WO2018015641A1 - Purge anticipée d'un réservoir cryogénique - Google Patents

Purge anticipée d'un réservoir cryogénique Download PDF

Info

Publication number
WO2018015641A1
WO2018015641A1 PCT/FR2017/051932 FR2017051932W WO2018015641A1 WO 2018015641 A1 WO2018015641 A1 WO 2018015641A1 FR 2017051932 W FR2017051932 W FR 2017051932W WO 2018015641 A1 WO2018015641 A1 WO 2018015641A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
cryogenic
liquid
inlet
phase
Prior art date
Application number
PCT/FR2017/051932
Other languages
English (en)
Inventor
Patrick Subreville
Philippe Liegeois
Yacine ZELLOUF
Karim Osman
Hicham GUEDACHA
Original Assignee
Engie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Engie filed Critical Engie
Publication of WO2018015641A1 publication Critical patent/WO2018015641A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/04Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
    • F17C2225/042Localisation of the filling point
    • F17C2225/046Localisation of the filling point in the liquid
    • F17C2225/047Localisation of the filling point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • F17C2227/044Methods for emptying or filling by purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0443Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/042Reducing risk of explosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/044Avoiding pollution or contamination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/02Mixing fluids
    • F17C2265/025Mixing fluids different fluids
    • F17C2265/027Mixing fluids different fluids with odorizing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/07Generating electrical power as side effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to a module for purging a liquid layer contained in a cryogenic tank.
  • the invention also relates to a system for purging a cryogenic tank implementing this purge module.
  • gaseous source of energy is meant in the sense of the present invention, any gas obtained from gaseous energy sources such as hydrogen, natural gas (methane), bio-methane, etc.
  • gaseous energy sources in liquefied form, are in particular increasingly used as fuel for vehicles.
  • gas chains are densifying and developing rapidly, multiplying gas exchanges between producers, transporters, distributors and suppliers.
  • gaseous sources of energy being products that change over time, their evaporation in the atmosphere also increases with these exchanges. These releases to the atmosphere, from an environmental point of view and security, should be minimized.
  • a need to improve the environmental performance over the entire life cycle of gaseous sources of energy has been identified by all stakeholders in the sector.
  • releases may occur when vehicles in service are parked in parking lots (eg motorway rest stops) or are stored in their captive fleet depot. Indeed, during these phases of stopping, parking or storage, the vehicles are immobile in a medium at room temperature, this situation may cause a rise in temperature of the liquid phase of the gaseous source of energy to the interior of the tank, thus inducing the evaporation of at least a portion thereof. To preserve the integrity of the tank, it is then equipped with a safety valve that opens by releasing the gas at high pressure into the atmosphere. But such a solution has the following major drawbacks:
  • this purge module is integrated and compact, and comprises:
  • a cryogenic liquid pump connected to said input of the module, a vaporizer transforming said liquid phase into a gas phase, the inlet of said vaporizer being connected to the outlet of said cryogenic liquid pump and its outlet being connected to a storage means for storing said gaseous phase thus formed, said storage means being connected at a main outlet intended to be connected by a removable outlet duct to an external system capable of using said gas phase.
  • vehicle means a land, sea or air vehicle comprising at least one cryogenic tank.
  • a cryogenic tank is intended to mean any tank that can be easily used by an operator that has no extensive training on its handling and content, the tank being further adapted to store liquid and / or gas at a temperature of less than or equal to - 60 ° C and at an absolute pressure greater than or equal to approximately 1 bar, these tanks being able to be purged at a pressure equal to approximately 3 bar, equal to approximately 8 bar, or equal to 18 bar approximately.
  • purge module is meant in the sense of the present invention, a module for purging at least one liquid phase contained in the cryogenic tank.
  • Integrated module means, within the meaning of the present invention, a functionally self-supporting and transportable module of which all the elements that compose it can be contained in a volume of at most 16 m 3 , that is to say one volume defined by a width of not more than two meters, a length of not more than four meters and a height of not more than two meters.
  • Compact module is meant in the sense of the present invention, an integrated module transportable on a single light truck utility type.
  • the purge module according to the invention makes it possible to collect the liquid layers contained in a tank for, subsequently, to value them according to the envisaged uses. [21] This purge module has the particular advantage of allowing the maintenance of a vehicle without a human presence during the transfer is necessary.
  • the use of the purge module according to the invention in a system has the advantage of controlling security without impacting the environment, throughout the purge process (transfer, compression, storage, etc.) and avoiding any gas leak.
  • the module further comprises an odorizer adapted to odorize said gas phase, the inlet of the odorizer being connected to the outlet of the vaporizer and the output of said odorizer being connected to the input of the storage means.
  • the storage means is able to store at high pressure said gas phase.
  • high pressure is meant in the sense of the present invention, a pressure between 3 and 300 bar, the storage being particularly relevant when the pressure is between 100 and 200 bar.
  • the cryogenic liquid pump comprises a circulator adapted to suck and discharge the liquid phase.
  • the cryogenic liquid pump comprises a compressor for raising the pressure of the liquid phase sucked to the pressure of use of the storage means.
  • the operating pressure of the storage means is a high pressure of between 3 and 200 bar and more precisely between 100 and 200 bar.
  • the module further comprises an annex output connected to a second cryogenic liquid pump, which is itself connected to the input of said module.
  • This second cryogenic liquid pump only has the function of circulating the liquid phase, coming from the cryogenic tank, in said module between its inlet and its annex outlet, without this liquid phase being pressurized.
  • the purged liquid can be directly used to feed a requesting element of such a liquid which may be, for example, another reservoir.
  • a set of valves is used to direct the flow of liquid purged from the cryogenic tank to a second cryogenic liquid pump whose function is to suck and discharge the liquid, this second cryogenic liquid pump being located between the input and the auxiliary output of the purge module.
  • the module is integrated, for example transportable on a platform or truck (compact module).
  • the invention also relates to a system for purging a cryogenic tank containing a liquid layer, said liquid layer being the liquid phase of a gaseous source of energy, and said reservoir comprising a discharge orifice. More particularly, this system comprises:
  • a removable inlet duct for transporting said liquid phase between the discharge orifice of the reservoir and the inlet of said module
  • connection device for connecting said discharge orifice of said reservoir with said removable inlet conduit, said connection device being sealed and cryogenic
  • a removable outlet duct for transporting the gas phase between the outlet of said module and an external system capable of storing and / or recovering the purged natural gas.
  • the removable inlet duct is adapted to be connected to a downstream operating device, for example a gas transmission and / or distribution network, or to a combined heat and power cogeneration system.
  • electricity, or a power generation system, or a natural gas vehicle delivery system usually referred to by the acronym GNV).
