WO2018016475A1 - コア板の製造方法 - Google Patents

コア板の製造方法 Download PDF

Info

Publication number
WO2018016475A1
WO2018016475A1 PCT/JP2017/025915 JP2017025915W WO2018016475A1 WO 2018016475 A1 WO2018016475 A1 WO 2018016475A1 JP 2017025915 W JP2017025915 W JP 2017025915W WO 2018016475 A1 WO2018016475 A1 WO 2018016475A1
Authority
WO
WIPO (PCT)
Prior art keywords
core back
core
back portion
strain
easy magnetization
Prior art date
Application number
PCT/JP2017/025915
Other languages
English (en)
French (fr)
Inventor
青木 哲也
剛士 妹尾
恵一 岡▲崎▼
智史 土井
藤村 浩志
佐藤 浩明
Original Assignee
株式会社デンソー
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017107106A external-priority patent/JP6633025B2/ja
Application filed by 株式会社デンソー, 新日鐵住金株式会社 filed Critical 株式会社デンソー
Priority to MX2019000810A priority Critical patent/MX2019000810A/es
Priority to BR112019000962-0A priority patent/BR112019000962B1/pt
Priority to KR1020197001927A priority patent/KR102243007B1/ko
Priority to CA3031179A priority patent/CA3031179C/en
Priority to PL17830991T priority patent/PL3490119T3/pl
Priority to CN201780044185.8A priority patent/CN109478834B/zh
Priority to EP17830991.0A priority patent/EP3490119B1/en
Publication of WO2018016475A1 publication Critical patent/WO2018016475A1/ja
Priority to US16/250,025 priority patent/US10749416B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D11/00Bending not restricted to forms of material mentioned in only one of groups B21D5/00, B21D7/00, B21D9/00; Bending not provided for in groups B21D5/00 - B21D9/00; Twisting
    • B21D11/08Bending by altering the thickness of part of the cross-section of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D11/00Bending not restricted to forms of material mentioned in only one of groups B21D5/00, B21D7/00, B21D9/00; Bending not provided for in groups B21D5/00 - B21D9/00; Twisting
    • B21D11/20Bending sheet metal, not otherwise provided for
    • B21D11/203Round bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/16Making other particular articles rings, e.g. barrel hoops
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/02Edge parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved

