WO2018014677A1 - 功率控制方法及装置 - Google Patents

功率控制方法及装置 Download PDF

Info

Publication number
WO2018014677A1
WO2018014677A1 PCT/CN2017/088065 CN2017088065W WO2018014677A1 WO 2018014677 A1 WO2018014677 A1 WO 2018014677A1 CN 2017088065 W CN2017088065 W CN 2017088065W WO 2018014677 A1 WO2018014677 A1 WO 2018014677A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
power
base stations
sum
ratio
Prior art date
Application number
PCT/CN2017/088065
Other languages
English (en)
French (fr)
Inventor
陈中明
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/319,184 priority Critical patent/US11019579B2/en
Publication of WO2018014677A1 publication Critical patent/WO2018014677A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink

Definitions

  • the present application relates to, but is not limited to, the field of communications, and more particularly to a power control method and apparatus.
  • the current transmit power of a User Equipment (UE) cannot exceed the maximum transmit power of the UE.
  • the base station (eNB) allocates the maximum transmit power to the UE, and the UE transmits the maximum transmit power of the UE to the current uplink shared channel (UL-SCH) and the physical through a power headroom report (PHR) process.
  • UL-SCH current uplink shared channel
  • PHR power headroom report
  • the eNB performs uplink scheduling and link adaptation according to the difference, and further determines whether to perform power control (such as reducing transmit power or increasing transmit power, and The amount of power that needs to be adjusted is to meet the requirement that the current transmit power of the UE cannot exceed the maximum transmit power of the UE while achieving an optimal reception effect.
  • power control such as reducing transmit power or increasing transmit power
  • the terminal can maintain connection with two network nodes, such as a base station, one network node is a macro base station called MeNB (Master eNB), and another network node is called a small cell base station.
  • MeNB Master eNB
  • SeNB Secondary eNB
  • the base station configures the power allocation ratio of the UE to the two base stations, for example, the MeNB accounts for 60%, and the SeNB accounts for 30%.
  • the UE actually transmits data, the UE performs the allocation between the two base stations according to the allocation. Power control.
  • the UE In the mobile communication system, in order to ensure the quality of the service and give the user a good service experience, after the UE establishes a connection with the network in a certain cell, the UE still needs to measure the signal quality of the serving cell and the neighboring cell, and select an appropriate cell. Switch to meet mobility requirements.
  • the handover process of the related art is: after receiving the handover command, the terminal first disconnects the communication with the source base station and then accesses the target base station, which causes the terminal service to be interrupted. To avoid this interruption, the terminal maintenance and source are introduced during the handover process. Base station data communication technology. In this switching process, how to perform power control, no solution is proposed in the related art.
  • the embodiment of the present invention is to provide a power control method and device, which can perform accurate and effective power control during the handover process, better achieve the purpose of uninterrupted service in the handover process, and ensure service quality.
  • An embodiment of the present invention provides a power control method, where the method includes:
  • the multiple base stations include all source base stations before handover and all target base stations after handover.
  • the acquiring power allocation rule includes:
  • allocating the transmit power of the user equipment UE in each of the plurality of base stations according to the power allocation rule includes:
  • the power allocation mechanism before the handover is updated according to the acquired power allocation rule, and the transmission power of the UE in each of the plurality of base stations is allocated according to the power allocation rule.
  • the method further includes:
  • the embodiment of the invention further provides a power control method, the method comprising:
  • Power allocation rules include:
  • configuring, according to a preset rule, the power of the user equipment UE in each of the plurality of base stations Distribution rules include:
  • configuring, according to a preset rule, the power of the user equipment UE in each of the plurality of base stations Distribution rules include:
  • the configuring the power allocation rule of the user equipment UE in each of the multiple base stations according to the preset rule includes:
  • the power allocation ratio of each of the base stations is configured, and the transmit power of the UE at all base stations is allocated according to the power allocation ratio, wherein the power allocation ratio is a default ratio or a configuration ratio configured for the UE.
  • the embodiment of the invention further provides a power control device, the device comprising:
  • Obtain the module set to: obtain power allocation rules
  • an allocation module configured to: when receiving the handover instruction or starting to access the target side, allocating the transmit power of the user equipment UE in each of the plurality of base stations according to the power allocation rule;
  • a communication module configured to: communicate with each of the base stations according to the transmit power; where the multiple base stations include all source base stations before handover and all target base stations after handover.
  • the obtaining module is configured to:
  • the allocation module is configured to:
  • the UE's transmit power of each of the plurality of base stations is re-allocated according to the acquired power allocation rule.
  • the apparatus further includes:
  • Disconnect the module set to: when the handover process ends, disconnect the communication with the source base station, adopt a new power allocation rule; or,
  • It is set to: maintain communication with the source base station when the handover process ends, until after receiving the disconnection indication sent by the target base station, disconnect the communication with the source base station, and adopt a new power allocation rule.
  • the apparatus further includes:
  • an update module configured to: when receiving the handover instruction or starting to access the target side, updating the power allocation mechanism before the handover according to the acquired power allocation rule;
  • the allocation module is configured to allocate a transmit power of the UE to each of the plurality of base stations according to the power allocation rule.
  • the embodiment of the invention further provides a power control device, the device comprising:
  • the configuration module is configured to: configure, according to a preset rule, a power allocation rule of the user equipment UE in each of the plurality of base stations, where the multiple base stations include all source base stations and handovers before the handover All target base stations after;
  • a sending module configured to: send the power allocation rule to the UE.
  • the configuration module when only the at least one first base station or the at least one second base station is included in the multiple base stations, the configuration module is configured to:
  • the configuration module is configured to:
  • the configuration module is configured to:
  • the configuration module is configured to:
  • the power allocation ratio of each of the base stations is configured, and the transmit power of the UE at all base stations is allocated according to the power allocation ratio, wherein the power allocation ratio is a default ratio or a configuration ratio configured for the UE.
  • the embodiment of the invention further provides a computer readable storage medium, which stores a computer executable finger
  • the power control method described above is implemented when the computer executable instructions are executed.
  • An embodiment of the present invention provides a power control method and apparatus, including: acquiring a power allocation rule; and when receiving a handover instruction or starting to access a target side, allocating a UE in each of a plurality of base stations according to the foregoing allocation rule Transmit power, and communicate with each base station according to the transmit power; wherein the plurality of base stations include all source base stations before handover and all target base stations after handover.
  • the UE allocates a power allocation rule, and at the beginning of the handover, allocates, according to the obtained power allocation rule, the transmit power of the UE in each of the plurality of base stations, thereby performing communication with each base station according to the transmit power, so that the handover is performed.
  • accurate and effective power control can be performed without guaranteeing communication between the UE and the source base station, thereby ensuring service quality.
  • FIG. 1 is a schematic flowchart of a power control method according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic flowchart of a power control method according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of a scenario 1 in which a UE and a base station communicate according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a scenario 2 of communication between a UE and a base station according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a scenario 3 in which a UE and a base station communicate according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a power control apparatus according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic structural diagram of a power control apparatus according to an alternative embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a power control apparatus according to Embodiment 2 of the present invention.
  • module A block "a combination of software and/or hardware that can implement a predetermined function.
  • the power control method provided by the embodiment of the present invention is applicable to a long-term evolution (LTE) system, in particular, a multi-connection technology of an LTE system, that is, the UE has communication with multiple base stations at the same time, and how to allocate multiple UEs in the handover process.
  • LTE long-term evolution
  • the problem of the transmit power of the base station is applicable to a long-term evolution (LTE) system, in particular, a multi-connection technology of an LTE system, that is, the UE has communication with multiple base stations at the same time, and how to allocate multiple UEs in the handover process.
  • LTE long-term evolution
  • FIG. 1 is a schematic flowchart of a power control method according to Embodiment 1 of the present invention. As shown in FIG. 1, the method includes:
  • Step 101 Obtain a power allocation rule.
  • the power allocation rule may be obtained by the UE, where the power allocation rule may be an allocation rule that the base station notifies to the UE by signaling, or a default allocation rule of the UE and the base station.
  • Step 102 When receiving the handover instruction or starting to access the target side, allocate the transmit power of the UE in each of the plurality of base stations according to the power allocation rule, and communicate with each base station according to the transmit power; wherein, the multiple base stations It includes all source base stations before handover and all target base stations after handover.
  • the UE when the UE receives the handover instruction or starts the access target measurement, the UE allocates the transmission power of all the source base stations and all the target base stations in the handover process according to the power allocation rule acquired in step 101. And communicating with each base station according to the transmission power. In the handover process, the UE does not cut off communication with the source base station, but controls power allocation through power allocation rules to communicate with all base stations.