  • the discharge port is at the bottom of said tank.
  • the discharge port is in the upper part of said tank.
  • the system further preferably comprises a dipping device adapted to be introduced into the discharge port of said tank and to reach the bottom of said tank to purge said liquid phase.
  • the system according to the invention is adapted to be installed in a vehicle and / or to purge said liquid phase of a tank installed in a vehicle.
  • FIG. 1 shows a system according to one embodiment of the invention implementing a module according to one embodiment of the invention does not include an odorizer
  • FIG. 2 represents a system according to one embodiment of the invention implementing a module according to an embodiment of the invention comprising an odorizer
  • FIG. 3 represents a system according to one embodiment of the invention implementing a module according to an embodiment of the invention comprising an annex output and an odorizer.
  • FIG. 1 shows a system 1000 implementing a purge module 400 according to the invention for extracting the liquid phase of a gaseous source of energy contained in a reservoir 100, and more particularly contained in a reservoir 100 cryogenic, and value it.
  • this system 1000 comprises removable inlet 300 and outlet 500 ducts for connecting the purge module 400 to the tank
  • this tank 100 is adapted to store liquefied natural gas at a temperature of about -160 ° C and a pressure of about 8 bar.
  • This tank 100 comprises at least one valve, and a discharge port 101 at the bottom.
  • this discharge port 101 may also be in the upper part of the tank 100.
  • this diving device can be a tubular rod capable of reaching the bottom of the tank
  • the purge module 400 is in the form of a sealed block, as illustrated in FIGS. 1 and 2. This block comprises inlet ports
  • the inlet E is adapted to be connected to one end of a removable inlet conduit 300, the connection between the inlet E and this end being sealed and cryogenic.
  • This removable inlet duct 300 comprises at least two ends, one of which is adapted to be connected to the inlet E of the purge module 400.
  • the other end is adapted, either to be connected to a discharge port 101 of a tank 100, or to be connected to a dipping device introduced into an orifice situated in the upper part of a tank 100.
  • this end can both be adapted to connect to the dipping device and also to a discharge port 101 of a tank 100.
  • the removable input conduit 300 may further comprise an automatic disconnection system.
  • This system can make it possible to avoid any deterioration of the removable inlet duct 300 and / or of the tank 100 and / or of the purge module 400 in the event of non-manual disconnection, when a vehicle is restarted, of the removable duct.
  • This disconnection system may for example consist of a brittle connection known to those skilled in the art.
  • This removable inlet conduit 300 may also include control elements to observe, for example, the flow rate, temperature, and pressure of fluid passing therethrough.
  • the main output S of the module 400 is adapted to be connected to one end of a removable outlet conduit 500, the connection between the outlet and this end being also sealed and cryogenic.
  • the removable outlet conduit 500 comprises at least two ends, one of which is adapted to be connected to the main output S of the purge module 400, the connection between the output S and this end being sealed and cryogenic.
  • the other ends can, for their part, be adapted to an external system 600 to be connected to a downstream device such as a gas transmission and / or distribution network 601, or a combined heat and power cogeneration system 602, or a power generation system 604, or a production and / or distribution of natural gas 603 vehicle.
  • cryogenic liquid pump 4002 which is connected to the input E of the module.
  • this cryogenic liquid pump 4002 may be a pump marketed by Cryostar.
  • This cryogenic liquid pump 4002 comprises a circulator adapted to suck up and discharge the liquid phase between the inlet E and the outlet S of the module 400, and also a compressor for raising the pressure of this liquid phase to a pressure of use elements located downstream of this cryogenic liquid pump.
  • the compressor may be adapted to raise the pressure of said liquid phase to a high pressure which may be between 3 and 300 bar.
  • the block also includes a vaporizer 4004 which converts the purged liquid phase into a gas phase. More specifically, the vaporizer 4004 vaporizes the purged liquid phase of the reservoir 100, the formed droplets then becoming gas under the conditions of pressure and temperature at the outlet of the vaporizer 4004. The inlet of this vaporizer 4004 is connected to the output of the cryogenic liquid pump 4002.
  • this block further comprises a storage means 4006, whose input is connected to the output of the vaporizer 4004, and which stores the gas phase formed by the vaporizer 4004.
  • This storage means 4006 can store this gaseous phase at a pressure of between 100 and 200 bar.
  • the output of the storage means 4006 is connected to the main output S of the module 400.
  • Figure 2 differs from Figure 1 in that the module shown further comprises an odorizer 4008 between the vaporizer 4004 and the means
  • the block further comprises an odorizer 4008 adapted to odorize 4008 the gas phase formed by the vaporizer 4004.
  • the entry of the odorizer 4008 is connected to the output of the vaporizer 4004 and its output is connected to the inlet of the storage means 4006.
  • the odorizer 4008 can in particular be used when the purged liquid phase is subsequently injected into the network or used as compressed natural gas (commonly referred to as the acronym GNC).
  • this odorizer 4008 may also be located downstream of the storage means 4006, it being understood that it is located downstream of the vaporizer 4004.
  • the block may also include control elements of all kinds in order to be able to observe different physical quantities at different locations of the module 400 on the one hand, and the system 1000 formed by the module 400 and the removable input ducts 300 and output 500.
  • control elements may, for example, be pressure sensors, flow meters, temperature sensors, filling control sensors of the storage means 4006.
  • this module 400 can be fixed or mobile. It can, for example, be arranged on a transportable platform to be transportable, and it can also be attached to a motorway station, a parking or a parking site.
  • the module 400 can be attached to a parking site.
  • a vehicle arriving at this site can connect to the module 400 via the removable inlet conduit 300.
  • the tank 100 of this vehicle can be activated to extract the layer liquid contained in the tank 100.
  • the module 400 when it is mobile, it can be transported by suitable gear. In this configuration, the module 400 can be transported to the vicinity of damaged vehicles which comprise one or more tanks 100 containing at least one liquid layer of a gaseous source of energy. Thus, we can extract these liquid layers contained in tanks 100 to avoid degassing of their valve and consequently to secure the surroundings, and in particular the surrounding atmosphere. In addition, such a purge also makes it possible to route, subsequently, these damaged vehicles without the problems due to liquefied gases being taken into consideration during their transport.
  • the system 1000 according to the invention may also comprise a computer system capable of regulating the purging of the purged cryogenic tank 100. It should be noted that, according to the invention, only one cryogenic tank 100 can be purged at a time.
  • FIG. 3 shows an installation according to the invention implementing a module according to the invention and further comprising an annex output S '.
  • This auxiliary output S ' is connected to a second cryogenic liquid pump 4002a contained in the module 400 and whose sole and only function is to suck and discharge the liquid phase purged from the cryogenic tank 100 between the inlet E of the module and this exits'.
  • module according to the invention which comprises two separate outputs: a main output S by means of which it is possible to recover a gas phase, and an auxiliary output S 'using from which it is possible to recover a liquid phase.
  • the module according to the invention comprising an annex output S 'may or may not comprise an odorizer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

