WO2018014720A1 - 一种蜂窝芯面形的测量方法及装置 - Google Patents

一种蜂窝芯面形的测量方法及装置 Download PDF

Info

Publication number
WO2018014720A1
WO2018014720A1 PCT/CN2017/091439 CN2017091439W WO2018014720A1 WO 2018014720 A1 WO2018014720 A1 WO 2018014720A1 CN 2017091439 W CN2017091439 W CN 2017091439W WO 2018014720 A1 WO2018014720 A1 WO 2018014720A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb core
reflective film
film
vacuum
vacuum adsorption
Prior art date
Application number
PCT/CN2017/091439
Other languages
English (en)
French (fr)
Inventor
康仁科
董志刚
朱祥龙
秦炎
王毅丹
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610585321.1A external-priority patent/CN106017352B/zh
Priority claimed from CN201610585419.7A external-priority patent/CN106017353B/zh
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to JP2019503355A priority Critical patent/JP6733035B2/ja
Priority to US16/319,760 priority patent/US10852129B2/en
Publication of WO2018014720A1 publication Critical patent/WO2018014720A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0002Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured
    • G01B5/0009Guiding surfaces; Arrangements compensating for non-linearity there-of

Definitions

  • the invention relates to a measuring method and device for a workpiece surface shape, in particular to a honeycomb core surface measuring method and a corresponding measuring device.
  • Honeycomb cores are widely used in the aerospace industry and are mainly used to prepare honeycomb sandwich structures.
  • the fabrication process of the honeycomb sandwich structure includes first processing the upper and lower surfaces of the honeycomb core member to the designed complex curved shape, and then bonding it to a pre-formed thin plate (usually a carbon fiber composite plate) having an opposite curved shape. together.
  • the accuracy of the processing of the honeycomb core surface determines the reliability of bonding with the upper and lower sheets, and thus affects the performance of the entire sandwich structure. Therefore, before the bonding after processing, the processing precision of the complex curved surface of the honeycomb core must be tested, and the qualified component can be bonded to form the honeycomb core composite sandwich structural member. Therefore, a reasonable measurement method is needed for detecting the shape accuracy of the complex curved surface after the honeycomb core is processed.
  • the honeycomb core machined surface has discontinuous features.
  • the honeycomb core is a porous thin-walled structure with a honeycomb wall thickness of 0.05 mm-0.1 mm, a wall shape of mostly regular hexagons, a wall length of 2-5 mm, and a honeycomb wall section occupying less than 10% of its total surface area.
  • the continuous feature makes it difficult to measure the shape accuracy of the complex curved surface of the honeycomb core member.
  • Some aerospace manufacturers use the model to detect the shape accuracy of the complex surface of the honeycomb core, that is, to process the metal form opposite to the shape of the designed honeycomb part. The two are closely pressed to examine the degree of fit, thereby judging the honeycomb core surface. Processing accuracy.
  • the biggest drawback of this measurement method is that it is necessary to process a dedicated master for the detection of each shape of the honeycomb core part.
  • the variety of honeycomb core parts in aerospace manufacturing makes the number of masters large and the manufacturing cost very high. At the same time, the accuracy of this method for detecting complex curved surfaces of honeycomb cores is limited.
  • the name is "a method for measuring the flatness of a honeycomb core of a combined frame structure", which uses a high-precision knife-edge ruler and a set of gauge blocks of three or more precision grades, combined with the height difference The calculation method is used to measure the flatness of the honeycomb core.
  • This patent provides a method for measuring the planarity of a honeycomb core as a whole, but does not provide a specific face shape of the honeycomb core material.
  • the present invention is directed to the above problems, and studies a method for measuring a honeycomb core shape.
  • the technical means adopted by the present invention are as follows:
  • a method for measuring a honeycomb core shape includes the following steps:
  • the honeycomb core is fixed on the vacuum adsorption platform by using a double-sided adhesive, and a vacuum adsorption device is used to apply a negative pressure to the honeycomb core covered by the reflective film through the vacuum adsorption platform and the gas permeable double-sided adhesive, and the reflection is reflected.
  • the film is adsorbed on the surface of the honeycomb core.
  • the vacuum adsorption platform is a porous vacuum adsorption platform, such as a porous ceramic suction cup or the like, or a natural porous material such as cork.
  • gas permeable double-sided tape is a double-sided tape provided with a vent hole.
  • step 2 a laser measurement sensor is used for scanning measurement.
  • the reflective film is a PE film, a PVC film or a PVDC film.
  • the invention also provides a honeycomb core shape measuring device matched with the above measuring method, comprising: a laser measuring sensor, a measuring motion system, a reflective film vacuum adsorption system, a reflective film deposition system, and a motion control system for controlling the measuring motion system And a data processing system for processing data measured by the laser measurement sensor;
  • the reflective film is placed on the honeycomb core to be tested by the reflective film deposition system, and the reflective film is vacuum-adsorbed by the reflective film vacuum adsorption system, so that the reflective film is in close contact with the honeycomb core to be measured, and the honeycomb is made
  • the reflective film at the cell is recessed downward; the laser measuring sensor installed in the measuring motion system is controlled by the motion control system to perform three-dimensional scanning on the honeycomb core to obtain the height of the honeycomb wall of the honeycomb core at different spatial positions, and then by the data processing system The face shape of the honeycomb core is obtained.
  • the measurement motion system includes a horizontal two-dimensional motion platform horizontally movable relative to a machine tool table and a vertical translation stage fixed to the horizontal two-dimensional motion platform, the vertical translation stage being provided with the laser measurement sensor;
  • the reflective film vacuum adsorption system comprises a vacuum adsorption platform installed in the working table of the machine tool, and the vacuum adsorption platform is provided with a gas permeable fixing plate, and the gas permeable fixing plate is provided with a gas permeable double-sided surface for bonding and fixing the honeycomb core a glue, the vacuum adsorption platform is connected to the vacuum generating device through the air pipe;
  • the reflective film deposition system includes a film pulling mechanism and a film cutting mechanism;
  • the film pulling mechanism includes a fixing a reflective film storage box on the machine table, a film pulling rod and a transmission device for driving the film rod to move in a horizontal straight line, wherein the film rod is provided with a reflection for placing the film in the reflective film storage box a film pulled out of the clip I, the reflective film storage box is provided with a rotating mandrel for winding the reflective film;
  • the slitting mechanism includes a switch that controls rotation of the rotating mandrel, a rotating shaft, a handle that controls rotation of the rotating shaft, and a blade on the rotating shaft;
  • the switch is opened, and the rotating mandrel is free to rotate when the reflective film is subjected to a pulling force
