WO2018015594A1 - Proceso de acondicionamiento de fibras, instalación de acondicionamiento de fibras y cinta de fibra acondicionada obtenida - Google Patents

Proceso de acondicionamiento de fibras, instalación de acondicionamiento de fibras y cinta de fibra acondicionada obtenida Download PDF

Info

Publication number
WO2018015594A1
WO2018015594A1 PCT/ES2017/070497 ES2017070497W WO2018015594A1 WO 2018015594 A1 WO2018015594 A1 WO 2018015594A1 ES 2017070497 W ES2017070497 W ES 2017070497W WO 2018015594 A1 WO2018015594 A1 WO 2018015594A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fiber
fiber bundle
process according
conditioning process
Prior art date
Application number
PCT/ES2017/070497
Other languages
English (en)
French (fr)
Inventor
Manuel Torres Martinez
Original Assignee
Torres Martinez M
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES201630984A priority Critical patent/ES2655497B1/es
Application filed by Torres Martinez M filed Critical Torres Martinez M
Priority to US16/317,661 priority patent/US11267165B2/en
Priority to DK17830534.8T priority patent/DK3488986T3/da
Priority to ES17830534T priority patent/ES2892277T3/es
Priority to JP2019502772A priority patent/JP7037542B2/ja
Priority to RU2019104616A priority patent/RU2747940C2/ru
Priority to EP17830534.8A priority patent/EP3488986B1/en
Priority to KR1020197002142A priority patent/KR102388413B1/ko
Priority to CN201780051002.5A priority patent/CN109641372B/zh
Publication of WO2018015594A1 publication Critical patent/WO2018015594A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/007Processes for applying liquids or other fluent materials using an electrostatic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/003Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties
    • B29C70/0035Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties comprising two or more matrix materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/543Fixing the position or configuration of fibrous reinforcements before or during moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/24Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles
    • B60N2/26Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles for children
    • B60N2/28Seats readily mountable on, and dismountable from, existing seats or other parts of the vehicle
    • B60N2/2803Adaptations for seat belts
    • B60N2/2806Adaptations for seat belts for securing the child seat to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/24Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles
    • B60N2/26Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles for children
    • B60N2/28Seats readily mountable on, and dismountable from, existing seats or other parts of the vehicle
    • B60N2/2821Seats readily mountable on, and dismountable from, existing seats or other parts of the vehicle having a seat and a base part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/24Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles
    • B60N2/26Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles for children
    • B60N2/28Seats readily mountable on, and dismountable from, existing seats or other parts of the vehicle
    • B60N2/2851Seats readily mountable on, and dismountable from, existing seats or other parts of the vehicle provided with head-rests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/24Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles
    • B60N2/26Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles for children
    • B60N2/28Seats readily mountable on, and dismountable from, existing seats or other parts of the vehicle
    • B60N2/2857Seats readily mountable on, and dismountable from, existing seats or other parts of the vehicle characterised by the peculiar orientation of the child
    • B60N2/286Seats readily mountable on, and dismountable from, existing seats or other parts of the vehicle characterised by the peculiar orientation of the child forward facing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/24Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles
    • B60N2/26Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles for children
    • B60N2/28Seats readily mountable on, and dismountable from, existing seats or other parts of the vehicle
    • B60N2/2872Seats readily mountable on, and dismountable from, existing seats or other parts of the vehicle provided with side rests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/24Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles
    • B60N2/26Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles for children
    • B60N2/28Seats readily mountable on, and dismountable from, existing seats or other parts of the vehicle
    • B60N2/2875Seats readily mountable on, and dismountable from, existing seats or other parts of the vehicle inclinable, as a whole or partially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/24Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles
    • B60N2/26Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles for children
    • B60N2/28Seats readily mountable on, and dismountable from, existing seats or other parts of the vehicle
    • B60N2/2884Seats readily mountable on, and dismountable from, existing seats or other parts of the vehicle with protection systems against abnormal g-forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/24Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles
    • B60N2/26Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles for children
    • B60N2/28Seats readily mountable on, and dismountable from, existing seats or other parts of the vehicle
    • B60N2/2887Fixation to a transversal anchorage bar, e.g. isofix
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/08Organic compounds
    • D06M10/10Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/24Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles
    • B60N2/26Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles for children
    • B60N2/28Seats readily mountable on, and dismountable from, existing seats or other parts of the vehicle
    • B60N2/2881Upholstery, padded or cushioned members therefor