Definitions

  • the present disclosure relates to a method of manufacturing a core plate having an annular core back portion and a plurality of teeth portions extending from the core back portion toward the center.
  • a rotating electrical machine such as a generator or a motor uses a stator core in which a plurality of annular core plates each having an annular core back portion and a teeth portion are stacked.
  • a stator core in which a plurality of annular core plates each having an annular core back portion and a teeth portion are stacked.
  • Patent Document 1 manufactures a core plate by punching a strip-shaped sheet piece having a core back and a tooth portion from a grain-oriented electrical steel sheet having a direction of easy magnetization in one direction and winding the sheet piece in an annular shape.
  • a technique is disclosed (Patent Document 1). This makes it possible to manufacture a core plate in which the easy magnetization direction in the tooth portion is aligned with the extending direction of the tooth portion.
  • the direction-oriented electrical steel sheet has the easy magnetization direction aligned in one direction, so that the easy-magnetization direction of the direction-oriented electrical steel sheet is punched so as to be the extension direction of the teeth, and then wound.
  • the core plate is manufactured by turning, the easy magnetization direction in the core back portion also becomes the extension direction of the teeth portion.
  • magnetization becomes difficult by the magnetic circuit of the stator core. That is, the magnetic characteristics in the teeth portion are good, but the magnetic characteristics in the core back portion are deteriorated.
  • the present disclosure has been made in view of such a problem, and an object of the present disclosure is to provide a method of manufacturing a core plate that can improve magnetic characteristics in a tooth portion and prevent deterioration of magnetic characteristics in a core back portion.
  • One aspect of the present disclosure is a method for manufacturing a core plate having an annular core back portion and a plurality of teeth portions extending from the core back portion toward the center.
  • the manufacturing method includes a punching process, a winding process, a distortion process, and an annealing process.
  • a punching process from a grain-oriented electrical steel sheet having an easy magnetization direction in one direction in the plane, a strip-shaped core back portion extending in a direction perpendicular to the easy magnetization direction, and parallel to the easy magnetization direction from the strip core back portion.
  • a core sheet piece having a plurality of extending parallel teeth portions is punched out.
  • the core sheet having the core back portion and the teeth portion is obtained by winding the core sheet piece in an annular shape with the parallel teeth portion being inward.
  • the strain processing step compressive strain is applied in the plate thickness direction to the band-shaped core back portion of the core sheet piece or the core back portion of the core plate.
  • the annealing step after the strain processing step, the band-shaped core back portion or the core back portion is recrystallized by annealing.
  • Another aspect of the present disclosure is a method for manufacturing a core plate having an annular core back portion and a plurality of teeth portions extending from the core back portion toward the center.
  • the manufacturing method includes a strain processing step, a punching step, a winding step, and an annealing step.
  • the strain processing step in the grain-oriented electrical steel sheet having the easy magnetization direction in one direction in the plane, compressive strain is applied in the plate thickness direction to the band-shaped core back portion formation scheduled area extending in the direction perpendicular to the easy magnetization direction.
  • a core sheet piece having a strip-shaped core back portion existing in the band-shaped core back portion formation scheduled region and a plurality of parallel teeth portions extending in parallel to the easy magnetization direction from the strip-shaped core back portion is formed in the above direction. Punched from heat-resistant electrical steel sheet.
  • a core plate having the core back portion and the teeth portion is obtained by winding the core sheet piece in an annular shape with the parallel teeth portion inside.
  • the band-shaped core back portion formation planned region, the band-shaped core back portion, or the core back portion is recrystallized by annealing after the strain processing step.
  • a parallel tooth portion extending in parallel with the direction of easy magnetization of the grain-oriented electrical steel sheet is formed, and the core sheet piece is wound in an annular shape with the parallel tooth portion inside. Therefore, in the teeth portion, the easy magnetization direction can be aligned with the direction toward the center of the annular core plate.
  • the core back portion is recrystallized. Therefore, the easy magnetization direction of the grain-oriented electrical steel sheet can be set to a random direction. Therefore, it is possible to prevent the easy magnetization direction from being the extension direction of the tooth portion, that is, the center direction of the core plate.
  • the desired direction of the easy magnetization direction in the core back portion is the circumferential direction in the annular core back portion. Therefore, when the direction orthogonal to the circumferential direction, that is, the extending direction of the teeth portion is the easy magnetization direction in the core back portion, the core back becomes difficult to be magnetized.
  • the easy magnetization direction in the core back portion can be made random. Therefore, in the core back portion, the easy magnetization direction parallel to the extending direction of the tooth portion can be reduced. As a result, it is possible to prevent a decrease in magnetic characteristics of the core back portion.
  • the core back portion is subjected to recrystallization by annealing after being given compressive strain. Therefore, it is easy to recrystallize at the time of annealing, and it becomes possible to recrystallize at low temperature in a short time. Therefore, in the annealing step, not only the core back portion, the strip-shaped core back portion, or the core back portion formation scheduled region, but also the core plate including the core back portion, the core sheet piece including the strip-shaped core back portion, or the core back portion. It becomes possible to heat the grain-oriented electrical steel sheet including the region to be formed.
  • the core back portion, the band-shaped core back portion, or the core back portion formation scheduled region can be selectively recrystallized.
  • the above manufacturing method it is possible to obtain a core plate having a tooth portion in which the easy magnetization direction is the extension direction of the tooth portion and a core back portion in which the easy magnetization direction is the random direction. Therefore, according to the said aspect, while providing the magnetic characteristic in a teeth part, the provision of the manufacturing method of the core board which can prevent the fall of the magnetic characteristic in a core back part is attained.
  • Embodiment 1 (a) a plan view of a grain-oriented electrical steel sheet, (b) a plan view of a core sheet piece, (c) a plan view of a core sheet piece having compressive strain in a belt-like core back portion, (d) a core back The top view of the core board which has a compressive strain in a part, (e) The top view of the core board which has a recrystallization area
  • FIG. The enlarged view of the core board which shows the easy magnetization direction in Embodiment 1.
  • FIG. 4E is a plan view of a core plate having a recrystallization region in the core back portion.
  • Embodiment 3 (a) a plan view of the grain-oriented electrical steel sheet, (b) a plan view of the core sheet piece (b), (c) a plan view of the core sheet piece having compressive strain in the belt-like core back portion, (d) 1) A plan view of a core sheet piece having a recrystallized region in the core back part, and (e) a plan view of a core plate having a recrystallized region.
  • Embodiment 4 (a) a plan view of a grain-oriented electrical steel sheet having a compressive strain in a core back portion formation scheduled region, (b) a plan view of a core sheet piece having a compressive strain in a belt-like core back portion, (c) a core The top view of the core board which has a compressive strain in a back part, (d) The top view of the core board which has a recrystallization area
  • Embodiment 6 (a) The top view of a core sheet piece, (b) Explanatory drawing which shows a mode that a core sheet piece is wound, giving a compressive strain to a strip
  • FIG. 15 is a cross-sectional view taken along line XV-XV in FIG.
  • FIG. 7 is a partially enlarged cross-sectional view of a core plate in a sixth embodiment.
  • FIGS. 1A and 1E An embodiment according to a manufacturing method of a core plate will be described with reference to FIGS.
  • a straining process, a winding process, and an annealing process are performed, and as illustrated in FIG. 1E, an annular core back part 11 and a core back part A core plate 1 having a plurality of teeth portions 12 extending from 11 toward the center O is manufactured.
  • a mode in which a core plate is manufactured by sequentially performing a punching process, a straining process, a winding process, and an annealing process will be described.
  • the outline of each process is shown below.
  • the strip-shaped core back portion 21 extending from the directional electromagnetic steel sheet 3 in the direction X easy to the magnetization direction Y and the magnetization
  • the core sheet piece 2 having a plurality of parallel teeth portions 22 extending in parallel with the easy direction Y is punched out.
  • compressive strain is applied in the plate thickness direction Z to the strip-shaped core back portion 21 of the core sheet piece 2 as illustrated in FIG.
  • the direction perpendicular to the paper surface is the plate thickness direction.
  • the core back portion 11 is formed by winding the core sheet piece 2 in an annular shape with the parallel teeth portion 22 inside. And the core plate 1 having the teeth portion 12 is obtained.
  • the core back portion 11 is recrystallized by annealing.
  • the core sheet piece 2 having a strip-shaped core back portion 21 and a plurality of parallel teeth portions 22 from the grain-oriented electrical steel sheet 3.
  • the grain-oriented electrical steel sheet 3 has an easy magnetization direction Y in one direction in the plane. That is, the directional electrical steel sheet 3 is an electrical steel sheet in which the easy magnetization direction Y is aligned in one direction in the in-plane direction of the plate-shaped electrical steel sheet.
  • the in-plane direction is a direction perpendicular to the thickness direction of the electrical steel sheet.
  • the grain-oriented electrical steel sheet 3 for example, a commercially available product can be used, for example, 23ZH85 manufactured by Nippon Steel & Sumitomo Metal Corporation can be used.
  • the easy magnetization direction Y of the grain-oriented electrical steel sheet 3 is a direction parallel to the rolling direction.
  • the strip-shaped core back portion 21 is punched so as to extend in the direction X easy to the magnetization direction Y of the grain-oriented electrical steel sheet 3. That is, the longitudinal direction of the strip-shaped core back portion 21 is parallel to the direction X perpendicular to the easy magnetization direction Y.
  • the parallel teeth portion 22 is punched out so as to extend parallel to the easy magnetization direction Y of the directional electromagnetic steel sheet 3.
  • the core sheet piece 2 has a comb shape as illustrated in FIG. 1B, and the parallel teeth portion 22 is formed in a comb tooth shape.
  • the vertical direction includes not only the direction of 90 ° but also the direction close to 90 ° in appearance.
  • the method for imparting compressive strain in the strain processing step is not particularly limited, and various compression processing methods that can apply compressive strain to the band-shaped core back portion 21 can be used.
  • the compressive strain may be either a compressive plastic strain or a compressive elastic strain, but a compressive plastic strain is preferable from the viewpoint of easier recrystallization in the annealing process.
  • shot peening, water jet peening, laser peening, ultrasonic peening, forging, or roller rolling is preferable. become. Further, from the viewpoint that the processing region can be controlled relatively easily and compression plastic strain can be prevented from being applied to portions other than the belt-like core back portion 21 such as the parallel teeth portion 22, shot peening, water jet peening, laser peening. Ultrasonic peening is more preferable. On the other hand, forging and roller rolling are more preferable from the viewpoints that sufficient compressive plastic strain can be imparted, the easy magnetization direction in the core back portion tends to be more random, and the magnetic properties can be further improved.