  • the switch is closed, the rotating mandrel is stuck, cannot rotate, and the reflective film is in a tensioned state.
  • the handle is manipulated to control the rotation of the rotating shaft to move the blade to the reflective film.
  • the reflective film can be cut.
  • the laser measuring sensor In the working state, the laser measuring sensor can move in a horizontal plane and a vertical direction.
  • the horizontal two-dimensional motion platform includes two pillars and a beam on both sides of the machine table, the pillars are disposed along a moving direction of the filming rod, the reflective film storage box, the rotating shaft and the The transmission is connected to the machine table by two of the struts;
  • the beams are respectively connected to the upper ends of the two columns by a carriage, the carriages are slidable along the moving direction of the film rod, and the beam is provided with a movement perpendicular to the film rod a horizontal translation stage that slides in a direction, the horizontal translation stage being provided with the vertical translation stage, the vertical translation stage being coupled to the laser measurement sensor by a fixed plate.
  • the vacuum adsorption platform is a porous vacuum adsorption platform, comprising a plurality of independent working spaces I, and a partition spacer I is arranged between the independent working spaces I to meet the measurement needs of different honeycomb sizes;
  • the material of the ventilating fixing plate is cork or porous ceramic, and the size thereof is consistent with the vacuum adsorption platform, and the ventilating fixing plate comprises a plurality of independent working areas II corresponding to the independent working space I, and the independent working Zones II are provided between the zones II, so that the gas paths between the adjacent independent work zones II are not connected, and the machine workbench is provided with a space for accommodating the vacuum adsorption platform and the gas permeable fixing plate.
  • the space limits the horizontal movement of the vacuum adsorption platform and the gas permeable fixing plate, that is, the vacuum adsorption platform and the gas permeable fixing plate can only be taken out and replaced in the vertical direction.
  • the material of the gas permeable fixing plate is cork or porous ceramic, which utilizes its gas permeable property to make the vacuum suction force of the vacuum adsorption platform more uniform without affecting the vacuum of the honeycomb core, and the gas permeable double-sided Glue fit to secure the honeycomb core.
  • the size of the gas permeable double-sided tape is the same as the size of the fixed end of the honeycomb core, so as to prevent the excess portion from sticking the reflective film and affecting the adsorption of the reflective film by the vacuum adsorption platform;
  • the breathable double-sided tape is a double-sided tape with micropores, and the gas permeability does not affect the vacuum when measured Adsorption of the reflective film by the adsorption platform.
  • the vacuum generating device is a vacuum generator or a vacuum pump, and the vacuum generating device is further provided with a vacuum degree control mechanism.
  • the transmission is a pulley drive or a sprocket drive.
  • the pulley transmission device comprises two belts and a driving pulley and a driven pulley matched with the belt, wherein the driving pulley is provided with a pulley motor, and two ends of the pulling rod are respectively The belt is fixedly connected.
  • the sprocket transmission device comprises two chains and a driving sprocket and a driven sprocket matched with the chain, wherein the driving sprocket is provided with a sprocket motor, and two ends of the pulling rod are respectively The strips are fixedly connected.
  • the clip 1 pulls the reflective film out of the reflective film storage case by a clip II located on the free end of the reflective film, the clip II for increasing the reflective film by the clip I
  • the area to be occupied is to reduce the difficulty in the operation of the clip I directly sandwiching the reflective film.
  • the material of the junction of the clip II and the reflective film is a soft material such as rubber or the like to reduce the stress received by the reflective film during being pulled, and the clip I can be manually adjusted.
  • the clip II is detachably coupled to the reflective film at a position on the pull tab.
  • the blade is a serrated blade.
  • the reflective film is a reflective film which has good reflectivity to the laser light and has a stiffness which satisfies downward at the honeycomb cell under vacuum adsorption and is not easily broken.
  • the reflective film is still applicable when measuring a curved surface having a large curvature, and even a slight wrinkle can be removed by post-processing.
  • the reflective film is a PE film, a PVC film or a PVDC film.
  • the present invention has the following beneficial effects:
  • the invention can select a high-precision laser measuring sensor, and has higher precision than the current method for detecting the accuracy of the honeycomb surface shape by the mode.
  • the invention has the advantages of convenient operation, and after scanning and absorbing the honeycomb core, the laser measuring sensor is scanned, and the shape of the honeycomb core can be obtained through the data processing system, and the measuring efficiency is high.
  • the measurement of the honeycomb core of the invention is not limited by the shape of the honeycomb core shape, and can be adapted to Measurement of the plane, bevel, curved surface, etc. of the honeycomb core.
  • the invention not only can obtain the three-dimensional height profile information of the honeycomb core, but also obtain the cell information of the honeycomb core, and can analyze the cell deformation of the honeycomb core.
  • the method of the invention can be applied in a honeycomb core processing device to directly measure the surface shape of the honeycomb core after processing.
  • FIG. 1 is a schematic view showing a measurement state of a honeycomb core shape according to an embodiment of the present invention.
  • Fig. 2 is a schematic view showing the space structure of a honeycomb core shape measuring apparatus in Embodiment 1 of the present invention.
  • Fig. 3 is a view showing the spatial structure of another angle of a honeycomb core shape measuring device in Embodiment 1 of the present invention.
  • Figure 4 is a schematic view showing the structure of a vacuum film adsorption system of a reflective film in Embodiment 1 of the present invention.
  • Fig. 5 is a schematic view showing a state in which a reflection film is pulled out in Embodiment 1 of the present invention.
  • a method for measuring a honeycomb core shape includes the following steps:
  • the measured data will show a peak at the honeycomb wall, and the measured value minus the thickness of the reflective film 21 is the height of the honeycomb wall there.
  • step 1 the honeycomb core 22 is fixed on the cork 8 by using the gas permeable double-sided tape 23, and the air permeability of the cork 8 is absorbed by the vacuum adsorption device 24 through the softwood 8 and the gas permeable double-sided tape 23, and the gas permeable double-sided tape is adsorbed.
  • 23 is a double-sided adhesive with venting micropores, which ensures that the honeycomb core 22 can be fixed by double-sided adhesive during processing.
  • the gas permeability of the vacuum adsorption device 24 does not affect the adsorption of the film 21 during the measurement, so as to achieve Bit measurement.
  • the honeycomb core 22 is bonded to the cork 8 by the gas permeable double-sided tape 23, and the cork 8 is fixed on the vacuum adsorption device 24, and the selected film 21 is laid on the surface of the honeycomb core 22, and the effect of vacuum adsorption is utilized.