Definitions

  • the present invention is related to the conditioning of fibers for obtaining tapes for use in wrapping processes, proposing a process and installation of conditioning of fibers in which the obtained conditioned fiber tape has a minimum resin load in relation to the fiber used, due to the application of a first resin by controlled electrostatic deposition and the application of a partial and permeable surface coating of a second resin by means of a spiraling or flocking process.
  • the conditioned fiber tapes are obtained from a reinforcement material generally in the form of a bundle of fibers ("tow”), such as carbon fibers or glass fibers, and a cohesion material, such as a resin.
  • a reinforcement material generally in the form of a bundle of fibers ("tow"), such as carbon fibers or glass fibers, and a cohesion material, such as a resin.
  • ATL Automatic Tape Laying '
  • AFP Automated Fiber Placement'
  • fiber belts are obtained from dry fibers, preimpregnated fibers (prepegs) or semi-preimpregnated fibers.
  • Dry fibers do not introduce the main resin load in their conditioning process, but instead the main resin load is applied in the part's own manufacturing process, such as infusion processes or transfer molding processes.
  • RTM resin 'Resin Transfer Molding'.
  • Methods for the preparation of dry fiber preforms such as braiding, three-dimensional fabric or sewing, the latter being the one that currently provides more compact and suitable results for be used in automatic wrapping processes.
  • a document describing a dry fiber conditioning process is document US20150375461, which describes a dry fiber material to be used in automatic wrapping processes that contains as a base a layer of unidirectional fibers, to which a thermoplastic veil is added attached at least to one of its faces, achieved either by short fibers, a thermoplastic grid or a porous thermoplastic membrane, in addition to one or two binders, applied in solution, which ensure cohesion.
  • the preimpregnated fibers can be both unidirectional and woven fibers, which are preimpregnated with the amount of resin necessary to produce a piece, usually a thermosetting resin, although it can also be a thermoplastic resin.
  • Preimpregnated fibers are obtained by a hot melt process, or a solvent immersion process.
  • Hot melting consists of coating the reinforcing material with a thin film of hot resin, then applying pressure and heat to carry out the impregnation of the reinforcement material with the resin
  • the immersion process consists in dissolving the resin in a solvent bath and immersing the reinforcement material therein, subsequently evaporating the solvent thereof.
  • JP2010260888 describes a method of manufacturing a pre-impregnated material that prevents the accumulation of air and irregular impregnation, which includes the application of heat and pressure to the material for transfer the resin.
  • JPH09241403 describes a system of deposition of adherent powder on the surface of a prepreg, in order to improve its adhesiveness.
  • JPS61220808 describes a resin deposition system on a ribbon of carbon fibers by electrostatic means, together with a subsequent heating step above the melting temperature of the resin, to form a completely prepreg.
  • JP2007099926 describes a method for producing a prepreg material, using a conductive sheet on one side of the fiber tape and a powder resin loaded on the opposite side of said beam, the resin being deposited between the fiber filaments by electrostatic force to later heat and melt that resin and form, again, a prepreg.
  • Semi-preimpregnated fiber tapes are obtained by applying a resin film on the fibers, but without getting them completely wet with the resin until they are subjected to high temperatures and pressures during the manufacturing process of the piece.
  • Some documents describing processes for conditioning semi-prepreg fibers are for example US20110171034, which describes a semi-prepreg material or comprising a first layer of thermosetting resin, coated on both sides by layers of fibrous reinforcements, one of the layers coated with a second resin layer with a certain level of adhesion.
  • JP2012107160 describes a composite material based on a woven fiber that has a matrix in part of thermosetting resin and partly of thermoplastic resin, the latter adhered by electrostatic spinning, and formed by a non-woven fabric composed of nanofibers.
  • the present invention has as its object a fiber conditioning process, an installation for carrying out the conditioning process, and a conditioned fiber tape obtained by the conditioning process.
  • the fiber conditioning process of the invention comprises at least the following steps: - continuously supplying a fiber bundle, preferably at a speed between 1 m / min and 100m / min,
  • a first resin on the fiber bundle by electrostatic deposition of particles of the first resin, where preferably the amount of the first resin applied is less than 10% of the weight of the fiber bundle, and where the particles of the First resin preferably have a size between 1 mire and 300 microns, being able to apply them on one or both sides of the beam
  • a partial and permeable surface coating on at least one face of the fiber bundle by a deposition of filaments of a second resin, the thickness of the surface coating being preferably less than 0.2 mm.
  • the first resin is applied directly on the fiber bundle and the surface coating of the second resin is applied on the fiber bundle with the first resin, however, without altering the concept of the invention, the surface coating of The second resin can be applied directly to the fiber bundle and the first resin can be applied over the fiber bundle with the surface coating of the second resin.
  • the process additionally comprises a stage prior to the application of the first and second resin where the width of the fiber bundle is adjusted, the adjustment of the fiber bundle width comprising a first sub-stage where the fiber bundle is passed through first rollers with a concave surface that reduce the width of the fiber bundle and a second sub-stage where the fiber bundle is passed through second rollers of cylindrical surface that are facing and separated from each other to increase the width of the beam of fibers to a desired value by means of a controlled friction of the fiber bundle on the second rollers (and additionally on the first ones).
  • the process of the invention additionally also comprises a stage where heat and pressure are applied to the particles of the first resin so that they diffuse in the fiber bundle.
  • the surface coating is obtained by depositing molten filaments of the second spiral-shaped resin on at least one face of the fiber bundle and subsequently applying a stream of air on the coated fiber bundle for cooling.
  • the surface coating is obtained by depositing filaments of the second resin by electrostatic deposition on at least one side of the fiber bundle, and subsequently applying heat to the filaments to melt the second resin and stick or diffuse in the fiber bundle and applying a air flow over the coated fiber bundle for cooling.
  • the application of the surface coating in any of its versions, is intended to provide cohesion to the fiber tape and improve its permeability in the direction parallel to the plane, commonly defined by means of the characteristic parameters of the material k1 1 and k22.
  • the process of the invention also comprises a step where through grooves are made in the fiber bundle, said through grooves extending in a direction parallel to the fiber bundle. This step improves the permeability of the fiber tape in the direction perpendicular to the plane, commonly defined by means of the characteristic parameter of the material k33, without damaging the mechanical properties of the tape.
  • Figure 1 shows a schematic view of a first embodiment of the installation for carrying out the process of the invention.
  • Figure 2 shows a schematic view of a second embodiment of the installation for carrying out the process of the invention.
  • Figure 3 shows a schematic perspective view of the adjustment unit that regulates the width of the fiber bundle.
  • Figure 4 shows a schematic representation of the conditioned fiber tape resulting from the process of the invention.
  • Figure 5 shows a section of the conditioned fiber tape indicated with the reference VV in Figure 4.
  • a dry fiber belt is obtained which is used in subsequent automatic wrapping processes such as ATL ("Automated Tape Laying ') or AFP (" Automated Fiber Placement'), or manual curb.
  • ATL Automatic Tape Laying '
  • AFP Automated Fiber Placement'
  • the dry fiber tapes obtained by the process of the invention are formed from a reinforcing material and a fiber cohesion material.
  • reinforcement material carbon fibers, glass fibers, basalt fibers, natural fibers or any other material in fibrillar configuration oriented to the manufacture of composite materials are intended to be used, and as a cohesion material it is planned to use thermoplastic resins (co -polyamides, co-polyester, phenoxy, epoxy, or polyurethane resins), or thermosetting resins.
  • thermoplastic resins co -polyamides, co-polyester, phenoxy, epoxy, or polyurethane resins
  • the installation comprises means for continuously supplying a fiber bundle (1) along the different stages of the conditioning installation, preferably the fiber bundle delivery speed (1) being between 1 m / min and 100m / min, without being this limiting value, so that the fiber remains tensioned during the entire conditioning process preventing ripples.
  • Said means comprise a rewinder (2) and a rewinder (3) between which the fiber bundle (1) is supplied, which allow guiding the fiber bundle (1) so that the fibers remain flat and without undulations, thus how to regulate its tension and speed in order to adapt to different fiber formats in addition to varied widths and weights.
  • the unwinder (2) can supply the fibers in "roving" format, or in "tow” format, that is, in the format of a set of unidirectional fiber filaments, for example a total width between 0.25 inches and 50 inches. , without being these limiting values.
  • the Installation optionally comprises an adjustment unit (4) to regulate the width of the fiber bundle (1) and distribute the fibers so that optimum resin reception is achieved in the later stages of the installation.
  • an adjustment unit (4) which comprises first rollers (41) configured to reduce the width of the fiber bundle (1), and second rollers (42) configured to increase the width of the fiber bundle (1), so that by alternating the operation of the rollers (41, 42), the fiber bundle (1) can be modified to adapt it to different widths and weights.
  • the first set of rollers (41) comprises three concave surface rollers, so that the fiber bundle (1) rubs against the concave surface of the rollers (41) reducing its width.
  • At least one roller of the first rollers (41) is motorized, so that by controlling the speed of rotation of at least one motorized roller, the reduction of the fiber beam width (1) can be controlled.