  • This method can be used for the UE.
  • the UE when receiving the handover instruction or starting the access target side, allocates the transmit power of the UE in each of the plurality of base stations according to the acquired power allocation rule, and according to the transmit power and each The base stations perform communication, wherein the plurality of base stations include all source base stations before handover and all target base stations after handover; thereby enabling the UE to maintain communication with the source base station while establishing communication with the base station after handover in the handover process
  • the communication can realize accurate and effective power control during the handover process to ensure the quality of the service.
  • the obtaining power allocation rule includes:
  • the manner in which the UE obtains the power allocation rule may be that the base station configures the power allocation rule for the UE, and sends the power allocation rule to the UE by using a signaling, where the UE acquires the power by receiving signaling.
  • the allocation rule; or the base station configuration is not required, and the default power allocation rule with the base station is adopted.
  • This default power allocation rule may be preset by the UE and the base station respectively.
  • allocating the transmit power of the user equipment UE in each of the multiple base stations according to the power allocation rule includes:
  • the power allocation mechanism before the handover is updated according to the acquired power allocation rule, and the transmission power of the UE in each of the plurality of base stations is allocated according to the power allocation rule.
  • the power allocation mechanism before the handover is updated according to the acquired power allocation rule, so that the UE allocates the UE according to the acquired updated power allocation rule during the handover process.
  • the transmit power of each base station in the base station ensures communication during handover.
  • allocating the transmit power of the user equipment UE in each of the multiple base stations according to the power allocation rule includes:
  • the UE's transmit power of each of the plurality of base stations is re-allocated according to the acquired power allocation rule.
  • the method further includes:
  • the UE disconnects the communication with the source base station, and only communicates with the target base station after the handover; or, the handover process After the end, the UE still maintains communication with the source base station, and simultaneously communicates with the target base station after the handover, and the UE performs communication with the target base station by using the foregoing transmit power, and waits for the indication of the target base station, and after receiving the indication of the target base station, Disconnect communication with the base station to be switched in the source base station, and communicate with other base stations using new power allocation rules.
  • FIG. 2 is a schematic flowchart of a power control method according to Embodiment 2 of the present invention, as shown in FIG. 2, The method includes:
  • Step 201 Configure a power allocation rule of the user equipment UE in each of the plurality of base stations according to a preset rule, where the multiple base stations include all source base stations before handover and all target base stations after handover.
  • the UE may be in a dual connectivity state, for example, communicating with the base station 1 and the base station 2, and before the handover, the base station 1 configures a power allocation rule between the two base stations according to a preset rule, and the power allocation rule is as follows.
  • the UE performs transmission power control between the two base stations according to the allocation ratio, or the UE allocates the transmission power of the UE at each base station by using a default allocation rule.
  • the base station 1 can configure the power allocation between the base station 1, the base station 3, and the base station 2 according to a preset rule, and the allocation rule may include, for example, configuring the UE.
  • the sum of the powers of the base station 1 and the base station 3 is allocated according to the default allocation ratio or the power sum is allocated according to the allocation ratio notified by the base station to the UE, wherein the default allocation ratio may be, for example, an average allocation or the like; or may be given to the UE.
  • Allocating rules for all base stations are configured, and each of these base stations is allocated according to the allocation rule.
  • Step 202 Notify the UE of the power allocation rule.
  • the base station may notify the UE of the power allocation rule of each base station in the step 201, for example, notify the UE to use the default allocation ratio for power allocation, or the base station commands the UE to perform power allocation according to a certain allocation ratio.
  • it may be a power allocation table, and the UE may query the power allocation table to determine power control when the UE communicates with each base station, so that the UE performs communication with the base station according to the power allocation table.
  • This method can be used for a base station.
  • the power control method of the second embodiment configures a power allocation rule of the UE at each base station according to a preset rule, and notifies the UE of the power allocation rule, so that the UE can allocate the transmit power according to the rule, thereby communicating with each base station.
  • accurate and effective power control can be performed without guaranteeing communication between the UE and the source base station, thereby ensuring service quality.
  • the configuring a power allocation rule of the UE in each of the multiple base stations according to a preset rule includes:
  • the first base station or the second base station configures a sum of powers of the at least one first base station or at least one second base station;
  • configuring, according to a preset rule, a power allocation rule of the UE in each of the multiple base stations includes:
  • configuring the power allocation rule of the user equipment UE in each of the multiple base stations according to the preset rule includes:
  • the configuring the power allocation rule of the user equipment UE in each of the multiple base stations according to the preset rule includes:
  • the power allocation ratio of each of the base stations is configured, and the transmission power of the UE at all the base stations is allocated according to the power allocation ratio, wherein the power allocation ratio is a default ratio or a configuration ratio configured for the UE.
  • configuring the power allocation rule of the UE in each of the multiple base stations according to the preset rule in the first embodiment may include the following situations:
  • MeNBs Multiple (generally two) MeNBs (such as the first base station described above) and multiple (generally The power allocation between the two SeNBs (for example, the second base station described above) is taken as an example for description:
  • the UE is configured with a sum of powers shared by multiple MeNBs, and multiple MeNBs may allocate the power sum according to a default ratio such as an average allocation, or according to a configured ratio.
  • the UE is configured with a sum of powers shared by multiple SeNBs, and multiple SeNBs may allocate the power sum according to a default ratio such as an average allocation, or according to a configured ratio.
  • Allocating allocation rules for all base stations to the UE may be allocated according to a default ratio such as an average allocation, or according to a configured ratio.
  • Configuring a total of power shared by multiple MeNBs for the UE, and configuring a total sum of powers shared by multiple SeNBs for the UE, and multiple MeNBs may allocate the previous power sum according to a default ratio, such as an average ratio, or according to a configured ratio.
  • the SeNBs may be allocated according to a default ratio such as an average, or a sum of the latter powers according to a configured ratio.
  • all the base stations on the source side can be allocated according to a default ratio such as an average, or the previous power sum is allocated according to the configured ratio.
  • the sum of the latter powers can be allocated between all base stations on the target side according to a default ratio such as an average allocation or a configured ratio.
  • the source side refers to the base station side before handover
  • the target side refers to the base station side after handover
  • the power control method using the embodiment of the present invention is described as an example in several different scenarios.
  • FIG. 3 is a schematic diagram of a scenario 1 of communication between a UE and a base station according to an embodiment of the present invention; as shown in FIG. 3, the communication process may include the following steps:
  • Step 1 The UE is currently in the dual-connection state, and has communication with the MeNB1 and the SeNB1.
  • the MeNB1 configures the power allocation between the two base stations to the UE, and the percentage of the maximum power of the UE is as shown in Table 1-1.
  • the UE performs two according to the allocation ratio.
  • the transmission power control between the base stations that is, 60% of the maximum power of the UE is used on the MeNB1, and 30% of the maximum power is used on the SeNB1.
  • Step 2 According to the measurement report of the UE, the MeNB1 decides to switch the UE to the MeNB2, does not reserve the SeNB1, and notifies the UE, and the power allocation of the handover process is as shown in Table 1-2-1 or 1-2-2, and the power after the handover ends. Allocation, at this time, since the UE has only communication with the MeNB2 after the handover is completed, there is no need to configure power control between the base stations.
  • Step 3 According to Table 1-2-1, between MeNB1 and MeNB2, 70% of the power can be allocated according to a default ratio, that is, each base station can use 35% of the power, or MeNB1 notifies the UE, MeNB1 and MeNB2. Proportional allocation between, such as MeNB1 is the maximum power of the UE 40% of 70%, MeNB2 is 60% of 70% of the maximum power of the UE.
  • MeNB1 is 30% of the maximum power of the UE
  • MeNB2 is 40% of the maximum power of the UE
  • SeNB1 is 20% of the maximum power of the UE.
  • This allocation ratio can be the default rule or the base station is configured for the terminal.
  • Step 4 Before receiving the handover command, the UE uses the power allocation of Table 1-1 to perform communication with the base station. After receiving the handover command, the UE maintains communication with the MeNB1 and the SeNB1, and establishes a connection with the MeNB2. The power allocation of 2-1 or 1-2-2 performs communication with the base station.
  • Step 5 After the handover process ends (which may be the end of the random access procedure, or the UE replies to the handover complete message), the UE disconnects the communication between the MeNB1 and the SeNB1, and only communicates with the MeNB2, and does not need to perform power control between the base stations.