  • the film 21 is brought into close contact with the surface of the honeycomb core 22.
  • step 2 the laser measurement sensor 11 is used for scanning measurement, and the laser measurement sensor 11 is controlled by the three-axis motion mechanism of the measurement device, and the honeycomb material is scanned according to a prescribed path, and the result of the sensor measurement is combined according to the motion track of the laser measurement sensor 11.
  • you can The height of the honeycomb wall of the honeycomb material at different spatial positions is obtained, so that the planar measurement of the plane, the slope and the curved surface of the honeycomb core can be realized.
  • the incident laser light should be along the height of the honeycomb wall of the honeycomb core 22. .
  • the film 21 should have a high reflectance to the laser, and the stiffness satisfies the vacuum absorbing effect, and can be recessed downward at the honeycomb cell, and is not easily broken during use.
  • the reflective film 21 is a PE film. PVC film or PVDC film.
  • the vacuum adsorption device 24 and the cork 8 are located in a machine table 1, and the vacuum adsorption device 24 is in communication with a vacuum generating device 26 via a gas pipe 25.
  • a honeycomb core shape measuring device comprises: a laser measuring sensor 11, a measuring motion system, a reflective film vacuum adsorption system, a reflective film deposition system, and a motion control for controlling the measuring motion system. a system and a data processing system for processing data measured by the laser measurement sensor;
  • the measurement motion system includes a horizontal two-dimensional motion platform horizontally movable relative to a machine tool table and a vertical translation stage 13 fixed to the horizontal two-dimensional motion platform, the vertical translation stage 13 being provided with the Laser measuring sensor 11;
  • the reflective film vacuum adsorption system includes a vacuum adsorption platform 24 mounted in the machine tool table 1.
  • the vacuum adsorption platform 24 is provided with a gas permeable fixing plate 8 on which the fixed honeycomb is attached. a gas permeable double-sided tape 23 of the core 22, the vacuum adsorption platform 24 being in communication with the vacuum generating device 26 through the gas pipe 25;
  • the reflective film deposition system includes a film pulling mechanism and a film cutting mechanism;
  • the film pulling mechanism includes a reflective film storage box 3 fixed on the machine table 1, a film pulling rod 6 and a driving film rod 6 a transmission device that moves linearly in a horizontal direction, and the pull-up rod 6 is provided with a clip I7 for pulling out the reflective film 21 located in the reflective film storage case 3, and the reflective film storage case 3 is provided for winding a rotating mandrel of the reflective film 21;
  • the slitting mechanism includes a switch 17 for controlling the rotation of the rotating mandrel, a rotating shaft 5, a handle 16 for controlling the rotation of the rotating shaft 5, and a blade 4 on the rotating shaft 5;
  • the horizontal two-dimensional motion platform includes two pillars 2 and a beam 10 on both sides of the machine table 1, and the pillars 2 are disposed along the moving direction of the filming rod 6, the reflective film storage box 3,
  • the rotating shaft 5 and the transmission device are connected to the machine table 1 by two of the pillars 2;
  • the beam 10 is respectively connected to the upper ends of the two pillars 2 via a carriage 9, and the carriage 9 can be Sliding along the moving direction of the film pulling rod 6, the beam 10 is provided with a horizontal translation stage 14 slidable in a direction perpendicular to the moving direction of the film rod 6, and the horizontal translation stage 14 is provided with the A vertical translation stage 13 is connected to the laser measuring sensor 11 via a fixing plate 12.
  • the laser measuring sensor 11 is movable in a horizontal plane and a vertical direction, that is, the vertical translation stage 13 can slide on the horizontal translation stage 14, thereby realizing the laser measuring sensor 11 along the Z-axis direction. exercise.
  • the horizontal translation stage 14 realizes the movement of the laser measuring sensor 11 in the X-axis direction by sliding on the beam 10, and realizes sliding on the two of the pillars 2 by the carriages 9 on both sides.
  • the laser measuring sensor 11 is moved in the Y-axis direction.
  • the vacuum adsorption platform 24 is a porous vacuum adsorption platform, comprising a plurality of independent working spaces I, between the independent working spaces I are provided with partition spacers I;
  • the material of the ventilating fixing plate 8 is cork, and the size thereof is consistent with the vacuum adsorption platform 24, and the ventilating fixing plate 8 includes a plurality of independent working areas II corresponding to the independent working space I, and the independent working A partition spacer II is provided between the zones II, and the machine table 1 is provided with a space for accommodating the vacuum suction platform 24 and the gas permeable fixing plate 8.
  • the reflective film 21 should be covered by the independent working area II where the honeycomb core 22 is located.
  • the specific form can be referred to the part A of FIG.
  • the size of the gas permeable double-sided tape 23 is the same as the size of the fixed end of the honeycomb core 22.
  • the gas permeable double-sided tape 23 is a double-sided tape with micropores.
  • the vacuum generating device 26 is a vacuum generator or a vacuum pump, and the vacuum generating device 26 is further provided with a vacuum degree control mechanism.
  • the transmission is a pulley drive.
  • the pulley transmission includes two belts 18 and a drive pulley 19 and a driven pulley that are matched with the belt 18, and the drive pulley 19 is coupled to a pulley motor 15 via a drive shaft I20, the pull rod Both ends of the 6 are fixedly connected to the two belts 18, respectively.
  • the forward and reverse rotation of the pulley motor 15 causes the driving shaft I20 to drive the belt 18 to move, thereby driving the pulling rod 6 to move, and the pulley motor can be set according to the range of motion of the pulling rod 6 The range of rotation of 15.
  • the clip I7 pulls the reflective film 21 out of the reflective film storage case 3 through a clip II27 located on the free end of the reflective film 21, where the clip II27 is connected to the reflective film 21 Made of rubber.
  • the blade 4 is a sawtooth blade.
  • the reflective film 21 is a PE film.
  • a honeycomb core shape measuring device is distinguished from a honeycomb core shape measuring device described in Embodiment 1 in that the transmission device is a sprocket transmission device.
  • the sprocket transmission includes two chains and a driving sprocket and a driven sprocket matched with the chain, the driving sprocket being connected to the sprocket motor through a driving shaft II, two of the pulling rods 6 The ends are fixedly connected to the two said chains, respectively.
  • the forward and reverse rotation of the sprocket motor causes the drive shaft II to move the chain, thereby driving the pull rod 6 to move, and the sprocket motor can be set according to the range of motion of the pull rod 6 The range of rotation.
  • the reflective film 21 is a PVC film.
  • the material of the gas permeable fixing plate 8 is porous ceramic.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Nonlinear Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种蜂窝芯(22)面形的测量方法及装置,该方法包括如下步骤:在蜂窝芯(22)待测面覆上反射薄膜(21),采用真空吸附的方式使反射薄膜(21)紧贴蜂窝芯(22)待测面,且使蜂窝孔格处的反射薄膜(21)向下凹陷;对蜂窝芯(22)待测面上的反射薄膜(21)进行扫描测量,获得蜂窝芯(22)在不同空间位置的蜂窝壁高度。该方法和装置具有测量精度高、使用成本低、测量效率高、适用性好、获取信息丰富和可以实现在位测量的优点。