  • the second set of rollers (42) comprises two cylindrical surface rollers that are facing and separated from each other, and between which the fiber bundle (1) is passed, so that when the fiber bundle (1) passes between The second rollers (42) produce a friction that reduces the thickness of the fiber bundle (1) and therefore increases its width.
  • the increase in the fiber beam width (1) can be controlled.
  • a first resin deposition unit (5) is arranged to apply, by electrostatic deposition, particles of a first resin (51) on the fiber bundle (1).
  • the first resin deposition unit (5) has a spray nozzle that is configured to apply the first resin (51) in powder form with particles of a size preferably between 1 millimeter and 300 microns and an amount of first resin (51 ) less than 10% of the weight of the fiber bundle, for the usual surface weights. Specifically, given a section of the fiber bundle (1), on said section of the fiber bundle (1) an amount of the first resin (51) is applied which is less than 10% of the weight of said fiber bundle section ( one).
  • the size of the particles and the amount of the first resin (51) applied allow optimum diffusion of the first resin (51) in the fiber bundle (1) once the particles have been heated at a later stage of the process. Also, the percentage of resin used allows them to not be seen affected the final mechanical properties of the fiber tape obtained or the weight of parts.
  • the particles of the first resin (51) are electronegatively charged and sprayed onto an area of the fiber bundle (1) that is grounded, so that said fiber bundle zone (1) becomes an electrically neutral zone which attracts the particles of the first resin (51) negatively charged.
  • the particles upon contact with the fiber bundle (1), are retained in the area of the fiber bundle (1) on which they are deposited.
  • the spray nozzle used allows to regulate both the intensity and the voltage applied to the particles of the first resin (51), being able to adjust said parameters and optimize the effectiveness of the process depending on the particle size, the distance from the spray nozzle to the beam of fibers (1), as well as other factors that influence the process (such as flow rates and air pressures).
  • the speed of the fiber bundle (1) through the area of application of the first resin (51) the amount of first resin (51) deposited can be controlled, consequently the resin waste rate is lower. than in other conventional "spray" type application techniques.
  • the pulverized resin particles (51) not adhered can also be recovered through commercial equipment for such use and screened to be reintroduced to the process, achieving a deposition effectiveness very close to 100%.
  • a heating unit (6) such as microwave, oven with resistors or infrared lamps, is arranged to, in case of using a thermoplastic resin, heat and melt in a controlled manner the resin allowing it to diffuse in the fiber bundle (1), or to, in case of using a thermosetting resin, partially cure the resin.
  • the heating unit (6) can be oriented towards one or both sides of the fiber bundle (1), it is also possible that the heating unit (6) is oriented towards a face of the fiber bundle (1) and in the opposite face of the fiber bundle (1) a reflector is arranged to heat said opposite face of the fiber bundle (1).
  • a cooling unit (7) can be arranged immediately after of the one heating unit (6) to obtain a controlled cooling of the fiber bundle (1) after the heating of the first resin (51).
  • the installation can also provide a heat and pressure application unit (8) after the heating (6) and cooling units (7) arranged after the first resin deposition unit (5).
  • the heat and pressure application unit (8) comprises traction rollers followed by a heating unit that apply heat and pressure to the particles of the first resin (51) to diffuse in the fiber bundle (1).
  • the use of a first thermoplastic resin allows it to be reheated and, together with the pressure of the traction rollers, allows the first resin (51) to penetrate deeper and improve the cohesion of the fiber bundle (1).
  • a second resin deposition unit (9) is configured to apply a partial and permeable surface coating on at least one side of the fiber bundle (1) by means of a deposition of filaments of a second resin (91).
  • the second resin (91) may be the same or different from the first resin (51).
  • the application of a surface coating of the second resin (91) creates a porous coating on the fiber bundle (1) that serves to generate a gap between fiber tapes when applied in subsequent wrapping processes to obtain composite parts, thus improving the permeability of the composite material in the direction parallel to the plane of the fibers by facilitating the flow of resin between tapes during the infusion or RTM process.
  • the surface coating may be arranged on one of the faces of the fiber bundle (1), or on the two faces of the fiber bundle (1).
  • the application of the surface coating is obtained by a spiraling process by depositing molten filaments of the second resin (91) in the form of a spiral or the like.
  • a nozzle is applied that applies the second resin (91) by means of small filaments of molten material, which are rotated to deposit on the fiber bundle (1) forming spirals, thus generating a permeable layer on the beam of fibers (1).
  • the application of the second resin (91) is carried out based on a variable flow rate, adjusting in each case the speed of the fiber bundle (1) and the desired concentration of the second resin.
  • a cooling unit (10) is arranged to apply an air stream over the resin-coated fiber bundle (1), such as for example the application of an air stream with a "Vortex" type system, which is necessary to handle the fiber belt in subsequent processes, especially when such processes require high speeds.
  • a heating unit prior to the application of the spiral can be arranged to improve the adhesion of the second resin (91) on the fiber bundle (1), for which the heating unit of the heat and pressure application unit (8) or other additional.
  • the application of the surface coating is obtained by a flocking process by depositing filaments of the second resin (91) by electrostatic deposition. Unlike the electrostatic deposition of the first resin (51), instead of particles of reduced granulometry, resin filaments of thermoplastic material of reduced dimensions are deposited on the fiber bundle (1).
  • a cutting unit (12) configured to make through grooves in the fiber bundle (1), which extend in a direction parallel to the fiber bundle (1).
  • the cutting unit (12) has a rotating cutting roller with needles or cams arranged according to a three-way distribution to penetrate the fiber bundle (1). Even more preferably the cutting unit (12) has several rotating cutting rollers with the needles or cams arranged according to the distribution to the tresbolillo. The rollers of the cutting unit work preferably synchronized to improve the execution of the cuts.
  • the roller (s) have heating means to work at the appropriate temperature. Needles or cams may also have heating means.
  • the fiber bundle (1) in treatment can also have a cooling stage prior to grooving to achieve optimum results, which can be the cooling unit itself (10) or another cooling unit arranged immediately afterwards.
  • the cutting unit (12) allows to generate grooves in the fiber bundle (1) without damaging the fibers that make it up, generating spaces in the direction parallel to the beam that improve the permeability of the conditioned fiber tape finally obtained in the direction perpendicular to the plane of the fiber bundle (1) that composes it, thus the grooves facilitate the diffusion of the resin through them in the subsequent manufacturing process of the final piece of composite material, by infusion or RTM.
  • the pressure at the exit of this unit is controlled in a way that allows a correct grooving implementation.
  • a final cooling unit (13) can be arranged to temper the fiber bundle (1) and leave it for final storage in coils that will be subsequently used in the curb processes.
  • the first resin (51) is applied directly on the fiber bundle (1) and on the fiber bundle (1) with the first resin (51) the surface coating of the second resin (91) is applied, such and as shown in figures 1 and 2, since with this order of application the first resin (51) diffuses better in the bundle of fibers (1) by cohesion, and the second resin (91) allows to improve the cohesion of the set of tapes of fiber conditioned in the subsequent wrapping process.
  • the surface coating of the second resin (91) is applied directly on the fiber bundle (1) and subsequently the first resin (51) is applied on the fiber bundle (1) coated with the second resin (91).
  • the grooves (121) are made on the fiber bundle (1) coated with the first (51) and second resins (91), as shown in figures 1 and 2, although the grooves (121) can be made before applying the resins (51, 91), between the application thereof, or in the absence of both.
  • a conditioned and cohesive fiber tape is obtained in the form of dry fiber conditioned with an improved behavior with respect to conventional dry fibers, and which thanks to the application by electrostatic deposition of the first resin (51) and the surface coating of the second resin (91) allows to achieve a fiber tape conditioned and cohesive with a minimum amount of resin with respect to the fiber used.
  • the conditioned fiber tape obtained by the process of the invention comprises a fiber bundle (1) that has been conditioned with particles of the first resin (51) and with a partial and permeable surface coating. of the second resin (91), wherein the particles of the first resin (51) are deposited randomly but homogeneously on the fiber bundle (1) and have a particle size between 50 microns and 300 microns with a lower weight at 10% of the weight of the fiber bundle, and wherein the surface coating of the second resin (91) has a thickness of less than 0.2 mm, said particles of the first resin (51), once bonded to the fibers that make up the fiber bundle (1) offer cohesion to the whole of the fiber tape and also the ability to adhere a fiber tape conditioned with another subsequent tape, by means of heat application in the subsequent wrapping process by AFP, ATL or manual, permit Thus the generation of self-supporting multilayer fiber tapes.
  • the conditioned fiber tape obtained by the process of the invention also has through grooves (121) in the parallel direction the fiber bundle (1), which has dimensions of between 0.1 mm and 2 mm of equivalent diameter, which they achieve a correct permeability of the fiber tape in the direction perpendicular to the fiber bundle (1), and that facilitate the infusion or injection processes necessary to form the piece of final composite material, but without causing a fiber break and with very limited angular distortion.
  • the grooves (121) are preferably distributed in an aligned manner with respect to the longitudinal direction of the fiber bundle according to a triplet distribution, which allows a better structural integrity of the fiber bundle (1).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • General Health & Medical Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)
  • Robotics (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