  • the UE still maintains communication with the MeNB1 and the SeNB1, and simultaneously communicates with the MeNB2, and the UE uses the power allocation of Table 1-2-1 or 1-2-2 to perform communication with the base station, waiting for the base station. Instructed to receive the base station indication, disconnect the communication with MeNB1 and SeNB1, and only communicate with MeNB2, without performing power control between the base stations.
  • FIG. 4 is a schematic diagram of scenario 2 of communication between a UE and a base station according to an embodiment of the present invention; as shown in FIG. 4, the communication process may include the following steps:
  • Step 1 The UE is currently in the dual-connection state, and has communication with the MeNB1 and the SeNB1.
  • the MeNB1 configures the power allocation between the two base stations to the UE, and the percentage of the maximum power of the UE is as follows. Table 2-1, the UE performs two according to the allocation ratio.
  • the transmission power control between the base stations that is, the MeNB1 adopts 65% of the maximum power of the UE, and the SeNB1 adopts 30% of the maximum power of the UE.
  • Step 2 According to the measurement report of the UE, the MeNB1 decides to change the SeNB1 of the UE to the SeNB2, and notifies the UE, and the power allocation of the handover process is as shown in Table 2-2-1 or 2-2-2, and the power allocation after the handover ends. Table 2-3.
  • Step 3 According to Table 2-2-1, between SeNB1 and SeNB2, 50% of the power may be allocated according to a default ratio, that is, each base station may use 25% of power, or MeNB1 notifies the UE, SeNB1 and SeNB2. Proportional allocation between, for example, SeNB1 is 40% of 50% of the maximum power of the UE, and SeNB2 is 60% of 50% of the maximum power of the UE.
  • MeNB1, SeNB1 and SeNB2 power is allocated according to the configured proportion.
  • MeNB1 is 50% of the maximum power of the UE
  • SeNB1 is 20% of the maximum power of the UE
  • SeNB2 is 30% of the maximum power of the UE.
  • the default proportion allocation rules such as 4:3:3, that is, MeNB1 is 40% of the maximum power of the UE, SeNB1 is 30% of the maximum power of the UE, and SeNB2 is 30% of the maximum power of the UE.
  • Step 4 Before receiving the handover command, the UE uses the power allocation of Table 2-1 to perform communication with the base station. After receiving the handover command, the UE maintains communication with the MeNB1 and the SeNB1, and establishes a connection with the SeNB2. The power allocation of 2-1 or 2-2-2 performs communication with the base station.
  • Step 5 After the handover process ends, the UE disconnects the communication of the SeNB1, communicates with the SeNB2, and performs communication with the base station by using the power allocation of Table 2-3.
  • the UE still maintains communication with the SeNB1, and simultaneously communicates with the SeNB2, and the UE performs communication with the base station by using the power allocation of Table 2-2-1 or 2-2-2, waiting for the indication of the base station, Receiving an indication from the base station, disconnecting the communication with the SeNB1, and performing communication with the base station using the power allocation of Table 2-3.
  • FIG. 5 is a schematic diagram of a scenario 3 in which a UE and a base station communicate according to an embodiment of the present invention; as shown in FIG. 5, the communication process may include the following steps:
  • Step 1 The UE is currently in the dual-connection state, and has communication with the MeNB1 and the SeNB1.
  • the MeNB1 configures the power allocation between the two base stations to the UE, and the percentage of the maximum power of the UE is as shown in Table 3-1.
  • the UE performs two according to the allocation ratio.
  • the transmission power control between the base stations that is, 70% of the maximum power of the UE is used on the MeNB1, and 30% of the maximum power of the UE is used on the SeNB1.
  • Step 2 According to the measurement report of the UE, the MeNB1 decides to switch the MeNB1 and the SeNB1 of the UE to the MeNB2 and the SeNB2, respectively, and notify the UE, and the power allocation of the handover process is as shown in Table 3-2-1 or 3-3-2, and the handover ends. The subsequent power distribution is shown in Table 3-3.
  • Step 3 According to Table 3-2-1, between MeNB1 and MeNB2, according to the default allocation rule, such as 4:6, that is, MeNB1 can use 40% of the maximum power of the UE, and MeNB2 can use the maximum power of the UE. 60% of 60% of the power, or, MeNB1 informs the UE, the proportional allocation between MeNB1 and MeNB2, such as MeNB1 is 45% of 60% of the maximum power of the UE, and MeNB2 is 55% of 60% of the maximum power of the UE. .
  • the default allocation rule such as 4:6
  • MeNB1 can use 40% of the maximum power of the UE
  • MeNB2 can use the maximum power of the UE.
  • 60% of 60% of the power or, MeNB1 informs the UE
  • the proportional allocation between MeNB1 and MeNB2 such as MeNB1 is 45% of 60% of the maximum power of the UE, and MeNB2 is 55% of 60% of the maximum power of the UE.
  • SeNB1 and SeNB2 40% of the power can be evenly allocated according to a default ratio, that is, each base station can use 20% of power, or MeNB1 notifies the UE, and the ratio between SeNB1 and SeNB2 is allocated, for example, SeNB1 is the largest UE. 40% of the 40% of power, SeNB2 is 60% of 40% of the maximum power of the UE.
  • MeNB1, SeNB1, MeNB2 and SeNB2 power is allocated according to the configured proportion. For example, MeNB1 is 30% of the maximum power of the UE, SeNB1 is 20% of the maximum power of the UE, and MeNB2 is the maximum power of the UE. 30%, SeNB2 is 20% of the maximum power of the UE. Or according to the default proportion allocation rules, such as 25:25:35:15, that is, MeNB1 is 25% of the maximum power of the UE, SeNB1 is 25% of the maximum power of the UE, MeNB2 is 35% of the maximum power of the UE, and SeNB2 is the maximum power of the UE. 15%.
  • Step 4 Before receiving the handover command, the UE uses the power allocation of Table 3-1 to perform communication with the base station. After receiving the handover command, the UE maintains communication with the MeNB1 and the SeNB1, and establishes a connection with the MeNB2 and the SeNB2. The power allocation of 3-2-1 or 3-2-2 performs communication with the base station.
  • Step 5 After the handover process ends, the UE disconnects the communication between MeNB1 and SeNB1, communicates with MeNB2 and SeNB2, and performs communication with the base station by using the power allocation of Table 3-3.
  • the UE still maintains communication with the MeNB1 and the SeNB1, and simultaneously communicates with the SeNB2 and the SeNB2, and the UE performs communication with the base station by using the power allocation of Table 3-2-1 or 3-2-2, waiting
  • the indication of the base station receives the indication, disconnects the communication with the MeNB1 and the SeNB1, and performs communication with the base station by using the power allocation of Table 3-3.
  • the scenario is the same as scenario 3, except that the power allocation rule in the communication process is as shown in FIG. 5, and the communication process may include the following steps:
  • Step 1 The UE is currently in the dual-connection state, and has communication with the MeNB1 and the SeNB1.
  • the MeNB1 configures the power allocation between the two base stations to the UE, and the percentage of the maximum power of the UE is as shown in Table 4-1.
  • the UE performs two according to the allocation ratio.
  • the transmit power control between base stations that is, 70% of the maximum power is used on MeNB1, and 30% of the maximum power is used on SeNB1.
  • Step 2 According to the measurement report of the UE, the MeNB1 decides to switch the MeNB1 and the SeNB1 of the UE to the MeNB2 and the SeNB2, respectively, and notify the UE, the power allocation of the handover process is shown in Table 4-2-1, and the power allocation after the handover is as follows. 4-3.
  • Step 3 According to Table 4-2-1, between MeNB1 and SeNB1, a default ratio allocation rule such as 6:4 can be used, that is, MeNB1 can use 60% of the maximum power of 60% of the power, and SeNB1 can use the maximum power. 60% of the 40% power, or, MeNB1 informs the UE, the ratio allocation between MeNB1 and SeNB1, such as MeNB1 is 55% of 60% of the maximum power of the UE, and SeNB1 is 45% of 60% of the maximum power of the UE.
  • a default ratio allocation rule such as 6:4 can be used, that is, MeNB1 can use 60% of the maximum power of 60% of the power, and SeNB1 can use the maximum power. 60% of the 40% power, or, MeNB1 informs the UE, the ratio allocation between MeNB1 and SeNB1, such as MeNB1 is 55% of 60% of the maximum power of the UE, and SeNB1 is 45% of 60% of the maximum power of the UE.