La présente invention se rapporte à un module (400) pour la purge d'une couche liquide contenue dans un réservoir (100) cryogénique d'un véhicule, ladite couche liquide étant la phase liquide d'une source gazeuse d'énergie, ledit module (400) étant caractérisé en ce qu'il comprend: une entrée (E) destinée à être reliée audit réservoir (100)par un conduit amovible d'entrée (300) transportant ladite phase liquide,une pompe liquide cryogénique (4002), raccordée à ladite entrée (E) du module (400),un vaporisateur (4004) transformant ladite phase liquide en phase gazeuse, l'entrée dudit vaporisateur(4004) étant raccordée à la sortie de ladite pompe liquide cryogénique (4002) et sa sortie étant raccordée à un moyen de stockage (4006) permettant de stocker ladite phase gazeuse ainsi formée, ledit moyen de stockage (4006) étant raccordé à une sortie principale (S) destinée à être reliée par un conduit amovible de sortie (500) à un système extérieur (600) apte à utiliser ladite phase gazeuse, ledit module (400) étant également caractérisé en ce qu'il est intégré et compact. La présente invention a également pour objet un système (1000) mettant en œuvre ledit module (400) de purge.

Description

PURGE ANTICIPÉE D'UN RÉSERVOIR CRYOGÉNIQUE
DESCRIPTION [01 ] L'invention se rapporte à un module pour la purge d'une couche liquide contenue dans un réservoir cryogénique. L'invention a également pour objet un système pour purger un réservoir cryogénique mettant en œuvre ce module de purge.
[02] Actuellement, les pays industrialisés s'efforcent de mettre en place des infrastructures fonctionnant à partir de sources gazeuses d'énergie en raison de l'augmentation de la demande en énergie.
[03] Par source gazeuse d'énergie, on entend au sens de la présente invention, tout gaz obtenu à partir de sources d'énergies gazeuses comme l'hydrogène, le gaz naturel (méthane), le bio-méthane, etc.
[04] Par ailleurs, ces efforts pour la mise en place d'infrastructures fonctionnant à partir de telles sources ont également pour but de réduire la dépendance des pays industrialisés au pétrole.
[05] Ainsi, la consommation en source gazeuse d'énergie tend actuellement à augmenter. Cette augmentation est, en particulier, due au fait que la combustion de ces sources gazeuses d'énergies est bien moins polluante que l'équivalent charbon ou fuel lourd. Elles sont donc des choix idéaux pour une production énergétique plus respectueuse de l'environnement.
[06] En particulier, les sources gazeuses d'énergie, sous forme liquéfiée, sont notamment de plus en plus utilisées en tant que carburant pour véhicules. Donc, pour satisfaire au mieux la demande, les chaînes gazières se densifient et se développent rapidement multipliant les échanges de gaz entre producteurs, transporteurs, distributeurs et fournisseurs. Toutefois, les sources gazeuses d'énergie étant des produits évolutifs dans le temps, leurs évaporations dans l'atmosphère se multiplient également au gré de ces échanges. Ces rejets dans l'atmosphère, d'un point de vue environnemental et de sécurité, doivent être minimisés. Ainsi, un besoin d'amélioration de la performance environnementale sur l'ensemble du cycle de vie des sources gazeuses d'énergies a d'ailleurs été identifié par l'ensemble des acteurs de la filière.
[07] Par ailleurs, on peut également observer des rejets dans l'atmosphère des phases gazeuses des gaz carburant liquéfié contenu au préalable dans des réservoirs prévus à cet effet.
[08] Par exemple, des rejets peuvent avoir lieu lorsque des véhicules en service stationnent sur des parkings (par exemple des aires de repos d'une autoroute) ou sont remisés dans leur dépôt de flotte captive. En effet, lors de ces phases d'arrêt, de stationnement ou de remisage, les véhicules sont immobiles dans un milieu à température ambiante, cette situation pouvant occasionner une montée en température de la phase liquide de la source gazeuse d'énergie à l'intérieur du réservoir, induisant ainsi l'évaporation d'au moins une partie de celle-ci. Afin de préserver l'intégrité du réservoir, celui- ci est alors équipé d'une soupape de sécurité qui s'ouvre en rejetant le gaz en surpression dans l'atmosphère. Mais une telle solution présente les inconvénients majeurs suivants :
- le rejet d'un gaz à effet de serre dans l'atmosphère,
- le risque de présence d'atmosphère explosive autour des véhicules remisés, risque non traité actuellement qui nécessiterait la mise en place de procédures très lourdes et coûteuses non adaptées à un développement massif de la filière.
[09] Par ailleurs, lorsqu'un véhicule se déplaçant au gaz naturel liquéfie (GNL) se trouve dans une station GNL en situation de remplissage d'un ou de plusieurs réservoirs, il est possible d'éviter le dégazage et de récupérer le volume gazeux expulsé hors du réservoir en dépressurisant le réservoir dans des conditions optimales. Si le véhicule n'était pas en situation de remplissage, la seule solution actuellement existante pour éviter le dégazage consiste à purger, ou expulser ces gaz dans l'atmosphère, par la soupape de sécurité, ceci afin de maintenir les gaz internes du réservoir à une pression inférieure à la pression opératoire maximale dans le but de ne pas altérer l'intégrité du réservoir.
[10] Toutefois, dans les différentes solutions existantes, pour éviter tout rejet de phases gazeuses de carburant dans l'atmosphère :
- soit il est nécessaire de se trouver dans une station et de plus en situation de remplissage pour éviter le dégazage,
- soit la soupape s'ouvre pour dégazer directement dans l'atmosphère dans le but de préserver l'intégrité du réservoir, avec les conséquences évoquées plus haut.
[1 1 ] Cependant, lorsqu'un véhicule doit stationner pendant une longue durée, il est préférable de purger le liquide d'un ou de plusieurs réservoirs qu'il peut contenir afin d'éviter toute montée en pression de ces derniers qui engendrerait un dégazage dans l'atmosphère. Aussi, notamment pour des raisons de sécurité, il est préférable de vidanger, ou purger, les réservoirs des véhicules accidentés avant leur tractage et plus particulièrement à l'endroit de l'accident pour sécuriser l'atmosphère environnant.