Description

一种蜂窝芯面形的测量方法及装置 技术领域
本发明涉及一种工件面形的测量方法及装置,具体涉及一种蜂窝芯面形的测量方法及相应测量装置。
背景技术
蜂窝芯在航空航天领域中的应用非常广泛,主要用于制备蜂窝夹层结构。蜂窝夹层结构的制作过程包括:首先将蜂窝芯构件上下表面加工至所设计的复杂曲面形状,再将其与预先成型的具有相反曲面形状的一层薄板(通常为碳纤维复合材料板)粘接在一起。蜂窝芯曲面加工精度的好坏,决定了其与上下薄板的粘接可靠性、进而影响整个夹层结构的性能。因此在加工后粘接前,必须对蜂窝芯复杂曲面的加工精度进行检测,检测合格的构件才能粘接薄板构成蜂窝芯复合材料夹层结构构件。因此需要一种合理的测量方法,用于检测蜂窝芯加工后的复杂曲面形状精度。
蜂窝芯加工表面具有非连续特征。蜂窝芯是一种多孔薄壁结构,蜂窝壁厚0.05mm-0.1mm,壁形状多为正六边形,壁边长2-5mm,蜂窝壁截面占其总表面积的比例小于10%,这种非连续特征导致蜂窝芯构件复杂曲面形状精度的测量困难。
一些航空航天制造企业采用靠模的办法检测蜂窝芯复杂曲面的形状精度,即加工与所设计蜂窝零件曲面形状相反的金属靠模,二者靠紧后检视其贴合程度,从而判断蜂窝芯曲面的加工精度。这种测量方法最大的弊端在于,必须针对每一种形状蜂窝芯零件的检测加工专用的靠模。而航空航天制造中蜂窝芯零件的种类繁多,使得靠模的数量巨大,制造成本非常高。同时这种方法检测蜂窝芯复杂曲面的精度也有限。
在专利申请号为201310485345.6,名称为“一种组合框架结构蜂窝芯平面度的测量方法”的专利中,其利用高精度的刀口尺和成套的三等或以上精度等级的量块,结合高度差的计算方法,进行蜂窝芯的平面度测量。该专利提供了整体上测量蜂窝芯平面度的方法,但不能获得蜂窝芯材料的具体面形。
发明内容
本发明针对以上问题的提出,而研究设计一种蜂窝芯面形的测量方法。本发明采用的技术手段如下:
一种蜂窝芯面形的测量方法,包括如下步骤:
①在蜂窝芯待测面上附上反射薄膜,采用真空吸附的方式使所述反射薄膜紧贴蜂窝芯待测面,且使蜂窝孔格处的反射薄膜向下凹陷;
②对蜂窝芯待测面上的反射薄膜进行扫描测量,获得蜂窝芯在不同空间位置的蜂窝壁高度。
进一步地,步骤①中,使用透气双面胶将蜂窝芯固定在真空吸附平台上,用真空吸附装置透过真空吸附平台和透气双面胶于反射薄膜覆盖的蜂窝芯内施加负压,将反射薄膜吸附在蜂窝芯表面。所述真空吸附平台为多孔式真空吸附平台,如多孔陶瓷吸盘等多孔材料,也可为软木等天然多孔材料。
进一步地,所述透气双面胶为设有透气孔的双面胶。
进一步地,步骤②中,使用激光测量传感器进行扫描测量。
进一步地,所述反射薄膜为PE膜、PVC膜或PVDC膜。
本发明还提供一种配合上述测量方法的蜂窝芯面形测量装置,包括:激光测量传感器、测量运动系统、反射膜真空吸附系统、反射膜铺放系统、控制所述测量运动系统的运动控制系统和处理所述激光测量传感器测量的数据的数据处理系统;
由所述反射膜铺放系统在蜂窝芯待测面覆上反射薄膜,由所述反射膜真空吸附系统对反射膜进行真空吸附,使所述反射薄膜紧贴蜂窝芯待测面,且使蜂窝孔格处的反射薄膜向下凹陷;通过运动控制系统控制安装在测量运动系统中的激光测量传感器,对蜂窝芯进行三维扫描,获得蜂窝芯在不同空间位置的蜂窝壁高度,再由数据处理系统获得蜂窝芯的面形。
所述测量运动系统包括能相对于机床工作台水平运动的水平二维运动平台和固定在所述水平二维运动平台上的竖直平移台,所述竖直平移台上设有所述激光测量传感器;
所述反射膜真空吸附系统包括安装在所述机床工作台内的真空吸附平台,所述真空吸附平台上设有透气固定板,所述透气固定板上设有用于粘贴固定蜂窝芯的透气双面胶,所述真空吸附平台通过气管与真空发生装置连通;
所述反射膜铺放系统包括拉膜机构和切膜机构;所述拉膜机构包括固定在 所述机床工作台上的反射膜存放盒、拉膜杆和驱动所述拉膜杆沿水平直线运动的传动装置,所述拉膜杆上设有用于将位于所述反射膜存放盒内的反射膜拉出的夹子Ⅰ,所述反射膜存放盒内设有用于缠绕所述反射膜的旋转芯轴;
所述切膜机构包括控制所述旋转芯轴旋转的开关,旋转轴,控制所述旋转轴旋转的手柄和位于所述旋转轴上的刀片;
所述开关打开,在所述反射膜受到拉力时,所述旋转芯轴可自由旋转;
所述开关闭合,所述旋转芯轴被卡住,不能旋转,反射膜处于张紧的状态,此时操纵所述手柄来控制所述旋转轴旋转,使所述刀片运动到所述反射膜上,即可将反射膜切断。
工作状态下,所述激光测量传感器可沿水平面和竖直方向运动。
所述水平二维运动平台包括位于所述机床工作台两侧的两个支柱和横梁,所述支柱沿所述拉膜杆的运动方向设置,所述反射膜存放盒、所述旋转轴和所述传动装置通过两个所述支柱与所述机床工作台连接;
所述横梁分别通过滑架与两个所述支柱的上端连接,所述滑架可沿所述拉膜杆的运动方向滑动,所述横梁上设有可沿垂直于所述拉膜杆的运动方向滑动的水平平移台,所述水平平移台上设有所述竖直平移台,所述竖直平移台通过固定板与所述激光测量传感器连接。