  • MeNB2 and SeNB2 40% of the power can be allocated according to a default ratio, for example, That is, each base station can use 20% of the power, or MeNB1 notifies the UE, the ratio allocation between MeNB2 and SeNB2, for example, MeNB2 is 60% of 40% of the maximum power of the UE, and SeNB2 is 40% of the maximum power of the UE. 40%.
  • Step 4 Before receiving the handover command, the UE uses the power allocation of Table 4-1 to perform communication with the base station. After receiving the handover command, the UE maintains communication with the MeNB1 and the SeNB1, and establishes a connection with the MeNB2 and the SeNB2. The power distribution of 4-2-1 performs communication with the base station.
  • Step 5 After the handover process ends, the UE disconnects the communication between MeNB1 and SeNB1, communicates with MeNB2 and SeNB2, and performs communication with the base station by using the power allocation of Table 4-3.
  • the UE still maintains communication with the MeNB1 and the SeNB1, and simultaneously communicates with the MeNB2 and the SeNB2, and the UE performs communication with the base station by using the power allocation of Table 4-2-1, waiting for the indication of the base station, and receiving Instructing, disconnecting communication with MeNB1 and SeNB1, and performing communication with the base station using the power allocation of Table 4-3.
  • FIG. 6 is a schematic structural diagram of a power control apparatus according to Embodiment 1 of the present invention. As shown in FIG. 6, the apparatus includes:
  • the obtaining module 11 is configured to: obtain a power allocation rule
  • the allocating module 12 is configured to: when receiving the handover instruction or start to access the target side, allocate, according to the power allocation rule, the transmit power of the UE in each of the plurality of base stations;
  • the communication module 13 is configured to: communicate with each of the base stations according to the transmit power; wherein the multiple base stations include all source base stations before handover and all target base stations after handover.
  • the power control device of this embodiment may be an embodiment of the device corresponding to the power control method provided in the first embodiment, and the principles and effects thereof are similar, and details are not described herein again.
  • the obtaining module 11 is configured to:
  • the allocation module 12 is configured to:
  • the UE's transmit power of each of the plurality of base stations is re-allocated according to the acquired power allocation rule.
  • FIG. 7 is a schematic structural diagram of a power control apparatus according to an alternative embodiment of the first embodiment of the present invention. As shown in FIG. 7, the apparatus may further include:
  • Disconnecting module 14 is configured to: when the handover process ends, disconnect communication with the source base station, adopting a new power allocation rule; or
  • It is set to: maintain communication with the source base station when the handover process ends, until after receiving the disconnection indication sent by the target base station, disconnect the communication with the source base station, and adopt a new power allocation rule.
  • FIG. 8 is a schematic structural diagram of a power control apparatus according to Embodiment 2 of the present invention. As shown in FIG. 8, the apparatus includes:
  • the configuration module 21 is configured to: configure, according to a preset rule, a power allocation rule of the user equipment UE in each of the plurality of base stations, where the multiple base stations include all source base stations before handover and all target base stations after handover;
  • the sending module 22 is configured to: send the power allocation rule to the UE.
  • the power control device of this embodiment may be an apparatus embodiment corresponding to the power control method provided in the second embodiment, and the principles and effects thereof are similar, and details are not described herein again.
  • the configuration module 21 is configured to:
  • the configuration module 21 is configured to:
  • the configuration module 21 is configured to:
  • the configuration module 21 is configured to:
  • the power allocation ratio of each of the base stations is configured, and the transmit power of the UE at all base stations is allocated according to the power allocation ratio, wherein the power allocation ratio is a default ratio or a configuration ratio configured for the UE.