[12] Il existe donc un réel besoin de fournir un module de purge ainsi qu'un système le mettant en œuvre palliant les défauts et inconvénients précités.
[13] En particulier, il existe un réel besoin de fournir un module de purge qui permet, d'une part, de collecter le liquide d'un réservoir cryogénique, et plus particulier de purger ce dernier pour éviter tout dégazage dans l'atmosphère, et d'autre part de valoriser ce liquide.
[14] Pour résoudre un ou plusieurs des inconvénients cités précédemment, le déposant a mis au point un module pour la purge d'une couche liquide contenue dans un réservoir cryogénique d'un véhicule, la couche liquide étant la phase liquide d'une source gazeuse d'énergie. Plus particulièrement, ce module de purge est intégré et compact, et comprend :
une entrée destinée à être reliée audit réservoir par un conduit amovible d'entrée transportant ladite phase liquide,
une pompe liquide cryogénique, raccordée à ladite entrée du module, un vaporisateur transformant ladite phase liquide en phase gazeuse, l'entrée dudit vaporisateur étant raccordée à la sortie de ladite pompe liquide cryogénique et sa sortie étant raccordée à un moyen de stockage permettant de stocker ladite phase gazeuse ainsi formée, ledit moyen de stockage étant raccordé à une sortie principale destinée à être reliée par un conduit amovible de sortie à un système extérieur apte à utiliser ladite phase gazeuse.
[15] Par véhicule, on entend au sens de la présente invention, un véhicule terrestre, maritime ou aérien comprenant au moins un réservoir cryogénique.
[16] Par réservoir cryogénique, on entend au sens de la présente invention, tout réservoir facilement utilisable par un opérateur ne possédant pas de formation poussée sur sa manipulation et son contenu, le réservoir étant en outre adapté pour stocker du liquide et/ou du gaz à une température inférieure ou égale à - 60°C et à une pression absolue supérieure ou égale à 1 bar environ, ces réservoirs pouvant être purgés à une pression soit égale à 3 bar environ, soit égale à 8 bar environ, soit égale à 18 bar environ.
[17] Par module de purge, on entend au sens de la présente invention, un module pour purger au moins une phase liquide contenue dans le réservoir cryogénique.
[18] Par module intégré, on entend au sens de la présente invention un module fonctionnellement autoporteur et transportable dont tous les éléments qui le composent peuvent être contenu dans un volume d'au plus 16 m3, c'est-à-dire un volume défini par une largeur d'au plus deux mètres, une longueur d'au plus quatre mètres et une hauteur d'au plus deux mètres.
[19] Par module compact, on entend au sens de la présente invention, un module intégré transportable sur un seul camion léger de type utilitaire.
[20] Il est à noter que le module de purge selon l'invention permet de collecter les couches liquides contenues dans un réservoir pour, par la suite, les valoriser en fonction des usages envisagés. [21 ] Ce module de purge présente notamment l'avantage de permettre de procéder à la maintenance d'un véhicule sans qu'une présence humaine pendant le transfert ne soit nécessaire.
[22] L'utilisation du module de purge selon l'invention dans un système présente l'avantage de maîtriser la sécurité sans impacter l'environnement, tout au long du processus de purge (transfert, compression, stockage...) et en évitant toute fuite de gaz.
[23] À l'aide de ce module, il est par ailleurs possible de valoriser le liquide purgé en évitant tout rejet dans l'atmosphère.
[24] De préférence, le module comprend en outre un odoriseur adapté pour odoriser ladite phase gazeuse, l'entrée de l'odoriseur étant reliée à la sortie du vaporisateur et la sortie dudit odoriseur étant reliée à l'entrée du moyen de stockage.
[25] De préférence, le moyen de stockage est apte à stocker à haute pression ladite phase gazeuse.
[26] Par haute pression, on entend au sens de la présente invention, une pression comprise entre 3 et 300 bars, le stockage étant particulièrement pertinent lorsque la pression est comprise entre 100 et 200 bar.
[27] De préférence, la pompe liquide cryogénique comprend un circulateur adapté pour aspirer et refouler la phase liquide.
[28] Selon un mode préférentiel de l'invention, la pompe liquide cryogénique comprend un compresseur pour élever la pression de la phase liquide aspirée à la pression d'usage du moyen de stockage.
[29] Selon ce mode préférentiel, la pression d'usage du moyen de stockage est une haute pression comprise entre 3 et 200 bars et plus précisément entre 100 et 200 bars.
[30] De préférence, le module comprend en outre une sortie annexe raccordée à une deuxième pompe liquide cryogénique, qui est elle-même reliée à l'entrée dudit module. Cette deuxième pompe liquide cryogénique n'a pour fonction que de faire circuler la phase liquide, provenant du réservoir cryogénique, dans ledit module entre son entrée, et sa sortie annexe, sans que cette phase liquide soit mise sous pression.
[31 ] Ainsi, le liquide purgé peut directement être utilisé pour alimenter un élément demandeur d'un tel liquide qui peut être, par exemple, un autre réservoir. Dans ce cas, un jeu de vannes est utilisé pour orienter le flux de liquide purgé provenant du réservoir cryogénique vers une deuxième pompe liquide cryogénique dont la fonction est d'aspirer et de refouler le liquide, cette deuxième pompe liquide cryogénique étant située entre l'entrée et la sortie annexe du module de purge.
[32] De préférence, le module est intégré, par exemple transportable sur une plateforme ou par camion (module compact).
[33] L'invention a également pour objet un système pour purger un réservoir cryogénique contenant une couche liquide, ladite couche liquide étant la phase liquide d'une source gazeuse d'énergie, et ledit réservoir comprenant un orifice d'évacuation. Plus particulièrement, ce système comprend :
- le module tel que défini précédemment ;
- un conduit amovible d'entrée pour le transport de ladite phase liquide entre l'orifice d'évacuation du réservoir et l'entrée dudit module,
- un dispositif de connexion pour connecter ledit orifice d'évacuation dudit réservoir avec ledit conduit amovible d'entrée, ledit dispositif de connexion étant étanche et cryogénique,
