WO2018016367A1 - ナノ粒子を利用した炭化水素系架橋膜及びその製造方法、並びに燃料電池 - Google Patents
ナノ粒子を利用した炭化水素系架橋膜及びその製造方法、並びに燃料電池 Download PDFInfo
- Publication number
- WO2018016367A1 WO2018016367A1 PCT/JP2017/025126 JP2017025126W WO2018016367A1 WO 2018016367 A1 WO2018016367 A1 WO 2018016367A1 JP 2017025126 W JP2017025126 W JP 2017025126W WO 2018016367 A1 WO2018016367 A1 WO 2018016367A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sposs
- crosslinked
- sppsu
- hydrocarbon
- membrane
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0221—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1027—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/20—Polysulfones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/38—Polysiloxanes modified by chemical after-treatment
- C08G77/382—Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
- C08G77/392—Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing sulfur
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0239—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1032—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a hydrocarbon-based crosslinked film using nanoparticles and a method for producing the same. More particularly, the present invention relates to a crosslinked composite membrane of sulfonated polyphenylsulfone (SPPSU) and sulfonated polyhedral oligomeric silsesquioxane (SPOSS), which is a nanoparticle, a method for producing the same, and a fuel cell. .
- SPPSU sulfonated polyphenylsulfone
- SPOSS sulfonated polyhedral oligomeric silsesquioxane
- a proton exchange membrane fuel cell (also referred to as a polymer electrolyte fuel cell) is one of the most promising electrochemical devices for clean and efficient power generation.
- PEMFC is an energy device that converts a chemical energy into an electrical energy by using a proton conductive polymer electrolyte membrane.
- the performance of PEMFC is strongly influenced by electrodes, proton exchange membranes, and even their assemblies.
- PEMFC proton exchange membranes typically include fluoropolymers and hydrocarbon polymers, but the former is currently closer to practical use.
- fluoropolymers include perfluorinated copolymers such as Nafion (registered trademark of EI DuPont de Nemours & Company).
- Nafion is a perfluorosulfonic acid material composed of a hydrophobic perfluorocarbon skeleton and a perfluoro side chain having a sulfonic acid group.
- These fluoropolymers have high stability against hydrolysis and oxidation, and excellent proton conductivity.
- fluoropolymers have three major drawbacks. That is, very high price, loss of conductivity at relatively high temperature and low humidity, and large methanol permeability.
- the aim of increasing the efficiency of fuel cell systems the development of polymer electrolyte fuel cells for low humidification or high temperature operation, which exhibits high proton conductivity and does not require a humidifier or a radiator, is an issue ( Non-patent document 1).
- Non-Patent Documents 2 and 3 Korean Patent Documents 2 and 3
- SPES sulfonated polyimide
- PBI polybenzimidazole
- SPEEK modified PBI monomer
- SPPSU sulfonated polyphenylsulfone
- Patent Documents 2 and 3 In order to obtain a polymer electrolyte membrane that can conduct high protons in a low humidified environment, research on increasing the concentration of sulfonic acid groups has been intensively conducted. This is because increasing the concentration of sulfonic acid groups per unit density increases the degree of water dissociation, and shortening the distance between sulfonic acids facilitates proton hopping (proton conduction) (non-condensation). Patent Documents 2 and 3). However, when the concentration of the sulfonic acid group is increased, the ratio of the hydrophilic sulfonic acid group to the hydrophobic polymer main chain is increased, and the water content of the polymer electrolyte is increased. Since it dissolves or swells easily, the stability (mechanical strength of the membrane) of the electrolyte is impaired (Non-Patent Documents 2 and 3).
- SPPSU sulfonated polyphenylsulfone
- SPPSU sulfonated polyphenylsulfone
- sulfonic acid per repeating unit is generally used to stabilize the polymer electrolyte (maintaining the mechanical strength of the electrolyte membrane). It is believed that the average number of groups (referred to as “sulfonation degree”) needs to be 1 or less.
- Non-Patent Documents 4 and 5 report that the electrolyte membrane was obtained by performing the heat treatment with the SPPSU having a sulfonation degree of 1 or more. However, since sufficient stabilization (mechanical strength) cannot be obtained even with such an electrolyte membrane, further stabilization and a high level of excellent proton conductivity and stability are required. .
- polyhedral oligomeric silsesquioxane is known as inorganic nanoparticles having a cage structure containing a silicon (Si) -oxygen (O) bond (Non-Patent Documents 6, 7, 8). ). This is also referred to as “cage oligomeric silsesquioxane”.
- POSS is a particle (nanoparticle) having a size of several nanometers, which is smaller than a general inorganic particle having a size of several tens to several hundreds of nanometers. It can be expected not to disturb the movement.
- POSS can bond a maximum of 8 functional groups to the end of the cage structure, a large number of sulfonic acid groups can be introduced per unit molecule when compared with inorganic particles. Therefore, by using a composite film of sulfonated POSS (SPOSS) and a hydrocarbon polymer, an improvement in conductivity can be expected due to an increase in the degree of proton dissociation.
- Non-Patent Documents 7 and 8 report production examples of SPOSS-SPPSU mixed electrolyte membranes. These prior documents aim at improving proton conductivity, and the degree of sulfonation of SPPSU is 1 or less, while the addition amount of SPOSS is 10% by mass or more, and 20% is optimal. These prior documents do not disclose examples of crosslinking or heat treatment of the above mixed system, and it is considered that sufficient stabilization (mechanical strength) cannot be obtained with such an electrolyte membrane.
- the hydrocarbon polymer used in the proton exchange membrane of the proton exchange membrane fuel cell is also maintained while maintaining a high concentration of sulfonic acid groups (that is, maintaining a high proton conductivity). Therefore, it is desired to develop a novel crosslinked polymer film having stability against water (that is, retaining mechanical strength).
- a hydrocarbon-based crosslinked membrane used for a proton exchange membrane of a proton exchange membrane fuel cell A hydrocarbon-based crosslinked membrane comprising a crosslinked complex of sulfonated polyphenylsulfone (SPPSU) and a sulfonated polyhedral oligomeric silsesquioxane (SPOSS) via a sulfonic acid group.
- SPPSU sulfonated polyphenylsulfone
- SPOSS sulfonated polyhedral oligomeric silsesquioxane
- the crosslinked complex is represented by the following formula (I): (Wherein a, b, c and d are each independently an integer of 0 to 4, and the sum of a, b, c and d is a rational number exceeding 1 on average per repeating unit).
- each R is independently hydrogen, a hydroxyl group, a linear or branched alkyl group having 1 to 20 carbon atoms which may have a substituent, or an alkoxyl group, or Each is independently an integer from 0 to 2 for each R; if present, x is an integer from 1 to 20 and the total number of sulfonic acid groups is one.
- a proton exchange membrane fuel cell comprising the hydrocarbon-based crosslinked membrane according to any one of [1] to [4] above as a proton exchange membrane. [6].
- a method for producing a hydrocarbon-based crosslinked membrane used for a proton exchange membrane of a proton exchange membrane fuel cell A step of forming a crosslinked complex by crosslinking a sulfonated polyphenylsulfone (SPPSU) and a sulfonated polyhedral oligomeric silsesquioxane (SPOSS) via a sulfonic acid group under heating.
- SPPSU sulfonated polyphenylsulfone
- SPOSS sulfonated polyhedral oligomeric silsesquioxane
- Forming the cross-linked complex comprises: The following formula (I): (Wherein a, b, c and d are each independently an integer of 0 to 4, and the sum of a, b, c and d is a rational number exceeding 1 on average per repeating unit).
- An SPPSU having the structure represented; The following formula (II): (Wherein each R is independently hydrogen, a hydroxyl group, a linear or branched alkyl group having 1 to 20 carbon atoms which may have a substituent, or an alkoxyl group, or Each is independently an integer from 0 to 2 for each R; if present, x is an integer from 1 to 20 and the total number of sulfonic acid groups is one.
- the hydrocarbon system according to the above item [7], wherein the sum of a, b, c and d is 2 or more on average per repeating unit and / or the sum of e is 8 or 16 on average per molecule A method for producing a crosslinked film. [9].
- a hydrocarbon-based crosslinked membrane having stability against water while maintaining a high concentration of sulfonic acid groups. That is, according to the present invention, it is possible to obtain a hydrocarbon-based crosslinked membrane containing a crosslinked complex of SPPSU and SPOSS via a sulfonic acid group, which maintains mechanical strength while maintaining high proton conductivity, As a result, a proton exchange membrane fuel cell using this as a proton exchange membrane can be obtained.
- FIG. 3 is a schematic diagram showing the chemical structure of the SPPSU-SPOSS crosslinked composite film obtained in Example 1 (the same applies to Examples 2 and 3).
- (a) shows SPOSS (structure in which a sulfonated phenyl group is bonded to each Si atom)
- (b) shows SPPSU (degree of sulfonation: 2)
- (c) was finally obtained.
- FIG. 1 shows a schematic structure of an SPPSU-SPOSS cross-linked composite film.
- Chemical structures measured by FT-IR for the SPPSU cross-linked membrane obtained in Comparative Example 1 and the SPPSU-SPOSS cross-linked composite membrane obtained in Examples 1 to 3 (SPOSS 2 mass%, SPOSS 5 mass%, SPOSS 10 mass%) It is a figure which shows the characteristic.
- the thermal characteristics of the SPPSU crosslinked membrane obtained in Comparative Example 1 and the SPPSU-SPOSS crosslinked composite membrane obtained in Examples 1 and 2 were measured by TGDTA in an oxygen atmosphere. It is a figure which shows the measurement result.
- the hydrocarbon-based crosslinked membrane used in the proton exchange membrane of the proton exchange membrane fuel cell according to the present invention is a sulfonated polyphenylsulfone (SPPSU) and a sulfonated polyhedral oligomeric silsesquioxane (SPOSS). It includes a cross-linked complex via a sulfonic acid group.
- SPPSU polyphenylsulfone
- SPOSS sulfonated polyhedral oligomeric silsesquioxane
- the sulfonated polyphenylsulfone is not particularly limited with respect to the position and degree of sulfonation and the degree of polymerization, but typically has a structure represented by the above formula (I).
- a, b, c and d are each independently an integer of 0 to 4, and the sum of a, b, c and d is a rational number exceeding 1 on average per one repeating unit.
- a and / or b and / or c and / or d are preferably 1, , B, c and d are 1.5 or more on average per one repeating unit. More preferably, the sum of a, b, c and d is about 2 or more on average per repeating unit. The sum of a, b, c and d is typically about 2 or about 4. Most commonly, the sum of a, b, c and d is about 2. N (number of repeating units) in the formula is not particularly limited.