  • the obtaining module 11, the assigning module 12, the communication module 13, the disconnecting module 14, the configuration module 21, and the sending module 22 may all be provided by a central processing unit (CPU) and a microprocessor (MPU) located at the terminal. , digital signal processor (DSP), or field programmable gate array (FPGA) implementation.
  • CPU central processing unit
  • MPU microprocessor
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, the power control method being implemented when the computer executable instructions are executed.
  • embodiments of the invention may be provided as a method, system, or computer program product.
  • embodiments of the invention may take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware.
  • embodiments of the invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) in which computer usable program code is embodied.
  • Embodiments of the invention may be described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each flow and/or block of the flowchart illustrations.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for generating settings by instructions executed by a processor of a computer or other programmable data processing device Means for implementing the functions specified in a block or blocks of a flow or a flow and/or a block diagram of a flow chart.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • An embodiment of the present invention provides a power control method and apparatus, including: acquiring a power allocation rule; and when receiving a handover instruction or starting to access a target side, allocating a UE according to the foregoing allocation rule Transmit power of each of the plurality of base stations, and communicating with each base station according to the transmit power; wherein the plurality of base stations include all source base stations before handover and all target base stations after handover.
  • the UE allocates a power allocation rule, and at the beginning of the handover, allocates, according to the obtained power allocation rule, the transmit power of the UE in each of the plurality of base stations, thereby performing communication with each base station according to the transmit power, so that the handover is performed.
  • accurate and effective power control can be performed without guaranteeing communication between the UE and the source base station, thereby ensuring service quality.

Abstract

一种功率控制方法包括:获取功率分配规则;当收到切换指令或开始接入目标侧时,按照所述功率分配规则分配UE在多个基站中每个基站的发射功率,并根据所述发射功率与所述每个基站进行通信;其中,所述多个基站包括切换前的所有源基站和切换后的所有目标基站。

Description

功率控制方法及装置 技术领域
本申请涉及但不限于通信领域,尤其是一种功率控制方法及装置。
背景技术
在长期演进(LTE)系统中,用户设备(UE)当前的发射功率不能超过UE最大发射功率。相关技术中,基站(eNB)给UE分配最大发射功率,UE通过功率余量上报(power headroom report,PHR)过程将UE最大发射功率与当前上行共享信道(Uplink Shared Channel,UL-SCH)和物理上行控制信道(Physical Uplink Control Channel,PUCC)的发射功率的差别通知eNB,eNB根据这个差别进行上行调度和链路适配,进一步决定是否进行功率控制(如减小发射功率或增加发射功率,以及需要进行调整的功率大小)以满足UE当前发射功率不能超过UE最大发射功率同时达到最优接收效果的要求。
在LTE系统中引入双连接(Dual Connectivity)后,终端可以同时与两个网络节点比如基站保持连接,一个网络节点是宏基站称为MeNB(Master eNB),另外一个网络节点是小小区基站称为SeNB(Secondary eNB),基站给UE分别配置UE在两个基站的功率分配比例,比如MeNB占60%,SeNB占30%等,UE在实际发送数据的时候,按照这个分配来进行两个基站间的功率控制。
在移动通信系统中,为了保证业务质量,给用户良好的业务体验,当UE在某个小区与网络建立连接之后,UE仍然需要对服务小区和相邻小区的信号质量进行测量,选择合适的小区进行切换,以便满足移动性要求。相关技术的切换过程为:终端收到切换命令后,先切断与源基站的通信,再接入目标基站,这样会引起终端业务的中断,为了避免这个中断,需引入切换过程中终端维持与源基站的数据通信技术。在这个切换过程中,如何进行功率控制,相关技术中并未提出解决方案。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
为解决上述技术问题,本发明实施例期望提供一种功率控制方法及装置,能够在切换过程中进行精确有效的功率控制,更好地达到切换过程业务不中断的目的,保证业务质量。
本发明实施例提供一种功率控制方法,所述方法包括:
获取功率分配规则;
当收到切换指令或开始接入目标侧时,按照所述功率分配规则分配用户设备UE在多个基站中每个基站的发射功率,并根据所述发射功率与所述每个基站进行通信;其中,所述多个基站包括切换前的所有源基站和切换后的所有目标基站。
在一种示例性实施方式中,所述获取功率分配规则包括:
接收基站配置的所述功率分配规则,或者是默认的所述功率分配规则。
在一种示例性实施方式中,所述当收到切换指令或开始接入目标侧时,按照所述功率分配规则分配用户设备UE在多个基站中每个基站的发射功率包括:
当收到切换指令或开始接入目标侧时,根据所述获取的功率分配规则更新切换前的功率分配机制,并根据所述功率分配规则分配UE在多个基站中每个基站的发射功率。
在一种示例性实施方式中,所述根据所述发射功率与所述多个基站中每个基站进行通信之后,还包括:
当切换过程结束时,断开与源基站的通信,采用新的功率分配规则;或者,
当切换过程结束时保持与源基站的通信,直到接收到目标基站发送的断开指示后,断开与源基站的通信,采用新的功率分配规则。
本发明实施例还提供一种功率控制方法,所述方法包括:
按照预设规则配置用户设备UE在多个基站中每个基站的功率分配规则,其中,所述多个基站包括切换前的所有源基站和切换后的所有目标基站;
将所述功率分配规则通知给所述UE。
在一种示例性实施方式中,当所述多个基站中仅包括至少一个第一基站或至少一个第二基站时,所述按照预设规则配置用户设备UE在多个基站中每个基站的功率分配规则包括:
配置所述至少一个第一基站或至少一个第二基站的功率总和;
给所述第一基站或第二基站按照默认比例分配所述功率总和,或者按照配置给所述UE的所述第一基站或第二基站的配置比例分配所述功率总和。
在一种示例性实施方式中,当所述多个基站中包括至少一个第一基站和至少一个第二基站时,所述按照预设规则配置用户设备UE在多个基站中每个基站的功率分配规则包括:
分别配置所述至少一个第一基站的第一功率总和以及所述至少一个第二基站的第二功率总和;
分别按照默认比例分配所述第一基站功率总和以及所述第二功率总和,或者按照配置给所述UE的所述第一基站和第二基站的配置比例分配所述第一基站功率总和以及所述第二功率总和。
在一种示例性实施方式中,当所述多个基站中包括至少一个第一基站和至少一个第二基站时,所述按照预设规则配置用户设备UE在多个基站中每个基站的功率分配规则包括:
分别配置所述多个基站中源基站的所述至少一个第一基站和所述至少一个第二基站的第三功率总和以及所述多个基站中目标基站的所述至少一个第一基站和所述至少一个第二基站的第四功率总和;
分别按照默认比例分配所述第三基站功率总和以及所述第四功率总和,或者按照配置给所述UE的所述第一基站和第二基站的配置比例分配所述第三基站功率总和以及所述第四功率总和。
在一种示例性实施方式中,所述按照预设规则配置用户设备UE在多个基站中每个基站的功率分配规则包括:
配置所述每个基站的功率分配比例,按照所述功率分配比例分配所述UE在所有基站的发射功率,其中,所述功率分配比例为默认比例或者配置给所述UE的配置比例。
本发明实施例还提供一种功率控制装置,所述装置包括:
获取模块,设置为:获取功率分配规则;
分配模块,设置为:当收到切换指令或开始接入目标侧时,按照所述功率分配规则分配用户设备UE在多个基站中每个基站的发射功率;
通信模块,设置为:根据所述发射功率与所述每个基站进行通信;其中,所述多个基站包括切换前的所有源基站和切换后的所有目标基站。
在一种示例性实施方式中,所述获取模块是设置为:
接收基站配置的所述功率分配规则,或者是默认的所述功率分配规则。
在一种示例性实施方式中,所述分配模块是设置为:
当收到切换指令或开始接入目标侧时,根据所述获取的功率分配规则重新分配UE在多个基站中每个基站的发射功率。
在一种示例性实施方式中,所述装置还包括:
断开模块,设置为:当切换过程结束时,断开与源基站的通信,采用新的功率分配规则;或者,
设置为:当切换过程结束时保持与源基站的通信,直到接收到目标基站发送的断开指示后,断开与源基站的通信,采用新的功率分配规则。
在一种示例性实施方式中,所述装置还包括:
更新模块,设置为:当收到切换指令或开始接入目标侧时,根据所述获取的功率分配规则更新切换前的功率分配机制;
所述分配模块设置为:根据所述功率分配规则分配UE在多个基站中每个基站的发射功率。
本发明实施例还提供一种功率控制装置,所述装置包括:
配置模块,设置为:按照预设规则配置用户设备UE在多个基站中每个基站的功率分配规则,其中,所述多个基站包括切换前的所有源基站和切换 后的所有目标基站;
发送模块,设置为:将所述功率分配规则发送给所述UE。
在一种示例性实施方式中,当所述多个基站中仅包括至少一个第一基站或至少一个第二基站时,所述配置模块是设置为:
配置所述至少一个第一基站或至少一个第二基站的功率总和;
给所述第一基站或第二基站按照默认比例分配所述功率总和,或者按照配置给所述UE的所述第一基站或第二基站的配置比例分配所述功率总和。
在一种示例性实施方式中,当所述多个基站中包括至少一个第一基站和至少一个第二基站时,所述配置模块是设置为:
分别配置所述至少一个第一基站的第一功率总和以及所述至少一个第二基站的第二功率总和;
分别按照默认比例分配所述第一基站功率总和以及所述第二功率总和,或者按照配置给所述UE的所述第一基站和第二基站的配置比例分配所述第一基站功率总和以及所述第二功率总和。
在一种示例性实施方式中,当所述多个基站中包括至少一个第一基站和至少一个第二基站时,所述配置模块是设置为:
分别配置所述多个基站中源基站的所述至少一个第一基站和所述至少一个第二基站的第三功率总和以及所述多个基站中目标基站的所述至少一个第一基站和所述至少一个第二基站的第四功率总和;
分别按照默认比例分配所述第三基站功率总和以及所述第四功率总和,或者按照配置给所述UE的所述第一基站和第二基站的配置比例分配所述第三基站功率总和以及所述第四功率总和。
在一种示例性实施方式中,所述配置模块是设置为:
配置所述每个基站的功率分配比例,按照所述功率分配比例分配所述UE在所有基站的发射功率,其中,所述功率分配比例为默认比例或者配置给所述UE的配置比例。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指 令,所述计算机可执行指令被执行时实现上述功率控制方法。
本发明实施例提供了一种功率控制方法及装置,该方法包括:获取功率分配规则;当收到切换指令或开始接入目标侧时,按照上述分配规则分配UE在多个基站中每个基站的发射功率,并根据该发射功率与每个基站进行通信;其中,所述多个基站包括切换前的所有源基站和切换后的所有目标基站。该方法中,UE通过获取功率分配规则,在切换开始时,按照获取的功率分配规则分配UE在多个基站中每个基站的发射功率,从而根据该发射功率与每个基站进行通信,使得切换过程中在不切断UE与源基站的通信的条件下,能够进行精确有效的功率控制,保证业务质量。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例一提供的功率控制方法的流程示意图;
图2为本发明实施例二提供的功率控制方法的流程示意图;
图3为本发明实施例提供的UE和基站进行通信的场景一的示意图;
图4为本发明实施例提供的UE和基站进行通信的场景二的示意图;
图5为本发明实施例提供的UE和基站进行通信的场景三的示意图;
图6为本发明实施例一提供的功率控制装置的结构示意图;
图7为本发明实施例一的可选实施方式提供的功率控制装置的结构示意图;
图8为本发明实施例二提供的功率控制装置的结构示意图。
本发明的较佳实施方式
下面结合附图对本发明的实施方式进行描述。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的各种方式可以相互组合。
需要说明的是,本文中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。如以下所使用的,术语“模 块”可以实现预定功能的软件和/或硬件的组合。
本发明实施例提供的功率控制方法,适用于长期演进(LTE)系统,尤其是LTE系统的多连接技术,即UE与多个基站同时具有通信,解决在切换过程中,如何分配UE在多个基站的发射功率的问题。
图1为本发明实施例一提供的功率控制方法的流程示意图,如图1所示,该方法包括:
步骤101:获取功率分配规则。
在本步骤中,可以由UE获取功率分配规则,该功率分配规则可以是基站通过信令通知给UE的分配规则,或者是UE和基站默认的分配规则。
步骤102:当收到切换指令或开始接入目标侧时,按照功率分配规则分配UE在多个基站中每个基站的发射功率,并根据发射功率与每个基站进行通信;其中,多个基站包括切换前的所有源基站和切换后的所有目标基站。
可选地,在本步骤中,当UE收到切换指令或者开始接入目标测时,UE按照步骤101获取到的功率分配规则分配其在切换过程中所有源基站和所有目标基站的发射功率,并根据该发射功率与每个基站进行通信。在该切换过程中,UE不切断与源基站的通信,而是通过功率分配规则控制功率分配,从而与所有的基站进行通信。
该方法可以用于UE。
在本实施例一中,当收到切换指令或开始接入目标侧时,UE根据获取到的功率分配规则分配UE在多个基站中每个基站的发射功率,并根据所述发射功率与每个基站进行通信,其中,多个基站包括切换前的所有源基站和切换后的所有目标基站;从而使得在切换过程中,UE维持与源基站的通信的同时,建立与切换后的基站之间的通信,实现切换过程中能够进行精确有效的功率控制,保证业务质量。
可选地,所述获取功率分配规则包括:
接收基站配置的所述功率分配规则,或者是默认的所述功率分配规则。
可选地,UE获取功率分配规则的方式可以是基站配置给UE功率分配规则,并通过信令发送给UE该功率分配规则,UE通过接收信令来获取该功率 分配规则;或者是不需要基站配置,采用与基站默认的功率分配规则,这个默认的功率分配规则可以是UE和基站分别预先设置的。
可选地,所述当收到切换指令或开始接入目标侧时,按照所述功率分配规则分配用户设备UE在多个基站中每个基站的发射功率包括:
当收到切换指令或开始接入目标侧时,根据所述获取的功率分配规则更新切换前的功率分配机制,并根据所述功率分配规则分配UE在多个基站中每个基站的发射功率。
如此,当UE收到切换指令或开始接入目标侧时,根据获取的功率分配规则更新切换前的功率分配机制,从而使得UE在切换过程中根据获取的更新后的功率分配规则分配UE在多个基站中每个基站的发射功率,保证切换过程中的通信。
可选地,所述当收到切换指令或开始接入目标侧时,按照所述功率分配规则分配用户设备UE在多个基站中每个基站的发射功率包括:
当收到切换指令或开始接入目标侧时,根据所述获取的功率分配规则重新分配UE在多个基站中每个基站的发射功率。
可选地,所述根据所述发射功率与所述多个基站中每个基站进行通信之后,还包括:
当切换过程结束时,断开与源基站的通信,采用新的功率分配规则;或者,
当切换过程结束时保持与源基站的通信,直到接收到目标基站发送的断开指示后,断开与源基站的通信,采用新的功率分配规则。
可选地,在切换过程结束(可以是随机接入过程结束,或者是UE回复切换完成消息)后,UE断开与源基站的通信,只与切换后的目标基站进行通信;或者,切换过程结束后,UE仍然保持与源基站的通信,同时与切换后的目标基站进行通信,UE采用上述发射功率进行与目标基站间的通信,并等待目标基站的指示,当收到目标基站指示后,断开与源基站中待切换基站的通信,并采用新的功率分配规则与其他基站进行通信。
图2为本发明实施例二提供的功率控制方法的流程示意图,如图2所示, 该方法包括:
步骤201:按照预设规则配置用户设备UE在多个基站中每个基站的功率分配规则,其中,多个基站包括切换前的所有源基站和切换后的所有目标基站。
在本步骤中,UE当前可处于双连接状态,例如同时与基站1和基站2有通信,切换前,基站1按照预设规则配置了UE在两个基站间的功率分配规则,功率分配规则比如为配置了每个基站占UE最大功率的百分比,UE按照这个分配比例进行两个基站间的发射功率控制,或者UE采用默认的分配规则分配UE在每个基站的发射功率。当基站1根据UE的测量报告,决定将UE切换到基站3时,基站1可按照预设规则配置UE在基站1、基站3以及基站2之间的功率分配,分配规则可以包括:例如配置UE在基站1和基站3的功率总和,按照默认的分配比例分配该功率总和或者按照基站通知给UE的分配比例分配该功率总和,其中,默认的分配比例例如可以为平均分配等;或者可以给UE配置所有基站的分配规则,这些基站中每个基站按照该分配规则进行分配。
步骤202:将功率分配规则通知给UE。
在本步骤中,基站可将步骤201中配置的UE在每个基站的功率分配规则通知UE,例如,通知UE采用默认的分配比例进行功率分配或者基站命令UE按照某个分配比例进行功率分配,这里可以是一个功率分配表,UE可以查询该功率分配表来确定UE与每个基站进行通信时的功率控制,从而使得UE根据功率分配表进行与基站间的通信。
该方法可以用于基站。