所述真空吸附平台为多孔式真空吸附平台,包括多个独立工作空间Ⅰ,所述独立工作空间Ⅰ之间设有分区隔条Ⅰ,以适应不同蜂窝尺寸的测量需要;
所述透气固定板的材质为软木或多孔陶瓷,其尺寸与所述真空吸附平台一致,所述透气固定板包括多个与所述独立工作空间Ⅰ相对应的独立工作区Ⅱ,所述独立工作区Ⅱ之间设有分区隔条Ⅱ,使得相邻所述独立工作区Ⅱ之间气路不能连通,所述机床工作台内设有容纳所述真空吸附平台和所述透气固定板的空间,所述空间限制所述真空吸附平台和所述透气固定板的水平移动,即所述真空吸附平台和所述透气固定板只能沿竖直方向取出、更换。
所述透气固定板的材质为软木或多孔陶瓷,是利用其透气特性,在不影响所述蜂窝芯排真空情况下,使得所述真空吸附平台的真空吸力更均匀,并与所述透气双面胶配合,用来固定蜂窝芯。
所述透气双面胶的尺寸与所述蜂窝芯的固定端大小一致,以防多出的部分将所述反射膜粘住,影响所述真空吸附平台对所述反射膜的吸附;
所述透气双面胶为带有微孔的双面胶,在测量时其透气性不影响所述真空 吸附平台对所述反射膜的吸附作用。
所述真空发生装置为真空发生器或真空泵,所述真空发生装置上还设有真空度控制机构。
所述传动装置为皮带轮传动装置或链轮传动装置。
所述皮带轮传动装置包括两条皮带以及与所述皮带相匹配的主动带轮和从动带轮,所述主动带轮上设有皮带轮电机,所述拉膜杆的两端分别与两条所述皮带固定连接。
所述链轮传动装置包括两条链以及与所述链相匹配的主动链轮和从动链轮,所述主动链轮上设有链轮电机,所述拉膜杆的两端分别与两条所述链固定连接。
所述夹子Ⅰ通过位于所述反射膜的自由端上的夹子Ⅱ将所述反射膜从所述反射膜存放盒内拉出,所述夹子Ⅱ用于增加所述反射膜被所述夹子Ⅰ夹住的面积,以降低所述夹子Ⅰ直接夹所述反射膜不易拉平的操作难度。
所述夹子Ⅱ与所述反射膜的连接处的材质为质地较软的材料,如橡胶等,以降低所述反射膜在被拉动的过程中所受到的应力,所述夹子Ⅰ可手动调整其在所述拉膜杆上的位置,所述夹子Ⅱ与所述反射膜可拆连接。
所述刀片为锯齿刀片。
所述反射膜为对激光有良好反射性,刚度满足在真空吸附作用下,在蜂窝孔格处能向下凹陷,且不易破损的反射膜。所述反射膜在测量曲率较大的曲面时,仍然适用,即使出现微小的褶皱也可以通过后期数据处理去除。
所述反射膜为PE膜、PVC膜或PVDC膜。
与现有技术相比,本发明具有以下有益效果:
1.测量精度高。本发明可以选用高精度的激光测量传感器,与目前靠模方式检测蜂窝面形精度的方法相比,精度高。
2.使用成本低。目前一些航空航天公司采用的靠模方法,需要对每一种形状蜂窝芯零件的检测加工制作专用的靠模,而航空航天制造中蜂窝芯零件的种类繁多,使得靠模的数量巨大,制造成本高。本发明可以满足对不同种类蜂窝芯的测量,降低了使用成本。
3.测量效率高。本发明操作方便,对蜂窝芯进行铺膜吸膜操作后,进行激光测量传感器扫描,经过数据处理系统,即可获得蜂窝芯的面形,测量效率高。
4.适用性好。本发明对蜂窝芯的测量不受蜂窝芯面形的限制,能够适应对 蜂窝芯的平面、斜面、曲面等的测量。
5.获取信息丰富。本发明不仅能够获得蜂窝芯的三维高度面形信息,还能获得蜂窝芯的孔格信息,能够分析蜂窝芯的孔格变形。
6.可以实现在位测量。本发明方法可以应用在蜂窝芯加工设备中,实现蜂窝芯加工后直接对其面形的测量。
附图说明
图1是本发明实施例所述蜂窝芯面形的测量状态示意图。
图2是本发明的实施例1中一种蜂窝芯面形测量装置的空间结构示意图。
图3是本发明的实施例1中一种蜂窝芯面形测量装置另一角度的空间结构示意图。
图4是本发明的实施例1中反射膜真空吸附系统的结构示意图。
图5是本发明的实施例1中反射膜拉出时的示意图。
具体实施方式
实施例1
如图1所示,一种蜂窝芯面形的测量方法,包括如下步骤:
①在蜂窝芯22待测面上附上反射薄膜21,采用真空吸附的方式使所述反射薄膜21紧贴蜂窝芯22待测面,且使蜂窝孔格处的反射薄膜21向下凹陷,因此所测得的数据会在蜂窝壁处出现峰值,该测量值减去反射薄膜21的厚度就是该处蜂窝壁高度。
②对蜂窝芯22待测面上的反射薄膜21进行扫描测量,获得蜂窝芯22在不同空间位置的蜂窝壁高度。
步骤①中,使用透气双面胶23将蜂窝芯22固定在软木8上,利用软木8的透气性用真空吸附装置24透过软木8和透气双面胶23进行吸附,所述透气双面胶23为设有透气微孔的双面胶,保证在加工时可依靠双面胶来对蜂窝芯22固定,在测量时其透气性不影响真空吸附装置24对薄膜21的吸附作用,以实现在位测量。测量时,蜂窝芯22通过透气双面胶23粘接在软木8上,再将软木8固定在真空吸附装置24上,将所选用的薄膜21平铺在蜂窝芯22表面,利用真空吸附的作用使薄膜21紧贴蜂窝芯22表面。