- the weight average molecular weight MW of SPSPU (weight average molecular weight in terms of polystyrene measured by a gel permeation chromatography method; the same applies hereinafter).
- n falls within the range of 5,000 to 500,000, preferably n such that it falls within the range of 10,000 to 300,000.
- n in the formula is not particularly limited, but is, for example, n such that the weight average molecular weight MW of SPPSU is in the range of 5,000 to 200,000, or 10, N such that it falls within the range of 000 to 100,000, or n that falls within the range of 5,000 to 100,000, or such that it falls within the range of 10,000 to 200,000. n.
- the method for synthesizing the sulfonated polyphenylsulfone (SPPSU) is not particularly limited.
- any known method disclosed in Examples of JP-A-2015-170583 (National Institute for Materials Science) Any method can be used.
- the sulfonated polyhedral oligomeric silsesquioxane is not particularly limited with respect to the position and degree of sulfonation, but typically has a structure represented by the above formula (II).
- each R is independently hydrogen, a hydroxyl group, a linear or branched alkyl group having 1 to 20 carbon atoms which may have a substituent or an alkoxyl group, or any of the above structures It is.
- e (if present) is independently an integer from 0 to 2 for each R, and x (if present) is an integer from 1 to 20.
- SPOSS preferably has a higher degree of sulfonation from the viewpoint of giving a high concentration (proton conductivity) of sulfonic acid groups to SPPSU, but considering the stability to water (mechanical strength) together, sulfonic acid groups Is a rational number exceeding 2 on average per molecule, more preferably exceeding 3 on average, and even more preferably exceeding 4 on average, while it is 16 at maximum. In one exemplary embodiment, the total number of sulfonic acid groups averages about 8 or about 16 per molecule. Most commonly, the total number of sulfonic acid groups averages about 8 per molecule.
- each e is independently 1 or 2 per R, and the sum of e is on average about 8 or about 16 per molecule. Most commonly, the sum of e is about 8 on average per molecule.
- the substitution position of the sulfonic acid group is usually the para position, and when e is 2, the substitution position of the sulfonic acid group is usually the two meta positions.
- SPOSS sulfonated polyhedral oligomeric silsesquioxane
- the mass ratio of the sulfonated polyhedral oligomeric silsesquioxane (SPOSS) to the sulfonated polyphenylsulfone (SPPSU) is not particularly limited, but is usually 1% by mass or more and 15% by mass. It is as follows. This mass ratio is preferably 1.5% by mass or more and 12% by mass or less from the viewpoint of maintaining a high balance between the high concentration of sulfonic acid groups and the stability to water (ie, the balance between proton conductivity and mechanical strength). More preferably, it may be 2 mass% or more and 10 mass% or less, or 2 mass% or more and 8 mass% or less, or 2 mass% or more and 5 mass% or less.
- the step of forming a crosslinked complex by crosslinking a sulfonated polyphenylsulfone (SPPSU) and a sulfonated polyhedral oligomeric silsesquioxane (SPOSS) via a sulfonic acid group is performed under heating. It is preferable. To increase the high concentration of sulfonic acid groups (proton conductivity) while sufficiently cross-linking SPPSU molecular chains with SPOSS and improving the stability to water (mechanical strength) by reaction under heating. Can do.
- SPPSU sulfonated polyphenylsulfone
- SPOSS sulfonated polyhedral oligomeric silsesquioxane
- SPSPU is dissolved in a suitable organic solvent.
- the organic solvent is not particularly limited.
- a high boiling point organic solvent such as dimethyl sulfoxide (DMSO), dimethylacetamide (DMAc), dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP) is used.
- DMSO dimethyl sulfoxide
- DMAc dimethylacetamide
- DMF dimethylformamide
- NMP N-methyl-2-pyrrolidone
- At least selected from the group consisting of any kind of alcohol non-limiting examples being isopropanol and 1-propanol.
- One and / or water may be used.
- SPOSS is charged into the SPPSU solution at a mass ratio in the above range (usually 1% by mass to 15% by mass), and a dispersion can be prepared while stirring at an appropriate temperature of about 40 ° C. to 80 ° C., for example.
- the cast film unstretched film
- the SPPSU-SPOSS composite film which is this cast film, can be heat-treated at a further elevated temperature to obtain a crosslinked composite.
- the heating temperature and time are not particularly limited.
- appropriate conditions can be selected from the range of about 90 ° C. to 210 ° C. and about 1 hour to 3 days.
- the heating may be continued for 6 to 36 hours in the first stage of 100 to 140 ° C., the second stage of 140 to 180 ° C., and the third stage of 160 to 200 ° C., respectively.
- 0.5 M to 5 M sulfuric acid may be used and treated at a temperature of about 50 ° C. to 100 ° C. for a time of about 1 hour to 2 days.
- the SPPSU-SPOSS crosslinked composite film can be finally obtained by washing with water.
- the proton exchange membrane fuel cell of the present invention has an anode, a cathode, and a proton exchange membrane disposed between and in contact with two electrodes constituting the anode and the cathode. Includes hydrocarbon-based crosslinked membranes.
- This proton exchange membrane fuel cell is not particularly limited except that the proton exchange membrane includes the above-described hydrocarbon-based crosslinked membrane, and any known configuration of the anode and the cathode can be adopted.
- Ion exchange capacity (IEC) Titration is performed using a NaOH solution having a predetermined concentration, and the amount of the NaOH solution ([A] ml) when neutralized until the pH reaches 7 and the concentration of the NaOH solution ([B] g / ml).
- S-POSS has a structure in which a sulfonated phenyl group (that is, a substituent in which one sulfonic acid group is bonded to each phenyl group) is bonded to each Si atom.
- Example 1 Synthesis of SPPSU-SPOSS composite membrane
- DMSO dimethyl sulfoxide
- SPPSU-SPOSS crosslinked composite film obtained as described above was heated at 120 ° C, 160 ° C, and 180 ° C for 1 day to obtain an SPPSU-SPOSS cross-linked film.
- the SPPSU-SPOSS crosslinked membrane was treated in 1M sulfuric acid at 80 ° C. for 15 hours, and then washed with water to complete the SPPSU-SPOSS crosslinked composite membrane.
- the chemical structure of the finally obtained SPPSU-SPOSS crosslinked composite film is schematically shown in FIG.
- Example 2 An SPPSU-SPOSS cross-linked composite film was produced in the same manner as in Example 1 except that the ratio of SPOSS to SPPSU was changed to 5% by mass.
- Example 3 An SPPSU-SPOSS cross-linked composite film was produced in the same manner as in Example 1 except that the ratio of SPOSS to SPPSU was changed to 10% by mass.
- the SPPSU polymer obtained in the synthesis example had a very high ion exchange capacity (IEC), which was equivalent to the calculated value (3.6 meq / g). This means that about 2 sulfonic acid groups are introduced per repeating unit. Therefore, this SPPSU polymer is readily soluble in water and organic solvents.
- IEC ion exchange capacity
- Examples 1 to 3 and Comparative Example 1 when a cast film is prepared and subjected to a thermal process up to 180 ° C., crosslinking occurs, and it becomes insoluble in water or an organic solvent.
- the SPPSU crosslinked film containing no SPOSS of Comparative Example 1 does not dissolve in water or an organic solvent, but swells with a large amount of water in water, and particularly has a large swellability in the length direction.
- the SPPSU-SPOSS cross-linked composite film (SPOSS 2 mass%) obtained in Example 1 is 316 in the cross-linked film (Comparative Example 1) having a swelling property with respect to water of only SPPSU by cross-linking with SPOSS. % To 103%, and the swelling property in the length direction was also suppressed. Furthermore, with the SPPSU-SPOSS cross-linked composite membrane of Example 2 (SPOSS 5 mass%) and the SPPSU-SPOSS cross-linked composite membrane of Example 3 (SPOSS 10 mass%), the swellability was further reduced when the amount of SPOSS was further increased. In the case of the SPPSU-SPOSS cross-linked composite film (SPOSS 2% by mass) according to Example 1, the swelling property in the thickness direction increased from the others. In addition, the number of water molecules per sulfonic acid group in the SPPSU-SPOSS crosslinked composite membranes of Examples 1 to 3 was greatly reduced as compared to the SPPSU crosslinked membrane not containing SPOSS in Comparative Example 1.
- the SPPSU-SPOSS crosslinked composite membranes (b) to (d) are difficult to distinguish because the sulfonic acid-derived peak overlaps SPSPSU and SPOSS, but the SPOSS-derived Si—O peak is observed at 790 cm ⁇ 1. Therefore, the introduction of SPOSS was confirmed.
- the crosslinking by heat treatment of the sulfonic acid group of SPOSS and the sulfonic acid group of SPPSU overlaps with the S ⁇ O peak derived from the SPPSU bond and is difficult to distinguish.
- the water content of the crosslinked membrane has been greatly reduced (see Table 1), it can be indirectly determined that crosslinking has been achieved.
- the thermal stability of the cross-linked composite film is enhanced by cross-linking SPOSS to SPPSU as compared with the SPPSU cross-linked film (SPSPU only) of Comparative Example 1, and the amount of SPOSS added is further increased. It was found that it increased with the increase. This is due to an increase in the amount of SPOSS and the increase in cross-linking with SPPSU.
- FIG. 6 shows the results of evaluating the conductivity characteristics with respect to temperature and RH% for (thickness: 0.06 mm) and SPOSS 10 mass% (thickness: 0.067 mm).
- (a) is an SPPSU crosslinked film of Comparative Example 1
- (b) is SPOSS 2% by mass of SPPOS-SPOSS crosslinked composite film according to Example 1
- (c) is 5% by mass of SPOSS-SPOSS-SPOSS crosslinked according to Example 2.
- Composite film, (d) shows SPOSS-SPOSS cross-linked composite film of SPOSS 10 mass% according to Example 3.
- the SPPSU crosslinked film obtained in Comparative Example 1 exhibited a high conductivity of about 0.2 S / cm at 80 ° C. and 90% RH.
- the water content of the crosslinked membrane is very large and the stability to water is poor.
- the SPPSU-SPOSS crosslinked composite membrane of Example 1 (SPOSS 2% by mass) had a water content reduced to 1/3 or less than the SPPSU crosslinked membrane of Comparative Example 1 (not including SPOSS). Equivalent high conductivity was obtained at 90 ° C. and 90% RH.
- Example 2 SPPSU and SPOSS were crosslinked, and SPOSS increased the water content and increased the stability of the crosslinked membrane without hindering proton conductivity.