  • an injection material 40 called a shot is injected from the injection nozzle 41 of the shot peening apparatus onto the belt-like core back portion 21 in the core sheet piece 2.
  • the injection direction is parallel to the plate thickness direction Z of the core sheet piece 2.
  • a winding process can be performed.
  • Two arrows extending downward from both ends in FIG. 1C indicate the direction of winding in the winding process.
  • the core sheet piece 2 is wound in an annular shape with the parallel teeth portion 22 inside. Since the core sheet piece 2 is curled in the direction of the arrow shown in FIG. 1 (c), the winding process can also be called a curling process.
  • the strip-shaped core back portion 21 forms the annular core back portion 11
  • the parallel teeth portion 22 forms the teeth portion 12. And it processes so that the extension direction of each teeth part 12 may face the center O of the annular
  • the core plate 1 obtained after the winding processing step has a compressive strain in the core back portion 11.
  • FIG. 1 (e) the recrystallized region is indicated by hatching.
  • hatched hatching indicates a recrystallization region.
  • the core plate 1 is heated. Thereby, as illustrated in FIG. 1E, recrystallization occurs in the core back portion 11 to which the compressive strain is applied. Then, by recrystallization, the easy magnetization direction is dispersed, and the easy magnetization direction in the core back portion 1 can be changed to a random direction (see FIG. 3).
  • the broken line arrow in FIG. 3 shows the easy magnetization direction in each part of the core plate. The same applies to FIGS. 8 and 10 described later.
  • recrystallization In the core back part 11 to which compressive strain is applied, recrystallization easily occurs in the annealing process. Therefore, recrystallization is possible by annealing at a low temperature for a short time. In the annealing step, recrystallization does not occur in a region other than the core back portion 11 such as the tooth portion 12 where the compressive strain is not applied, and the recrystallization occurs in the core back 11 provided with the compressive strain. Can be annealed.
  • the heating temperature in the annealing step can be appropriately adjusted depending on the composition of the material, the degree of strain, and the like, but is 700 to 1100 ° C., for example.
  • the heating temperature in the annealing step is preferably 700 to 850 ° C., and is preferably 700 to 800. More preferably, it is ° C.
  • the holding time at the above-described heating temperature in the annealing step can be appropriately adjusted depending on the plasticity of the material, the degree of strain, productivity, etc., and is, for example, 1 second to 2 hours.
  • annealing can be performed with a short heating and holding time of, for example, 10 seconds or less.
  • the heating and holding time in the annealing step is preferably short, and preferably 600 seconds or less.
  • the heating and holding time is preferably 5 seconds or more, and more preferably 10 seconds or more.
  • a parallel tooth portion 22 extending in parallel with the easy magnetization direction Y of the grain-oriented electrical steel sheet 3 is formed, and the core sheet is formed with the parallel tooth portion 22 as an inner side.
  • the piece 2 is wound in an annular shape. Therefore, in the teeth portion 12 of the core plate 1 obtained by the above manufacturing method, as illustrated in FIG. 3, in the extending direction L of the teeth portion 12, that is, in the direction toward the center O of the annular core plate 1.
  • the easy magnetization direction can be aligned. As a result, the magnetic characteristics of the tooth part 12 can be improved.
  • the core back part 11 is recrystallized in the annealing process. Therefore, as illustrated in FIG. 3, in the core back portion 11, the easy magnetization direction Y can be set to a random direction. Therefore, in spite of being manufactured using the grain-oriented electrical steel sheet, the direction of easy magnetization in the core back portion 81 is the teeth portion as in the core plate 8 illustrated in Comparative Example 1 described later illustrated in FIG. It is possible to prevent the extension direction L of 82, that is, the center O direction from the core back portion 81.
  • the desired direction of the easy magnetization direction in the core back portion is the circumferential direction in the annular core back portion
  • the easy magnetization direction in the direction orthogonal to the circumferential direction C in the core back portion 81 that is, parallel to the extension direction L of the teeth portion 12.
  • the easy magnetization direction is a magnetization difficult direction in the circumferential direction C of the core back portion 81, which is an undesirable direction in terms of magnetic characteristics.
  • the easy magnetization direction in the core back portion 11 can be made random as illustrated in FIG. Therefore, the easy magnetization direction in a direction parallel to the extending direction L of the tooth portion in the core back portion 11 can be reduced. As a result, it is possible to prevent the magnetic properties of the core back portion 11 from being lowered while enhancing the magnetic properties of the tooth portion 12 described above.
  • the core back portion 11 is subjected to recrystallization by annealing after being subjected to compressive strain. Therefore, it is easy to recrystallize at the time of annealing, and it becomes possible to recrystallize at low temperature in a short time. Therefore, in the annealing process, it is not necessary to partially heat the core back portion 11 of the core plate 1, and the entire core plate 1 including the core back portion can be heated. That is, in the annealing process, even if the core plate 1 is heated, the core back portion 11 can be selectively recrystallized while preventing recrystallization of the teeth portion 12.
  • the steps after the punching step are out of order as long as the annealing step is performed after the straining step, and the order can be changed.
  • it can carry out in order of a punching process, a distortion process, a winding process, and an annealing process.
  • it can also carry out in order of a punching process, a winding process, a distortion process, and an annealing process.
  • it can also carry out in order of a punching process, a distortion process, an annealing process, and a winding process.
  • An embodiment in which the order of each process after the punching process is changed will be described in the second and third embodiments described later.
  • the strain processing step and the winding processing step may be performed simultaneously.
  • the annealing process is preferably performed at the end of each process.
  • not only the compressive strain in the thickness direction applied in the strain processing step, but also the in-plane strain that can occur in the winding processing step can be eliminated by annealing. Therefore, deterioration of iron loss can be prevented.
  • the core sheet piece 2 made of a homogeneous material without the inhomogeneous processing strain that can be applied in the winding processing is compressed. Strain can be applied. Therefore, in the strain processing step, the compressive strain in the plate thickness direction Z can be uniformly applied to the entire material of the strip-shaped core back portion 21 in the core sheet piece 2. Further, in this case, since the compressive strain can be applied by compressing the strip-shaped core back portion 21 extending in one direction, the compressive processing is facilitated and the selection range of the compression processing method is widened.
  • the core plate 1 having the teeth portion 12 in which the easy magnetization direction is the extension direction L of the tooth portion 12 and the core back portion 11 in which the easy magnetization direction is the random direction Obtainable. Therefore, according to the manufacturing method of the said core board 1, while the magnetic characteristic in the teeth part 12 can be improved, the fall of the magnetic characteristic in the core back part 11 can be prevented. That is, the core plate 1 can exhibit a high magnetic flux density in both the core back portion 11 and the teeth portion 12. Therefore, the core plate 1 is suitable for a stator core of a rotating electrical machine, for example.
  • the core plate is manufactured by sequentially performing a winding process, a distortion process, and an annealing process after the punching process.
  • the same reference numerals as those used in the above-described embodiments represent the same components as those in the above-described embodiments unless otherwise indicated.
  • the belt-shaped core back portion 21 and the parallel teeth portion 22 are formed.
  • a core sheet piece 2 having the following is obtained.
  • a winding process is performed, and the core sheet piece 2 is wound in an annular shape with the parallel teeth portion 22 inside as illustrated in FIGS. 4B and 4C.
  • the core board 1 which has the core back part 11 and the teeth part 12 is obtained.
  • a strain processing step is performed, and compressive strain is applied to the core back portion 11 of the core plate 1 in the plate thickness direction as illustrated in FIG.
  • an annealing step is performed, and the core back portion 11 is recrystallized by annealing as illustrated in FIG. In this way, a core plate 1 similar to that of Embodiment 1 can be obtained.
  • each step can be performed in the same manner as in the first embodiment.
  • a compressive strain in the thickness direction is applied to the core back portion 11 that has been stretched in the circumferential direction by the winding process. Therefore, the winding process can be performed in a state where there is no distortion applied in the distortion processing step. Therefore, winding processing with low processing stress is possible. Furthermore, the dimensional accuracy of the winding process can be improved. In addition, the same effects as those of the first embodiment can be obtained.
  • the core plate is manufactured by sequentially performing a straining process, an annealing process, and a winding process after the punching process.
  • the core sheet piece 2 is produced from the grain-oriented electrical steel sheet 3 by performing a punching process in the same manner as in the first embodiment.
  • the strain processing step in the same manner as 1, compressive strain is applied to the band-shaped core back portion 21 of the core sheet piece 2 as illustrated in FIG.
  • the band-shaped core back portion 21 of the core sheet piece 2 is recrystallized as illustrated in FIG.
  • the core sheet piece 2 is wound in an annular shape with the parallel teeth portion 22 inside.
  • the core board 1 which has the core back part 11 and the teeth part 12 is obtained.
  • a core plate 1 similar to that of Embodiment 1 can be obtained.
  • each step can be performed in the same manner as in the first embodiment.
  • the recrystallized grains obtained in the annealing process can be controlled to fine grains having a grain size of 500 ⁇ m or less, for example.
  • elongation deformation in the band-shaped core back portion 21 easily occurs during the winding process, and the workability is improved. Therefore, it becomes easy to process into a desired shape such as an annular shape.
  • shrinkage deformation that may occur in the annealing process is corrected by the winding process, the dimensional accuracy of the core plate 1 can be improved.
  • the same effects as those of the first embodiment can be obtained.
  • a core plate 1 similar to that of the first embodiment is manufactured by performing a punching process, a winding process, and an annealing process after the distortion process.
  • the steps after the strain processing step are out of order as long as the winding step is performed after the punching step, and the order can be changed.
  • the form performed in order of a distortion processing process, a punching process, a winding process, and an annealing process is demonstrated.
  • a band-shaped core back portion formation scheduled region 31 is determined.
  • the band-shaped core back portion formation scheduled region 31 has the same shape as the band-shaped core back portion 21 in the core sheet piece 2 obtained after the punching process, but on the grain-oriented electrical steel sheet 3 before the punching process is actually performed. It is a virtual area. In other words, it can be said that the band-shaped core back portion formation scheduled region 31 is like a design drawing on the grain-oriented electrical steel sheet 3.
  • the band-shaped core back portion formation scheduled region 31 it is also possible to determine the parallel teeth portion formation scheduled region 32 that becomes the parallel teeth portion 22 after the punching process, and after the punching process, the core sheet piece 2 and The core sheet piece formation scheduled area 30 to be formed can be determined. What is necessary is just to determine at least the band-shaped core back portion formation scheduled region 31 extending in the perpendicular direction X and the easy magnetization direction Y in the grain-oriented electrical steel sheet 3.