- un conduit amovible de sortie pour le transport de la phase gazeuse entre la sortie dudit module et un système extérieur apte à stocker et/ou à valoriser le gaz naturel purgé.
[34] Pour connecter le module de purge au réservoir cryogénique à purger, on raccorde le conduit amovible d'entrée, connectée à l'entrée du module de purge, à l'orifice d'évacuation (par exemple un orifice de vidange) d'un réservoir cryogénique. [35] De préférence, le conduit amovible de sortie est adapté pour être raccordée à un dispositif aval d'exploitation, par exemple un réseau de transport et/ou de distribution de gaz, ou à un système mixte de cogénération de chaleur et d'électricité, ou à un système de production d'électricité, ou à un système de distribution de gaz naturel véhicule (usuellement désigné par l'acronyme GNV).
[36] Dans un premier mode de réalisation du système selon l'invention, l'orifice d'évacuation se trouve en partie basse dudit réservoir.
[37] Dans un second mode de réalisation du système selon l'invention, l'orifice d'évacuation se trouve en partie haute dudit réservoir.
[38] Selon ce second mode de réalisation, le système comprend en outre de préférence un dispositif plongeant adapté pour être introduit dans l'orifice d'évacuation dudit réservoir et pour atteindre le fond dudit réservoir afin de purger ladite phase liquide.
[39] De préférence, le système selon l'invention est adapté pour être installé dans un véhicule et/ou pour purger ladite phase liquide d'un réservoir installé dans un véhicule.
Brève description des figures
[40] L'invention sera mieux comprise à la lecture de la description qui suit, faite uniquement à titre d'exemple, et en référence aux figures en annexe dans lesquelles :
- la figure 1 représente un système selon un mode de réalisation de l'invention mettant en œuvre un module selon un mode de réalisation de l'invention ne comprenant pas d'odoriseur ;
- la figure 2 représente un système selon un mode de réalisation de l'invention mettant en œuvre un module selon un mode de réalisation de l'invention comprenant un odoriseur ; et - la figure 3 représente un système selon un mode de réalisation de l'invention mettant en œuvre un module selon un mode de réalisation de l'invention comprenant une sortie annexe et un odoriseur. Description détaillé
[41 ] La figure 1 représente un système 1000 mettant en œuvre un module 400 de purge selon l'invention destiné à extraire la phase liquide d'une source gazeuse d'énergie contenue dans un réservoir 100, et plus particulièrement contenu dans un réservoir 100 cryogénique, et la valoriser. En particulier, ce système 1000 comprend des conduits amovibles d'entrée 300 et de sortie 500 pour connecter le module 400 de purge au réservoir
100 et au système extérieur 600 permettant de valoriser la phase gazeuse purgée.
[42] Par exemple, ce réservoir 100 est adapté pour stocker du gaz naturel liquéfié à une température environ égale à -160°C et à une pression égale à 8 bar environ. Ce réservoir 100 comprend au moins une soupape, et un orifice d'évacuation 101 se trouvant en partie basse. L'orifice d'évacuation
101 est situé en partie basse pour faciliter la purge de la phase liquide, et particulièrement pour l'atteindre directement.
[43] Toutefois, il est à noter que cet orifice d'évacuation 101 peut également se trouver en partie haute du réservoir 100. Cependant, dans cette configuration, il est nécessaire d'utiliser un dispositif plongeant adapté pour être introduit dans l'orifice d'évacuation 101 . Par exemple, ce dispositif plongeant peut être une canne tubulaire apte à atteindre le fond du réservoir
100, et en particulier à être immergée dans la phase liquide. On peut alors appliquer une dépression à l'intérieure de cette canne tubulaire pour extraire la phase liquide contenue dans le réservoir 100.
[44] Le module 400 de purge se présente sous forme d'un bloc étanche, comme illustré sur les figures 1 et 2. Ce bloc comprend des orifices d'entrée
300 et de sortie 500, et particulièrement une entrée E ainsi qu'une sortie principale S. L'entrée E est adaptée pour être connectée à une extrémité d'un conduit amovible d'entrée 300, la connexion entre l'entrée E et cet embout étant étanche et cryogénique.
[45] Ce conduit amovible d'entrée 300 est comprend au moins deux extrémités dont l'une est adaptée pour être connectée à l'entrée E du module 400 de purge. L'autre extrémité est adaptée, soit pour être connectée à un orifice d'évacuation 101 d'un réservoir 100, soit à être connectée à un dispositif plongeant introduit dans un orifice se trouvant en partie haute d'un réservoir 100. Toutefois, cette extrémité peut, à la fois, être adaptée pour se connecter au dispositif plongeant et également à un orifice d'évacuation 101 d'un réservoir 100.
[46] Il est à noter que selon une variante du mode de réalisation, le conduit amovible d'entrée 300 peut comprendre en outre un système de déconnexion automatique. Ce système peut permettre d'éviter toute détérioration du conduit amovible d'entrée 300 et/ou du réservoir 100 et/ou du module 400 de purge en cas de non déconnexion manuelle, lors du redémarrage d'un véhicule, du conduit amovible d'entrée 300 avec au moins un orifice d'évacuation 101 et/ou avec un dispositif plongeant tel que défini précédemment. Ce système de déconnexion peut par exemple consister en un raccord cassant connu de l'homme du métier.
[47] Ce conduit amovible d'entrée 300 peut également comprendre des éléments de contrôle afin d'observer, par exemple, le débit, la température, et la pression du fluide passant à l'intérieur de celui-ci.
[48] La sortie principale S du module 400 est adaptée pour être reliée à une extrémité d'un conduit amovible de sortie 500, la connexion entre la sortie et cette extrémité étant également étanche et cryogénique.
[49] Le conduit amovible de sortie 500 comprend au moins deux extrémités dont l'une est adaptée pour être connectée à la sortie principale S du module 400 de purge, la connexion entre la sortie S et cette extrémité étant étanche et cryogénique. Les autres extrémités peuvent, quant à elles, être adaptées à un système extérieur 600 pour être connectées à un dispositif aval d'exploitation tel qu'un réseau de transport et/ou de distribution de gaz 601 , ou à un système mixte de cogénération de chaleur et d'électricité 602, ou à un système de production d'électricité 604, ou à un système de production et/ou de distribution de gaz naturel véhicule 603.