- Example 2 and 3 in which the amount of SPOSS was increased (5%, 10%), the water content was further decreased due to the increase in cross-linking, and the proton conduction path was likely to be disturbed. A decrease was observed.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Electrochemistry (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Conductive Materials (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
SPPSUとSPOSSとのスルホン酸基を介した架橋複合体を含む燃料電池のプロトン交換膜に用いられる炭化水素系架橋膜が開示される。架橋複合体は、以下の式(I)(a、b、c及びdは、各々独立に0~4の整数であり、a、b、c及びdの合計は、一繰り返し単位あたり平均で1を超える有理数である)で表されるSPPSUと、以下の式(II)(Rは、各々独立に、水素、ヒドロキシル基、置換基を有してもよい炭素数1~20の直鎖状もしくは分枝状アルキル基またはアルコキシル基であるかあるいは上記構造のいずれかであり、eはRにつき各々独立に0~2の整数であり、xは1~20の整数であり、スルホン酸基の合計数が一分子あたり平均で2を超える有理数である)で表されるSPOSSとの架橋複合体であってよい。
Description
本発明は、ナノ粒子を利用した炭化水素系架橋膜及びその製造方法に関する。さらに詳細には、本発明は、スルホン化ポリフェニルスルホン(SPPSU)と、ナノ粒子であるスルホン化された多面体オリゴマーシルセスキオキサン(SPOSS)との架橋複合膜及びその製造方法、並びに燃料電池に関する。
プロトン交換膜燃料電池(proton exchange membrane fuel cell、PEMFC)(固体高分子形燃料電池とも言う)は、クリーンで効率的な発電のために最も有望な電気化学デバイスの一つである。PEMFCは、プロトン伝導性高分子電解質膜を利用し、化学エネルギーを電気エネルギーに変換するエネルギーデバイスである。PEMFCの性能は、電極、プロトン交換膜、更にはこれらの組立体に強く影響される。
PEMFCのプロトン交換膜には、代表的にフッ素系高分子と炭化水素系高分子があるが、前者のほうが現在のところ実用化に近い。一般に用いられているフッ素系高分子の例として、ナフィオン(Nafion;イー アイ デュポン ドゥ ヌムール アンド カンパニーの登録商標)などの全フッ素系コポリマー(perfluorinated copolymer)が挙げられる。ナフィオンは、疎水性のパーフルオロカーボン骨格とスルホン酸基を持つパーフルオロ側鎖とから構成されるパーフルオロスルホン酸材料である。これらのフッ素系高分子は、加水分解及び酸化に対する高い安定性、並びに優れたプロトン伝導性を有する。
しかしながら、フッ素系高分子は、3つの大きな欠点を有する。すなわち、非常に高い価格、比較的高い温度及び低湿度における伝導性の喪失、並びに大きなメタノール透過性である。一方、現在、燃料電池システムの高効率化を目指し、高いプロトン伝導度を示すと同時に加湿器あるいはラジエータが不要な、低加湿または高温作動用のポリマー電解質燃料電池の開発が課題になっている(非特許文献1)。しかし、上記欠点を有するフッ素系高分子によってこのような課題を解決可能な燃料電池を提供することは困難であり、その応用の妨げになっている。つまり、PEMFCのプロトン交換膜に上記のようなパーフルオロスルホン酸を用いた場合、高温かつ無(低)加湿環境下ではスルホン酸基のプロトンが解離しにくいことにより、プロトン伝導度が低下するという不都合が生じる(非特許文献2、3)。そこで、炭化水素系高分子(エンジニアリングプラスチックポリマー)による代替膜の研究開発が促された。例えば、スルホン化ポリイミド、スルホン化ポリエーテルスルホン(SPES)、ポリベンズイミダゾール(PBI)、改質PBIモノマー、スルホン化ポリエーテルエーテルケトン(SPEEK)、スルホン化ポリフェニルスルホン(SPPSU)等のいくつかの芳香族ポリマーイオノマー膜が活発に研究されている。
低加湿環境下で高プロトン伝導が可能な高分子電解質膜を得るため、スルホン酸基の濃度を高くする研究が集中的に行われている。これは、単位密度当たりのスルホン酸基の濃度を高くすることで水の解離度が高くなり、スルホン酸同士の距離が短くなることでプロトンホッピング(プロトン伝導)が容易になるためである(非特許文献2、3)。しかし、スルホン酸基の濃度を高くすると、疎水性であるポリマー主鎖に対して親水性であるスルホン酸基の割合が高くなり、ポリマー電解質は水の含水率(water uptake)が大きくなって、容易に溶解または膨潤するので、電解質の安定性(膜の機械的強度)が損なわれることになる(非特許文献2、3)。
多様な炭化水素系高分子の中でも、とりわけ、スルホン化ポリフェニルスルホン(SPPSU)は、安価であり優れた熱的安定性及び高い耐薬品性を有している。この材料は、他のスルホン酸基を有する炭化水素系高分子と同様に水溶性が大きいため、一般にポリマー電解質の安定化(電解質膜の機械的強度の保持)のために繰り返し単位あたりのスルホン酸基の平均数(「スルホン化度」と称される)を1以下にする必要があると考えられている。これに関連し、非特許文献4、5には、SPPSUのスルホン化度を1以上にし、熱処理を行うことによって電解質膜を得たことが報告されている。しかし、このような電解質膜によっても十分な安定化(機械的強度)は得られないため、更なる安定化と、優れたプロトン伝導度及び安定性の高度なレベルでの両立が求められている。
他方、多面体オリゴマーシルセスキオキサン(Polyhedral oligomeric silsesquioxane:POSS)は、ケイ素(Si)-酸素(O)結合を含むケージ構造を持つ無機ナノ粒子として知られている(非特許文献6、7、8)。これは、「かご状オリゴマーシルセスキオキサン」とも称される。
POSSは、数nmサイズの粒子(ナノ粒子)であり、一般的な数十~数百nmサイズの無機粒子より小さいサイズであることで、プロトン伝導性高分子膜中に存在させてもプロトンの移動を妨害しないことが期待できる。また、POSSは、ケージ構造末端に最大8個の官能基を結合させることができるので、無機粒子と比較したときに単位分子あたり多数のスルホン酸基の導入が可能である。そのため、スルホン化されたPOSS(SPOSS)と炭化水素系高分子との複合膜にすることで、プロトン解離度の増加により電導度の向上が期待できる。
非特許文献7、8には、SPOSS-SPPSU混合系の電解質膜の作製例が報告されている。
これらの先行文献では、プロトン伝導度の向上を目的としており、SPPSUのスルホン化度は1以下である一方、SPOSSの添加量は10質量%以上であり、20%が最適とされている。これら先行文献には、上記混合系を架橋あるいは熱処理した例の開示はなく、このような電解質膜によっては、十分な安定化(機械的強度)が得られないと考えられる。
これらの先行文献では、プロトン伝導度の向上を目的としており、SPPSUのスルホン化度は1以下である一方、SPOSSの添加量は10質量%以上であり、20%が最適とされている。これら先行文献には、上記混合系を架橋あるいは熱処理した例の開示はなく、このような電解質膜によっては、十分な安定化(機械的強度)が得られないと考えられる。
Y.Wang,K.Chen,et al, Applied Energy,88,981-1007(2011)
A.Chandan,et al, J.Power Sources,231,264-278(2013)
S.M.Javaid Zaidi,"Research Trends in Polymer Electrolyte Membranes for PEMFC (Ch.2)", Polymer Membranes for fuel Cells, Springer Science + Business Media(2009)
M.L.Di Vona,et al, Int.J.Hydrogen Energy,37,8672-8680(2012)
J.D.Kim,et al, Inter.J.Hydrogen Energy,38(3),1517-1523(2011)
F.Zhang,et al, J. Mater. & Chem.Eng.,2(4),86-93(2014)
B.Decker,et al, Chem.Mater.,22,942-948(2010)
C.Hartmann-Tompson, J.Applied Polymer Science,110,958-974(2008)
上述のような従来技術の不都合に鑑み、プロトン交換膜燃料電池のプロトン交換膜に用いられる炭化水素系高分子について、スルホン酸基の高濃度を保ちながら(すなわちプロトン伝導度を高く保ちながら)も、水に対して安定性を有する(つまり機械的強度が保持された)新規ポリマー架橋膜の開発が望まれている。
本発明者らは、鋭意研究の結果、加熱下にSPPSUとSPOSSとを架橋複合化することにより、単位密度当たりのスルホン酸基の量を増加させてプロトン伝導性を高めると共に、溶解を抑制し安定性を高めた炭化水素系架橋膜が得られることを見出し、本発明を完成させた。
従って、本発明による上記課題を解決するための手段は、以下のとおりである。
[1].
プロトン交換膜燃料電池のプロトン交換膜に用いられる炭化水素系架橋膜であって、
スルホン化ポリフェニルスルホン(SPPSU)と、スルホン化された多面体オリゴマーシルセスキオキサン(SPOSS)との、スルホン酸基を介した架橋複合体を含む、炭化水素系架橋膜。
[2].
架橋複合体が、以下の式(I):
(式中、a、b、c及びdは、各々独立に0~4の整数であり、a、b、c及びdの合計は、一繰り返し単位あたり平均で1を超える有理数である。)で表される構造を有するSPPSUと、
以下の式(II):
(式中、Rは、各々独立に、水素、ヒドロキシル基、置換基を有してもよい炭素数1~20の直鎖状もしくは分枝状アルキル基またはアルコキシル基であるか、あるいは上記構造のいずれかであり、eは(存在する場合)、Rにつき各々独立に0~2の整数であり、xは(存在する場合)、1~20の整数であり、スルホン酸基の合計数が一分子あたり平均で2を超える有理数である。)で表される構造を有するSPOSSとの架橋複合体である、上記[1]項に記載の炭化水素系架橋膜。
[3].
a、b、c及びdの合計が一繰返し単位あたり平均で2以上であり、及び/又は、eの合計が一分子あたり平均で8又は16である、上記[2]項に記載の炭化水素系架橋膜。
[4].
架橋複合体において、SPPSUに対するSPOSSの質量割合が10質量%以下である、上記[1]~[3]項のいずれか1項に記載の炭化水素系架橋膜。
[5].
上記[1]~[4]項のいずれか1項に記載の炭化水素系架橋膜をプロトン交換膜として含む、プロトン交換膜燃料電池。
[6].