  • the strain processing step as illustrated in FIG. 6A, compressive strain is applied to the band-shaped core back portion formation scheduled region 31 of the grain-oriented electrical steel sheet 3 in the thickness direction.
  • the core sheet piece 2 having the band-shaped core back portion 21 and the parallel teeth portion 22 is obtained.
  • the punching is performed so that the band-shaped core back portion 21 is formed from the predetermined band-shaped core back portion formation scheduled region 31. That is, the strip-shaped core back portion 21 is formed by punching from the strip-shaped core back portion formation scheduled region 31 existing in the grain-oriented electrical steel sheet 3.
  • the core sheet piece 2 obtained in this way has a strip-shaped core back portion 21 to which a compressive strain has already been applied.
  • each step can be performed in the same manner as in the first embodiment.
  • the straining process is performed before the punching process as in this embodiment, for example, by using a press machine called a transfer press die
  • the straining process and the punching process are continuously performed by the same press machine. It becomes possible to do. That is, as illustrated in FIG. 6A and FIG. 6B, automatic application of compressive strain in the thickness direction to the band-shaped core back portion formation scheduled region 31 and punching of the core sheet piece 2 are performed automatically. It can be performed continuously by processing. Therefore, it is possible to speed up the distortion processing process and the punching process.
  • the same effects as those of the first embodiment can be obtained.
  • the steps after the strain processing step are in no particular order, and the order can be changed. Although illustration and detailed description are omitted, for example, a straining process, a punching process, an annealing process, and a winding process may be performed in this order. Moreover, it can also carry out in order of a distortion process, an annealing process, a punching process, and a winding process.
  • a core sheet having the same shape as that of the first embodiment is manufactured by punching a core sheet piece from the grain-oriented electrical steel sheet and winding the core sheet piece. Specifically, as illustrated in FIGS. 7A and 7B, first, by performing a punching process in the same manner as in the first embodiment, the band-shaped core back portion is formed from the grain-oriented electrical steel sheet 3. The core sheet piece 2 which has 21 and the parallel teeth part 22 is produced. The core sheet piece 2 is the same as that of the first embodiment.
  • FIG. 7B a winding process is performed, and as illustrated in FIG. 7B, the core sheet piece 2 is wound in an annular shape with the parallel teeth portion 22 inside.
  • the core board 8 which has the core back part 81 and the teeth part 82 is obtained so that it may be illustrated by FIG.7 (c).
  • the core back portion 81 has not undergone the strain processing step and the annealing step as in the first to fourth embodiments. Therefore, as illustrated in FIG. 8, the easy magnetization direction of the core back portion 81 and the easy magnetization direction of the tooth portion 82 are parallel to each other, and both are in the extending direction L of the tooth portion 82.
  • the easy magnetization direction is parallel to the desired extension direction L in the tooth portion 82, the magnetic characteristics are excellent.
  • the easy magnetization direction is the desired circumferential direction. The direction is orthogonal to the direction C. That is, the core back portion 81 is difficult to be magnetized in the magnetic circuit, which is not preferable in terms of magnetic characteristics.
  • a core plate having the same shape as that of Embodiment 1 is manufactured by punching from a non-oriented electrical steel sheet.
  • a non-oriented electrical steel sheet 300 with an in-plane easy magnetization direction random was prepared.
  • a commercially available product can be used as the non-oriented electrical steel sheet 300.
  • the core plate 9 having the same shape as that of the first embodiment having the core back portion 91 and the teeth portion 92 was produced by punching from the non-oriented electrical steel sheet 300.
  • the easy magnetization direction is a random direction in both the core back portion 91 and the teeth portion 92 as illustrated in FIG. Therefore, compared with the core plate 1 of the first to fourth embodiments having the easy magnetization direction parallel to the extending direction L of the tooth portion 92, the magnetic characteristics in the tooth portion 92 are deteriorated.
  • a core plate is manufactured by sequentially performing a punching process, a distortion process, a winding process, and an annealing process in the same manner as in the first embodiment.
  • the core sheet piece 2 having the belt-like core back portion 21 and the parallel teeth portion 22 is punched (see FIGS. 1A and 1B).
  • compressive strain is applied in the plate thickness direction Z to the band-shaped core back portion 21 of the core sheet piece 2 by roller rolling. That is, the band-shaped core back portion 21 of the core sheet piece 2 is sandwiched between the pair of rollers 51 and 52 of the rolling mill 5 and subjected to rolling to apply compressive strain.
  • the thickness of the band-shaped core back portion 21 is reduced, and for example, is processed into a uniform thickness. As illustrated in the sixth embodiment described later, the thickness of the band-shaped core back portion 21 can be inclined.
  • the core plate 1 can be manufactured by performing a winding process and an annealing process.
  • FIG. 12 shows an example of an enlarged cross-sectional view of the boundary portion between the core back portion 11 and the teeth portion 12 in the core plate 1 obtained according to this embodiment. Since compressive strain is applied to the belt-shaped core back portion 21 in the strain processing step, the thickness T1 of the core back portion 11 is smaller than the thickness T2 of the teeth portion 12 as illustrated in FIG. That is, T1 ⁇ T2.
  • the thickness difference ⁇ T (unit:%) between the core back portion 11 and the teeth portion 12 is calculated from the following formula (I) from the thickness T1 of the core back portion 11 and the thickness T2 of the teeth portion 12.
  • the thickness difference ⁇ T between the core back portion 11 and the tooth portion 12 is preferably 5 to 20%. That is, it is preferable to apply compressive strain in the strain processing step so that the thickness difference ⁇ T between the core back portion 11 and the tooth portion 12 is 5 to 20%.
  • the magnetic flux density in the core back portion 11 of the core plate 1 can be further improved and the hysteresis loss can be further reduced. As a result, the magnetic characteristics in the core back portion can be further improved. From the viewpoint of further improving the magnetic flux density in the core back portion, ⁇ T is more preferably 10 to 20%.
  • test piece having a length of 55 mm and a width of 55 mm was cut out from the grain-oriented electrical steel sheet similar to that of the first embodiment.
  • the thickness of the test piece is 0.27 mm.
  • the thickness change rate ⁇ Tp (unit:%) was calculated by the following formula (II).
  • ⁇ Tp (Tp2 ⁇ Tp1) ⁇ 100 / Tp2 (II)
  • test pieces having ⁇ Tp of 0, 5%, 10%, 20%, and 30% were prepared.
  • the thickness of the test piece is the minimum thickness when there is an inclination or variation in the thickness. However, if there is a part whose thickness is extremely smaller than the surrounding area, that part is excluded. The thickness was measured using a micrometer M110-OM manufactured by Mitutoyo Corporation.
  • each test piece was heated in the same manner as in Embodiment 1 and recrystallized by annealing. Thus, the test piece used as a model of a core back part was obtained.
  • the magnetic properties of the test piece were evaluated.
  • the magnetic properties are evaluated in accordance with “Magnetic Steel Sheet Single Sheet Magnetic Properties Test Method” defined in JIS C 2556, except that the shape of the test piece is a square of 50 mm ⁇ 50 mm as described above. This was done by measuring the hysteresis loss. For the measurement, a magnetic property inspection apparatus SK300 manufactured by Metron Engineering Co., Ltd. was used.
  • FIG. 13 shows the relationship between the rate of change ⁇ Tp in thickness and the magnetic flux density when the magnetic field H is 5000 A / m, and the relationship between the rate of change ⁇ Tp in thickness and the hysteresis loss when the frequency is 400 Hz and the magnetic flux density is 1.0 T. Since the thickness change rate ⁇ Tp is synonymous with the thickness difference ⁇ T between the core back portion and the tooth portion in the fifth embodiment, FIG. 13 shows the thickness change rate between the core back portion and the tooth portion. As shown. In the graph of FIG. 13, the horizontal axis indicates the thickness difference between the core back portion and the tooth portion. The vertical axis on the left shows the magnetic flux density when the magnetic field H is 5000 A / m. The vertical axis on the right side shows the hysteresis loss at a frequency of 400 Hz and a magnetic flux density of 1.0 T.
  • the thickness difference between the core back portion and the teeth portion is 5 to 20%, the magnetic flux density can be further improved and the hysteresis loss can be further reduced. That is, in order to further improve the magnetic characteristics, the thickness difference between the core back portion and the tooth portion is preferably 5 to 20%. More preferably, the thickness difference is 10 to 20%.
  • the magnetic flux density of the core back portion is preferably 1.65 T or more, and more preferably 1.7 T or more.
  • the hysteresis loss of the core back portion is preferably 7 W / kg or less.
  • a taper region is formed in the core back portion while simultaneously performing the strain processing step and the winding step.
  • a core plate is manufactured by performing a punching process, a distortion process, a winding process, and an annealing process.
  • the grain-oriented electrical steel sheet is punched in the same manner as in the first embodiment, and the core sheet piece 2 having the strip-shaped core back portion 21 and the parallel teeth portion 22 is punched as illustrated in FIG. .
  • the straining process and the winding process are performed in the same process.
  • the sheet pieces 2 are sequentially wound in an annular shape.
  • the application of the compressive strain can be performed by, for example, roller rolling, as in the fifth embodiment.
  • the strain processing step by roller rolling it is possible to form a tapered region 115 in which the plate thickness is inclined in the belt-like core back portion 21.
  • the taper region 115 is formed so that the plate thickness in the belt-like core back portion 21 decreases toward the outer edge 100 side opposite to the teeth portion side.
  • the core plate 1 can be obtained by performing an annealing process.
  • FIG. 16 the expanded sectional view of the boundary part of the core back part 11 and the teeth part 12 in the core board 1 of this form is shown.
  • the core back portion 11 has a tapered region 115 whose thickness decreases from the center of the core plate 1 toward the outside. That is, in the taper region 115, the thickness of the core back portion 11 decreases toward the outer edge 100, and the thickness of the core back portion 11 is inclined.
  • the straining process and the winding process can be performed simultaneously. Therefore, the manufacturing process can be shortened and the productivity can be improved. In this case, the outer edge 100 side of the strip-shaped core back portion 21 is easily extended. Therefore, winding can be performed more easily. From this point of view, productivity is improved.
  • the tapered region 115 is not necessarily formed over the entire core back portion 11, but is formed over the entire core back portion 11 from the viewpoint of imparting compressive strain and improving the magnetic characteristics of the core back portion 11. It is preferable.
  • the difference in thickness of the core back portion 11 with respect to the teeth portion 12 is set to 5 to 20% as in the fifth embodiment and the experimental example. It is preferable. Even when the core back part 11 has the taper area
  • the present disclosure is not limited to the above embodiments, and can be applied to various embodiments without departing from the scope of the disclosure.
  • the shot peening method is illustrated and described as the compression processing method.
  • other peening methods, forging, and the like can be performed, as in the fifth and sixth embodiments.
  • roller rolling it is also possible to perform roller rolling.
  • an annular core plate has been described, it is also possible to produce an elliptical, polygonal or other annular core plate such as a quadrangular ring or a hexagonal ring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