[50] Par ailleurs, entre les parois de ce bloc est située une pompe liquide cryogénique 4002 qui est raccordée à l'entrée E du module. Par exemple, cette pompe liquide cryogénique 4002 peut être une pompe commercialisée par Cryostar.
[51 ] Cette pompe liquide cryogénique 4002 comprend un circulateur apte à aspirer et refouler la phase liquide entre l'entrée E et la sortie S du module 400, et également un compresseur pour élever la pression de cette phase liquide à une pression d'usage des éléments situés en aval de cette pompe liquide cryogénique.
[52] Dans cette variante de réalisation, le compresseur peut être adapté pour élever la pression de ladite phase liquide à une haute pression qui peut être comprise entre 3 et 300 bar.
[53] Le bloc comprend également un vaporisateur 4004 qui transforme la phase liquide purgée en phase gazeuse. Plus précisément, le vaporisateur 4004 vaporise la phase liquide purgée du réservoir 100, les gouttelettes formées se transformant alors en gaz sous les conditions de pression et de température qui régnent à la sortie du vaporisateur 4004. L'entrée de ce vaporisateur 4004 est raccordée à la sortie de la pompe liquide cryogénique 4002.
[54] Par ailleurs, ce bloc comprend en outre un moyen de stockage 4006, dont son entrée est raccordée à la sortie du vaporisateur 4004, et qui permet de stocker la phase gazeuse formée par le vaporisateur 4004. Ce moyen de stockage 4006 peut stocker cette phase gazeuse à une pression comprise entre 100 et 200 bar. La sortie du moyen de stockage 4006 est raccordée à la sortie principale S du module 400.
[55] La figure 2 se différencie de la figure 1 en ce que le module représenté comprend en outre un odoriseur 4008 entre le vaporisateur 4004 et le moyen de stockage 4006. Selon une variante de réalisation, le bloc comprend en outre un odoriseur 4008 adapté pour odoriser 4008 la phase gazeuse formée par le vaporisateur 4004. L'entrée de l'odoriseur 4008 est reliée à la sortie du vaporisateur 4004 et sa sortie est reliée à l'entrée du moyen de stockage 4006. Il est à noter que l'odoriseur 4008 peut notamment être utilisé lorsque la phase liquide purgée est, par la suite, injecté dans le réseau ou utilisé comme gaz naturel comprimé (communément désigné par l'acronyme GNC). Toutefois, cet odoriseur 4008 peut également être situé en aval du moyen de stockage 4006, étant entendu qu'il soit situé en aval du vaporisateur 4004.
[56] Le bloc peut également comprendre des éléments de contrôle de toutes sortes afin de pouvoir observer différentes grandeurs physiques à différents endroits du module 400 d'une part, et du système 1000 formé par le module 400 et les conduits amovibles d'entrée 300 et de sortie 500. Ces éléments de contrôle peuvent, par exemple, être des capteurs de pression, des débitmètres, des capteurs de température, des capteurs de contrôle de remplissage du moyen de stockage 4006.
[57] Il est à noter que ce module 400 peut être fixe ou mobile. Il peut, par exemple, être disposé sur une plateforme transportable pour être transportable, et il peut également être fixé sur une station d'autoroute, un parking ou encore sur un site de stationnement.
[58] Par exemple, le module 400 peut être fixé sur un site de stationnement. Dans cette configuration, un véhicule arrivant sur ce site peut se connecter au module 400 via le conduit amovible d'entrée 300. Ainsi, après connexion du réservoir 100 de ce véhicule au module 400 de purge, ce dernier peut être activé pour extraire la couche liquide contenue dans le réservoir 100.
[59] Aussi, lorsque le module 400 est mobile, il peut être transporté par des engins adaptés. Dans cette configuration, le module 400 peut être transporté jusqu'aux abords de véhicules accidentés qui comprennent un ou plusieurs réservoirs 100 contenant au moins une couche liquide d'une source gazeuse d'énergie. Ainsi, on peut extraire ces couches liquides contenues dans des réservoirs 100 afin d'éviter des dégazages de leur soupape et en conséquence de sécuriser les alentours, et en particulier l'atmosphère environnante. De plus, une telle purge permet également d'acheminer, par la suite, ces véhicules accidentés sans que les problèmes dus aux gaz liquéfiés ne soient à prendre en considération lors de leur transport.
[60] Le système 1000 selon l'invention peut également comprendre un système informatique apte à réguler la purge du réservoir cryogénique 100 purgé. Il est à noter que, selon l'invention, un seul réservoir cryogénique 100 peut être purgé à la fois.
[61 ] La figure 3 représente une installation selon l'invention mettant en œuvre un module selon l'invention et comprenant en outre une sortie annexe S'. Cette sortie annexe S' est reliée à une deuxième pompe liquide cryogénique 4002a contenue dans le module 400 et qui a pour seule et unique fonction d'aspirer et de refouler la phase liquide purgé du réservoir cryogénique 100 entre l'entrée E du module et cette sortie S'.
[62] À cette sortie S' peut être relié un autre réservoir cryogénique que celui qui est purgé. De cette façon, il est possible de transvaser la phase liquide purgé d'un réservoir cryogénique 100 directement à l'intérieur d'un autre réservoir cryogénique sans que la phase liquide purgée ne soit mise sous pression.
[63] De cette façon, on a un module selon l'invention qui comprend deux sorties distinctes : une sortie principale S à l'aide de laquelle il est possible de récupérer une phase gazeuse, et une sortie annexe S' à l'aide de laquelle il est possible de récupérer une phase liquide. Le module selon l'invention comprenant une sortie annexe S' peut ou non comprendre un odoriseur
4008.
[64] L'invention a été illustrée et décrite en détail dans les dessins et la description précédente. Celle-ci doit être considérée comme illustrative et donnée à titre d'exemple et non comme limitant l'invention a cette seule description. De nombreuses variantes de réalisation sont possibles. [65] Dans les revendications, le mot « comprenant » n'exclue pas d'autres éléments et l'article indéfini « un/une » n'exclue pas une pluralité.