プロトン交換膜燃料電池のプロトン交換膜に用いられる炭化水素系架橋膜を製造する方法であって、
加熱下で、スルホン化ポリフェニルスルホン(SPPSU)と、スルホン化された多面体オリゴマーシルセスキオキサン(SPOSS)とを、スルホン酸基を介して架橋反応させることで架橋複合体を形成するステップを含む、炭化水素系架橋膜の製造方法。
[7].
架橋複合体を形成するステップが、
以下の式(I):
(式中、a、b、c及びdは、各々独立に0~4の整数であり、a、b、c及びdの合計は、一繰り返し単位あたり平均で1を超える有理数である。)で表される構造を有するSPPSUと、
以下の式(II):
(式中、Rは、各々独立に、水素、ヒドロキシル基、置換基を有してもよい炭素数1~20の直鎖状もしくは分枝状アルキル基またはアルコキシル基であるか、あるいは上記構造のいずれかであり、eは(存在する場合)、Rにつき各々独立に0~2の整数であり、xは(存在する場合)、1~20の整数であり、スルホン酸基の合計数が一分子あたり平均で2を超える有理数である。)で表される構造を有するSPOSSとを、スルホン酸基を介して架橋反応させることを含む、上記[6]項に記載の炭化水素系架橋膜の製造方法。
[8].
a、b、c及びdの合計が一繰返し単位あたり平均で2以上であり、及び/又は、eの合計が一分子あたり平均で8又は16である上記[7]項に記載の炭化水素系架橋膜の製造方法。
[9].
架橋複合体において、SPPSUに対するSPOSSの質量割合が10質量%以下である、上記[6]~[8]項のいずれか1項に記載の炭化水素系架橋膜の製造方法。
[10].
架橋複合体を形成するステップに続いて、得られた架橋複合体を硫酸中にて更に加熱処理するステップを含む、上記[6]~[9]項のいずれか1項に記載の炭化水素系架橋膜の製造方法。
従って、本発明による上記課題を解決するための手段は、以下のとおりである。
[1].
プロトン交換膜燃料電池のプロトン交換膜に用いられる炭化水素系架橋膜であって、
スルホン化ポリフェニルスルホン(SPPSU)と、スルホン化された多面体オリゴマーシルセスキオキサン(SPOSS)との、スルホン酸基を介した架橋複合体を含む、炭化水素系架橋膜。
[2].
架橋複合体が、以下の式(I):
(式中、a、b、c及びdは、各々独立に0~4の整数であり、a、b、c及びdの合計は、一繰り返し単位あたり平均で1を超える有理数である。)で表される構造を有するSPPSUと、
以下の式(II):
(式中、Rは、各々独立に、水素、ヒドロキシル基、置換基を有してもよい炭素数1~20の直鎖状もしくは分枝状アルキル基またはアルコキシル基であるか、あるいは上記構造のいずれかであり、eは(存在する場合)、Rにつき各々独立に0~2の整数であり、xは(存在する場合)、1~20の整数であり、スルホン酸基の合計数が一分子あたり平均で2を超える有理数である。)で表される構造を有するSPOSSとの架橋複合体である、上記[1]項に記載の炭化水素系架橋膜。
[3].
a、b、c及びdの合計が一繰返し単位あたり平均で2以上であり、及び/又は、eの合計が一分子あたり平均で8又は16である、上記[2]項に記載の炭化水素系架橋膜。
[4].
架橋複合体において、SPPSUに対するSPOSSの質量割合が10質量%以下である、上記[1]~[3]項のいずれか1項に記載の炭化水素系架橋膜。
[5].
上記[1]~[4]項のいずれか1項に記載の炭化水素系架橋膜をプロトン交換膜として含む、プロトン交換膜燃料電池。
[6].
プロトン交換膜燃料電池のプロトン交換膜に用いられる炭化水素系架橋膜を製造する方法であって、
加熱下で、スルホン化ポリフェニルスルホン(SPPSU)と、スルホン化された多面体オリゴマーシルセスキオキサン(SPOSS)とを、スルホン酸基を介して架橋反応させることで架橋複合体を形成するステップを含む、炭化水素系架橋膜の製造方法。
[7].
架橋複合体を形成するステップが、
以下の式(I):
(式中、a、b、c及びdは、各々独立に0~4の整数であり、a、b、c及びdの合計は、一繰り返し単位あたり平均で1を超える有理数である。)で表される構造を有するSPPSUと、
以下の式(II):
(式中、Rは、各々独立に、水素、ヒドロキシル基、置換基を有してもよい炭素数1~20の直鎖状もしくは分枝状アルキル基またはアルコキシル基であるか、あるいは上記構造のいずれかであり、eは(存在する場合)、Rにつき各々独立に0~2の整数であり、xは(存在する場合)、1~20の整数であり、スルホン酸基の合計数が一分子あたり平均で2を超える有理数である。)で表される構造を有するSPOSSとを、スルホン酸基を介して架橋反応させることを含む、上記[6]項に記載の炭化水素系架橋膜の製造方法。
[8].
a、b、c及びdの合計が一繰返し単位あたり平均で2以上であり、及び/又は、eの合計が一分子あたり平均で8又は16である上記[7]項に記載の炭化水素系架橋膜の製造方法。
[9].
架橋複合体において、SPPSUに対するSPOSSの質量割合が10質量%以下である、上記[6]~[8]項のいずれか1項に記載の炭化水素系架橋膜の製造方法。
[10].
架橋複合体を形成するステップに続いて、得られた架橋複合体を硫酸中にて更に加熱処理するステップを含む、上記[6]~[9]項のいずれか1項に記載の炭化水素系架橋膜の製造方法。
本発明によれば、スルホン酸基の高濃度を保ちつつ、水に対して安定性を有する炭化水素系架橋膜が得られる。すなわち、本発明により、プロトン伝導度を高く保ちながらも、機械的強度が保持された、SPPSUとSPOSSとのスルホン酸基を介した架橋複合体を含む炭化水素系架橋膜を得ることができ、ひいては、これをプロトン交換膜に用いたプロトン交換膜燃料電池を得ることができる。
本発明に係る、プロトン交換膜燃料電池のプロトン交換膜に用いられる炭化水素系架橋膜は、スルホン化ポリフェニルスルホン(SPPSU)と、スルホン化された多面体オリゴマーシルセスキオキサン(SPOSS)との、スルホン酸基を介した架橋複合体を含むことを特徴とする。
このような架橋複合体によって、SPPSUの複数の分子鎖間がスルホン酸基を有するSPOSSによって堅固に架橋されることになり、スルホン酸基の高濃度及び水に対する安定性のバランス、すなわち、プロトン伝導度及び機械的強度のバランスを高度に保ったプロトン交換膜を得ることができる。
このような架橋複合体によって、SPPSUの複数の分子鎖間がスルホン酸基を有するSPOSSによって堅固に架橋されることになり、スルホン酸基の高濃度及び水に対する安定性のバランス、すなわち、プロトン伝導度及び機械的強度のバランスを高度に保ったプロトン交換膜を得ることができる。
スルホン化ポリフェニルスルホン(SPPSU)は、スルホン化の位置及び程度ならびに重合の程度について特に限定されないが、典型的には上記式(I)で表される構造を有する。
式中、a、b、c及びdは、各々独立に0~4の整数であり、a、b、c及びdの合計が一繰り返し単位あたり平均で1を超える有理数である。
スルホン酸基の高濃度(プロトン伝導度)及び水に対する安定性(機械的強度)のバランスの観点から、好ましくは、a及び/又はb及び/又はc及び/又はdは、1であり、a、b、c及びdの合計は、一繰り返し単位あたり平均で1.5以上である。より好ましくは、a、b、c及びdの合計が一繰り返し単位あたり平均で約2以上である。a、b、c及びdの合計は、典型的には約2又は約4である。最も一般的には、a、b、c及びdの合計は、約2である。
式中のn(繰り返し単位の数)は、特に限定されるものではないが、例えば、SPPSUの重量平均分子量MW(ゲルパーミエーションクロマトグラフィー法により測定されるポリスチレン換算の重量平均分子量;以下同様)が5,000~500,000の範囲内になるようなnであり、好ましくは10,000~300,000の範囲内になるようなnである。別の態様では、式中のnは、特に限定されるものではないが、例えば、SPPSUの重量平均分子量MWが5,000~200,000の範囲内になるようなnであり、または10,000~100,000の範囲内になるようなnであり、または5,000~100,000の範囲内になるようなnであり、または10,000~200,000の範囲内になるようなnである。
式中、a、b、c及びdは、各々独立に0~4の整数であり、a、b、c及びdの合計が一繰り返し単位あたり平均で1を超える有理数である。
スルホン酸基の高濃度(プロトン伝導度)及び水に対する安定性(機械的強度)のバランスの観点から、好ましくは、a及び/又はb及び/又はc及び/又はdは、1であり、a、b、c及びdの合計は、一繰り返し単位あたり平均で1.5以上である。より好ましくは、a、b、c及びdの合計が一繰り返し単位あたり平均で約2以上である。a、b、c及びdの合計は、典型的には約2又は約4である。最も一般的には、a、b、c及びdの合計は、約2である。
式中のn(繰り返し単位の数)は、特に限定されるものではないが、例えば、SPPSUの重量平均分子量MW(ゲルパーミエーションクロマトグラフィー法により測定されるポリスチレン換算の重量平均分子量;以下同様)が5,000~500,000の範囲内になるようなnであり、好ましくは10,000~300,000の範囲内になるようなnである。別の態様では、式中のnは、特に限定されるものではないが、例えば、SPPSUの重量平均分子量MWが5,000~200,000の範囲内になるようなnであり、または10,000~100,000の範囲内になるようなnであり、または5,000~100,000の範囲内になるようなnであり、または10,000~200,000の範囲内になるようなnである。
スルホン化ポリフェニルスルホン(SPPSU)の合成方法は、特に限定されないが、たとえば特開2015-170583号公報(国立研究開発法人物質・材料研究機構)の実施例に開示されているような公知のいずれかの方法を用いることができる。
スルホン化された多面体オリゴマーシルセスキオキサン(SPOSS)は、スルホン化の位置及び程度について特に限定されないが、典型的には上記式(II)で表される構造を有する。
式中、Rは、各々独立に、水素、ヒドロキシル基、置換基を有してもよい炭素数1~20の直鎖状もしくは分枝状アルキル基またはアルコキシル基であるか、あるいは上記構造のいずれかである。また、eは(存在する場合)、Rにつき各々独立に0~2の整数であり、xは(存在する場合)、1~20の整数である。
SPOSSは、SPPSUに対してスルホン酸基の高濃度(プロトン伝導度)を与える観点からスルホン化の程度が高いほうが望ましいが、水に対する安定性(機械的強度)も併せて考慮すると、スルホン酸基の合計数は一分子あたり平均で2を超える有理数であり、より好ましくは平均で3を超え、更に好ましくは平均で4を超えてよいが、一方、最大で16である。典型的な一態様では、スルホン酸基の合計数は一分子あたり平均で約8又は約16である。最も一般的には、スルホン酸基の合計数は一分子あたり平均で約8である。
また同様の観点から、典型的には、eは(存在する場合)、Rにつき各々独立に1又は2であり、eの合計が一分子あたり平均で約8又は約16である。最も一般的には、eの合計が一分子あたり平均で約8である。eが1の場合のスルホン酸基の置換位置は、通常パラ位であり、eが2の場合のスルホン酸基の置換位置は、通常2つのメタ位である。
式中、Rは、各々独立に、水素、ヒドロキシル基、置換基を有してもよい炭素数1~20の直鎖状もしくは分枝状アルキル基またはアルコキシル基であるか、あるいは上記構造のいずれかである。また、eは(存在する場合)、Rにつき各々独立に0~2の整数であり、xは(存在する場合)、1~20の整数である。
SPOSSは、SPPSUに対してスルホン酸基の高濃度(プロトン伝導度)を与える観点からスルホン化の程度が高いほうが望ましいが、水に対する安定性(機械的強度)も併せて考慮すると、スルホン酸基の合計数は一分子あたり平均で2を超える有理数であり、より好ましくは平均で3を超え、更に好ましくは平均で4を超えてよいが、一方、最大で16である。典型的な一態様では、スルホン酸基の合計数は一分子あたり平均で約8又は約16である。最も一般的には、スルホン酸基の合計数は一分子あたり平均で約8である。