Proceso de acondicionamiento de fibras, instalación de acondicionamiento de fibras y cinta de fibra acondicionada obtenida, en donde el proceso de acondicionamiento comprende las etapas de suministrar de forma continua un haz de fibras (1), aplicar una primera resina (51) sobre el haz de fibras (1) mediante una deposición electroestática de partículas de la primera resina (51), fijar las partículas de la primera resina (51) al haz de fibras (1) mediante un proceso de calentamiento, y aplicar un recubrimiento superficial sobre al menos una cara del haz de fibras (1 ) mediante una deposición de filamentos de una segunda resina (91), de manera que la cinta de fibra obtenida tiene una carga de resina mínima en relación a la fibra empleada.

Description

DESCRIPCIÓN
PROCESO DE ACONDICIONAMIENTO DE FIBRAS, INSTALACIÓN DE
ACONDICIONAMIENTO DE FIBRAS Y CINTA DE FIBRA ACONDICIONADA OBTENIDA
Sector de la técnica
La presente invención está relacionada con el acondicionamiento de fibras para la obtención de cintas para su empleo en procesos de encintado, proponiendo un proceso e instalación de acondicionamiento de fibras en donde la cinta de fibra acondicionada obtenida tiene una carga de resina mínima en relación a la fibra empleada, debido a la aplicación de una primera resina por deposición electrostática controlada y la aplicación de un recubrimiento superficial parcial y permeable de una segunda resina mediante un proceso de espirolado o flocado.
Estado de la técnica
Las cintas de fibra acondicionada se obtienen a partir de un material de refuerzo generalmente en forma de un haz de fibras ("tow'), tal como fibras de carbono o fibras de vidrio, y un material de cohesión, tal como una resina. Los actuales ritmos de demanda de la industria han hecho que la fabricación manual de piezas de materiales compuestos haya sido sustituida por procesos de encintado automático, como por ejemplo ATL ("Automated Tape Laying') o AFP ("Automated Fiber Placement'), en donde el haz de fibras debe ser acondicionado para dotar a las fibras de la consistencia suficiente como para no sufrir daños ni desviaciones de su orientación en el proceso de encintado de las cintas.
Actualmente, las cintas de fibra se obtienen a partir de fibras secas, fibras preimpregnadas (prepegs) o fibras semi-preimpregnadas. Las fibras secas no introducen la carga principal de resina en su proceso de acondicionado, sino que la carga principal de resina se aplica en el propio proceso de fabricación de la pieza, como, por ejemplo, procesos de infusión o procesos de moldeo por transferencia de resina RTM ("Resin Transfer Moulding'). Existen diversos métodos para la elaboración de preformas de fibra seca, como el trenzado, el tejido tridimensional o el cosido, siendo este último el que proporciona actualmente unos resultados más compactos y adecuados para ser empleados en los procesos de encintado automático.
Un documento que describe un proceso de acondicionamiento de fibra seca es el documento US20150375461 , el cual describe un material de fibra seca a utilizar en procesos de encintado automático que contiene como base una capa de fibras unidireccionales, a la que se le añade un velo termoplástico unido al menos a una de sus caras, conseguido bien mediante fibras cortas, una rejilla termoplástica o una membrana termoplástica porosa, además de uno o dos binders, aplicados en disolución, que aseguran la cohesión. Las fibras preimpregnadas pueden ser tanto fibras unidireccionales como tejidos, los cuales se preimpregnan con la cantidad de resina necesaria para producir una pieza, habitualmente una resina termoestable, si bien puede ser también una resina termoplástica. Generalmente cuando la resina es termoestable, ésta se cura parcialmente para facilitar la manipulación de la fibra preimpregnada, debiéndose conservar la mezcla en un ambiente frío para evitar su completa reticulación. Las fibras preimpregnadas se obtienen mediante un proceso de fusión en caliente ("hot melf), o un proceso de inmersión en disolvente. La fusión en caliente consiste en recubrir el material de refuerzo con una película fina de resina caliente, para luego aplicar presión y calor para llevar a cabo la impregnación del material de refuerzo con la resina. El proceso de inmersión consiste en disolver la resina en un baño de disolvente y sumergir el material de refuerzo en él, evaporando posteriormente el disolvente del mismo.
Algunos documentos que describen procesos de acondicionado de fibras preimpregnadas son por ejemplo el documento JP2010260888, el cual describe un método de fabricación de un material preimpregnado que evita la acumulación de aire y la impregnación irregular, que comprende la aplicación de calor y presión al material para transferir la resina. El documento JPH09241403 describe un sistema de deposición de polvo adherente sobre la superficie de un material preimpregnado, con el objetivo de mejorar su adhesividad. El documento JPS61220808 describe un sistema de deposición de resina sobre una cinta de fibras de carbono por medios electrostáticos, junto con una etapa de calentamiento posterior por encima de la temperatura de fusión de la resina, para formar un material completamente preimpregnado. El documento JP2007099926 describe un método para producir un material preimpregnado, empleando una lámina conductora a un lado de la cinta de fibra y una resina en polvo cargada en el lado opuesto de dicho haz, depositándose la resina entre los filamentos de la fibra por fuerza electrostática para más adelante calentar y fundir esa resina y formar, de nuevo, un material preimpregnado. Las cintas de fibra semi-preimpregnadas se obtienen aplicando una película de resina sobre las fibras, pero sin llegar a mojarlas completamente con la resina hasta que se someten a altas temperaturas y presiones durante el proceso de fabricación de la pieza. Algunos documentos que describen procesos de acondicionado de fibras semi- preimpregnadas son por ejemplo el documento US20110171034, el cual describe un material semi- preimpregnado o que comprende una primera capa de resina termoestable, recubierta en ambas caras por capas de refuerzos fibrosos, estando una de las capas revestida con una segunda capa de resina con un determinado nivel de adherencia. El documento JP2012107160 describe un material compuesto en base a una fibra tejida que dispone de una matriz en parte de resina termoestable y en parte de resina termoplástica, esta última adherida por hilatura electrostática, y formada por una tela no tejida compuesta de nanofibras. Ninguna de estas soluciones tiene por objeto, sin embargo, el acondicionamiento de un haz de fibras en formato continuo para la generación de una cinta de fibra seca cohesionada y acondicionada, capaz de ser empleada en procesos de encintado automático, y manteniendo la capacidad de cinta de fibra acondicionada obtenida de ser introducida en procesos de fabricación basados en infusión o RTM.
Objeto de la invención
La presente invención tiene por objeto un proceso de acondicionamiento de fibras, una instalación para llevar a cabo el proceso de acondicionamiento, y una cinta de fibra acondicionada obtenida mediante el proceso de acondicionamiento.
El proceso de acondicionamiento de fibras de la invención comprende al menos las siguientes etapas: - suministrar de forma continua un haz de fibras, preferentemente a una velocidad entre 1 m/min y 100m/min ,
- aplicar una primera resina sobre el haz de fibras mediante una deposición electroestática de partículas de la primera resina, en donde preferentemente la cantidad de la primera resina aplicada es inferior al 10% del peso del haz de fibras, y en donde las partículas de la primera resina tienen preferentemente un tamaño entre 1 miera y 300 mieras, pudiendo aplicarlas en una o en ambas caras del haz
- fijar las partículas de la primera resina al haz de fibras mediante un proceso de calentamiento, que permite fundir las partículas parcial o totalmente,
- aplicar un recubrimiento superficial parcial y permeable sobre al menos una cara del haz de fibras mediante una deposición de filamentos de una segunda resina, siendo el espesor del recubrimiento superficial preferentemente inferior a 0,2 mm.
Preferentemente, la primera resina se aplica directamente sobre el haz de fibras y el recubrimiento superficial de la segunda resina se aplica sobre el haz de fibras con la primera resina, no obstante, sin que ello altere el concepto de la invención, el recubrimiento superficial de la segunda resina se puede aplicar directamente sobre el haz de fibras y la primera resina se puede aplicar sobre el haz de fibras con el recubrimiento superficial de la segunda resina. El proceso adicionalmente comprende una etapa previa a la aplicación de la primera y segunda resina en donde se ajusta el ancho del haz de fibras, comprendiendo el ajuste del ancho del haz de fibras una primera subetapa en donde el haz de fibras se pasa a través de unos primeros rodillos con una superficie cóncava que reducen el ancho del haz de fibras y una segunda subetapa en donde el haz de fibras se pasa a través de unos segundos rodillos de superficie cilindrica que están enfrentados y separados entre sí para aumentar el ancho del haz de fibras hasta un valor deseado por medio de un rozamiento controlado del haz de fibras sobre los segundos rodillos (y adicionalmente sobre los primeros).
El proceso de la invención adicionalmente también comprende una etapa en donde se aplica calor y presión a las partículas de la primera resina para que difundan en el haz de fibras.
Según un ejemplo de realización de la invención el recubrimiento superficial se obtiene depositando filamentos fundidos de la segunda resina en forma de espiral sobre al menos una cara del haz de fibras y posteriormente aplicando una corriente de aire sobre el haz de fibras recubierto para su enfriamiento.