Claims

REVENDICATIONS
1 . Module (400) pour la purge d'une couche liquide contenue dans un réservoir (100) cryogénique d'un véhicule, ladite couche liquide étant la
5 phase liquide d'une source gazeuse d'énergie,
ledit module (400) étant caractérisé en ce qu'il comprend :
une entrée (E) destinée à être reliée audit réservoir (100) par un conduit amovible d'entrée (300) transportant ladite phase liquide, une pompe liquide cryogénique (4002), raccordée à ladite entrée0 (E) du module (400),
un vaporisateur (4004) transformant ladite phase liquide en phase gazeuse, l'entrée dudit vaporisateur (4004) étant raccordée à la sortie de ladite pompe liquide cryogénique (4002) et sa sortie étant raccordée à
5 - un moyen de stockage (4006) permettant de stocker ladite phase gazeuse ainsi formée, ledit moyen de stockage (4006) étant raccordé à
une sortie principale (S) destinée à être reliée par un conduit amovible de sortie (500) à un système extérieur (600) apte à o utiliser ladite phase gazeuse, et
ledit module (400) étant également caractérisé en ce qu'il est fonctionnellement autoporteur et transportable sur un camion unique.
2. Module (400) selon la revendication 1 , comprenant en outre un 5 odoriseur (4008) adapté pour odoriser ladite phase gazeuse, l'entrée de l'odoriseur (4008) étant reliée à la sortie du vaporisateur (4004) et la sortie dudit odoriseur étant reliée à l'entrée du moyen de stockage (4006).
3. Module (400) selon les revendications 1 ou 2, dans lequel le 0 moyen de stockage (4006) est apte à stocker à haute pression ladite phase gazeuse.
4. Module (400) selon l'une quelconque des revendications 1 à 3, dans lequel ladite pompe liquide cryogénique (4002) comprend un circulateur adapté pour aspirer et refouler la phase liquide.
5. Module (400) l'une quelconque des revendications 1 à 3, dans lequel ladite pompe liquide cryogénique (4002) comprend un compresseur pour élever la pression de la phase liquide aspirée à la pression d'usage du moyen de stockage (4006).
6. Module (400) selon la revendication 5, la pression d'usage du moyen de stockage (4006) est une haute pression comprise entre 3 et 200 bars et plus précisément entre 100 et 200 bars.
7. Module (400) selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend en outre une sortie annexe (S') raccordée à une deuxième pompe liquide cryogénique (4002a) qui est elle-même reliée à ladite entrée (E).
8. Système (1000) pour purger un réservoir (100) cryogénique contenant une couche liquide, ladite couche liquide étant la phase liquide d'une source gazeuse d'énergie, et ledit réservoir (100) comprenant un orifice d'évacuation (101 ),
ledit système (1000) comprenant :
- ledit module (400) tel que défini selon l'une quelconque des revendications 1 à 7 ;
- un conduit amovible d'entrée (300) pour le transport de ladite phase liquide entre l'orifice d'évacuation (101 ) du réservoir (100) et l'entrée (E) dudit module (400),
- un dispositif de connexion (200) pour connecter ledit orifice d'évacuation (101 ) dudit réservoir (100) avec ledit conduit amovible d'entrée (300), ledit dispositif de connexion (200) étant étanche et cryogénique,
- un conduit amovible de sortie (500) pour le transport de la phase gazeuse entre la sortie (S) dudit module (400) et un système extérieur (600) apte à stocker et/ou à valoriser la couche liquide purgée.
9. Système (1000) selon la revendication 8, dans lequel ledit conduit amovible de sortie (500) est adapté pour être raccordée à un dispositif aval d'exploitation pouvant être un réseau de transport et/ou de distribution de gaz (601 ), ou à un système mixte de cogénération de chaleur et d'électricité (602), ou à un système de production d'électricité (604), ou à un système de distribution de gaz naturel véhicule GNV (603).
10. Système (1000) selon les revendications 8 ou 9, dans lequel ledit orifice d'évacuation (101 ) se trouve en partie basse dudit réservoir (100).
1 1 . Système (1000) selon les revendications 8 ou 9, dans lequel ledit orifice d'évacuation (101 ) se trouve en partie haute dudit réservoir (100).
12. Système (1000) selon la revendication 1 1 , comprenant en outre un dispositif plongeant adapté pour être introduit dans l'orifice d'évacuation (101 ) dudit réservoir (100) et pour atteindre le fond dudit réservoir (100) afin de purger ladite phase liquide.
13. Système (1000) selon l'une quelconque des revendications 8 à 12, adapté pour être installé dans un véhicule et/ou pour purger ladite phase liquide d'un réservoir (100) installé dans un véhicule.
PCT/FR2017/051932 2016-07-21 2017-07-13 Purge anticipée d'un réservoir cryogénique WO2018015641A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1656968 2016-07-21
FR1656968A FR3054285B1 (fr) 2016-07-21 2016-07-21 Purge anticipee d’un reservoir cryogenique

Publications (1)

Publication Number Publication Date
WO2018015641A1 true WO2018015641A1 (fr) 2018-01-25

Family

ID=57750035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/051932 WO2018015641A1 (fr) 2016-07-21 2017-07-13 Purge anticipée d'un réservoir cryogénique

Country Status (2)