本实施例二的功率控制方法,通过按照预设规则配置UE在每个基站的功率分配规则,并将功率分配规则通知UE,使得UE可以根据该规则分配发射功率,从而与每个基站进行通信,使得切换过程中在不切断UE与源基站的通信的条件下,能够进行精确有效的功率控制,保证业务质量。
可选地,当所述多个基站中仅包括至少一个第一基站或至少一个第二基站时,所述按照预设规则配置UE在多个基站中每个基站的功率分配规则包括:
所述第一基站或第二基站配置所述至少一个第一基站或至少一个第二基站的功率总和;
给所述第一基站或第二基站按照默认比例分配所述功率总和,或者按照配置给所述UE的所述第一基站或第二基站的配置比例分配所述功率总和。
可选地,当所述多个基站中包括至少一个第一基站和至少一个第二基站时,所述按照预设规则配置UE在多个基站中每个基站的功率分配规则包括:
分别配置所述至少一个第一基站的第一功率总和以及所述至少一个第二基站的第二功率总和;
分别按照默认比例分配所述第一基站功率总和以及所述第二功率总和,或者按照配置给所述UE的所述第一基站和第二基站的配置比例分配所述第一基站功率总和以及所述第二功率总和。
可选地,当所述多个基站中包括至少一个第一基站和至少一个第二基站时,所述按照预设规则配置用户设备UE在多个基站中每个基站的功率分配规则包括:
分别配置所述多个基站中源基站的所述至少一个第一基站和所述至少一个第二基站的第三功率总和以及所述多个基站中目标基站的所述至少一个第一基站和所述至少一个第二基站的第四功率总和;
分别按照默认比例分配所述第三基站功率总和以及所述第四功率总和,或者按照配置给所述UE的所述第一基站和第二基站的配置比例分配所述第三基站功率总和以及所述第四功率总和。
可选地,所述按照预设规则配置用户设备UE在多个基站中每个基站的功率分配规则包括:
配置所述每个基站的功率分配比例,按照所述功率分配比例分配UE在所有基站的发射功率,其中,所述功率分配比例为默认比例或者配置给所述UE的配置比例。
可选地,实施例一中按照预设规则配置UE在多个基站中每个基站的功率分配规则可包括以下几种情况:
以多个(一般可以是两个)MeNB(例如上述第一基站)和多个(一般 可以是两个)SeNB(例如上述第二基站)之间的功率分配为例进行说明:
1)只有多个MeNB时
1.1给UE配置多个MeNB共享的功率总和,多个MeNB之间可以按照默认的比例比如平均分配,或者按照配置的比例来分配这个功率总和。
1.2给UE配置所有基站的分配规则,可以是按照默认的比例比如平均分配,或者按照配置的比例来分配。
2)只有多个SeNB时
2.1给UE配置多个SeNB共享的功率总和,多个SeNB之间可以按照默认的比例比如平均分配,或者按照配置的比例来分配这个功率总和。
2.2给UE配置所有基站的分配规则,可以是按照默认的比例比如平均分配,或者按照配置的比例来分配。
3)同时有多个MeNB和多个SeNB时
3.1给UE配置多个MeNB共享的功率总和,给UE配置多个SeNB共享的功率总和,多个MeNB之间可以按照默认的比例比如平均分配,或者按照配置的比例来分配前一功率总和,多个SeNB之间可以按照默认的比例比如平均分配,或者按照配置的比例来分配后一功率总和。
3.2给UE配置所有基站的分配规则,可以是按照默认的比例比如平均分配,或者按照配置的比例来分配。
或者:
首先,给UE配置源侧的所有基站共享的功率总和,配置目标侧的所有基站共享的功率总和,
然后,源侧的所有基站之间可以按照默认的比例比如平均分配,或者按照配置的比例来分配前一功率总和。
目标侧的所有基站之间可以按照默认的比例比如平均分配,或者配置的比例来分配后一功率总和。
其中,上述源侧是指切换前的基站侧,目标侧指切换后的基站侧。
下面以几个不同场景的实施例为例说明采用本发明实施例的功率控制方 法进行通信的过程。
场景一
图3为本发明实施例提供的UE和基站进行通信的场景一的示意图;如图3所示,其通信过程可包括以下步骤:
步骤一:UE当前处于双连接状态,同时与MeNB1和SeNB1有通信,MeNB1给UE配置了两个基站间的功率分配,占UE最大功率的百分比如下表1-1,UE按照这个分配比例进行两个基站间的发射功率控制,即MeNB1上采用UE最大功率的60%,SeNB1上采用最大功率的30%。
  MeNB1 SeNB1
功率分配 60% 30%
表1-1
步骤二:MeNB1根据UE的测量报告,决定将UE切换到MeNB2,不保留SeNB1,同时通知UE,切换过程的功率分配如表1-2-1或1-2-2,以及切换结束后的功率分配,此时由于切换结束后,UE只与MeNB2有通信,无需配置基站间的功率控制。
  MeNB1+MeNB2 SeNB1
功率分配 70% 20%
表1-2-1
或者
  MeNB1 MeNB2 SeNB1
功率分配 30% 40% 20%
表1-2-2
步骤三:按照表1-2-1,MeNB1和MeNB2之间,可以按照默认的比例比如平均分配70%的功率,即每个基站可以使用35%的功率,或者,MeNB1通知UE,MeNB1和MeNB2之间的比例分配,如MeNB1为UE最大功率的 70%中的40%,MeNB2为UE最大功率的70%中的60%。
按照表1-2-2,MeNB1、SeNB1和MeNB2之间,按照表内的功率分配,MeNB1为UE最大功率的30%,MeNB2为UE最大功率的40%,SeNB1为UE最大功率的20%。这个分配比例,可以是默认的规则,或者是基站配置给终端的。
步骤四:UE收到切换命令前,采用表1-1的功率分配进行与基站间的通信,UE收到切换命令后,维持与MeNB1和SeNB1的通信,同时与MeNB2建立连接,采用表1-2-1或1-2-2的功率分配进行与基站间的通信。
步骤五:切换过程结束(可以是随机接入过程结束,或者是UE回复切换完成消息)后,UE断开MeNB1和SeNB1的通信,只与MeNB2进行通信,无需进行基站间的功率控制。
或者,切换过程结束后,UE仍然保持与MeNB1和SeNB1的通信,同时与MeNB2进行通信,UE采用表1-2-1或1-2-2的功率分配进行与基站间的通信,等待基站的指示,收到基站指示,断开与MeNB1和SeNB1的通信,只与MeNB2进行通信,无需进行基站间的功率控制。
场景二
图4为本发明实施例提供的UE和基站进行通信的场景二的示意图;如图4所示,其通信过程可包括以下步骤:
步骤一:UE当前处于双连接状态,同时与MeNB1和SeNB1有通信,MeNB1给UE配置了两个基站间的功率分配,占UE最大功率的百分比如下表2-1,UE按照这个分配比例进行两个基站间的发射功率控制,即MeNB1上采用UE最大功率的65%,SeNB1上采用UE最大功率的30%。
  MeNB1 SeNB1
功率分配 65% 30%
表2-1
步骤二:MeNB1根据UE的测量报告,决定将UE的SeNB1改到SeNB2,同时通知UE,切换过程的功率分配如表2-2-1或者2-2-2,以及切换结束后的功率分配如表2-3。
  MeNB1 SeNB1+SeNB2
功率分配 50% 50%
表2-2-1
或者
  MeNB1 SeNB1 SeNB2
功率分配 50% 20% 30%
表2-2-2
  MeNB1 SeNB2
功率分配 70% 20%
表2-3
步骤三:按照表2-2-1,SeNB1和SeNB2之间,可以按照默认的比例比如平均分配50%的功率,即每个基站可以使用25%的功率,或者,MeNB1通知UE,SeNB1和SeNB2之间的比例分配,如SeNB1为UE最大功率的50%中的40%,SeNB2为UE最大功率的50%中的60%。
按照表2-2-2,MeNB1、SeNB1和SeNB2之间,按照配置的比例分配功率,如MeNB1为UE最大功率的50%,SeNB1为UE最大功率的20%,SeNB2为UE最大功率的30%。或者按照默认的比例分配规则,如4:3:3,即MeNB1为UE最大功率的40%,SeNB1为UE最大功率的30%,SeNB2为UE最大功率的30%。
步骤四:UE收到切换命令前,采用表2-1的功率分配进行与基站间的通信,UE收到切换命令后,维持与MeNB1和SeNB1的通信,同时与SeNB2建立连接,采用表2-2-1或2-2-2的功率分配进行与基站间的通信。
步骤五:切换过程结束后,UE断开SeNB1的通信,与SeNB2进行通信,采用表2-3的功率分配进行与基站间的通信。
或者,切换过程结束后,UE仍然保持与SeNB1的通信,同时与SeNB2进行通信,UE采用表2-2-1或2-2-2的功率分配进行与基站间的通信,等待基站的指示,收到基站的指示,断开和SeNB1的通信,采用表2-3的功率分配进行与基站间的通信。
场景三
图5为本发明实施例提供的UE和基站进行通信的场景三的示意图;如图5所示,其通信过程可包括以下步骤:
步骤一:UE当前处于双连接状态,同时与MeNB1和SeNB1有通信,MeNB1给UE配置了两个基站间的功率分配,占UE最大功率的百分比如下表3-1,UE按照这个分配比例进行两个基站间的发射功率控制,即MeNB1上采用UE最大功率的70%,SeNB1上采用UE最大功率的30%。
  MeNB1 SeNB1
功率分配 70% 30%
表3-1
步骤二:MeNB1根据UE的测量报告,决定将UE的MeNB1和SeNB1分别切换到MeNB2和SeNB2,同时通知UE,切换过程的功率分配如表3-2-1或者3-3-2,以及切换结束后的功率分配如表3-3。
  MeNB1+MeNB2 SeNB1+SeNB2
功率分配 60% 40%
表3-2-1
或者
  MeNB1 SeNB1 MeNB2 SeNB2
功率分配 30% 20% 30% 20%
表3-2-2
  MeNB2 SeNB2
功率分配 65% 20%
表3-3
步骤三:按照表3-2-1,MeNB1和MeNB2之间,可以按照默认的分配规则如4:6,即MeNB1可以使用UE最大功率的60%的40%的功率,MeNB2可以使用UE最大功率的60%的60%的功率,或者,MeNB1通知UE,MeNB1和MeNB2之间的比例分配,如MeNB1为UE最大功率的60%中的45%,MeNB2为UE最大功率的60%中的55%。
SeNB1和SeNB2之间,可以按照默认的比例例如平均分配40%的功率,即每个基站可以使用20%的功率,或者,MeNB1通知UE,SeNB1和SeNB2之间的比例分配,如SeNB1为UE最大功率的40%中的40%,SeNB2为UE最大功率的40%中的60%。
按照表3-2-2,MeNB1、SeNB1、MeNB2和SeNB2之间,按照配置的比例分配功率,如MeNB1为UE最大功率的30%,SeNB1为UE最大功率的20%,MeNB2为UE最大功率的30%,SeNB2为UE最大功率的20%。或者按照默认的比例分配规则,如25:25:35:15,即MeNB1为UE最大功率的25%,SeNB1为UE最大功率的25%,MeNB2为UE最大功率的35%,SeNB2为UE最大功率的15%.