Según otro ejemplo de realización de la invención el recubrimiento superficial se obtiene depositando filamentos de la segunda resina mediante una deposición electroestática sobre al menos una cara del haz de fibras, y posteriormente aplicando calor a los filamentos para fundir la segunda resina y que pegue o difundan en el haz de fibras y aplicando una corriente de aire sobre el haz de fibras recubierto para su enfriamiento.
La aplicación del recubrimiento superficial, en cualquiera de sus versiones, tiene como finalidad aportar cohesión a la cinta de fibra y mejorar su permeabilidad en la dirección paralela al plano, definida comúnmente por medio de los parámetros característicos del material k1 1 y k22.
Adicionalmente el proceso de la invención también comprende una etapa en donde se realizan unas ranuras pasantes en el haz de fibras, extendiendo dichas ranuras pasantes en una dirección paralela al haz de fibras. Esta etapa mejora la permeabilidad de la cinta de fibra en la dirección perpendicular al plano, definida comúnmente por medio del parámetro característico del material k33, sin perjudicar las propiedades mecánicas de la cinta.
Con todo ello así se obtiene un proceso de acondicionamiento de fibras que permite obtener una cinta de fibra acondicionada con unas características mejoradas respecto de otros procedimientos de acondicionamiento de fibras secas.
Descripción de las figuras La figura 1 muestra una vista esquemática de un primer ejemplo de realización de la instalación para llevar a cabo el proceso de la invención.
La figura 2 muestra una vista esquemática de un segundo ejemplo de realización de la instalación para llevar a cabo el proceso de la invención.
La figura 3 muestra una vista esquemática en perspectiva de la unidad de ajuste que regula el ancho del haz de fibras.
La figura 4 muestra una representación esquemática de la cinta de fibra acondicionada resultante del proceso de la invención.
La figura 5 muestra una sección de la cinta de fibra acondicionada indicada con la referencia V-V en la figura 4. Descripción detallada de la invención En la figura 1 se muestra un ejemplo de realización de una instalación para llevar a cabo el proceso de acondicionamiento de fibras de la invención, mediante la cual se obtiene una cinta de fibras secas que es empleada en procesos posteriores de encintado automático como por ejemplo ATL ("Automated Tape Laying') o AFP ("Automated Fiber Placement'), o encintado manual.
Las cintas de fibra seca obtenidas mediante el procedimiento de la invención se forman a partir de un material de refuerzo y un material de cohesión de las fibras. Como material de refuerzo se ha previsto emplear fibras de carbono, fibras de vidrio, fibras de basalto, fibras naturales o cualquier otro material en configuración fibrilar orientado a la fabricación de materiales compuestos, y como material de cohesión se ha previsto emplear resinas termoplásticas (co-poliamidas, co-poliesteres, resinas fenoxi, epoxi, o poliuretanos), o resinas termoestables. Obteniéndose en cualquier caso mediante el proceso de la invención cintas de fibra con una mínima carga de resina en relación con la fibra empleada.
En el sentido de la presente invención las unidades de la instalación de acondicionamiento de fibras se han descrito según el sentido de dirección del haz de fibras (1) representado con flechas en las figuras 1 y 2, según el sentido de izquierda a derecha indicado en dichas figuras.
La instalación comprende unos medios para suministrar de forma continua un haz de fibras (1) a lo largo de las diferentes etapas de la instalación de acondicionamiento, siendo preferentemente la velocidad de suministro del haz de fibras (1) entre 1 m/min y 100m/min, sin ser este valor limitante, de manera que la fibra se mantiene tensionada durante todo el proceso de acondicionamiento evitando que se produzcan ondulaciones.
Dichos medios comprenden una desbobinadora (2) y una rebobinadora (3) entre las que se suministra el haz de fibras (1), las cuales permiten guiar el haz de fibras (1) para que las fibras se mantengan planas y sin ondulaciones, así como regular su tensión y velocidad a fin de adaptarse a distintos formatos de fibra además de anchos y gramajes variados. La desbobinadora (2) puede suministrar las fibras en formato "roving", o en formato "tow", es decir, en formato de un conjunto de filamentos unidireccionales de fibra, de por ejemplo un ancho total entre las 0.25 pulgadas y las 50 pulgadas, sin ser estos valores limitantes. Después de la desbobinadora (2), en el sentido de dirección del haz de fibras (1), la instalación opcionalmente comprende una unidad de ajuste (4) para regular el ancho del haz de fibras (1) y distribuir las fibras de manera que se consiga una óptima recepción de resina en las posteriores etapas de la instalación. En la figura 3 se observa una realización preferente de la unidad de ajuste (4), la cual comprende unos primeros rodillos (41) configurados para reducir el ancho del haz de fibras (1), y unos segundos rodillos (42) configurados para aumentar el ancho del haz de fibras (1), de manera que alternando el funcionamiento de los rodillos (41 , 42) se pude modificar el haz de fibras (1) para adaptarlo a diferentes anchos y gramajes.
El primer conjunto de rodillos (41) comprende tres rodillos de superficie cóncava, de manera que el haz de fibras (1) roza contra la superficie cóncava de los rodillos (41) reduciendo su ancho. Al menos un rodillo de los primeros rodillos (41) está motorizado, de manera que controlando la velocidad de giro del al menos un rodillo motorizado se puede controlar la reducción del ancho del haz de fibras (1).
El segundo conjunto de rodillos (42) comprende dos rodillos de superficie cilindrica que están enfrentados y separados entre sí, y entre los que se hace pasar el haz de fibras (1), de manera que al pasar el haz de fibras (1) entre los segundos rodillos (42) se produce un rozamiento que reduce el espesor del haz de fibras (1) y por tanto aumenta su ancho. Así, controlando la distancia de separación entre los segundos rodillos (42) y la velocidad de giro de al menos uno de ellos se puede controlar el aumento del ancho del haz de fibras (1).
Después de la unidad de ajuste (4) se dispone una primera unidad de deposición de resina (5) para aplicar mediante deposición electroestática unas partículas de una primera resina (51) sobre el haz de fibras (1). La primera unidad de deposición de resina (5) tiene una boquilla pulverizadora que está configurada para aplicar la primera resina (51) en forma de polvo con unas partículas de un tamaño preferentemente entre 1 miera y 300 mieras y una cantidad de primera resina (51) inferior al 10% del peso del haz de fibras, para los gramajes superficiales habituales. Concretamente, dada una sección del haz de fibras (1), sobre dicha sección del haz de fibras (1) se aplica una cantidad de la primera resina (51) que es inferior al 10% del peso de dicha sección del haz de fibras (1). El tamaño de las partículas y la cantidad de la primera resina (51) aplicada permiten una óptima difusión de la primera resina (51) en el haz de fibras (1) una vez que las partículas se han calentado en una etapa posterior del proceso. Asimismo, el porcentaje de resina empleado permite que no se vean afectadas las propiedades mecánicas finales de la cinta de fibra obtenida ni el peso de piezas.
Las partículas de la primera resina (51) se cargan electronegativamente y se pulverizan sobre una zona del haz de fibras (1) que está conectada a tierra, de manera que dicha zona del haz de fibras (1) se convierte en una zona eléctricamente neutra que atrae las partículas de la primera resina (51) cargadas negativamente. Así las partículas, al entrar en contacto con el haz de fibras (1), quedan retenidas en la zona del haz de fibras (1) sobre la que se depositan.
La boquilla pulverizadora empleada permite regular tanto la intensidad como el voltaje aplicado a las partículas de la primera resina (51), pudiéndose ajustar dichos parámetros y optimizar la efectividad del proceso en función del tamaño de partícula, la distancia de la boquilla pulverizadora al haz de fibras (1), así como a otros factores que influyen en el proceso (como por ejemplo, caudales y presiones de aire). Por otro lado, controlando la velocidad del haz de fibras (1) por la zona de aplicación de la primera resina (51) se puede controlar la cantidad de primera resina (51) que se deposita, consecuentemente la tasa de desperdicio de resina es menor que en otras técnicas de aplicación convencionales de tipo "spray".
Las partículas de resina (51) pulverizadas no adheridas pueden además recuperarse a través de equipos comerciales para tal uso y tamizarse para reintroducirse al proceso, consiguiendo una efectividad en la deposición muy próxima al 100%. Después de la primera unidad de deposición de resina (5) se dispone una unidad de calentamiento (6), tal como microondas, horno con resistencias o lámparas de infrarrojos, para, en caso de emplear una resina termoplástica, calentar y fundir de forma controlada la resina permitiendo que difunda en el haz de fibras (1), o para, en caso de emplear una resina termoestable, curar parcialmente la resina. La unidad de calentamiento (6) puede estar orientada hacia una o ambas caras del haz de fibras (1), también cabe la posibilidad de que la unidad de calentamiento (6) esté orientada hacia una cara del haz de fibras (1) y en la cara opuesta del haz de fibras (1) se disponga un reflector para calentar dicha cara opuesta del haz de fibras (1).
Opcionalmente se puede disponer una unidad de enfriamiento (7) inmediatamente desp de la una unidad de calentamiento (6) para obtener un enfriamiento controlado del haz de fibras (1) tras el calentamiento de la primera resina (51).
Opcionalmente, la instalación también puede disponer una unidad de aplicación de calor y presión (8) después de las unidades de calentamiento (6) y enfriamiento (7) dispuestas tras la primera unidad de deposición de resina (5). La unidad de aplicación de calor y presión (8) comprende unos rodillos de tracción seguidos de una unidad calefactora que aplican calor y presión a las partículas de la primera resina (51) para que difundan en el haz de fibras (1). El empleo de una primera resina termoplástica permite que ésta pueda volver a calentarse y junto a la presión de los rodillos de tracción conseguir que la primera resina (51) penetre a mayor profundidad y mejore la cohesión del haz de fibras (1).