Country Link
FR (1) FR3054285B1 (fr)
WO (1) WO2018015641A1 (fr)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1233469A (fr) * 1958-08-28 1960-10-12 Shell Int Research Procédé et dispositif pour la vidange de réservoirs remplis d'un liquide volatil
FR1298418A (fr) * 1961-05-30 1962-07-13 Maritime Shell Soc Procédé et dispositif pour la vidange d'un réservoir, en particulier d'un réservoir de bateau, rempli d'un liquide volatil
FR1360629A (fr) * 1962-07-05 1964-05-08 Lindes Eismaschinen Ag Procédé et installation pour l'évacuation de la charge d'un réservoir à gaz liquéfié, particulièrement d'un navire-citerne
FR2554212A1 (fr) * 1983-11-02 1985-05-03 Gallo Michel Procede pour la vidange de cuves ayant contenu du gaz liquefie issu du petrole et/ou de l'industrie chimique ou petrochimique, installation pour la mise en oeuvre de ce procede et ses applications
DE4320759A1 (de) * 1993-02-27 1995-01-05 Gfd Ingenieur Und Beratungsges Verfahren und Anlage zur Rest-Entleerung und Entgasung von Kesselwagen und Tanks für den Transport bzw. für die Lagerung von Flüssiggas und zur Wiedergewinnung des Flüssiggases
FR2766165A1 (fr) * 1997-07-21 1999-01-22 Brun Sa Dispositif de remplissage et de vidange d'un reservoir par un fluide
EP1167860A2 (fr) * 2000-06-23 2002-01-02 Werner Hermeling Installation mobile de remplissage de bouteilles de gaz
FR2814530A1 (fr) * 2000-09-22 2002-03-29 Jean Andre Justin Coton Alimentation de moteurs pneumatiques autonomes avec stockage du gaz en phase liquide
DE102004050419A1 (de) * 2004-10-15 2006-04-27 Linde Ag Odorierung von Wasserstoff on-board
FR2955372A1 (fr) * 2010-01-20 2011-07-22 Air Liquide Procede et installation de remplissage de bouteilles de gaz

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1233469A (fr) * 1958-08-28 1960-10-12 Shell Int Research Procédé et dispositif pour la vidange de réservoirs remplis d'un liquide volatil
FR1298418A (fr) * 1961-05-30 1962-07-13 Maritime Shell Soc Procédé et dispositif pour la vidange d'un réservoir, en particulier d'un réservoir de bateau, rempli d'un liquide volatil
FR1360629A (fr) * 1962-07-05 1964-05-08 Lindes Eismaschinen Ag Procédé et installation pour l'évacuation de la charge d'un réservoir à gaz liquéfié, particulièrement d'un navire-citerne
FR2554212A1 (fr) * 1983-11-02 1985-05-03 Gallo Michel Procede pour la vidange de cuves ayant contenu du gaz liquefie issu du petrole et/ou de l'industrie chimique ou petrochimique, installation pour la mise en oeuvre de ce procede et ses applications
DE4320759A1 (de) * 1993-02-27 1995-01-05 Gfd Ingenieur Und Beratungsges Verfahren und Anlage zur Rest-Entleerung und Entgasung von Kesselwagen und Tanks für den Transport bzw. für die Lagerung von Flüssiggas und zur Wiedergewinnung des Flüssiggases
FR2766165A1 (fr) * 1997-07-21 1999-01-22 Brun Sa Dispositif de remplissage et de vidange d'un reservoir par un fluide
EP1167860A2 (fr) * 2000-06-23 2002-01-02 Werner Hermeling Installation mobile de remplissage de bouteilles de gaz
FR2814530A1 (fr) * 2000-09-22 2002-03-29 Jean Andre Justin Coton Alimentation de moteurs pneumatiques autonomes avec stockage du gaz en phase liquide
DE102004050419A1 (de) * 2004-10-15 2006-04-27 Linde Ag Odorierung von Wasserstoff on-board
FR2955372A1 (fr) * 2010-01-20 2011-07-22 Air Liquide Procede et installation de remplissage de bouteilles de gaz

Also Published As

Publication number Publication date
FR3054285B1 (fr) 2019-05-24
FR3054285A1 (fr) 2018-01-26

Similar Documents

Publication Publication Date Title
EP2977670B1 (fr) Dispositif et procédé de fourniture de fluide
EP3650741B1 (fr) Procédé et installation de stockage et de distribution d&#39;hydrogène liquéfié
EP3271637B2 (fr) Procédé de remplissage de réservoirs avec du gaz sous pression
EP3280946A1 (fr) Station et procédé de remplissage d&#39;un réservoir avec un gaz carburant
CA3132878A1 (fr) Dispositif et procede de stockage et de fourniture de carburant fluide
US20090293988A1 (en) System for Charging and Purging a Compressed Gas Cylinder
EP3488139B1 (fr) Module et systeme de depressurisation d&#39;un reservoir cryogenique.
DK178151B1 (en) Liquid Natural Gas transfer
EP3114418B1 (fr) Procédé et installation de transport et de liquéfaction de gaz
EP2734436B1 (fr) Navire équipé d&#39;un système de stockage de carburant et procédé correspondant
FR3065941A1 (fr) Procede de manutention d&#39;une cargaison de gaz liquefie et installation de stockage
EP3510317B1 (fr) Installation, procédé pour stocker et reliquéfier un gaz liquéfié et véhicule de transport associé
WO2021233964A1 (fr) Dispositif et procédé de transfert de fluide cryogénique
WO2018206511A1 (fr) Dispositif et procede d&#39;alimentation en combustible d&#39;une installation de production d&#39;energie
FR3079006A1 (fr) Station de remplissage de reservoir(s) de gaz sous pression et procede d&#39;augmentation de son autonomie
WO2018015641A1 (fr) Purge anticipée d&#39;un réservoir cryogénique
FR2829745A1 (fr) Procede et dispositif de lutte contre l&#39;incendie
CA2024913A1 (fr) Procede pour maintenir en deca d&#39;une limite predeterminee la pression au sein d&#39;un stockage de produit en deux phases liquide et vapeur pendant le remplissage de celui-ci et installation de recondensation associee
JP2007009981A (ja) 液化ガス供給設備及び液化ガス供給方法
EP4090880B1 (fr) Installation et un procédé de stockage et de distribution de fluide cryogénique
WO2004023028A1 (fr) Systeme et procede de transport de gaz naturel comprime
FR3030013A1 (fr) Reservoir pour fluides sous pression compose de tubes de petit diametre
OA20382A (fr) Procédé et Mécanisme de Production du Gaz de Pétrole Lampant Destiné au Modèle de Distribution par Canalisation de Courte, Moyenne et/ou Longue Portée pour les Besoins Energétiques.
EP2948665B1 (fr) Système de conditionnement de circuits cryogéniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17748545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17748545

Country of ref document: EP

Kind code of ref document: A1