步骤②中,使用激光测量传感器11进行扫描测量,借助测量装置的三轴运动机构控制激光测量传感器11,按照规定路径对蜂窝材料进行扫描,根据激光测量传感器11的运动轨迹,结合传感器测量的结果,经过后期数据处理,可以 获得蜂窝材料在不同空间位置的蜂窝壁高度,因此可以实现对蜂窝芯的平面、斜面以及曲面的面形测量,为了得到测量最佳效果,应该使入射激光沿着蜂窝芯22的蜂窝壁高度方向。
所述的薄膜21,应对激光有良高的反射率,刚度满足在真空吸附作用下,在蜂窝孔格处能向下凹陷,并且在使用过程中不易破损,所述反射薄膜21为PE膜、PVC膜或PVDC膜。
所述真空吸附装置24和所述软木8位于机床工作台1内,所述真空吸附装置24通过气管25与真空发生装置26连通。
实施例2
如图1-图5所示,一种蜂窝芯面形测量装置,包括:激光测量传感器11、测量运动系统、反射膜真空吸附系统、反射膜铺放系统、控制所述测量运动系统的运动控制系统和处理所述激光测量传感器测量的数据的数据处理系统;
所述测量运动系统包括能相对于机床工作台水平运动的水平二维运动平台和固定在所述水平二维运动平台上的竖直平移台13,所述竖直平移台13上设有所述激光测量传感器11;
所述反射膜真空吸附系统包括安装在所述机床工作台1内的真空吸附平台24,所述真空吸附平台24上设有透气固定板8,所述透气固定板8上设有用于粘贴固定蜂窝芯22的透气双面胶23,所述真空吸附平台24通过气管25与真空发生装置26连通;
所述反射膜铺放系统包括拉膜机构和切膜机构;所述拉膜机构包括固定在所述机床工作台1上的反射膜存放盒3、拉膜杆6和驱动所述拉膜杆6沿水平直线运动的传动装置,所述拉膜杆6上设有用于将位于所述反射膜存放盒3内的反射膜21拉出的夹子Ⅰ7,所述反射膜存放盒3内设有用于缠绕所述反射膜21的旋转芯轴;
所述切膜机构包括控制所述旋转芯轴旋转的开关17,旋转轴5,控制所述旋转轴5旋转的手柄16和位于所述旋转轴5上的刀片4;
所述水平二维运动平台包括位于所述机床工作台1两侧的两个支柱2和横梁10,所述支柱2沿所述拉膜杆6的运动方向设置,所述反射膜存放盒3、所述旋转轴5和所述传动装置通过两个所述支柱2与所述机床工作台1连接;
所述横梁10分别通过滑架9与两个所述支柱2的上端连接,所述滑架9可 沿所述拉膜杆6的运动方向滑动,所述横梁10上设有可沿垂直于所述拉膜杆6的运动方向滑动的水平平移台14,所述水平平移台14上设有所述竖直平移台13,所述竖直平移台13通过固定板12与所述激光测量传感器11连接。
工作状态下,所述激光测量传感器11可沿水平面和竖直方向运动,即所述竖直平移台13可以在所述水平平移台14上滑动,从而实现所述激光测量传感器11沿Z轴方向的运动。所述水平平移台14通过在所述横梁10上的滑动,实现所述激光测量传感器11沿X轴方向运动,通过两侧所述滑架9在两个所述支柱2上的滑动,实现所述激光测量传感器11沿Y轴方向运动。
所述真空吸附平台24为多孔式真空吸附平台,包括多个独立工作空间Ⅰ,所述独立工作空间Ⅰ之间设有分区隔条Ⅰ;
所述透气固定板8的材质为软木,其尺寸与所述真空吸附平台24一致,所述透气固定板8包括多个与所述独立工作空间Ⅰ相对应的独立工作区Ⅱ,所述独立工作区Ⅱ之间设有分区隔条Ⅱ,所述机床工作台1内设有容纳所述真空吸附平台24和所述透气固定板8的空间。
在覆膜时,应使所述反射膜21覆盖住所述蜂窝芯22所在的所述独立工作区Ⅱ,具体形式可参考图3中A部分所示。
所述透气双面胶23的尺寸与所述蜂窝芯22的固定端大小一致,所述透气双面胶23为带有微孔的双面胶。
所述真空发生装置26为真空发生器或真空泵,所述真空发生装置26上还设有真空度控制机构。
所述传动装置为皮带轮传动装置。
所述皮带轮传动装置包括两条皮带18以及与所述皮带18相匹配的主动带轮19和从动带轮,所述主动带轮19通过驱动轴Ⅰ20与皮带轮电机15连接,所述拉膜杆6的两端分别与两条所述皮带18固定连接。
所述皮带轮电机15正转和反转使所述驱动轴Ⅰ20带动所述皮带18运动,进而带动所述拉膜杆6运动,根据所述拉膜杆6的运动范围,可设置所述皮带轮电机15的转动范围。
所述夹子Ⅰ7通过位于所述反射膜21的自由端上的夹子Ⅱ27将所述反射膜21从所述反射膜存放盒3内拉出,所述夹子Ⅱ27与所述反射膜21的连接处的材质为橡胶。
所述刀片4为锯齿刀片。
所述反射膜21为PE膜。
实施例3
一种蜂窝芯面形测量装置,其与实施例1中所述的一种蜂窝芯面形测量装置得区别特征在于:所述传动装置为链轮传动装置。
所述链轮传动装置包括两条链以及与所述链相匹配的主动链轮和从动链轮,所述主动链轮通过驱动轴Ⅱ与链轮电机连接,所述拉膜杆6的两端分别与两条所述链固定连接。
所述链轮电机正转和反转使所述驱动轴Ⅱ带动所述链运动,进而带动所述拉膜杆6运动,根据所述拉膜杆6的运动范围,可设置所述链轮电机的转动范围。
所述反射膜21为PVC膜。
所述透气固定板8的材质为多孔陶瓷。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (13)