環状のコアバック部(11)と、コアバック部から中心(O)に向かって延びる複数のティース部(12)とを有するコア板(1)の製造方法である。コア板は、打抜き加工工程、巻回加工工程、歪加工工程、及び焼鈍工程を行って得られる。歪加工工程においては、コアバック部又は巻回後にコアバック部となる帯状コアバック部(21)に圧縮ひずみを付与する。焼鈍工程においては、歪加工工程後に、コアバック部又は帯状コアバック部を焼鈍により再結晶化させる。これによれば、ティース部における磁気特性を向上できると共に、コアバック部における磁気特性の低下を防止できる。

Description

コア板の製造方法 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2016年7月21日に出願された日本特許出願2016-143361号および、2017年5月30日に出願された日本特許出願2017-107106号を基にしている。
 本開示は、環状のコアバック部と、このコアバック部から中心に向かって延びる複数のティース部とを有するコア板の製造方法に関する。
 発電機やモータ等の回転電機には、環状のコアバック部とティース部とを有する環状のコア板が複数積層されたステータコアが用いられている。回転電機における例えば小型化、高出力化等の高性能化のためには、電磁鋼板からなるコア板における磁化容易方向の制御が望まれている。具体的には、環状のコア板の中心方向に向かって延びるティース部における磁化容易方向をティース部の伸長方向に揃え、コアバック部における磁化容易方向を環状のコア板の周方向に揃えることが望まれている。
 例えば特許文献1には、一方向に磁化容易方向を有する方向性電磁鋼板からコアバックとティース部とを有する帯状のシート片を打ち抜き、シート片を環状に巻回させることによりコア板を製造する技術が開示されている(特許文献1)。これにより、ティース部における磁化容易方向がティース部の伸長方向に揃ったコア板の製造が可能になる。
特開平9-92561号公報
 しかしながら、本発明者の検討によれば、方向性電磁鋼板は、磁化容易方向が一方向に揃っているため、方向性電磁鋼板の磁化容易方向がティースの伸長方向となるように打ち抜き、次いで巻回によりコア板を製造すると、コアバック部における磁化容易方向もティース部の伸長方向になる。その結果、コアバック部においては、ステータコアの磁気回路で磁化が困難になる。すなわち、ティース部における磁気特性はよいが、コアバック部における磁気特性が悪くなる。
 本開示は、かかる課題に鑑みてなされたものであり、ティース部における磁気特性を向上できると共に、コアバック部における磁気特性の低下を防止できるコア板の製造方法を提供することを目的としている。
 本開示の一態様は、環状のコアバック部と、上記コアバック部から中心に向かって延びる複数のティース部とを有するコア板の製造方法である。当該製造方法は、打抜き加工工程と、巻回加工工程と、歪加工工程と、焼鈍工程と、を有する。打抜き加工工程では、面内の一方向に磁化容易方向を有する方向性電磁鋼板から、上記磁化容易方向と垂直方向に延びる帯状コアバック部と、上記帯状コアバック部から上記磁化容易方向に平行に延びる複数の平行ティース部とを有するコアシート片を打ち抜く。巻回加工工程では、上記平行ティース部を内側にして上記コアシート片を環状に巻回させることにより、上記コアバック部と上記ティース部とを有する上記コア板を得る。歪加工工程では、上記コアシート片の上記帯状コアバック部又は上記コア板の上記コアバック部に、板厚方向に圧縮ひずみを付与する。焼鈍工程では、上記歪加工工程後に、上記帯状コアバック部又は上記コアバック部を焼鈍により再結晶化させる。
 本開示の他の態様は、環状のコアバック部と、上記コアバック部から中心に向かって延びる複数のティース部とを有するコア板の製造方法である。当該製造法は、歪加工工程と、打抜き加工工程と、巻回加工工程と、焼鈍工程と、を有する。歪加工工程では、面内の一方向に磁化容易方向を有する方向性電磁鋼板において、上記磁化容易方向と垂直方向に延びる帯状コアバック部形成予定領域に、板厚方向に圧縮ひずみを付与する。打抜き加工工程では、上記帯状コアバック部形成予定領域に存在する帯状コアバック部と、上記帯状コアバック部から上記磁化容易方向に平行に延びる複数の平行ティース部とを有するコアシート片を上記方向性電磁鋼板から打ち抜く。巻回加工工程では、上記平行ティース部を内側にして上記コアシート片を環状に巻回させることにより、上記コアバック部と上記ティース部とを有するコア板を得る。焼鈍工程では、上記歪加工工程後に、上記帯状コアバック部形成予定領域、上記帯状コアバック部、又は上記コアバック部を焼鈍により再結晶化させる。
 上記製造方法においては、方向性電磁鋼板の磁化容易方向に平行に延びる平行ティース部を形成し、平行ティース部を内側にしてコアシート片を環状に巻回させている。そのため、ティース部においては、環状のコア板の中心に向かう方向に磁化容易方向を揃えることができる。
 上記製造方法においては、コアバック部は、再結晶化される。そのため、方向性電磁鋼板の磁化容易方向をランダムな向きにすることができる。それ故、磁化容易方向がティース部の伸長方向、すなわち、コア板の中心方向になることを防止できる。
 本来、コアバック部における磁化容易方向の所望方向は環状のコアバック部における周方向である。そのため、周方向と直交する方向、すなわちティース部の伸長方向がコアバック部における磁化容易方向の場合には、コアバックは磁化が困難になる。上記態様にかかる製造方法においては、コアバック部における磁化容易方向をランダムにすることができる。そのため、コアバック部において、ティース部の伸長方向と平行な磁化容易方向を減らすことができる。その結果、コアバック部の磁気特性の低下を防止することができる。
 また、上記製造方法においては、コアバック部は、圧縮ひずみが付与された後、焼鈍による再結晶化を経ている。そのため、焼鈍時に再結晶化されやすく、低温、短時間での再結晶化が可能になる。それ故、焼鈍工程においては、コアバック部、帯状コアバック部、又はコアバック部形成予定領域だけでなく、コアバック部を含むコア板、帯状コアバック部を含むコアシート片、又はコアバック部形成予定領域を含む方向性電磁鋼板の加熱が可能になる。すなわち、焼鈍工程において、コア板、コアシート片、方向性電磁鋼板を加熱しても、ティース部、平行ティース部、又は後工程においてティース部となるティース部の形成予定領域の再結晶化を防止しつつ、コアバック部、帯状コアバック部、又はコアバック部形成予定領域を選択的に再結晶化させることができる。
 以上のごとく、上記製造方法によって、磁化容易方向がティース部の伸長方向となるティース部と、磁化容易方向がランダム方向となるコアバック部とを有するコア板を得ることができる。したがって、上記態様によれば、ティース部における磁気特性を向上できると共に、コアバック部における磁気特性の低下を防止できるコア板の製造方法の提供が可能になる。
実施形態1における、(a)方向性電磁鋼板の平面図、(b)コアシート片の平面図、(c)帯状コアバック部に圧縮ひずみを有するコアシート片の平面図、(d)コアバック部に圧縮ひずみを有するコア板の平面図、(e)コアバック部に再結晶化領域を有するコア板の平面図。 実施形態1における、ショットピーニングによる歪加工工程の説明図。 実施形態1における、磁化容易方向を示すコア板の拡大図。 実施形態2における、(a)方向性電磁鋼板の平面図、(b)コアシート片の平面図、(c)コア板の平面図、(d)コアバック部に圧縮ひずみを有するコア板の平面図、(e)コアバック部に再結晶化領域を有するコア板の平面図(e)。 実施形態3における、(a)方向性電磁鋼板の平面図、(b)コアシート片の平面図(b)、(c)帯状コアバック部に圧縮ひずみを有するコアシート片の平面図、(d)コアバック部に再結晶化領域を有するコアシート片の平面図、(e)再結晶化領域を有するコア板の平面図。 実施形態4における、(a)コアバック部形成予定領域に圧縮ひずみを有する方向性電磁鋼板の平面図、(b)帯状コアバック部に圧縮ひずみを有するコアシート片の平面図、(c)コアバック部に圧縮ひずみを有するコア板の平面図、(d)コアバック部に再結晶化領域を有するコア板の平面図。 比較形態1における、(a)方向性電磁鋼板の平面図、(b)コアシート片の平面図、(c)コア板の平面図。 比較形態1における、磁化容易方向を示すコア板の拡大図。 比較形態2における、(a)方向性電磁鋼板の平面図、(b)コア板の平面図。 比較形態2における、磁化容易方向を示すコア板の拡大図。 実施形態5における、ローラ圧延による歪加工工程の説明図。 実施形態5における、コア板の一部拡大断面図。 実験例における、コアバック部とティース部との厚み差と、磁界H=5000A/m時における磁束密度及び周波数400Hz、磁束密度1.0T時におけるヒステリシス損との関係を示す図。 実施形態6における、(a)コアシート片の平面図、(b)帯状コアバック部に圧縮ひずみを付与しながらコアシート片を巻回させる様子を示す説明図。 図14(b)におけるXV-XV線矢視断面図。 実施形態6における、コア板の一部拡大断面図。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
 (実施形態1)
 コア板の製造方法にかかる実施形態について、図1~図3を参照して説明する。本形態においては、打抜き加工工程後に、歪加工工程、巻回加工工程、及び焼鈍工程を行って、図1(e)に例示されるように、円環状のコアバック部11と、コアバック部11からその中心Oに向かって延びる複数のティース部12とを有するコア板1を製造する。
 本実施形態においては、打抜き加工工程、歪加工工程、巻回加工工程、焼鈍工程を順次行ってコア板を製造する形態について説明する。各工程の概要を以下に示す。
 図1(a)及び図1(b)に例示されるように、打抜き加工工程においては、方向性電磁鋼板3から、その磁化容易方向Yと垂直方向Xに延びる帯状コアバック部21と、磁化容易方向Yに平行に延びる複数の平行ティース部22とを有するコアシート片2を打ち抜く。歪加工工程においては、図1(c)に例示されるように、コアシート片2の帯状コアバック部21に、板厚方向Zに圧縮ひずみを付与する。なお、図1、後述の図4~図6においては、紙面と垂直方向が板厚方向である。
 図1(c)及び図1(d)に例示されるように、巻回加工工程においては、平行ティース部22を内側にしてコアシート片2を環状に巻回させることにより、コアバック部11とティース部12とを有するコア板1を得る。焼鈍工程においては、焼鈍によりコアバック部11を再結晶化させる。以下、各工程を詳細に説明する。
 図1(a)及び図1(b)に例示されるように、打抜き加工工程においては、方向性電磁鋼板3から、帯状コアバック部21と複数の平行ティース部22とを有するコアシート片2を打ち抜く。方向性電磁鋼板3は、面内の一方向に磁化容易方向Yを有する。すなわち、磁化容易方向Yが、板状の電磁鋼板の面内方向において一方向に揃った電磁鋼板が方向性電磁鋼板3である。面内方向は、電磁鋼板の厚み方向とは垂直な方向である。方向性電磁鋼板3としては、例えば市販品を利用することができ、例えば新日鐵住金株式会社製の23ZH85を用いることができる。通常、方向性電磁鋼板3の磁化容易方向Yは、圧延方向と平行な方向である。
 打抜き加工工程において、帯状コアバック部21は、方向性電磁鋼板3の磁化容易方向Yと垂直方向Xに延びるように打ち抜かれる。すなわち、帯状コアバック部21の長尺方向が磁化容易方向Yに対する垂直方向Xに平行になる。一方、平行ティース部22は、方向性電磁鋼板3の磁化容易方向Yに平行に延びるように打ち抜かれる。コアシート片2は、図1(b)に例示されるように櫛状であり、平行ティース部22が櫛歯状に形成されている。
 なお、本明細書において、垂直方向は、90°の方向だけでなく、外観上90°に近い方向を含む。平行方向についても同様であり、180°又は360°の方向だけでなく、外観上180°又は360°に近い方向を含む。
 次に、歪加工工程においては、図1(c)に例示されるように、コアシート片2における帯状コアバック部21に圧縮ひずみをあたえる。図1(c)においては、圧縮ひずみが付与された領域をドットハッチングにより示している。以降の図面においてもドットハッチングは圧縮ひずみが付与された領域を示す。歪加工工程においては、帯状コアバック部21に圧縮ひずみを部分的に付与することもできるが、帯状コアバック部21の全体に圧縮ひずみを付与することが好ましい。
 歪加工工程における圧縮ひずみの付与方法は、特に限定されず、帯状コアバック部21に圧縮ひずみをあたえることができる種々の圧縮加工方法を利用できる。圧縮ひずみとしては、圧縮塑性ひずみ及び圧縮弾性ひずみのいずれでもよいが、焼鈍工程における再結晶化がより容易になるという観点から圧縮塑性ひずみが好ましい。
 圧縮加工方法としては、ショットピーニング、ウォータジェットピーニング、レーザピーニング、超音波ピーニング、鍛造、又はローラ圧延加工が好ましい、この場合には、圧縮塑性ひずみを与えやすく、焼鈍工程における再結晶化がより容易になる。また、加工領域の制御が比較的容易であり、平行ティース部22などの帯状コアバック部21以外の部分に圧縮塑性ひずみが加わることを防止できるという観点から、ショットピーニング、ウォータジェットピーニング、レーザピーニング、超音波ピーニングがより好ましい。一方、圧縮塑性ひずみを十分に付与でき、コアバック部における磁化容易方向がよりランダムな向きになりやすく、磁気特性をより向上できるという観点からは、鍛造、ローラ圧延加工がより好ましい。