また同様の観点から、典型的には、eは(存在する場合)、Rにつき各々独立に1又は2であり、eの合計が一分子あたり平均で約8又は約16である。最も一般的には、eの合計が一分子あたり平均で約8である。eが1の場合のスルホン酸基の置換位置は、通常パラ位であり、eが2の場合のスルホン酸基の置換位置は、通常2つのメタ位である。
スルホン化された多面体オリゴマーシルセスキオキサン(SPOSS)の合成方法は、特に限定されないが、たとえばHartmann-Thompson,C.、J.Appl.Polym.Sci.2008,110,958-974に開示されているような公知のいずれかの方法を用いることができる。
架橋複合体において、スルホン化ポリフェニルスルホン(SPPSU)に対するスルホン化された多面体オリゴマーシルセスキオキサン(SPOSS)の質量割合は、特に限定されるわけではないが、通常、1質量%以上15質量%以下である。この質量割合は、スルホン酸基の高濃度及び水に対する安定性のバランス(すなわち、プロトン伝導度及び機械的強度のバランス)を高度に保つ観点から、好ましくは1.5質量%以上12質量%以下であってよく、より好ましくは2質量%以上10質量%以下であってよく、または2質量%以上8質量%以下であってよく、または2質量%以上5質量%以下であってよい。
スルホン化ポリフェニルスルホン(SPPSU)と、スルホン化された多面体オリゴマーシルセスキオキサン(SPOSS)とを、スルホン酸基を介して架橋反応させることで架橋複合体を形成する工程は、加熱下で行うことが好ましい。加熱下での反応により、SPPSUの複数の分子鎖間をSPOSSで十分に架橋し、水に対する安定性(機械的強度)を向上させつつ、スルホン酸基の高濃度(プロトン伝導度)を高めることができる。
スルホン化ポリフェニルスルホン(SPPSU)とスルホン化された多面体オリゴマーシルセスキオキサン(SPOSS)とのスルホン酸基を介した架橋複合体の製造手順は、特に限定されないが、通常以下のように行うことができる。
SPPSUを、適当な有機溶媒に溶解させる。この有機溶媒として、特に限定されないが、例えば、ジメチルスルホキシド(DMSO)、ジメチルアセトアミド(DMAc)、ジメチルホルムアミド(DMF)、N-メチル-2-ピロリドン(NMP)等の高沸点の有機溶媒を用いることができる。別の態様として、このような有機溶媒に替えて、またはこのような有機溶媒に加えて、いずれかの種類のアルコール、非限定的な例としてイソプロパノール及び1-プロパノールからなる群から選択される少なくとも1種、ならびに/または水を用いてもよい。SPPSU溶液に、上記範囲の質量割合(通常1質量%以上15質量%以下)でSPOSSを投入し、例えば40℃~80℃程度の適度な温度で攪拌しながら分散体を調製することができる。次いで、やや高められた温度でこの分散体から溶媒を蒸発させることによって、キャスト膜(無延伸膜)を得ることができる。
次いで、このキャスト膜であるSPPSU-SPOSS複合膜をさらに高められた温度で加熱処理し、架橋複合体を得ることができる。ここで加熱温度および時間は、特に限定されるものではないが、例えば、90℃~210℃程度、1時間~3日間程度の範囲内から適当な条件が選択されうる。段階的に高められた複数温度で加熱することも好ましい。例えば、100~140℃の第1段階、140℃~180℃の第2段階、160℃~200℃の第3段階で、それぞれ6時間~36時間にわたって継続して加熱してもよい。
任意選択で、この加熱段階に続いて、得られた架橋複合体を硫酸中にて更に加熱処理することはまた好ましい。このとき、例えば0.5M~5Mの硫酸を用い、50℃~100℃程度の温度で、1時間~2日間程度の時間にわたって処理してよい。加熱処理後、水洗することによって最終的にSPPSU-SPOSS架橋複合膜を得ることができる。
SPPSUを、適当な有機溶媒に溶解させる。この有機溶媒として、特に限定されないが、例えば、ジメチルスルホキシド(DMSO)、ジメチルアセトアミド(DMAc)、ジメチルホルムアミド(DMF)、N-メチル-2-ピロリドン(NMP)等の高沸点の有機溶媒を用いることができる。別の態様として、このような有機溶媒に替えて、またはこのような有機溶媒に加えて、いずれかの種類のアルコール、非限定的な例としてイソプロパノール及び1-プロパノールからなる群から選択される少なくとも1種、ならびに/または水を用いてもよい。SPPSU溶液に、上記範囲の質量割合(通常1質量%以上15質量%以下)でSPOSSを投入し、例えば40℃~80℃程度の適度な温度で攪拌しながら分散体を調製することができる。次いで、やや高められた温度でこの分散体から溶媒を蒸発させることによって、キャスト膜(無延伸膜)を得ることができる。
次いで、このキャスト膜であるSPPSU-SPOSS複合膜をさらに高められた温度で加熱処理し、架橋複合体を得ることができる。ここで加熱温度および時間は、特に限定されるものではないが、例えば、90℃~210℃程度、1時間~3日間程度の範囲内から適当な条件が選択されうる。段階的に高められた複数温度で加熱することも好ましい。例えば、100~140℃の第1段階、140℃~180℃の第2段階、160℃~200℃の第3段階で、それぞれ6時間~36時間にわたって継続して加熱してもよい。
任意選択で、この加熱段階に続いて、得られた架橋複合体を硫酸中にて更に加熱処理することはまた好ましい。このとき、例えば0.5M~5Mの硫酸を用い、50℃~100℃程度の温度で、1時間~2日間程度の時間にわたって処理してよい。加熱処理後、水洗することによって最終的にSPPSU-SPOSS架橋複合膜を得ることができる。
本発明のプロトン交換膜燃料電池は、アノード、カソード、及び、アノード及びカソードを構成する2つの電極の間にこれらに接触して配置されているプロトン交換膜を有し、プロトン交換膜が上記の炭化水素系架橋膜を含む。
このプロトン交換膜燃料電池は、プロトン交換膜が上記の炭化水素系架橋膜を含む他は特に限定されず、アノード及びカソードについて公知のいずれの構成も採用することができる。
このプロトン交換膜燃料電池は、プロトン交換膜が上記の炭化水素系架橋膜を含む他は特に限定されず、アノード及びカソードについて公知のいずれの構成も採用することができる。
なお、本願の明細書および特許請求の範囲に記載された全ての数値や数値範囲は、当業界にて認容される誤差範囲を含み得るものであり、全て「約」によって修飾されてよいことを意図している。
以下では、本発明を実施例により更に詳細に説明するが、これらの実施例は単なる例証であって、本発明を限定するものではない。
最初に、以下の実施例及び比較例にて言及される諸特性の測定方法について説明する。
最初に、以下の実施例及び比較例にて言及される諸特性の測定方法について説明する。
[イオン交換容量(IEC)]
所定の濃度のNaOH溶液を用いて滴定を行い、pHが7になるまで中和したときのNaOH溶液の量([A]ml)と、そのNaOH溶液の濃度([B]g/ml)により、以下の計算式によってイオン交換容量(IEC)を求めた。
イオン交換容量(IEC)(meq/g)=[A]×[B]/試料重量(g)
所定の濃度のNaOH溶液を用いて滴定を行い、pHが7になるまで中和したときのNaOH溶液の量([A]ml)と、そのNaOH溶液の濃度([B]g/ml)により、以下の計算式によってイオン交換容量(IEC)を求めた。
イオン交換容量(IEC)(meq/g)=[A]×[B]/試料重量(g)
[含水率(Water uptake:WU)]
試料の含水率を水和前後の重量から求めた。測定前に、膜を10mm×10mmのサイズに切断し、乾燥器中で100℃の温度で24時間乾燥させた。乾燥した膜の重量Wdryを測定した。次に、この膜を脱イオン水中に100℃で2時間にわたり浸漬した後、膜に付着した表面水を除去した。その後、湿った膜の重量Wwetを測定した。これらの値を用いて、含水率(water uptake:WU)(吸水率とも称される)を下式により計算した。
WU(%)=[(Wwet-Wdry)/Wdry]×100
試料の含水率を水和前後の重量から求めた。測定前に、膜を10mm×10mmのサイズに切断し、乾燥器中で100℃の温度で24時間乾燥させた。乾燥した膜の重量Wdryを測定した。次に、この膜を脱イオン水中に100℃で2時間にわたり浸漬した後、膜に付着した表面水を除去した。その後、湿った膜の重量Wwetを測定した。これらの値を用いて、含水率(water uptake:WU)(吸水率とも称される)を下式により計算した。
WU(%)=[(Wwet-Wdry)/Wdry]×100
[膨潤率(Swelling)]
含水率(Water uptake:WU)の測定と同様にして得られた乾燥膜の厚みSdry及び湿った膜の厚みSwetの値を用い、膨潤率(Swelling)を以下の式により計算した。
膨潤率(%)=[(Swet-Sdry)/Sdry]×100%
含水率(Water uptake:WU)の測定と同様にして得られた乾燥膜の厚みSdry及び湿った膜の厚みSwetの値を用い、膨潤率(Swelling)を以下の式により計算した。
膨潤率(%)=[(Swet-Sdry)/Sdry]×100%
[λ(スルホン酸1個あたりの水分子の個数):n(H2O)/n(SO3H)]
含水率(Water uptake:WU)の測定と同様にして得られた乾燥膜の重量Wdry及び湿った膜の重量Wwetの値を用い、λ(スルホン酸1個あたりの水分子の個数)を以下の式により計算した。
λ = [(Wwet-Wdry)×1000]/[18×(H2Oの分子量)×IEC×Wdry]
= (含水率(%)×10)/[H2Oの分子量×IEC]
含水率(Water uptake:WU)の測定と同様にして得られた乾燥膜の重量Wdry及び湿った膜の重量Wwetの値を用い、λ(スルホン酸1個あたりの水分子の個数)を以下の式により計算した。
λ = [(Wwet-Wdry)×1000]/[18×(H2Oの分子量)×IEC×Wdry]
= (含水率(%)×10)/[H2Oの分子量×IEC]
[SPPSUの合成例]
PPSU(Solvay製“Radel R-5000”)の粉末を硫酸に1g:20mlの比率で溶解させ、窒素ガス存在下で、攪拌しつつ、50℃で2日間スルホン化を行った。この溶液を氷で冷やし、大幅に過剰な水に攪拌しながら注ぎ込むことで白い沈殿物を得た。一晩静置した後この沈殿物をろ過し、透析管セルロース膜を使ってpH7になるまで洗浄した。これを乾燥させることによってスルホン化ポリフェニルスルホン(SPPSU)が得られた。後述するとおり、得られたSPPSUのイオン交換容量(IEC)が計算値(3.6meq/g)と同等であったことから、一繰り返し単位当り約2個のスルホン酸基が導入されていることが分かった。このSPPSUの化学構造の模式図は、図1に示されるとおりである。
PPSU(Solvay製“Radel R-5000”)の粉末を硫酸に1g:20mlの比率で溶解させ、窒素ガス存在下で、攪拌しつつ、50℃で2日間スルホン化を行った。この溶液を氷で冷やし、大幅に過剰な水に攪拌しながら注ぎ込むことで白い沈殿物を得た。一晩静置した後この沈殿物をろ過し、透析管セルロース膜を使ってpH7になるまで洗浄した。これを乾燥させることによってスルホン化ポリフェニルスルホン(SPPSU)が得られた。後述するとおり、得られたSPPSUのイオン交換容量(IEC)が計算値(3.6meq/g)と同等であったことから、一繰り返し単位当り約2個のスルホン酸基が導入されていることが分かった。このSPPSUの化学構造の模式図は、図1に示されるとおりである。
[SPOSSの合成例]
オクタフェニル-POSSと塩化スルホン酸とを1g:10mlの比率で混合した後、50℃で3日間スルホン化反応を行った。次いで、真空蒸留により未反応の塩化スルホン酸を除去し、水洗した。続いて、これをろ過し、真空蒸留により水を除去することで、スルホン化された多面体オリゴマーシルセスキオキサン(SPOSS)を得た。SPOSSの同定は、非特許文献7に記載されているように、FT-IRを用いて行った。これにより、S-POSSは、図2に模式的に示すように、スルホン化フェニル基(つまりフェニル基1単位毎にスルホン酸基1つが結合した置換基)が各Si原子に結合した構造を有していることが分かった。