Después de la unidad de aplicación de calor y presión (8) se dispone una segunda unidad de deposición de resina (9) configurada para aplicar un recubrimiento superficial parcial y permeable sobre al menos una cara del haz de fibras (1) mediante una deposición de filamentos de una segunda resina (91). La segunda resina (91) puede ser igual o diferente de la primera resina (51).
La aplicación de un recubrimiento superficial de la segunda resina (91) crea un recubrimiento poroso sobre el haz de fibras (1) que sirve para generar un espacio de separación entre cintas de fibra cuando son aplicadas en los procesos de encintado posteriores para la obtención de piezas de material compuesto, mejorando así la permeabilidad del material compuesto en la dirección paralela al plano de las fibras al facilitar el flujo de resina entre cintas durante el proceso de infusión o RTM. El recubrimiento superficial se puede disponer sobre una de las caras del haz de fibras (1), o sobre las dos caras del haz de fibras (1).
Según el ejemplo de realización mostrado en la figura 1 , la aplicación del recubrimiento superficial se obtiene mediante un proceso de espirolado depositando filamentos fundidos de la segunda resina (91) en forma de una espiral o similar. Para ello se emplea una boquilla que aplica la segunda resina (91) por medio de pequeños filamentos de material fundido, los cuales se hacen rotar para depositarse sobre el haz de fibras (1) formando espirales, generando así una capa permeable sobre el haz de fibras (1). La aplicación de la segunda resina (91) se realiza en base a un caudal variable, ajustándose en cada caso a la velocidad del haz de fibras (1) y a la concentración deseada de la segunda resina. Inmediatamente después de la segunda unidad de deposición de resina (9) se dispone una unidad de enfriamiento (10) para aplicar una corriente de aire sobre el haz de fibras (1) recubierto de resina, tal como por ejemplo la aplicación de una corriente de aire con un sistema de tipo "Vortex", la cual resulta necesaria para poder manejar la cinta de fibra en procesos posteriores, especialmente cuando dichos procesos requieren altas velocidades. Opcionalmente, se puede disponer una unidad de calentamiento previa a la aplicación del espirolado para mejorar la adherencia de la segunda resina (91) sobre el haz de fibras (1), para lo cual se puede emplear como unidad de calentamiento previa la unidad calefactora de la unidad de aplicación de calor y presión (8) u otra adicional. (8)
Según otro ejemplo de realización mostrado en la figura 2, la aplicación del recubrimiento superficial se obtiene mediante un proceso de flocado depositando filamentos de la segunda resina (91) mediante una deposición electroestática. A diferencia de la deposición electrostática de la primera resina (51), en lugar de partículas de granulometría reducida, se depositan sobre el haz de fibras (1) unos filamentos de resina de material termoplástico de dimensiones reducidas. En este ejemplo de realización, resulta necesario disponer una unidad de calentamiento (11) después de la segunda unidad de deposición de resina (9), para fundir los filamentos de la segunda resina (91) y fijarlos al haz de fibras (1), así como disponer una unidad de enfriamiento (10) después de la unidad de calentamiento (1 1) para aplicar una corriente de aire sobre el haz de fibras (1) recubierto de resina, tal como por ejemplo la aplicación de una corriente de aire con un sistema de tipo "Vortex", la cual, al igual que en el proceso de espirolado, resulta necesaria para poder manejar la cinta de fibra en procesos posteriores, y en especial para altas velocidades. En el primer ejemplo de realización de la figura 1 , detrás de la segunda unidad de deposición de resina (9) y la unidad de enfriamiento (10), o en el segundo ejemplo de realización de la figura 2, detrás de la segunda unidad de deposición de resina (9), la unidad de calentamiento y la unidad de enfriamiento (10), se dispone una unidad de corte (12) configurada para realizar unas ranuras pasantes en el haz de fibras (1), las cuales se extienden en una dirección paralela al haz de fibras (1).
Preferentemente, la unidad de corte (12) tiene un rodillo de corte giratorio con unas agujas o levas dispuestas según una distribución al tresbolillo para penetrar en el haz de fibras (1). Aún más preferentemente la unidad de corte (12) tiene varios rodillos de corte giratorio con las agujas o levas dispuestas según la distribución al tresbolillo. Los rodillos de la unidad de corte trabajan preferentemente sincronizados para mejorar la ejecución de los cortes.
Opcionalmente el o los rodillos tienen unos medios de calentamiento para trabajar a la temperatura adecuada. Las agujas o levas también pueden disponer de medios de calentamiento. Por su parte, el haz de fibras (1) en tratamiento puede disponer también de una etapa de enfriamiento previa al ranurado para conseguir óptimos resultados, que puede ser la propia unidad de enfriamiento (10) u otra unidad de enfriamiento dispuesta inmediatamente después.
La unidad de corte (12) permite generar unas ranuras en el haz de fibras (1) sin dañar las fibras que lo conforman, generando espacios en la dirección paralela al haz que mejoran la permeabilidad de la cinta de fibra acondicionada finalmente obtenida en la dirección perpendicular al plano del haz de fibras (1) que la compone, así las ranuras facilitan la difusión de la resina a través de ellas en el proceso posterior de fabricación de la pieza final de material compuesto, mediante infusión o RTM. La presión a la salida de esta unidad se mantiene controlada de modo que permita una correcta implementación del ranurado.
Tras la unidad de corte (12), y previamente a la rebobinadora (3), opcionalmente se puede disponer una unidad de enfriamiento final (13) para atemperar el haz de fibras (1) y dejarlo previo para su almacenamiento final en bobinas que serán posteriormente empleadas en los procesos de encintado.
Preferentemente, la primera resina (51) se aplica directamente sobre el haz de fibras (1) y sobre el haz de fibras (1) con la primera resina (51) se aplica el recubrimiento superficial de la segunda resina (91), tal y como se muestra en las figuras 1 y 2, ya que con este orden de aplicación la primera resina (51) difunde mejor en el haz de fibras (1) cohesionándolo, y la segunda resina (91) permite mejorar la cohesión del conjunto de cintas de fibra acondicionadas en el proceso posterior de encintado. No obstante, cabe la posibilidad de que el recubrimiento superficial de la segunda resina (91) se aplique directamente sobre el haz de fibras (1) y posteriormente se aplique la primera resina (51) sobre el haz de fibras (1) recubierto de la segunda resina (91).
Asimismo, preferentemente las ranuras (121) se realizan sobre el haz de fibras (1) recubierto con la primera (51) y segunda resinas (91), tal y como se muestra en las figuras 1 y 2, si bien las ranuras (121) se pueden realizar antes de aplicar las resinas (51 , 91), entre la aplicación de las mismas, o en ausencia de ambas.
Con todo ello así, mediante el procedimiento de la invención se obtiene una cinta de fibra acondicionada y cohesionada en forma de fibra seca acondicionada con un comportamiento mejorado respecto a las fibras secas convencionales, y la cual gracias a la aplicación por deposición electroestática de la primera resina (51) y al recubrimiento superficial de la segunda resina (91) permite conseguir una cinta de fibra acondicionada y cohesionada con una mínima cantidad de resina con respecto a la fibra empleada.
Como se observa en la figura 4, la cinta de fibra acondicionada obtenida mediante el proceso de la invención comprende un haz de fibras (1) que ha sido acondicionado con unas partículas de la primera resina (51) y con un recubrimiento superficial parcial y permeable de la segunda resina (91), en donde las partículas de la primera resina (51) se depositan de forma aleatoria pero homogénea sobre el haz de fibras (1) y tienen un tamaño de partícula entre 50 mieras y 300 mieras con un peso inferior al 10% del peso del haz de fibras, y en donde el recubrimiento superficial de la segunda resina (91) tiene un espesor inferior a 0,2 mm, Dichas partículas de la primera resina (51), una vez unidas a las fibras que conforman el haz de fibras (1) ofrecen cohesión al conjunto de la cinta de fibra y también la capacidad de adherir una cinta de fibra acondicionada con otra cinta subsiguiente, por medio de aplicación de calor en el proceso posterior de encintado por AFP, ATL o manual, permitiendo así la generación de cintas de fibra multicapa autoportantes.
Al adherir las partículas de la segunda resina (91) a las fibras que conforman el haz de fibras (1), se consigue permeabilidad entre cintas de fibra acondicionadas subsiguientes en las direcciones paralelas al plano de las fibras (1), facilitando posteriores procesos de infusión o inyección orientados a conformar la pieza de material compuesto.
La cinta de fibra acondicionada obtenida mediante el proceso de la invención también tiene unas ranuras pasantes (121) en la dirección paralela la haz de fibras (1), las cuales tiene unas dimensiones de entre los 0.1 mm y 2 mm de diámetro equivalente, que consiguen una correcta permeabilidad de la cinta de fibra en la dirección perpendicular al haz de fibras (1), y que facilitan los procesos de infusión o inyección necesarios para conformar la pieza de material compuesto final, pero sin provocar una rotura de fibras y con una distorsión angular muy limitada. Como se observa en la figura 4, preferentemente las ranuras (121) se distribuyen de forma alineada respecto de la dirección longitudinal del haz de fibras según una distribución al tresbolillo, la cual permite una mejor integridad estructural del haz de fibras (1).