 図2に例示されるように、ショットピーニングによって圧縮ひずみを付与する場合には、ショットピーニング装置の噴射ノズル41からショットと呼ばれる噴射材40をコアシート片2における帯状コアバック部21に噴射する。噴射方向は、コアシート片2の板厚方向Zと平行方向である。これにより、コアシート片2の帯状コアバック部21に圧縮ひずみが付与される。
 次に、巻回加工工程を行うことができる。図1(c)における両端から下方向に延びる2つの矢印は、巻回加工工程において巻回させる向きを示す。図1(c)及び図1(d)に例示されるように、巻回加工工程においては、平行ティース部22を内側にしてコアシート片2を環状に巻回させる。図1(c)に示す矢印の方向にコアシート片2をカールさせるため、巻回加工はカーリング加工ということもできる。
 巻回加工工程においては、帯状コアバック部21が円環状のコアバック部11を形成し、平行ティース部22がティース部12を形成する。そして、各ティース部12の伸長方向が円環状のコアバック部11の中心Oを向くように加工される。
 本形態においては、巻回加工工程の前に歪加工工程がすでに行われているため、巻回加工工程後に得られるコア板1は、コアバック部11に圧縮ひずみを有している。
 次に、焼鈍工程を行うことができる。図1(e)においては、再結晶化領域を斜線ハッチングにより示している。以降の図面においても斜線ハッチングは、再結晶化領域を示す。
 焼鈍工程においては、コア板1を加熱する。これにより、図1(e)に例示されるように、圧縮ひずみが付与されているコアバック部11において再結晶化が起こる。そして、再結晶化により、磁化容易方向がばらばらになり、コアバック部1における磁化容易方向をランダムな方向にすることができる(図3参照)。なお、図3における破線矢印はコア板の各部位における磁化容易方向を示す。後述の図8及び図10においても同様である。
 圧縮ひずみが付与されたコアバック部11においては、焼鈍工程において再結晶化が起こり易くなる。したがって、低温、短時間の焼鈍での再結晶化が可能である。焼鈍工程においては、圧縮ひずみが付与されていない例えばティース部12などのコアバック部11以外の領域においては再結晶化が起こらず、圧縮ひずみが付与されたコアバック11において再結晶化が起こる温度で焼鈍を行うことができる。
 焼鈍工程における加熱温度は、素材の組成、歪の程度などにより適宜調整することができるが、例えば700~1100℃である。圧縮ひずみが付与されているコアバック部11においては上記のごとく再結晶化が起こり易いため、例えば700℃程度という低温でも再結晶化が可能になる。コアバック部11以外の領域における再結晶をより確実に抑制するという観点や、素材の酸化をより抑制するという観点から、焼鈍工程における加熱温度は700~850℃であることが好ましく、700~800℃であることがより好ましい。
 焼鈍工程における上述の加熱温度での保持時間、すなわち加熱保持時間は、素材の塑性、歪の程度、生産性などにより、適宜調整することができるが、例えば1秒~2時間である。上記のごとく、圧縮ひずみが付与されたコアバック部11においては再結晶化が起こり易いため、例えば10秒以下という短い加熱保持時間での焼鈍も可能になる。生産性の向上や、素材の酸化を抑制するという観点から、焼鈍工程における加熱保持時間は短い方がよく、好ましくは600秒以下がよい。上述の700~800℃程度の低温でもコアバック部11を十分に再結晶化させることができるという観点から、加熱保持時間は5秒以上であること好ましく、10秒以上であることがより好ましい。
 次に、本形態の作用効果について説明する。本形態の製造方法においては、図1に例示されるように、方向性電磁鋼板3の磁化容易方向Yに平行に延びる平行ティース部22を形成し、この平行ティース部22を内側にしてコアシート片2を環状に巻回させている。そのため、上記製造方法によって得られるコア板1のティース部12においては、図3に例示されるように、ティース部12の伸長方向L、すなわち、円環状のコア板1の中心Oに向かう方向に磁化容易方向を揃えることができる。その結果、ティース部12の磁気特性を高めることができる。
 また、コアバック部11は、焼鈍工程において再結晶化される。そのため、図3に例示されるように、コアバック部11においては、磁化容易方向Yをランダムな向きにすることができる。それ故、方向性電磁鋼板を用いて製造したにもかかわらず、図8に例示される後述の比較形態1に例示されるコア板8のように、コアバック部81における磁化容易方向がティース部82の伸長方向L、すなわちコアバック部81から中心O向きになることを防止できる。コアバック部における磁化容易方向の所望方向は環状のコアバック部における周方向であるため、コアバック部81における周方向Cと直交する方向の磁化容易方向、すなわちティース部12の伸長方向Lと平行な磁化容易方向は、コアバック部81の周方向Cには磁化困難方向となり、磁気特性上好ましくない方向となる。
 本実施形態の製造方法においては、図3に例示されるように、コアバック部11における磁化容易方向をランダムにすることができる。それ故、コアバック部11におけるティース部の伸長方向Lと平行な方向の磁化容易方向を減らすことができる。その結果、上述のティース部12の磁気特性を高めつつも、コアバック部11の磁気特性の低下を防止することができる。
 また、上記製造方法においては、コアバック部11は、圧縮ひずみが付与された後、焼鈍による再結晶化を経ている。そのため、焼鈍時に再結晶化されやすく、低温、短時間での再結晶化が可能になる。それ故、焼鈍工程においては、コア板1のコアバック部11を部分的に加熱させる必要はなく、コアバック部を含むコア板1の全体を加熱させることができる。すなわち、焼鈍工程において、コア板1を加熱しても、ティース部12の再結晶化を防止しつつ、コアバック部11を選択的に再結晶化させることができる。
 本形態の製造方法において、打抜き加工工程後の各工程は、歪加工工程を経た後に焼鈍工程が行われていれば順不同であり、順序を入れ替えることができる。例えば、本形態のように、打抜き加工工程、歪加工工程、巻回加工工程、焼鈍工程の順で行うことができる。また、打抜き加工工程、巻回加工工程、歪加工工程、焼鈍工程の順で行うこともできる。さらに、打抜き加工工程、歪加工工程、焼鈍工程、巻回加工工程の順で行うこともできる。打抜き加工工程後の各工程の順序を入れ替えた実施形態については、後述の実施形態2及び実施形態3において説明する。また、後述の実施形態6に例示されるように、歪加工工程と巻回加工工程とは同時進行させてもよい。
 焼鈍工程は、各工程の最後に行うことが好ましい。この場合には、歪加工工程において付与される厚み方向の圧縮歪だけでなく、例えば巻回加工工程などにおいて生じうる面内方向の歪も焼鈍により解消することができる。そのため、鉄損の劣化を防止することができる。
 本実施形態のように、巻回加工工程の前に歪加工工程を行う場合には、巻回加工において付与されうる不均質な加工ひずみがない均質な素材からなるコアシート片2に対して圧縮ひずみを付与することができる。そのため、歪加工工程においては、板厚方向Zの圧縮ひずみをコアシート片2における帯状コアバック部21の素材全体へ均質に付与することができる。また、この場合には、一方向に延びる帯状コアバック部21に圧縮加工を行って圧縮ひずみを付与することができるため、圧縮加工がしやすくなり、圧縮加工方法の選択幅も広がる。
 以上のごとく、本形態の製造方法によれば、磁化容易方向がティース部12の伸長方向Lとなるティース部12と、磁化容易方向がランダム方向となるコアバック部11とを有するコア板1を得ることができる。したがって、上記コア板1の製造方法によれば、ティース部12における磁気特性を向上させることができると共に、コアバック部11における磁気特性の低下を防止することができる。すなわち、コア板1は、コアバック部11及びティース部12の双方において高い磁束密度を発揮することができる。よって、コア板1は、例えば回転電機のステータコアに好適である。
 (実施形態2)
 本形態においては、打抜き加工工程後に、巻回加工工程、歪加工工程、及び焼鈍工程を順次行ってコア板を製造する。なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
 図4(a)及び図4(b)に例示されるように、まず、実施形態1と同様にして方向性電磁鋼板3の打ち抜き加工を行うことにより、帯状コアバック部21と平行ティース部22とを有するコアシート片2を得る。次いで、巻回加工工程を行い、図4(b)及び図4(c)に例示されるように、平行ティース部22を内側にしてコアシート片2を環状に巻回させる。これにより、コアバック部11とティース部12とを有するコア板1を得る。
 次に、歪加工工程を行い、図4(d)に例示されるように、コア板1のコアバック部11に、板厚方向に圧縮ひずみを付与する。次いで、焼鈍工程を行い、図5(e)に例示されるように、焼鈍によりコアバック部11を再結晶化させる。このようにして、実施形態1と同様のコア板1を得ることができる。
 各工程は、具体的には実施形態1と同様にして行うことができる。本実施形態のように、歪加工工程の前に巻回加工工程を行うことにより、巻回加工によって周方向に伸ばされたコアバック部11に対して厚み方向の圧縮ひずみが付与される。そのため、歪加工工程において付与されるひずみがない状態で巻回加工を行うことができる。それ故、低い加工応力での巻回加工が可能になる。更に巻回加工の寸法精度も向上できる。また、その他には、実施形態1と同様の作用効果を得ることができる。
 (実施形態3)
 本形態においては、打抜き加工工程後に、歪加工工程、焼鈍工程、及び巻回加工工程を順次行ってコア板を製造する。図5(a)及び図5(b)に例示されるように、まず、実施形態1と同様に打抜き加工工程を行うことにより方向性電磁鋼板3からコアシート片2を作製し、さらに実施形態1と同様に歪加工工程を行うことにより、図5(c)に例示されるように、コアシート片2の帯状コアバック部21に圧縮ひずみを付与する。
 次いで、焼鈍工程を行うことにより、図5(d)に例示されるようにコアシート片2の帯状コアバック部21を再結晶化させる。次に、図5(d)及び図5(e)に例示されるように、平行ティース部22を内側にしてコアシート片2を環状に巻回させる。これにより、コアバック部11とティース部12とを有するコア板1を得る。このようにして、実施形態1と同様のコア板1を得ることができる。
 各工程は、具体的には実施形態1と同様にして行うことができる。本実施形態のように、巻回加工工程の前に焼鈍工程を行うことにより、焼鈍工程で得られる再結晶粒を例えば粒径500μm以下の細粒に制御することができる。その結果、図5(d)及び図5(e)に例示されるように、巻回加工の際に、帯状コアバック部21における伸び変形が起こり易くなり、加工性が向上する。したがって、例えば円環状のような所望形状に加工し易くなる。更に焼鈍工程において起こりうる収縮変形が巻回加工で矯正されるためコア板1の寸法精度を向上させることができる。その他には、実施形態1と同様の作用効果を得ることができる。
 (実施形態4)
 本実施形態においては、歪加工工程後に、打抜き加工工程、巻回加工工程、及び焼鈍工程を行って実施形態1と同様のコア板1を製造する。歪加工工程後の各工程は、打抜き加工工程を経た後に巻回加工工程が行われていれば順不同であり、順序を入れ替えることができる。以下に、歪加工工程、打抜き加工工程、巻回加工工程、焼鈍工程の順で行う形態について説明する。
 図6(a)に例示されるように、まず、方向性電磁鋼板3において、帯状コアバック部形成予定領域31を決定する。帯状コアバック部形成予定領域31は、打抜き加工工程後に得られるコアシート片2における帯状コアバック部21と同形状であるが、実際に打ち抜き加工が施される前の方向性電磁鋼板3上の仮想領域である。換言すれば、帯状コアバック部形成予定領域31は、方向性電磁鋼板3上における設計図のようなものであるといえる。帯状コアバック部形成予定領域31の決定の際には、打抜き加工工程後に平行ティース部22となる平行ティース部形成予定領域32を決定しておくこともでき、打抜き加工工程後にコアシート片2となるコアシート片形成予定領域30を決定しておくこともできる。方向性電磁鋼板3における磁化容易方向Yと垂直方向Xに延びる帯状コアバック部形成予定領域31を少なくとも決定しておけばよい。
 歪加工工程においては、図6(a)に例示されるように、方向性電磁鋼板3の帯状コアバック部形成予定領域31に板厚方向に圧縮ひずみを付与する。次いで、打ち抜き加工を行うことにより、図6(b)に例示されるように、帯状コアバック部21と平行ティース部22とを有するコアシート片2を得る。打ち抜きは、予め決定した帯状コアバック部形成予定領域31から帯状コアバック部21が形成されるように行う。すなわち、帯状コアバック部21は、方向性電磁鋼板3に存在する帯状コアバック部形成予定領域31から打抜き加工によって形成される。このようにして得られたコアシート片2は、すでに圧縮ひずみが付与された帯状コアバック部21を有する。