オクタフェニル-POSSと塩化スルホン酸とを1g:10mlの比率で混合した後、50℃で3日間スルホン化反応を行った。次いで、真空蒸留により未反応の塩化スルホン酸を除去し、水洗した。続いて、これをろ過し、真空蒸留により水を除去することで、スルホン化された多面体オリゴマーシルセスキオキサン(SPOSS)を得た。SPOSSの同定は、非特許文献7に記載されているように、FT-IRを用いて行った。これにより、S-POSSは、図2に模式的に示すように、スルホン化フェニル基(つまりフェニル基1単位毎にスルホン酸基1つが結合した置換基)が各Si原子に結合した構造を有していることが分かった。
[実施例1]
・SPPSU-SPOSS複合膜の合成
上のように得られたSPPSU高分子を、DMSO(ジメチルスルホキシド)中に、1g:19gの比で溶解させた。このSPPSU溶液に、SPPSUに対して2質量%のSPOSSを投入し、60℃にて1時間撹拌しながら分散させた。このSPPSU-SPOSS分散体をシャーレに入れ、80℃にて1日にわたり溶媒を蒸発させ、キャスト膜(無延伸フィルム)としてSPPSU-SPOSS複合膜を得た。
・SPPSU-SPOSS架橋複合膜の作製
上のように得られたSPPSU-SPOSS複合膜を、120℃、160℃、180℃でそれぞれ1日加熱し、SPPSU-SPOSS架橋膜を得た。このSPPSU-SPOSS架橋膜を1M硫酸中で80℃にて15時間処理した後、水洗することでSPPSU-SPOSS架橋複合膜を完成させた。
最終的に得られたSPPSU-SPOSS架橋複合膜の化学構造は、図3に模式的に示される。図中、(a)はSPOSS(スルホン化フェニル基が各Si原子に結合した構造)を示し、(b)はSPPSU(スルホン化度:2)を示し、(c)は最終的に得られたSPPSU-SPOSS架橋複合膜の模式的構造を示す。
・SPPSU-SPOSS複合膜の合成
上のように得られたSPPSU高分子を、DMSO(ジメチルスルホキシド)中に、1g:19gの比で溶解させた。このSPPSU溶液に、SPPSUに対して2質量%のSPOSSを投入し、60℃にて1時間撹拌しながら分散させた。このSPPSU-SPOSS分散体をシャーレに入れ、80℃にて1日にわたり溶媒を蒸発させ、キャスト膜(無延伸フィルム)としてSPPSU-SPOSS複合膜を得た。
・SPPSU-SPOSS架橋複合膜の作製
上のように得られたSPPSU-SPOSS複合膜を、120℃、160℃、180℃でそれぞれ1日加熱し、SPPSU-SPOSS架橋膜を得た。このSPPSU-SPOSS架橋膜を1M硫酸中で80℃にて15時間処理した後、水洗することでSPPSU-SPOSS架橋複合膜を完成させた。
最終的に得られたSPPSU-SPOSS架橋複合膜の化学構造は、図3に模式的に示される。図中、(a)はSPOSS(スルホン化フェニル基が各Si原子に結合した構造)を示し、(b)はSPPSU(スルホン化度:2)を示し、(c)は最終的に得られたSPPSU-SPOSS架橋複合膜の模式的構造を示す。
[実施例2]
SPPSUに対するSPOSSの割合を5質量%に変更した以外は、実施例1と同様にSPPSU-SPOSS架橋複合膜を作製した。
SPPSUに対するSPOSSの割合を5質量%に変更した以外は、実施例1と同様にSPPSU-SPOSS架橋複合膜を作製した。
[実施例3]
SPPSUに対するSPOSSの割合を10質量%に変更した以外は、実施例1と同様にSPPSU-SPOSS架橋複合膜を作製した。
SPPSUに対するSPOSSの割合を10質量%に変更した以外は、実施例1と同様にSPPSU-SPOSS架橋複合膜を作製した。
[比較例1]
上のように得られたSPPSU高分子を、DMSO(ジメチルスルホキシド)中に、1g:19gの比で溶解させた。このSPPSU溶液をシャーレに入れ、80℃にて1日にわたり溶媒を蒸発させ、SPPSUキャスト膜(無延伸フィルム)を得た。このSPPSUキャスト膜を、120℃、160℃、180℃でそれぞれ1日加熱し、SPPSU架橋膜(SPOSSを含まない)を得た。
上のように得られたSPPSU高分子を、DMSO(ジメチルスルホキシド)中に、1g:19gの比で溶解させた。このSPPSU溶液をシャーレに入れ、80℃にて1日にわたり溶媒を蒸発させ、SPPSUキャスト膜(無延伸フィルム)を得た。このSPPSUキャスト膜を、120℃、160℃、180℃でそれぞれ1日加熱し、SPPSU架橋膜(SPOSSを含まない)を得た。
[特性評価・考察]
上記合成例で得られたSPPSUポリマー、比較例1で得られたSPPSU架橋膜ならびに実施例1~3で得られたSPPSU-SPOSS架橋複合膜(SPOSS2質量%、SPOSS5質量%、SPOSS10質量%)について、室温での物理化学的な特性を表1に示した。
上記合成例で得られたSPPSUポリマー、比較例1で得られたSPPSU架橋膜ならびに実施例1~3で得られたSPPSU-SPOSS架橋複合膜(SPOSS2質量%、SPOSS5質量%、SPOSS10質量%)について、室温での物理化学的な特性を表1に示した。
合成例で得られたSPPSUポリマーのイオン交換容量(IEC)は非常に高く、計算値(3.6meq/g)と同等であった。これは、一繰り返し単位当り約2個のスルホン酸基が導入されていることを意味する。従って、このSPPSUポリマーは容易に水や有機溶媒に溶ける。しかし、実施例1~3および比較例1におけるように、キャスト膜を作製し、180℃までの熱プロセスを行うことで架橋化が起こり、水や有機溶媒に溶けなくなる。
比較例1のSPOSSを含まないSPPSU架橋膜は、水や有機溶媒に溶けないが、水中で多量の水を含み膨潤し、特に長さ方向への膨潤性が大きい。
一方、実施例1で得られたSPPSU-SPOSS架橋複合膜(SPOSS2質量%)は、SPOSSとの架橋化を行うことで、水に対する膨潤性がSPPSUだけの架橋膜(比較例1)での316%から103%へ減少し、長さ方向への膨潤性も抑制された。さらに、実施例2のSPPSU-SPOSS架橋複合膜(SPOSS5質量%)及び実施例3のSPPSU-SPOSS架橋複合膜(SPOSS10質量%)により、さらにSPOSSの量を増やすと膨潤性はもっと減少した。
なお、実施例1によるSPPSU-SPOSS架橋複合膜(SPOSS2質量%)の場合は、厚み方向への膨潤性が他より増加した。また、実施例1~3のSPPSU-SPOSS架橋複合膜は、比較例1のSPOSSを含まないSPPSU架橋膜と比べて、スルホン酸基当たりの水分子の数も大きく減少した。
比較例1のSPOSSを含まないSPPSU架橋膜は、水や有機溶媒に溶けないが、水中で多量の水を含み膨潤し、特に長さ方向への膨潤性が大きい。
一方、実施例1で得られたSPPSU-SPOSS架橋複合膜(SPOSS2質量%)は、SPOSSとの架橋化を行うことで、水に対する膨潤性がSPPSUだけの架橋膜(比較例1)での316%から103%へ減少し、長さ方向への膨潤性も抑制された。さらに、実施例2のSPPSU-SPOSS架橋複合膜(SPOSS5質量%)及び実施例3のSPPSU-SPOSS架橋複合膜(SPOSS10質量%)により、さらにSPOSSの量を増やすと膨潤性はもっと減少した。
なお、実施例1によるSPPSU-SPOSS架橋複合膜(SPOSS2質量%)の場合は、厚み方向への膨潤性が他より増加した。また、実施例1~3のSPPSU-SPOSS架橋複合膜は、比較例1のSPOSSを含まないSPPSU架橋膜と比べて、スルホン酸基当たりの水分子の数も大きく減少した。
比較例1で得られたSPPSU架橋膜、ならびに実施例1~3で得られたSPPSU-SPOSS架橋複合膜(SPOSS2質量%、SPOSS5質量%、SPOSS10質量%)について、FT-IRで測定した化学構造の特性を図4に示した。図中、(a)は比較例1のSPPSU架橋膜、(b)は実施例1によるSPOSS2質量%のSPPSU-SPOSS架橋複合膜、(c)は実施例2によるSPOSS5質量%のSPPSU-SPOSS架橋複合膜、(d)は実施例3によるSPOSS10質量%のSPPSU-SPOSS架橋複合膜をそれぞれ示す。
図4中、(b)~(d)のSPPSU-SPOSS架橋複合膜について、スルホン酸由来のピークはSPPSUとSPOSSが重なるので区別が難しいが、790cm-1にSPOSS由来のSi-Oピークが観察されることからSPOSSの導入は確認できた。一方、SPOSSのスルホン酸基とSPPSUのスルホン酸基との熱処理による架橋は、SPPSU結合由来のS=Oピークと重なり、区別が難しい。しかしながら、架橋膜の含水率(water uptake)が大きく低下(表1参照)したことから、架橋化が達成されたと間接的に判定できる。
図4中、(b)~(d)のSPPSU-SPOSS架橋複合膜について、スルホン酸由来のピークはSPPSUとSPOSSが重なるので区別が難しいが、790cm-1にSPOSS由来のSi-Oピークが観察されることからSPOSSの導入は確認できた。一方、SPOSSのスルホン酸基とSPPSUのスルホン酸基との熱処理による架橋は、SPPSU結合由来のS=Oピークと重なり、区別が難しい。しかしながら、架橋膜の含水率(water uptake)が大きく低下(表1参照)したことから、架橋化が達成されたと間接的に判定できる。
比較例1で得られたSPPSU架橋膜、ならびに実施例1~2で得られたSPPSU-SPOSS架橋複合膜(SPOSS2質量%、SPOSS5質量%)についての熱的特性を、酸素雰囲気下でのTGDTAによって測定した結果を図5に示す。図中、(a)は比較例1のSPPSU架橋膜、(b)は実施例1によるSPOSS2質量%のSPPSU-SPOSS架橋複合膜、(c)は実施例2によるSPOSS5質量%のSPPSU-SPOSS架橋複合膜をそれぞれ示す。
図5から、実施例1及び2により、SPPSUにSPOSSを架橋化させることで架橋複合膜の熱的安定性は、比較例1のSPPSU架橋膜(SPPSUのみ)より高められ、さらにSPOSS添加量の増加とともに高められたことが分かった。これは、SPOSS量の増加とともにSPPSUとの架橋も増大したことに起因する。
図5から、実施例1及び2により、SPPSUにSPOSSを架橋化させることで架橋複合膜の熱的安定性は、比較例1のSPPSU架橋膜(SPPSUのみ)より高められ、さらにSPOSS添加量の増加とともに高められたことが分かった。これは、SPOSS量の増加とともにSPPSUとの架橋も増大したことに起因する。
比較例1で得られたSPPSU架橋膜(厚み:0.162mm)、ならびに、実施例1~3で得られたSPPSU-SPOSS架橋複合膜(SPOSS2質量%(厚み:0.117mm)、SPOSS5質量%(厚み:0.06mm)、SPOSS10質量%(厚み:0.067mm))について、伝導度特性を温度とRH%により評価した結果を、図6に示した。図中、(a)は比較例1のSPPSU架橋膜、(b)は実施例1によるSPOSS2質量%のSPPSU-SPOSS架橋複合膜、(c)は実施例2によるSPOSS5質量%のSPPSU-SPOSS架橋複合膜、(d)は実施例3によるSPOSS10質量%のSPPSU-SPOSS架橋複合膜をそれぞれ示す。
比較例1で得られたSPPSU架橋膜は、80℃、90%RHで約0.2S/cmの高伝導度を示した。しかし、表1に示すように架橋膜の含水率は非常に大きく、水に対する安定性が不良である。
一方、実施例1のSPPSU-SPOSS架橋複合膜(SPOSS2質量%)は、比較例1のSPPSU架橋膜(SPOSSを含まない)より含水率が3分の1以下に減少したにもかかわらず、80℃、90%RHで同等の高伝導度が得られた。これは、実施例1では、SPPSUとSPOSSが架橋化することにより、SPOSSがプロトン伝導度の妨害なしで、含水率の低下や架橋膜の安定性を増加させたことに起因すると考えられる。SPOSS量を増加(5%、10%)させた実施例2及び3では、架橋化の増大により含水率がさらに低下するとともに、プロトン伝導パスが妨害される可能性が高く、それにより伝導度の低下が観察された。
比較例1で得られたSPPSU架橋膜は、80℃、90%RHで約0.2S/cmの高伝導度を示した。しかし、表1に示すように架橋膜の含水率は非常に大きく、水に対する安定性が不良である。
一方、実施例1のSPPSU-SPOSS架橋複合膜(SPOSS2質量%)は、比較例1のSPPSU架橋膜(SPOSSを含まない)より含水率が3分の1以下に減少したにもかかわらず、80℃、90%RHで同等の高伝導度が得られた。これは、実施例1では、SPPSUとSPOSSが架橋化することにより、SPOSSがプロトン伝導度の妨害なしで、含水率の低下や架橋膜の安定性を増加させたことに起因すると考えられる。SPOSS量を増加(5%、10%)させた実施例2及び3では、架橋化の増大により含水率がさらに低下するとともに、プロトン伝導パスが妨害される可能性が高く、それにより伝導度の低下が観察された。