Claims

REIVINDICACIONES
1. - Proceso de acondicionamiento de fibras, caracterizado por que comprende las etapas de:
- suministrar de forma continua un haz de fibras (1),
- aplicar una primera resina (51) sobre el haz de fibras (1) mediante una deposición electroestática de partículas de la primera resina (51),
- fijar las partículas de la primera resina (51) al haz de fibras (1) mediante un proceso de calentamiento, y
- aplicar un recubrimiento superficial sobre al menos una cara del haz de fibras (1) mediante una deposición de filamentos de una segunda resina (91).
2. - Proceso de acondicionamiento de fibras, según la reivindicación 1 , caracterizado por que la primera resina (51) se aplica directamente sobre el haz de fibras (1) y el recubrimiento superficial de la segunda resina (91) se aplica sobre el haz de fibras (1) con la primera resina (51).
3. - Proceso de acondicionamiento de fibras, según la reivindicación 1 , caracterizado por que el recubrimiento superficial de la segunda resina (91) se aplica directamente sobre el haz de fibras (1) y la primera resina (51) se aplica sobre el haz de fibras (1) con el recubrimiento superficial de la segunda resina (91).
4. - Proceso de acondicionamiento de fibras, según una cualquiera de las reivindicaciones anteriores, caracterizado por que se aplica una cantidad de la primera resina (51) inferior al 10% del peso del haz de fibras (1).
5. - Proceso de acondicionamiento de fibras, según una cualquiera de las reivindicaciones anteriores, caracterizado por que las partículas de la primera resina (51) tienen un tamaño entre 1 miera y 300 mieras.
6. - Proceso de acondicionamiento de fibras, según una cualquiera de las reivindicaciones anteriores, caracterizado por que el recubrimiento superficial de la segunda resina (91) tiene un espesor inferior a 0,2 mm.
7.- Proceso de acondicionamiento de fibras, según una cualquiera de las reivindicaciones anteriores, caracterizado por que el haz de fibras (1) se suministra a una velocidad entre 1 m/min y 100m/min.
8. - Proceso de acondicionamiento de fibras, según una cualquiera de las reivindicaciones anteriores, caracterizado por que adicionalmente comprende una etapa previa a la aplicación de la primera (51) y segunda resina (91) en donde se ajusta el ancho del haz de fibras (1).
9. - Proceso de acondicionamiento de fibras, según la reivindicación anterior, caracterizado por que el ajuste del ancho del haz de fibras (1) comprende una primera subetapa en donde el haz de fibras (1) se pasa a través de unos primeros rodillos (41) con una superficie cóncava que reducen el ancho del haz de fibras (1) y una segunda subetapa en donde el haz de fibras (1) se pasa a través de unos segundos rodillos (42) de superficie cilindrica que están enfrentados y separados entre sí para aumentar y ajusfar el ancho del haz de fibras (1) mediante rozamiento.
10. - Proceso de acondicionamiento de fibras, según una cualquiera de las reivindicaciones anteriores, caracterizado por que adicionalmente comprende una etapa en donde se aplica calor y presión a las partículas de la primera resina (51) para que difundan en el haz de fibras (1).
1 1. - Proceso de acondicionamiento de fibras, según una cualquiera de las reivindicaciones anteriores, caracterizado por que el recubrimiento superficial se obtiene depositando filamentos fundidos de la segunda resina (91) en forma de espiral o similar sobre al menos una cara del haz de fibras (1) y posteriormente aplicando una corriente de aire sobre el haz de fibras (1) recubierto o sistema de enfriamiento equivalente.
12. - Proceso de acondicionamiento de fibras, según una cualquiera de las reivindicaciones 1 a 10, caracterizado por que el recubrimiento superficial se obtiene depositando filamentos de la segunda resina (91) mediante una deposición electroestática sobre al menos una cara del haz de fibras, y posteriormente aplicando calor a los filamentos para fundir la segunda resina (91) y fije el haz de fibras (1) y aplicando una corriente de aire sobre el haz de fibras (1) recubierto o sistema de enfriamiento equivalente.
13.- Proceso de acondicionamiento de fibras, según una cualquiera de las reivindicaciones anteriores, caracterizado por que adicionalmente comprende una etapa en donde se realizan unas ranuras pasantes (121) en el haz de fibras (1), extendiendo dichas ranuras pasantes (121) en una dirección paralela al haz de fibras.
14. - Proceso de acondicionamiento de fibras, según la reivindicación anterior, caracterizado por que las ranuras pasantes (121) se realizan empleando unos rodillos provistos de agujas o levas los cuales trabajan de forma sincronizada.
15. - Instalación de acondicionamiento de fibras para la realización del procedimiento conforme a una cualquiera de las reivindicaciones anteriores.
16. - Cinta de fibra acondicionada obtenida según el procedimiento de una cualquiera de las reivindicaciones 1 a 14.
PCT/ES2017/070497 2016-07-20 2017-07-10 Proceso de acondicionamiento de fibras, instalación de acondicionamiento de fibras y cinta de fibra acondicionada obtenida WO2018015594A1 (es)

Priority Applications (9)

Application Number Priority Date Filing Date Title
ES201630984A ES2655497B1 (es) 2016-07-20 2016-07-20 Proceso de acondicionamiento de fibras, instalación de acondicionamiento de fibras y cinta de fibra acondicionada obtenida
US16/317,661 US11267165B2 (en) 2016-07-20 2017-07-10 Method for treating fibres, installation for treating fibres and thus obtained tape made of treated fibres
DK17830534.8T DK3488986T3 (da) 2016-07-20 2017-07-10 Fremgangsmåde til behandling af fibre, installation til behandling af fibre og derved opnået bånd fremstillet af behandlede fibre
ES17830534T ES2892277T3 (es) 2016-07-20 2017-07-10 Método de tratamiento de fibras, instalación de tratamiento de fibras y cinta preparada de fibras tratadas así obtenida
JP2019502772A JP7037542B2 (ja) 2016-07-20 2017-07-10 繊維を処理する方法、繊維を処理するための設備及びそれによって得られる処理された繊維で作られたテープ
RU2019104616A RU2747940C2 (ru) 2016-07-20 2017-07-10 Способ обработки волокон, установка для обработки волокон и полученная таким образом лента, образованная из обработанных волокон
EP17830534.8A EP3488986B1 (en) 2016-07-20 2017-07-10 Method for treating fibres, installation for treating fibres and thus obtained tape made of treated fibres
KR1020197002142A KR102388413B1 (ko) 2016-07-20 2017-07-10 섬유 처리 방법과, 섬유 처리 장치 및 처리된 섬유로 제조된 테이프
CN201780051002.5A CN109641372B (zh) 2016-07-20 2017-07-10 处理纤维的方法、处理纤维的设备和由此获得的经处理纤维制成的带

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201630984 2016-07-20
ES201630984A ES2655497B1 (es) 2016-07-20 2016-07-20 Proceso de acondicionamiento de fibras, instalación de acondicionamiento de fibras y cinta de fibra acondicionada obtenida

Publications (1)

Publication Number Publication Date
WO2018015594A1 true WO2018015594A1 (es) 2018-01-25

Family

ID=58778964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070497 WO2018015594A1 (es) 2016-07-20 2017-07-10 Proceso de acondicionamiento de fibras, instalación de acondicionamiento de fibras y cinta de fibra acondicionada obtenida

Country Status (9)