 次いで、巻回加工工程を行い、図6(b)に例示されるように、平行ティース部22を内側にしてコアシート片2を環状に巻回させる。これにより、図6(c)に例示されるように、コアバック部11とティース部12とを有するコア板1を得る。コア板1は、コアバック11に圧縮ひずみを有している。
 次に、焼鈍工程を行い、図6(d)に例示されるように、焼鈍によりコアバック部11を再結晶化させる。このようにして、実施形態1と同様のコア板1を得ることができる。
 各工程は、具体的には実施形態1と同様にして行うことができる。本実施形態のように、打抜き加工工程の前に歪加工工程を行う場合には、例えばトランスファープレス型と呼ばれるプレス機械を用いることによって、歪加工工程と打ち抜き加工工程とを同じプレス機により連続的に行うことが可能になる。すなわち、図6(a)及び図6(b)に例示されるように、帯状コアバック部形成予定領域31への厚み方向の圧縮ひずみの付与と、コアシート片2の打ち抜き加工とを、自動加工により連続で行うことができる。そのため、歪加工工程及び打抜き加工工程の高速化が可能になる。また、その他には、実施形態1と同様の作用効果を得ることができる。
 本形態の製造方法において、歪加工工程後の各工程は、順不同であり、順序を入れ替えることができる。図示や詳細な説明は省略するが、例えば歪加工工程、打抜き加工工程、焼鈍工程、巻回加工工程の順で行うこともできる。また、歪加工工程、焼鈍工程、打抜き加工工程、巻回加工工程の順で行うこともできる。
 (比較形態1)
 本形態においては、方向性電磁鋼板からコアシート片を打ち抜き、このコアシート片を巻回させることにより、実施形態1と同形状のコア板を製造する。具体的には、図7(a)及び(b)に例示されるように、まず、実施形態1と同様にして、打抜き加工工程を行うことにより、方向性電磁鋼板3から、帯状コアバック部21と平行ティース部22とを有するコアシート片2を作製する。コアシート片2は実施形態1と同様のものである。
 次に、巻回加工工程を行い、図7(b)に例示されるように、平行ティース部22を内側にしてコアシート片2を環状に巻回させる。これにより、図7(c)に例示されるように、コアバック部81とティース部82とを有するコア板8を得る。
 本形態の製造方法においては、コアバック部81は、実施形態1~4のような歪加工工程及び焼鈍工程を経ていない。そのため、図8に例示されるように、コアバック部81の磁化容易方向とティース部82の磁化容易方向とが平行になり、いずれもティース部82の伸長方向Lとなる。
 このようなコア板8においては、ティース部82においては、磁化容易方向が所望の伸長方向Lと平行であるため、磁気特性に優れが、コアバック部81においては、磁化容易方向が所望の周方向Cと直交する方向になる。すなわち、コアバック部81は、磁気回路において磁化が困難となり、磁気特性上好ましくない。
 (比較形態2)
 本形態においては、無方向性電磁鋼板から打ち抜きにより、実施形態1と同形状のコア板を製造する。まず、図9(a)に例示されるように、面内の磁化容易方向がランダムな無方向性電磁鋼板300を準備した。無方向性電磁鋼板300としては、市販品を使用することができる。次いで、無方向性電磁鋼板300からコアバック部91とティース部92とを有する実施形態1と同形状のコア板9を打ち抜きにより作製した。
 コア板9は、無方向性電磁鋼板300から打ち抜きにより作製したため、図10に例示されるように、磁化容易方向は、コアバック部91及びティース部92のいずれにおいてもランダムな方向になる。したがって、ティース部92の伸長方向Lと平行に磁化容易方向を有する上述の実施形態1~4のコア板1に比べて、ティース部92における磁気特性が低下する。
 (実施形態5)
 本形態においては、歪加工工程をローラ圧延により行う形態について説明する。本形態においては、実施形態1と同様にして打抜き加工工程、歪加工工程、巻回加工工程、焼鈍工程を順次行ってコア板を製造する。
 まず、実施形態1と同様に、帯状コアバック部21と、平行ティース部22とを有するコアシート片2を打ち抜く(図1(a)及び図1(b)参照)。次いで、図11に例示されるようにローラ圧延により、コアシート片2の帯状コアバック部21に、板厚方向Zに圧縮ひずみを付与する。つまり、圧延機5の一対のローラ51、52間にコアシート片2の帯状コアバック部21を挟み込み、圧延を行うことにより圧縮ひずみを付与する。
 ローラ圧延では、帯状コアバック部21に圧縮ひずみを十分かつ均一に付与することができる。その結果、帯状コアバック部21の厚みは小さくなり、例えば均一な厚みに加工される。後述の実施形態6に例示するように、帯状コアバック部21の厚みを傾斜させることも可能である。
 次いで、実施形態1と同様に、巻回加工工程、焼鈍工程を行うことにより、コア板1を製造することができる。図12に本形態により得られるコア板1におけるコアバック部11とティース部12の境界部分の拡大断面図の一例を示す。歪加工工程において帯状コアバック部21に圧縮ひずみが付与されているため、図12に例示されるように、コアバック部11の厚みT1はティース部12の厚みT2よりも小さくなる。つまり、T1<T2である。
 コアバック部11とティース部12との厚み差ΔT(単位:%)は、コアバック部11の厚みT1と、ティース部12の厚みT2とから以下の式(I)より算出される。
 ΔT=(T2-T1)×100/T2 ・・・(I)
 コアバック部11とティース部12との厚み差ΔTは、5~20%であることが好ましい。つまり、コアバック部11とティース部12との厚み差ΔTが5~20%になるように歪加工工程において圧縮ひずみを付与することが好ましい。この場合には、後述の実験例において示すように、コア板1のコアバック部11における磁束密度をより向上できると共に、ヒステリシス損をより低減できる。その結果、コアバック部における磁気特性をより向上させることができる。コアバック部における磁束密度がさらに向上するという観点から、ΔTは10~20%であることがより好ましい。
 (実験例)
 本例においては、方向性電磁鋼板の試験片に圧縮ひずみを付与して、厚みの異なる複数の試験片を作製し、各試験片の磁気特性の評価を行う。これにより、コアバック部とティース部との厚み差の好ましい範囲を調べる例である。
 まず、実施形態1と同様の方向性電磁鋼板から縦55mm、横55mmの試験片を切り出した。試験片の厚みは0.27mmである。
 次いで、ローラ圧延により、所定の圧延率に設定して試験片に圧縮ひずみを付与した。このようにして、厚みの異なる試験片を作製した。圧延後の試験片の厚みTp1、及び圧延前の試験片の厚みTp2から、厚みの変化率ΔTp(単位:%)を以下の式(II)により算出した。
 ΔTp=(Tp2-Tp1)×100/Tp2 ・・・(II)
 本例においては、ΔTpが0、5%、10%、20%、30%の試験片を作製した。試験片の厚みは、厚みに傾斜やばらつきがある場合には最小厚のことである。ただし、周囲に比べて極端に厚みが小さくなっている部分がある場合にはその部分を除外する。厚みの測定は(株)ミツトヨ製のマイクロメータM110-OMを用いて測定した。
 次いで、各試験片を実施形態1と同様に加熱し、焼鈍により再結晶化させた。このようにして、コアバック部のモデルとなる試験片を得た。
 次に、試験片の磁気特性の評価を行った。磁気特性の評価は、試験片の形状が上記の通り50mm×50mmの正方形である点を除いて、JIS C 2556に規定の「電磁鋼板単板磁気特性試験方法」に準拠して、磁束密度及びヒステリシス損を測定することにより行った。測定には、メトロン技研(株)製の磁気特性検査装置SK300を用いた。
 図13に、厚みの変化率ΔTpと磁界H=5000A/m時における磁束密度との関係、及び厚みの変化率ΔTpと周波数400Hz、磁束密度1.0T時におけるヒステリシス損との関係を示す。なお、厚みの変化率ΔTpは、実施形態5におけるコアバック部とティース部との厚み差ΔTと同義であるため、図13には、厚みの変化率をコアバック部とティース部との厚み差として示す。図13のグラフにおいては、横軸がコアバック部とティース部との厚み差を示す。左側の縦軸が磁界H=5000A/m時における磁束密度を示す。右側の縦軸が周波数400Hz、磁束密度1.0T時におけるヒステリス損を示す。
 図13より知られるように、コアバック部とティース部との厚み差が5~20%の場合には、磁束密度をより向上でき、ヒステリシス損をより低減できることがわかる。つまり、磁気特性をより向上させるためには、コアバック部とティース部との厚み差は5~20%であることが好ましい。より好ましくは、厚み差は10~20%がよい。
 また、図13より知られるように、コア板の磁気特性を充分に高めるという観点から、コアバック部の磁束密度は1.65T以上が好ましく、1.7T以上がより好ましい。また、コアバック部のヒステリシス損は7W/kg以下が好ましい。
 なお、本例においては、ローラ圧延により圧延ひずみを付与した試験片について上述の厚み差ΔTの好ましい範囲を検討したが、鍛造、各種ピーニング等による他の圧縮ひずみの付与方法についても同様の結果が得られる。ただし、圧延ひずみを十分に付与できるという観点からは、ローラ圧延、鍛造がより好ましい。
 (実施形態6)
 本形態においては、歪加工工程と巻回工程とを同時進行させながら、コアバック部にテーパ領域を形成する例について説明する。本形態においても、打抜き加工工程、歪加工工程、巻回加工工程、焼鈍工程を行ってコア板を製造する。
 まず、実施形態1と同様に方向性電磁鋼板の打抜き加工工程を行い、図14(a)に例示されるように、帯状コアバック部21と平行ティース部22とを有するコアシート片2を打ち抜く。次いで、歪加工工程と巻回加工工程とを同じ工程内で行う。
 具体的には、図14(b)に例示されるように、コアシート片2の帯状コアバック部21に、板厚方向Zに圧縮ひずみを付与しながら、平行ティース部22を内側にしてコアシート片2を順次環状に巻回させていく。このようにして、帯状コアバック部21に対する圧縮ひずみの付与と、コアシート片2の巻回とを同時進行させることができる。圧縮ひずみの付与は、実施形態5と同様に、例えばローラ圧延により行うことができる。
 図15に例示されるように、ローラ圧延による歪加工工程においては、帯状コアバック部21に板厚が傾斜するテーパ領域115を形成することができる。テーパ領域115は、帯状コアバック部21における板厚がティース部側とは反対側の外縁100側に向けて小さくなるように形成される。
 次いで、実施形態1と同様に、焼鈍工程を行うことにより、コア板1を得ることができる。図16には、本形態のコア板1におけるコアバック部11とティース部12の境界部分の拡大断面図を示す。図16に例示されるように、コアバック部11は、コア板1の中心から外方に向けて厚みが小さくなるテーパ領域115を有している。つまり、テーパ領域115においてはコアバック部11の厚みが外縁100に向けて小さくなり、コアバック部11の厚みが傾斜している。
 本形態のように、コアバック部11にテーパ領域115を形成することにより、上述のように、歪加工工程と巻回加工工程とを同時進行させることが可能になる。そのため、製造工程の短縮化が可能になり、生産性を向上させることができる。また、この場合には、帯状コアバック部21の外縁100側が伸長しやすくなる。そのため、巻回をより容易に行うことができる。かかる観点からも生産性が向上する。
 テーパ領域115は、必ずしもコアバック部11の全域に形成する必要はないが、圧縮ひずみを付与してコアバック部11の磁気特性を向上させるという観点からは、コアバック部11の全体に形成することが好ましい。
 本形態のように、コアバック部11にテーパ領域115を形成する場合においても、実施形態5及び実験例のように、ティース部12に対するコアバック部11の厚みの差を5~20%にすることが好ましい。コアバック部11がテーパ領域115を有する場合においても、コアバック部11の厚みT1は、その最小厚みで規定される。したがって、この場合のコアバック部11の厚みT1は、図16に例示されるようにコアバック部11における外縁100の厚みとなる。
 本開示は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。例えば、実施形態1においては、圧縮加工方法として、ショットピーニングによる方法を図示して説明したが、他のピーニング方法や、鍛造等を行うことも可能であり、実施形態5及び実施形態6のようにローラ圧延加工を行うこともできる。また、円環状のコア板について説明したが、楕円環状や、四角環状、六角環状等の多角環状のコア板の作製も可能である。
 本開示は実施例を参照して記載されているが、本開示は開示された上記実施例や構造に限定されるものではないと理解される。寧ろ、本開示は、様々な変形例や均等範囲内の変形を包含する。加えて、本開示の様々な要素が、様々な組み合わせや形態によって示されているが、それら要素よりも多くの要素、あるいは少ない要素、またはそのうちの1つだけの要素を含む他の組み合わせや形態も、本開示の範疇や思想範囲に入るものである。