Claims (10)
- プロトン交換膜燃料電池のプロトン交換膜に用いられる炭化水素系架橋膜であって、
スルホン化ポリフェニルスルホン(SPPSU)と、スルホン化された多面体オリゴマーシルセスキオキサン(SPOSS)との、スルホン酸基を介した架橋複合体を含む、炭化水素系架橋膜。 - 架橋複合体が、以下の式(I):
(式中、a、b、c及びdは、各々独立に0~4の整数であり、a、b、c及びdの合計は、一繰り返し単位あたり平均で1を超える有理数である。)で表される構造を有するSPPSUと、
以下の式(II):
(式中、Rは、各々独立に、水素、ヒドロキシル基、置換基を有してもよい炭素数1~20の直鎖状もしくは分枝状アルキル基またはアルコキシル基であるか、あるいは上記構造のいずれかであり、eは(存在する場合)、Rにつき各々独立に0~2の整数であり、xは(存在する場合)、1~20の整数であり、スルホン酸基の合計数が一分子あたり平均で2を超える有理数である。)で表される構造を有するSPOSSとの架橋複合体である、請求項1に記載の炭化水素系架橋膜。 - a、b、c及びdの合計が一繰返し単位あたり平均で2以上であり、及び/又は、eの合計が一分子あたり平均で8又は16である、請求項2に記載の炭化水素系架橋膜。
- 架橋複合体において、SPPSUに対するSPOSSの質量割合が10質量%以下である、請求項1~3のいずれか1項に記載の炭化水素系架橋膜。
- 請求項1~4のいずれか1項に記載の炭化水素系架橋膜をプロトン交換膜として含む、プロトン交換膜燃料電池。
- プロトン交換膜燃料電池のプロトン交換膜に用いられる炭化水素系架橋膜を製造する方法であって、
加熱下で、スルホン化ポリフェニルスルホン(SPPSU)と、スルホン化された多面体オリゴマーシルセスキオキサン(SPOSS)とを、スルホン酸基を介して架橋反応させることで架橋複合体を形成するステップを含む、炭化水素系架橋膜の製造方法。 - 架橋複合体を形成するステップが、
以下の式(I):
(式中、a、b、c及びdは、各々独立に0~4の整数であり、a、b、c及びdの合計は、一繰り返し単位あたり平均で1を超える有理数である。)で表されるSPPSUと、
以下の式(II):
(式中、Rは、各々独立に、水素、ヒドロキシル基、置換基を有してもよい炭素数1~20の直鎖状もしくは分枝状アルキル基またはアルコキシル基であるか、あるいは上記構造のいずれかであり、eは(存在する場合)、Rにつき各々独立に0~2の整数であり、xは(存在する場合)、1~20の整数であり、スルホン酸基の合計数が一分子あたり平均で2を超える有理数である。)で表されるSPOSSとを、スルホン酸基を介して架橋反応させることを含む、請求項6に記載の炭化水素系架橋膜の製造方法。 - a、b、c及びdの合計が一繰返し単位あたり平均で2以上であり、及び/又は、eの合計が一分子あたり平均で8又は16である、請求項7に記載の炭化水素系架橋膜の製造方法。
- 架橋複合体において、SPPSUに対するSPOSSの質量割合が10質量%以下である、請求項6~8のいずれか1項に記載の炭化水素系架橋膜の製造方法。
- 架橋複合体を形成するステップに続いて、得られた架橋複合体を硫酸中にて更に加熱処理するステップを含む、請求項6~9のいずれか1項に記載の炭化水素系架橋膜の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/318,319 US10868322B2 (en) | 2016-07-20 | 2017-07-10 | Hydrocarbon-based cross-linked membrane in which nanoparticles are used, method for manufacturing said membrane, and fuel cell |
EP17830887.0A EP3490043B1 (en) | 2016-07-20 | 2017-07-10 | Hydrocarbon-based cross-linked membrane in which nanoparticles are used, method for manufacturing said membrane, and fuel cell |
JP2018528491A JP6652766B2 (ja) | 2016-07-20 | 2017-07-10 | ナノ粒子を利用した炭化水素系架橋膜及びその製造方法、並びに燃料電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-142277 | 2016-07-20 | ||
JP2016142277 | 2016-07-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018016367A1 true WO2018016367A1 (ja) | 2018-01-25 |
Family
ID=60993109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/025126 WO2018016367A1 (ja) | 2016-07-20 | 2017-07-10 | ナノ粒子を利用した炭化水素系架橋膜及びその製造方法、並びに燃料電池 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10868322B2 (ja) |
EP (1) | EP3490043B1 (ja) |
JP (1) | JP6652766B2 (ja) |
WO (1) | WO2018016367A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020132735A (ja) * | 2019-02-18 | 2020-08-31 | 国立研究開発法人物質・材料研究機構 | 組成物、硬化物、固体高分子形燃料電池、イオン交換膜、電気化学セル、水電解方法、及び、水処理方法。 |
JP2021116439A (ja) * | 2020-01-23 | 2021-08-10 | 国立研究開発法人物質・材料研究機構 | 水素製造装置、及び、水素製造方法 |
WO2023232655A1 (en) | 2022-05-31 | 2023-12-07 | Bioenvision Technology As | Flame retardant resin composition and molded article thereof |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9972838B2 (en) | 2016-07-29 | 2018-05-15 | Blue Current, Inc. | Solid-state ionically conductive composite electrodes |
US20180254518A1 (en) | 2017-03-03 | 2018-09-06 | Blue Current, Inc. | Polymerized in-situ hybrid solid ion-conductive compositions |
US11581570B2 (en) | 2019-01-07 | 2023-02-14 | Blue Current, Inc. | Polyurethane hybrid solid ion-conductive compositions |
EP4078698A4 (en) | 2019-12-20 | 2024-08-14 | Blue Current Inc | COMPOSITE ELECTROLYTES WITH BINDERS |
US11394054B2 (en) | 2019-12-20 | 2022-07-19 | Blue Current, Inc. | Polymer microspheres as binders for composite electrolytes |
EP4115462A1 (en) * | 2020-04-04 | 2023-01-11 | Blue Current, Inc. | Byproduct free methods for solid hybrid electrolyte |
CN114122470B (zh) * | 2021-11-24 | 2023-12-29 | 中汽创智科技有限公司 | 一种质子交换膜及其制备方法和应用 |
CN115010930B (zh) * | 2022-06-30 | 2023-04-28 | 西华师范大学 | 含磺酸根亲水单元的两亲纳米颗粒及其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001247741A (ja) * | 2000-03-08 | 2001-09-11 | Japan Automobile Research Inst Inc | イオン伝導膜及びその製造方法 |
JP2006070246A (ja) * | 2004-07-16 | 2006-03-16 | Lucent Technol Inc | 無機−有機混成複合多成分材料から誘導されるソリッド・ステート・プロトン伝導体系 |
US20110223404A1 (en) * | 2010-03-10 | 2011-09-15 | Xerox Corporation | Intermediate transfer member |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7550216B2 (en) | 1999-03-03 | 2009-06-23 | Foster-Miller, Inc. | Composite solid polymer electrolyte membranes |
US20060199059A1 (en) * | 2005-03-01 | 2006-09-07 | Xu Helen X | Ion conductive polymer electrolyte and its membrane electrode assembly |
KR100800313B1 (ko) * | 2006-11-07 | 2008-02-01 | 한양대학교 산학협력단 | 설폰산기를 갖는 폴리실세스퀴옥산 나노입자를 함유한직접메탄올 연료전지용 유무기 하이브리드 분리막 |
US20100104918A1 (en) * | 2007-04-13 | 2010-04-29 | Michigan Molecular Institute | Improved fuel cell proton exchange membranes |
-
2017
- 2017-07-10 EP EP17830887.0A patent/EP3490043B1/en active Active
- 2017-07-10 US US16/318,319 patent/US10868322B2/en active Active
- 2017-07-10 WO PCT/JP2017/025126 patent/WO2018016367A1/ja unknown
- 2017-07-10 JP JP2018528491A patent/JP6652766B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001247741A (ja) * | 2000-03-08 | 2001-09-11 | Japan Automobile Research Inst Inc | イオン伝導膜及びその製造方法 |
JP2006070246A (ja) * | 2004-07-16 | 2006-03-16 | Lucent Technol Inc | 無機−有機混成複合多成分材料から誘導されるソリッド・ステート・プロトン伝導体系 |