Country Link
US (1) US11267165B2 (es)
EP (1) EP3488986B1 (es)
JP (1) JP7037542B2 (es)
KR (1) KR102388413B1 (es)
CN (1) CN109641372B (es)
DK (1) DK3488986T3 (es)
ES (2) ES2655497B1 (es)
RU (1) RU2747940C2 (es)
WO (1) WO2018015594A1 (es)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6381009B1 (ja) * 2018-01-31 2018-08-29 ジャパンマテックス株式会社 開繊炭素繊維極細糸の製造装置
DE102022105474A1 (de) 2021-03-11 2022-09-15 BRANDENBURGISCHE TECHNISCHE UNIVERSITÄT COTTBUS-SENFTENBERG, Körperschaft des öffentlichen Rechts Vorrichtung zur umformung von afp-tapes zur kosteneffizienten herstellung endlosfaserverstärkter fdm/ffm-filamente
US11897242B2 (en) 2022-01-19 2024-02-13 Paper Converting Machine Company Embosser-laminator with electrostatic adhesive application
CN116080108B (zh) * 2023-02-17 2023-07-25 浙江恒亿达复合材料有限公司 风电玻璃纤维拉挤板材生产过程数据采集管理系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1259084A (es) * 1969-02-05 1972-01-05
JPH04138219A (ja) * 1990-09-28 1992-05-12 Showa Denko Kk 長繊維含有樹脂組成物の製造方法
GB2445929A (en) * 2007-03-29 2008-07-30 Gurit Moulding material for fibre-reinforced composite moulding

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2105955A1 (de) * 1971-02-09 1972-08-17 Bayer Verfahren und Vorrichtung zum Herstellen von Hohlkörpern aus Reak tionsharzen, die mit Fasern verstärkt sind
DE2405474A1 (de) * 1974-02-05 1975-08-07 Schubert & Salzer Maschinen Verfahren und vorrichtung zum herstellen von stapelfaserbaendern aus kabeln endloser fasern
JPS53138473A (en) * 1977-05-10 1978-12-02 Nitto Electric Ind Co Ltd Resin-inpregnated base material and its production
US4539249A (en) * 1983-09-06 1985-09-03 Textile Products, Incorporated Method and apparatus for producing blends of resinous, thermoplastic fiber, and laminated structures produced therefrom
JPS61220808A (ja) 1985-03-27 1986-10-01 Sumitomo Electric Ind Ltd プリプレグの製造方法
BR8807320A (pt) * 1987-01-23 1990-05-22 Pradom Ltd Processo para preparacao de um material composto
US5296064A (en) * 1989-04-17 1994-03-22 Georgia Tech Research Corp. Flexible multiply towpreg tape from powder fusion coated towpreg and method for production thereof
FR2648957B1 (fr) * 1989-06-22 1991-11-15 France Etat Armement Materiau composite a caracteristiques modulables par preimpregnation d'une fibre continue
RU2139792C1 (ru) * 1994-01-26 1999-10-20 Амп-Акцо Линлам Воф Способ изготовления слоистой конструкции и подложки для печатных плат на ее основе
US5756206A (en) * 1995-03-15 1998-05-26 Custom Composite Materials, Inc. Flexible low bulk pre-impregnated tow
JPH09241403A (ja) 1996-03-05 1997-09-16 Mitsubishi Rayon Co Ltd 表面タックの改良されたプリプレグの製造方法
US20070149080A1 (en) * 2004-03-30 2007-06-28 Nobuo Asahara Preform, frp, and processes for producing these
JP2007099926A (ja) 2005-10-05 2007-04-19 Toyota Motor Corp 繊維複合部材の製造方法、プリプレグの製造方法及び製造システム
FR2899146B1 (fr) * 2006-03-28 2008-05-16 Materials Technics Holding Sa Procede pour la realisation d'un semi-produit composite renforce et estampable
EP2168745B1 (en) 2008-09-30 2012-10-24 Hexcel Composites, Ltd. Semi-preg material with a property-enhancing surface resin film for improved properties
JP5832718B2 (ja) 2009-04-30 2015-12-16 三菱レイヨン株式会社 プリプレグの製造方法
JP5552655B2 (ja) * 2009-09-30 2014-07-16 株式会社豊田自動織機 繊維強化複合材料のプリフォーム及びその製造方法
JP2012107160A (ja) * 2010-11-19 2012-06-07 Toyota Industries Corp 繊維強化複合材、繊維強化複合材の製造方法及び強化繊維基材
TWI565844B (zh) 2011-07-29 2017-01-11 東邦特耐克絲歐洲股份有限公司 預浸漬樹脂之撓性增強纖維紗線
US9951444B2 (en) * 2012-12-12 2018-04-24 Nutech Ventures Method of fabricating a continuous nanofiber
FR3017329B1 (fr) 2014-02-13 2016-07-29 Arkema France Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique en lit fluidise
JP6654632B2 (ja) 2014-06-30 2020-02-26 サイテック インダストリーズ インコーポレイテッド プリフォーム製造用乾燥繊維テープ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1259084A (es) * 1969-02-05 1972-01-05
JPH04138219A (ja) * 1990-09-28 1992-05-12 Showa Denko Kk 長繊維含有樹脂組成物の製造方法
GB2445929A (en) * 2007-03-29 2008-07-30 Gurit Moulding material for fibre-reinforced composite moulding

Also Published As

Publication number Publication date
KR102388413B1 (ko) 2022-04-19
CN109641372A (zh) 2019-04-16
ES2655497B1 (es) 2018-10-30
RU2019104616A3 (es) 2020-11-26
JP2019524491A (ja) 2019-09-05
EP3488986A4 (en) 2020-04-22
CN109641372B (zh) 2022-04-01
EP3488986A1 (en) 2019-05-29
RU2747940C2 (ru) 2021-05-17
RU2019104616A (ru) 2020-08-21
ES2892277T3 (es) 2022-02-03
US20190232529A1 (en) 2019-08-01
KR20190045149A (ko) 2019-05-02
JP7037542B2 (ja) 2022-03-16
EP3488986B1 (en) 2021-07-07
US11267165B2 (en) 2022-03-08
DK3488986T3 (da) 2021-09-27
ES2655497A1 (es) 2018-02-20

Similar Documents

Publication Publication Date Title
ES2892277T3 (es) Método de tratamiento de fibras, instalación de tratamiento de fibras y cinta preparada de fibras tratadas así obtenida
ES2793943T3 (es) Procedimiento de fabricación de un material fibroso preimpregnado con polímero termoplástico utilizando una dispersión acuosa de polímero
US9931810B2 (en) Intermediate material of constant width for fabricating composite parts by a direct process
ES2834886T3 (es) Procedimiento de fabricación de un material fibroso preimpregnado con polímero termoplástico en lecho fluidizado
BR112015008233B1 (pt) Métodos para produzir uma pré-forma de fibra e para produzir um componente compósito de fibra
ES2864089T3 (es) Procedimiento de preparación de una cinta encubierta con resistencia mejorada a la deslaminación
CN103492165B (zh) 经树脂涂布的圆角填充物及其制造系统及方法
ES2710681T3 (es) Procedimiento de preparación de un material fibroso preimpregnado de polímero termoplástico mediante un gas supercrítico
ES2942989T3 (es) Nanopartículas solubles para mejorar el rendimiento de material compuesto
ES2909962T3 (es) Textil tejido híbrido para refuerzo de material compuesto
ES2762802T3 (es) Telas unidireccionales sin trama reforzadas con fibra
KR102285655B1 (ko) 섬유 강화 수지 중간재, 섬유 강화 수지 성형체, 및 섬유 강화 수지 중간재의 제조 방법
ES2914513T3 (es) Tela reforzada con fibras impregnada con líquido de recubrimiento, objeto integrado en forma de una lámina, preimpregnado, cinta de preimpregnado y procedimiento para la fabricación de material compuesto reforzado con fibras
JP6773397B2 (ja) 複合物における透過性及び繊維体積率を制御するためのポリマーナノ粒子
CN104908332B (zh) 非缝合纤维材料、方法和设备
CN118638387A (zh) 预定型织物及其制备方法和风电叶片
WO2012051150A1 (en) Dry fiber tape and sheet and process for making same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830534

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502772

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197002142

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017830534

Country of ref document: EP

Effective date: 20190220