  1. 一种蜂窝芯面形的测量方法,其特征在于:包括如下步骤:
    ①在蜂窝芯待测面覆上反射薄膜,采用真空吸附的方式使所述反射薄膜紧贴蜂窝芯待测面,且使蜂窝孔格处的反射薄膜向下凹陷;
    ②对蜂窝芯待测面上的反射薄膜进行扫描测量,获得蜂窝芯在不同空间位置的蜂窝壁高度。
  2. 根据权利要求1所述的一种蜂窝芯面形的测量方法,其特征在于:步骤①中,使用透气双面胶将蜂窝芯固定在真空吸附平台上,用真空吸附装置透过真空吸附平台和透气双面胶于反射薄膜覆盖的蜂窝芯内施加负压,将反射薄膜吸附在蜂窝芯表面。
  3. 根据权利要求1所述的一种蜂窝芯面形的测量方法,其特征在于:步骤②中,使用激光位移传感器进行扫描测量。
  4. 一种应用权利要求1-3任一项测量方法的蜂窝芯面形测量装置,包括:激光位移传感器、测量运动系统、反射膜真空吸附系统、反射膜铺放系统、控制所述测量运动系统的运动控制系统和处理所述激光测量传感器测量的数据的数据处理系统;
    其特征在于:所述测量运动系统包括能相对于机床工作台水平运动的水平二维运动平台和固定在所述水平二维运动平台上的竖直平移台,所述竖直平移台上设有所述激光测量传感器;
    所述反射膜真空吸附系统包括安装在所述机床工作台内的真空吸附平台,所述真空吸附平台上设有透气固定板,所述透气固定板上设有用于粘贴固定蜂窝芯的透气双面胶,所述真空吸附平台通过气管与真空发生装置连通;
    所述反射膜铺放系统包括拉膜机构和切膜机构;所述拉膜机构包括固定在所述机床工作台上的反射膜存放盒、拉膜杆和驱动所述拉膜杆沿水平直线运动的传动装置,所述拉膜杆上设有用于将位于所述反射膜存放盒内的反射膜拉出的夹子Ⅰ,所述反射膜存放盒内设有用于缠绕所述反射膜的旋转芯轴;
    所述切膜机构包括控制所述旋转芯轴旋转的开关,旋转轴,控制所述旋转轴旋转的手柄和位于所述旋转轴上的刀片;
    工作状态下,所述激光测量传感器可沿水平面和竖直方向运动。
  5. 根据权利要求4所述的蜂窝芯面形测量装置,其特征在于:所述水平二 维运动平台包括位于所述机床工作台两侧的两个支柱和横梁,所述支柱沿所述拉膜杆的运动方向设置,所述反射膜存放盒、所述旋转轴和所述传动装置通过两个所述支柱与所述机床工作台连接;
    所述横梁分别通过滑架与两个所述支柱的上端连接,所述滑架可沿所述拉膜杆的运动方向滑动,所述横梁上设有可沿垂直于所述拉膜杆的运动方向滑动的水平平移台,所述水平平移台上设有所述竖直平移台,所述竖直平移台通过固定板与所述激光测量传感器连接。
  6. 根据权利要求4所述的蜂窝芯面形测量装置,其特征在于:所述真空吸附平台为多孔式真空吸附平台,包括多个独立工作空间Ⅰ,所述独立工作空间Ⅰ之间设有分区隔条Ⅰ;
    所述透气固定板的材质为软木或多孔陶瓷,其尺寸与所述真空吸附平台一致,所述透气固定板包括多个与所述独立工作空间Ⅰ相对应的独立工作区Ⅱ,所述独立工作区Ⅱ之间设有分区隔条Ⅱ,所述机床工作台内设有容纳所述真空吸附平台和所述透气固定板的空间。
  7. 根据权利要求4所述的蜂窝芯面形测量装置,其特征在于:所述透气双面胶的尺寸与所述蜂窝芯的固定端大小一致。
  8. 根据权利要求4所述的蜂窝芯面形测量装置,其特征在于:所述真空发生装置为真空发生器或真空泵,所述真空发生装置上还设有真空度控制机构。
  9. 根据权利要求4或5所述的蜂窝芯面形测量装置,其特征在于:所述传动装置为皮带轮传动装置或链轮传动装置。
  10. 根据权利要求4所述的蜂窝芯面形测量装置,其特征在于:所述夹子Ⅰ通过位于所述反射膜的自由端上的夹子Ⅱ将所述反射膜从所述反射膜存放盒内拉出,所述夹子Ⅱ与所述反射膜的连接处的材质为质地较软的材料。
  11. 根据权利要求4所述的一种蜂窝芯面形测量装置,其特征在于:所述刀片为锯齿刀片。
  12. 根据权利要求4所述的蜂窝芯面形测量装置,其特征在于:所述反射膜为对激光有良好反射性,刚度满足在真空吸附作用下,在蜂窝孔格处能向下凹陷,且不易破损的反射膜。
  13. 根据权利要求12所述的蜂窝芯面形测量装置,其特征在于:所述反射膜为PE膜、PVC膜或PVDC膜。
PCT/CN2017/091439 2016-07-22 2017-07-03 一种蜂窝芯面形的测量方法及装置 WO2018014720A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019503355A JP6733035B2 (ja) 2016-07-22 2017-07-03 ハニカムコアの表面形状の測定装置
US16/319,760 US10852129B2 (en) 2016-07-22 2017-07-03 Method and device for measuring surface shape of honeycomb core