US20110223404A1 (en) * | 2010-03-10 | 2011-09-15 | Xerox Corporation | Intermediate transfer member |
Non-Patent Citations (2)
Title |
---|
DECKER BERRYINNE ET AL.: "Multilayer Sulfonated Polyhedral Oligosilsesquioxane (S-POSS)- Sulfonated Polyphenylsulfone (S-PPSU) Composite Proton Exchange Membranes", CHEM.MATER., vol. 22, 29 October 2009 (2009-10-29), pages 942 - 948, XP055453267 * |
HARTMANN-THOMPSON CLAIRE ET AL.: "Proton- Conducting Polyhedral Oligosilsesquioxane Nanoadditives for Sulfonated Polyphenylsulfone Hydrogen Fuel Cell Proton Exchange Membranes", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 110, 10 July 2008 (2008-07-10), pages 958 - 974, XP055453433 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020132735A (ja) * | 2019-02-18 | 2020-08-31 | 国立研究開発法人物質・材料研究機構 | 組成物、硬化物、固体高分子形燃料電池、イオン交換膜、電気化学セル、水電解方法、及び、水処理方法。 |
JP7176694B2 (ja) | 2019-02-18 | 2022-11-22 | 国立研究開発法人物質・材料研究機構 | 固体高分子形燃料電池、イオン交換膜、電気化学セル、水電解方法、及び、水処理方法。 |
JP2021116439A (ja) * | 2020-01-23 | 2021-08-10 | 国立研究開発法人物質・材料研究機構 | 水素製造装置、及び、水素製造方法 |
JP7473153B2 (ja) | 2020-01-23 | 2024-04-23 | 国立研究開発法人物質・材料研究機構 | 水素製造装置、及び、水素製造方法 |
WO2023232655A1 (en) | 2022-05-31 | 2023-12-07 | Bioenvision Technology As | Flame retardant resin composition and molded article thereof |
Also Published As
Publication number | Publication date |
---|---|
EP3490043A1 (en) | 2019-05-29 |
US10868322B2 (en) | 2020-12-15 |
EP3490043B1 (en) | 2020-12-30 |
JP6652766B2 (ja) | 2020-02-26 |
US20190288319A1 (en) | 2019-09-19 |
JPWO2018016367A1 (ja) | 2019-05-16 |
EP3490043A4 (en) | 2020-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6652766B2 (ja) | ナノ粒子を利用した炭化水素系架橋膜及びその製造方法、並びに燃料電池 | |
Yang et al. | Fabrication of crosslinked polybenzimidazole membranes by trifunctional crosslinkers for high temperature proton exchange membrane fuel cells | |
Feng et al. | High-performance semicrystalline poly (ether ketone)-based proton exchange membrane | |
Han et al. | Cross-linked sulfonated poly (ether ether ketone) membranes formed by poly (2, 5-benzimidazole)-grafted graphene oxide as a novel cross-linker for direct methanol fuel cell applications | |
Ko et al. | Cross-linked sulfonated poly (arylene ether sulfone) membranes formed by in situ casting and click reaction for applications in fuel cells | |
Hou et al. | Building bridges: Crosslinking of sulfonated aromatic polymers—A review | |
Mader et al. | Sulfonated polybenzimidazoles for high temperature PEM fuel cells | |
Xu et al. | Direct polymerization of a novel sulfonated poly (arylene ether ketone sulfone)/sulfonated poly (vinylalcohol) crosslinked membrane for direct methanol fuel cell applications | |
Wang et al. | A facile approach of fabricating proton exchange membranes by incorporating polydopamine-functionalized carbon nanotubes into chitosan | |
Bae et al. | Sulfonated block poly (arylene ether sulfone) membranes for fuel cell applications via oligomeric sulfonation | |
Mikami et al. | Poly (arylene ether) s containing superacid groups as proton exchange membranes | |
Qiu et al. | Poly (2, 5-benzimidazole)-grafted graphene oxide as an effective proton conductor for construction of nanocomposite proton exchange membrane | |
Fu et al. | Sulfonated poly (arylene ether sulfone) s with phosphine oxide moieties: a promising material for proton exchange membranes | |
Wang et al. | Property enhancement effects of side-chain-type naphthalene-based sulfonated poly (arylene ether ketone) on Nafion composite membranes for direct methanol fuel cells | |
Wang et al. | Considerations of the effects of naphthalene moieties on the design of proton-conductive poly (arylene ether ketone) membranes for direct methanol fuel cells | |
Feng et al. | Novel method for the preparation of ionically crosslinked sulfonated poly (arylene ether sulfone)/polybenzimidazole composite membranes via in situ polymerization | |
US20090004528A1 (en) | Proton-conducting polymer membrane | |
JP2007504303A (ja) | 架橋剤を含む複合電解質 | |
US10862151B2 (en) | Polyphenylsulfone-based proton conducting polymer electrolyte, proton conducting solid polymer electrolyte membrane, electrode catalyst layer for solid polymer fuel cells, method for producing electrode catalyst layer for slid polymer fuel cells, and fuel cell | |
Matsushita et al. | Organic solvent-free preparation of electrolyte membranes with high proton conductivity using aromatic hydrocarbon polymers and small cross-linker molecules | |
Lee et al. | Simple and effective cross-linking technology for the preparation of cross-linked membranes composed of highly sulfonated poly (ether ether ketone) and poly (arylene ether sulfone) for fuel cell applications | |
Lee et al. | Effect of ketone versus sulfone groups on the properties of poly (arylene ether)-based proton exchange membranes | |
Shang et al. | Fluorene-containing sulfonated poly (arylene ether 1, 3, 4-oxadiazole) as proton-exchange membrane for PEM fuel cell application | |
Liu et al. | PTFE-reinforced pore-filling proton exchange membranes with sulfonated poly (ether ether ketone) s and poly (aryl ether sulfone) s | |
Mohammadi et al. | Structural investigation on bulky aliphatic-aromatic poly (aryl sulfone) s for fuel cell performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17830887 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018528491 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017830887 Country of ref document: EP Effective date: 20190220 |