限公司 一种采煤机摇臂用合金调质铸钢及其制备方法
WO2018018389A1 (zh) * 2016-07-25 2018-02-01 顾湘 一种高强度微合金化稀土铸钢
CN106834936A (zh) * 2016-12-29 2017-06-13 兰州兰石集团有限公司 农机深松铲用耐磨铸钢及其热处理工艺
CN107598086A (zh) * 2017-09-06 2018-01-19 中煤张家口煤矿机械有限责任公司 刮板输送机中部槽的整体铸造方法
CN108060356A (zh) * 2017-12-13 2018-05-22 北京科技大学 一种铌氮微合金化槽帮铸钢的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吕仁杰 等: "槽帮材料及其制造工艺研究进展", 《铸造设备与工艺》 *
施志康: "《最新新型工程材料生产新技术应用与新产品开发研制及行业技术标准实用大全 3 钢铁材料卷》", 30 November 2004, 学苑音像出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110202118A (zh) * 2019-05-20 2019-09-06 北京科技大学 一种钒、钛微合金化中碳槽帮铸钢的制备方法
CN112430713A (zh) * 2019-08-24 2021-03-02 兰州兰石集团有限公司铸锻分公司 一种适用于低温条件的矿用车架的热处理工艺
CN114032366A (zh) * 2019-12-27 2022-02-11 安徽应流集团霍山铸造有限公司 一种1e4904型中碳低合金钢的热处理方法
CN114032366B (zh) * 2019-12-27 2023-05-19 安徽应流集团霍山铸造有限公司 一种1e4904型中碳低合金钢的热处理方法
CN111850246A (zh) * 2020-06-30 2020-10-30 锦州捷通铁路机械股份有限公司 一种提高c级钢断后伸长率的热处理方法
CN115652185A (zh) * 2022-11-07 2023-01-31 中煤张家口煤矿机械有限责任公司 一种高强度低合金耐磨铸钢的制备方法

Also Published As

Publication number Publication date
CN109182691B (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
CN109182691A (zh) 一种微合金化中碳铸钢的热处理方法
CN101671792B (zh) 弹簧钢及其制备方法
CN100455692C (zh) 一种高强度耐候钢的生产方法
CN106191640B (zh) 一种球墨铸铁材料及其制备方法
CN107937803B (zh) 一种具有低温冲击韧性耐磨钢板及其制备方法
US20220411907A1 (en) 690 mpa-grade medium manganese steel medium thick steel with high strength and low yield ratio and manufacturing method therefor
CN103205634A (zh) 一种低合金高硬度耐磨钢板及其制造方法
CN104831189A (zh) Hb600级非调质耐磨钢板及其制造方法
CN105039861B (zh) 一种中锰含硼低合金耐磨钢板及其制备方法
CN102337455A (zh) 一种稀土处理的高韧性耐磨钢板
CN109023119A (zh) 一种具有优异塑韧性的耐磨钢及其制造方法
CN105950997B (zh) 一种高韧性高强度厚钢板及其生产方法
CN108018492A (zh) 一种布氏硬度大于550hb的高级别低合金耐磨钢板及制造方法
JP3543619B2 (ja) 高靱性耐摩耗鋼およびその製造方法
CN110499474A (zh) 耐高温400hb耐磨钢板及其生产方法
CN113249643B (zh) 一种矿用高强度渗碳链条钢及其制备方法
CN107130172B (zh) 布氏硬度400hbw级整体硬化型高韧性易焊接特厚耐磨钢板及其制造方法
CN102766818B (zh) 一种基于动态碳配分原理的马氏体钢
CN109811259A (zh) 一种超低温耐磨钢板及制造方法
CN108950432A (zh) 一种高强度、高韧性低合金耐磨钢及其制造方法
CN106086657A (zh) 一种屈服强度大于1300MPa的超高强度结构钢板及其制备方法
CN102719737B (zh) 屈服强度460MPa级正火高强韧钢板及其制造方法
CN103103448A (zh) 一种低合金高强韧性耐磨钢板
CN109811260A (zh) 一种极寒地区用耐磨钢板及制造方法
CN101812634B (zh) 低碳低焊接裂纹敏感性的高强度钢、钢板及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200805

Address after: 753001, No. 1, metalworking Road, Dawukou District, the Ningxia Hui Autonomous Region, Shizuishan

Patentee after: NINGXIA TIANDI BENNIU INDUSTRIAL GROUP Co.,Ltd.

Address before: 100083 Haidian District, Xueyuan Road, No. 30,

Patentee before: University OF SCIENCE AND TECHNOLOGY BEIJING