Claims (5)

  1.  環状のコアバック部(11)と、上記コアバック部から中心(O)に向かって延びる複数のティース部(12)とを有するコア板(1)の製造方法において、
     面内の一方向に磁化容易方向(Y)を有する方向性電磁鋼板(3)から、上記磁化容易方向と垂直方向(X)に延びる帯状コアバック部(21)と、上記帯状コアバック部から上記磁化容易方向に平行に延びる複数の平行ティース部(22)とを有するコアシート片(2)を打ち抜く打抜き加工工程と、
     上記平行ティース部を内側にして上記コアシート片を環状に巻回させることにより、上記コアバック部と上記ティース部とを有する上記コア板を得る巻回加工工程と、
     上記コアシート片の上記帯状コアバック部又は上記コア板の上記コアバック部に、板厚方向(Z)に圧縮ひずみを付与する歪加工工程と、
     上記歪加工工程後に、上記帯状コアバック部又は上記コアバック部を焼鈍により再結晶化させる焼鈍工程と、を有するコア板の製造方法。
  2.  環状のコアバック部(11)と、上記コアバック部から中心(O)に向かって延びる複数のティース部(12)とを有するコア板(1)の製造方法において、
     面内の一方向に磁化容易方向(Y)を有する方向性電磁鋼板(3)において、上記磁化容易方向と垂直方向(X)に延びる帯状コアバック部形成予定領域(31)に、板厚方向に圧縮ひずみを付与する歪加工工程と、
     上記帯状コアバック部形成予定領域に存在する帯状コアバック部(21)と、上記帯状コアバック部から上記磁化容易方向に平行に延びる複数の平行ティース部(22)とを有するコアシート片(2)を上記方向性電磁鋼板から打ち抜く打抜き加工工程と、
     上記平行ティース部を内側にして上記コアシート片を環状に巻回させることにより、上記コアバック部と上記ティース部とを有する上記コア板を得る巻回加工工程と、
     上記歪加工工程後に、上記帯状コアバック部形成予定領域、上記帯状コアバック部、又は上記コアバック部を焼鈍により再結晶化させる焼鈍工程と、を有するコア板の製造方法。
  3.  上記歪加工工程においては、ショットピーニング、ウォータジェットピーニング、レーザピーニング、超音波ピーニング、鍛造、又はローラ圧延加工により、上記圧縮ひずみを付与する、請求項1又は2に記載のコア板の製造方法。
  4.  上記コアバック部と上記ティース部との厚み差が5~20%となるように上記歪加工工程を行う、請求項1~3のいずれか1項に記載のコア板の製造方法。
  5.  上記コアバック部は上記中心から外方に向けて厚みが小さくなるテーパ領域(115)を有する、請求項1~4のいずれか1項に記載のコア板の製造方法。
PCT/JP2017/025915 2016-07-21 2017-07-18 コア板の製造方法 WO2018016475A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2019000810A MX2019000810A (es) 2016-07-21 2017-07-18 Metodo de fabricacion de placa de nucleo.
BR112019000962-0A BR112019000962B1 (pt) 2016-07-21 2017-07-18 Método para fabricação de uma placa de núcleo
KR1020197001927A KR102243007B1 (ko) 2016-07-21 2017-07-18 코어판의 제조 방법
CA3031179A CA3031179C (en) 2016-07-21 2017-07-18 Method for manufacturing core plate
PL17830991T PL3490119T3 (pl) 2016-07-21 2017-07-18 Sposób wytwarzania płyty rdzeniowej
CN201780044185.8A CN109478834B (zh) 2016-07-21 2017-07-18 芯板的制造方法
EP17830991.0A EP3490119B1 (en) 2016-07-21 2017-07-18 Method for manufacturing core plate
US16/250,025 US10749416B2 (en) 2016-07-21 2019-01-17 Method for manufacturing core plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016143361 2016-07-21
JP2016-143361 2016-07-21
JP2017107106A JP6633025B2 (ja) 2016-07-21 2017-05-30 コア板の製造方法
JP2017-107106 2017-05-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/250,025 Continuation US10749416B2 (en) 2016-07-21 2019-01-17 Method for manufacturing core plate

Publications (1)

Publication Number Publication Date
WO2018016475A1 true WO2018016475A1 (ja) 2018-01-25

Family

ID=60992462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025915 WO2018016475A1 (ja) 2016-07-21 2017-07-18 コア板の製造方法

Country Status (1)

Country Link
WO (1) WO2018016475A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159323A (ja) * 1987-12-17 1989-06-22 Nippon Steel Corp 方向性電磁鋼板の鉄損低減装置
JPH01159324A (ja) * 1987-12-17 1989-06-22 Nippon Steel Corp 方向性電磁鋼板の鉄損値低減装置
JPH0992561A (ja) * 1995-09-22 1997-04-04 Nippon Steel Corp 回転機器用螺旋コア、およびその製造法
JP2014193000A (ja) * 2013-03-27 2014-10-06 Denso Corp 回転電機の固定子鉄心の製造方法
JP2015122893A (ja) * 2013-12-24 2015-07-02 Jfeスチール株式会社 モータコアの製造方法
JP2016094655A (ja) * 2014-11-17 2016-05-26 新日鐵住金株式会社 らせん巻きコア用電磁鋼板およびその製造方法、らせん巻きコア、らせん巻きコアの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159323A (ja) * 1987-12-17 1989-06-22 Nippon Steel Corp 方向性電磁鋼板の鉄損低減装置
JPH01159324A (ja) * 1987-12-17 1989-06-22 Nippon Steel Corp 方向性電磁鋼板の鉄損値低減装置
JPH0992561A (ja) * 1995-09-22 1997-04-04 Nippon Steel Corp 回転機器用螺旋コア、およびその製造法
JP2014193000A (ja) * 2013-03-27 2014-10-06 Denso Corp 回転電機の固定子鉄心の製造方法
JP2015122893A (ja) * 2013-12-24 2015-07-02 Jfeスチール株式会社 モータコアの製造方法
JP2016094655A (ja) * 2014-11-17 2016-05-26 新日鐵住金株式会社 らせん巻きコア用電磁鋼板およびその製造方法、らせん巻きコア、らせん巻きコアの製造方法

Similar Documents

Publication Publication Date Title
JP6633025B2 (ja) コア板の製造方法
KR101659350B1 (ko) 방향성 전기강판 및 그 제조방법
US11881341B2 (en) Method of manufacturing core sheet including insulation coating removing step
JP2018023271A5 (ja)
EP3395963B9 (en) Grain-oriented electrical steel sheet and method for manufacturing same
WO2018016475A1 (ja) コア板の製造方法
US11473158B2 (en) Method for manufacturing alloy ribbon piece
JP5023552B2 (ja) 低鉄損方向性電磁鋼板およびその製造方法
JPS60106915A (ja) 打抜き性の優れたセミプロセス電磁鋼板の製造方法
JP6409521B2 (ja) らせん巻きコア用電磁鋼板およびその製造方法、らせん巻きコア、らせん巻きコアの製造方法
KR20200118202A (ko) 방향성 전자 강판
JP7196692B2 (ja) 合金薄帯片の製造方法
KR20150062034A (ko) 방향성 전기강판 및 그 제조방법
TWI779904B (zh) 捲鐵心之製造方法及製造裝置
US20200370200A1 (en) Method of manufacturing oriented steel plate
JP2016113641A (ja) クラッド鋼板の製造方法、製造設備およびそれによって製造されたクラッド鋼板
CN115109904A (zh) 制造由金属制成的软磁初级产品的方法
KR101654525B1 (ko) 무방향성 전기강판 및 그 제조방법
JP2017145453A (ja) モータ用無方向性電磁鋼板およびその製造方法
JPS6233722A (ja) 冷間圧延鋼板の製造法
JP2010242115A (ja) 建築構造用リング鋼材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3031179

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20197001927

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019000962

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017830991

Country of ref document: EP

Effective date: 20190221

ENP Entry into the national phase

Ref document number: 112019000962

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190117