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610585419.7 2016-07-22
CN201610585321.1A CN106017352B (zh) 2016-07-22 2016-07-22 一种蜂窝芯面形的测量方法
CN201610585419.7A CN106017353B (zh) 2016-07-22 2016-07-22 一种蜂窝芯面形测量装置
CN201610585321.1 2016-07-22

Publications (1)

Publication Number Publication Date
WO2018014720A1 true WO2018014720A1 (zh) 2018-01-25

Family

ID=60992968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091439 WO2018014720A1 (zh) 2016-07-22 2017-07-03 一种蜂窝芯面形的测量方法及装置

Country Status (3)

Country Link
US (1) US10852129B2 (zh)
JP (1) JP6733035B2 (zh)
WO (1) WO2018014720A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110232388A (zh) * 2019-06-11 2019-09-13 大连理工大学 一种从蜂窝芯表面测量数据中识别蜂窝边的方法
CN114623770A (zh) * 2021-04-12 2022-06-14 江苏丽多智能科技有限公司 一种封装后芯片尺寸自动快速测量设备
CN117308809A (zh) * 2023-11-28 2023-12-29 洛阳储变电系统有限公司 一种软包电池封后鼓包检测装置
CN117647210A (zh) * 2024-01-29 2024-03-05 成都飞机工业(集团)有限责任公司 一种蜂窝芯构件复杂型面轮廓的检测方法
CN117647210B (zh) * 2024-01-29 2024-05-14 成都飞机工业(集团)有限责任公司 一种蜂窝芯构件复杂型面轮廓的检测方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112763486B (zh) * 2020-11-30 2022-05-10 成都飞机工业(集团)有限责任公司 一种基于线激光扫描的复材壁板阵列孔检测方法
CN114894430B (zh) * 2022-07-13 2022-09-30 中国航空工业集团公司沈阳空气动力研究所 一种风洞蜂窝器的安装精度测量方法
CN117553712B (zh) * 2023-12-29 2024-04-19 江苏广亚建设集团有限公司 一种桥梁钢模板平整度检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174608A (ja) * 1986-01-28 1987-07-31 Hitachi Ltd パタ−ン検出装置
CN101326435A (zh) * 2005-12-12 2008-12-17 康宁股份有限公司 用于探测蜂窝结构中的缺陷的准直光方法和系统
US20090009774A1 (en) * 2004-11-30 2009-01-08 Oy Mapvision Ltd. Method And System For Optical Measurement Of The Shape Of An Article
CN104330051A (zh) * 2014-11-05 2015-02-04 上海大学 大口径光学元件中低频面形快速检测装置和方法
CN204747780U (zh) * 2015-04-23 2015-11-11 深圳光韵达激光应用技术有限公司 一种用于激光切割设备的陶瓷吸附平台
CN106017353A (zh) * 2016-07-22 2016-10-12 大连理工大学 一种蜂窝芯面形测量装置
CN106017352A (zh) * 2016-07-22 2016-10-12 大连理工大学 一种蜂窝芯面形的测量方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174608A (ja) * 1986-01-28 1987-07-31 Hitachi Ltd パタ−ン検出装置
US20090009774A1 (en) * 2004-11-30 2009-01-08 Oy Mapvision Ltd. Method And System For Optical Measurement Of The Shape Of An Article
CN101326435A (zh) * 2005-12-12 2008-12-17 康宁股份有限公司 用于探测蜂窝结构中的缺陷的准直光方法和系统
CN104330051A (zh) * 2014-11-05 2015-02-04 上海大学 大口径光学元件中低频面形快速检测装置和方法
CN204747780U (zh) * 2015-04-23 2015-11-11 深圳光韵达激光应用技术有限公司 一种用于激光切割设备的陶瓷吸附平台
CN106017353A (zh) * 2016-07-22 2016-10-12 大连理工大学 一种蜂窝芯面形测量装置
CN106017352A (zh) * 2016-07-22 2016-10-12 大连理工大学 一种蜂窝芯面形的测量方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110232388A (zh) * 2019-06-11 2019-09-13 大连理工大学 一种从蜂窝芯表面测量数据中识别蜂窝边的方法
CN110232388B (zh) * 2019-06-11 2023-01-17 大连理工大学 一种从蜂窝芯表面测量数据中识别蜂窝边的方法
CN114623770A (zh) * 2021-04-12 2022-06-14 江苏丽多智能科技有限公司 一种封装后芯片尺寸自动快速测量设备
CN117308809A (zh) * 2023-11-28 2023-12-29 洛阳储变电系统有限公司 一种软包电池封后鼓包检测装置
CN117308809B (zh) * 2023-11-28 2024-02-02 洛阳储变电系统有限公司 一种软包电池封后鼓包检测装置
CN117647210A (zh) * 2024-01-29 2024-03-05 成都飞机工业(集团)有限责任公司 一种蜂窝芯构件复杂型面轮廓的检测方法
CN117647210B (zh) * 2024-01-29 2024-05-14 成都飞机工业(集团)有限责任公司 一种蜂窝芯构件复杂型面轮廓的检测方法

Also Published As

Publication number Publication date
JP6733035B2 (ja) 2020-07-29
US20200072600A1 (en) 2020-03-05
US10852129B2 (en) 2020-12-01
JP2019521364A (ja) 2019-07-25

Similar Documents

Publication Publication Date Title
WO2018014720A1 (zh) 一种蜂窝芯面形的测量方法及装置
CN106017353B (zh) 一种蜂窝芯面形测量装置
CN110044263B (zh) 检测设备及检测设备的工作方法
CN203410132U (zh) 一种贴膜机的贴合装置
CN106017352B (zh) 一种蜂窝芯面形的测量方法
JP2009506328A (ja) ラピッドプロトタイプ集積線形超音波変換器検査装置、システム、および方法。
CN105259109A (zh) 涂层附着力测试治具
CN101581850A (zh) 一种半自动贴合机及其贴合方法
CN102706315A (zh) 平台台面的平面度测量装置及测量方法
CN202511761U (zh) Wafer厚度及平面度的测量装置
CN111673267B (zh) 一种可激光加工任意不规则平面的加工平台
CN106379024B (zh) 一种手机外壳漫反射膜体覆盖装置
CN101182110B (zh) 液晶玻璃自动分断机
CN110006378B (zh) 一种结构检测方法
JP2017050373A (ja) シート貼付装置およびシート貼付方法
CN102029771A (zh) 一种对位平台
CN112504085A (zh) 一种塑料模具的检测装置
CN215727696U (zh) 一种高精度光学透过率测试机构
CN206317565U (zh) 一种背光源盖章装置
US11865647B2 (en) Utilization of CNC machining in composite part rework
TWI699502B (zh) 波浪形基板的貼膠方法及其裝置
CN210741411U (zh) 一种检测装置
CN210175195U (zh) 一种笔记本电脑外观包膜装置
JP2011249629A5 (zh)
CN117400338B (zh) 一种三维细胞表位制备胶体金试纸加工设备及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503355

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830354

Country of ref document: EP

Kind code of ref document: A1