步骤四:UE收到切换命令前,采用表3-1的功率分配进行与基站间的通信,UE收到切换命令后,维持与MeNB1和SeNB1的通信,同时与MeNB2和SeNB2建立连接,采用表3-2-1或3-2-2的功率分配进行与基站间的通信。
步骤五:切换过程结束后,UE断开MeNB1和SeNB1的通信,与MeNB2和SeNB2进行通信,采用表3-3的功率分配进行与基站间的通信。
或者,切换过程结束后,UE仍然保持与MeNB1和SeNB1的通信,同时与SeNB2和SeNB2进行通信,UE采用表3-2-1或3-2-2的功率分配进行与基站间的通信,等待基站的指示,收到指示,断开和MeNB1和SeNB1的通信,采用表3-3的功率分配进行与基站间的通信。
场景四
该场景和场景三相同,不同的是通信过程中的功率分配规则,如上图5所示,其通信过程可包括以下步骤:
步骤一:UE当前处于双连接状态,同时与MeNB1和SeNB1有通信,MeNB1给UE配置了两个基站间的功率分配,占UE最大功率的百分比如下表4-1,UE按照这个分配比例进行两个基站间的发射功率控制,即MeNB1上采用最大功率的70%,SeNB1上采用最大功率的30%。
  MeNB1 SeNB1
功率分配 70% 30%
表4-1
步骤二:MeNB1根据UE的测量报告,决定将UE的MeNB1和SeNB1分别切换到MeNB2和SeNB2,同时通知UE,切换过程的功率分配如表4-2-1,以及切换结束后的功率分配如表4-3。
  MeNB1+SeNB1 MeNB2+SeNB2
功率分配 60% 40%
表4-2-1
  MeNB2 SeNB2
功率分配 65% 20%
表4-3
步骤三:按照表4-2-1,MeNB1和SeNB1之间,可以按照默认的比例分配规则如6:4,即MeNB1可以使用最大功率的60%的60%的功率,SeNB1可以使用最大功率的60%的40%的功率,或者,MeNB1通知UE,MeNB1和SeNB1之间的比例分配,如MeNB1为UE最大功率的60%中的55%,SeNB1为UE最大功率的60%中的45%。
MeNB2和SeNB2之间,可以按照默认的比例比如平均分配40%的功率, 即每个基站可以使用20%的功率,或者,MeNB1再通知UE,MeNB2和SeNB2之间的比例分配,如MeNB2为UE最大功率的40%中的60%,SeNB2为UE最大功率的40%中的40%。
步骤四:UE收到切换命令前,采用表4-1的功率分配进行与基站间的通信,UE收到切换命令后,维持与MeNB1和SeNB1的通信,同时与MeNB2和SeNB2建立连接,采用表4-2-1的功率分配进行与基站间的通信。
步骤五:切换过程结束后,UE断开MeNB1和SeNB1的通信,与MeNB2和SeNB2进行通信,采用表4-3的功率分配进行与基站间的通信。
或者,切换过程结束后,UE仍然保持与MeNB1和SeNB1的通信,同时与MeNB2和SeNB2进行通信,UE采用表4-2-1的功率分配进行与基站间的通信,等待基站的指示,收到指示,断开和MeNB1和SeNB1的通信,采用表4-3的功率分配进行与基站间的通信。
图6为本发明实施例一提供的功率控制装置的结构示意图,如图6所示,所述装置包括:
获取模块11,设置为:获取功率分配规则;
分配模块12,设置为:当收到切换指令或开始接入目标侧时,按照所述功率分配规则分配UE在多个基站中每个基站的发射功率;
通信模块13,设置为:根据所述发射功率与所述每个基站进行通信;其中,所述多个基站包括切换前的所有源基站和切换后的所有目标基站。
本实施例的功率控制装置可以是与实施例一提供的功率控制方法对应的装置实施例,其原理和效果类似,此处不再赘述。
可选地,所述获取模块11是设置为:
接收基站配置的所述功率分配规则,或者是默认的所述功率分配规则。
可选地,所述分配模块12是设置为:
当收到切换指令或开始接入目标侧时,根据所述获取的功率分配规则重新分配UE在多个基站中每个基站的发射功率。
图7为本发明实施例一的可选实施方式提供的功率控制装置的结构示意 图,如图7所示,所述装置还可包括:
断开模块14,设置为:当切换过程结束时,断开与源基站的通信,采用新的功率分配规则;或者
设置为:当切换过程结束时保持与源基站的通信,直到接收到目标基站发送的断开指示后,断开与源基站的通信,采用新的功率分配规则。
图8为本发明实施例二提供的功率控制装置的结构示意图,如图8所示,所述装置包括:
配置模块21,设置为:按照预设规则配置用户设备UE在多个基站中每个基站的功率分配规则,其中,所述多个基站包括切换前的所有源基站和切换后的所有目标基站;
发送模块22,设置为:将所述功率分配规则发送给所述UE。
本实施例的功率控制装置可以是与实施例二提供的功率控制方法对应的装置实施例,其原理和效果类似,此处不再赘述。
可选地,当所述多个基站中仅包括至少一个第一基站或至少一个第二基站时,所述配置模块21是设置为:
配置所述至少一个第一基站或至少一个第二基站的功率总和;
给所述第一基站或第二基站按照默认比例分配所述功率总和,或者按照配置给所述UE的所述第一基站或第二基站的配置比例分配所述功率总和。
可选地,当所述多个基站中包括至少一个第一基站和至少一个第二基站时,所述配置模块21是设置为:
分别配置所述至少一个第一基站的第一功率总和以及所述至少一个第二基站的第二功率总和;
分别按照默认比例分配所述第一基站功率总和以及所述第二功率总和,或者按照配置给所述UE的所述第一基站和第二基站的配置比例分配所述第一基站功率总和以及所述第二功率总和。
可选地,当所述多个基站中包括至少一个第一基站和至少一个第二基站时,所述配置模块21是设置为:
分别配置所述多个基站中源基站的所述至少一个第一基站和所述至少一个第二基站的第三功率总和以及所述多个基站中目标基站的所述至少一个第一基站和所述至少一个第二基站的第四功率总和;
分别按照默认比例分配所述第三基站功率总和以及所述第四功率总和,或者按照配置给所述UE的所述第一基站和第二基站的配置比例分配所述第三基站功率总和以及所述第四功率总和。
可选地,所述配置模块21是设置为:
配置所述每个基站的功率分配比例,按照所述功率分配比例分配所述UE在所有基站的发射功率,其中,所述功率分配比例为默认比例或者配置给所述UE的配置比例。
在实际应用中,所述获取模块11,分配模块12、通信模块13、断开模块14、配置模块21和发送模块22,均可由位于终端的中央处理器(CPU)、微处理器(MPU)、数字信号处理器(DSP)、或现场可编程门阵列(FPGA)等实现。
本发明实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述功率控制方法。
本领域技术人员可以明白,本发明实施例可提供为方法、系统、或计算机程序产品。因此,本发明实施例可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明实施例可以是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。可以理解,可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生设置为实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件、处理器等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
本领域的普通技术人员可以理解,可以对本申请的技术方案进行修改或者等同替换,而不脱离本申请技术方案的精神和范围。本申请的保护范围以权利要求所定义的范围为准。
工业实用性
本发明实施例提供了一种功率控制方法及装置,该方法包括:获取功率分配规则;当收到切换指令或开始接入目标侧时,按照上述分配规则分配UE 在多个基站中每个基站的发射功率,并根据该发射功率与每个基站进行通信;其中,所述多个基站包括切换前的所有源基站和切换后的所有目标基站。该方法中,UE通过获取功率分配规则,在切换开始时,按照获取的功率分配规则分配UE在多个基站中每个基站的发射功率,从而根据该发射功率与每个基站进行通信,使得切换过程中在不切断UE与源基站的通信的条件下,能够进行精确有效的功率控制,保证业务质量。

Claims (18)

  1. 一种功率控制方法,所述方法包括:
    获取功率分配规则;
    当收到切换指令或开始接入目标侧时,按照所述功率分配规则分配用户设备UE在多个基站中每个基站的发射功率,并根据所述发射功率与所述每个基站进行通信;其中,所述多个基站包括切换前的所有源基站和切换后的所有目标基站。
  2. 根据权利要求1所述的方法,其中,所述获取功率分配规则包括:
    接收基站配置的所述功率分配规则,或者是默认的所述功率分配规则。
  3. 根据权利要求1或2所述的方法,其中,所述当收到切换指令或开始接入目标侧时,按照所述功率分配规则分配用户设备UE在多个基站中每个基站的发射功率包括:
    当收到切换指令或开始接入目标侧时,根据所述获取的功率分配规则重新分配所述UE在多个基站中每个基站的发射功率。
  4. 根据权利要求1或2所述的方法,所述根据所述发射功率与所述多个基站中每个基站进行通信之后,还包括:
    当切换过程结束时,断开与源基站的通信,采用新的功率分配规则;或者,
    当切换过程结束时保持与源基站的通信,直到接收到目标基站发送的断开指示后,断开与源基站的通信,采用新的功率分配规则。
  5. 一种功率控制方法,所述方法包括:
    按照预设规则配置用户设备UE在多个基站中每个基站的功率分配规则,其中,所述多个基站包括切换前的所有源基站和切换后的所有目标基站;
    将所述功率分配规则通知给所述UE。
  6. 根据权利要求5所述的方法,其中,当所述多个基站中仅包括至少一个第一基站或至少一个第二基站时,所述按照预设规则配置用户设备UE在多个基站中每个基站的功率分配规则包括:
    配置所述至少一个第一基站或至少一个第二基站的功率总和;
    给所述第一基站或第二基站按照默认比例分配所述功率总和,或者按照配置给所述UE的所述第一基站或第二基站的配置比例分配所述功率总和。
  7. 根据权利要求5所述的方法,其中,当所述多个基站中包括至少一个第一基站和至少一个第二基站时,所述按照预设规则配置用户设备UE在多个基站中每个基站的功率分配规则包括:
    分别配置所述至少一个第一基站的第一功率总和以及所述至少一个第二基站的第二功率总和;
    分别按照默认比例分配所述第一基站功率总和以及所述第二功率总和,或者按照配置给所述UE的所述第一基站和第二基站的配置比例分配所述第一基站功率总和以及所述第二功率总和。
  8. 根据权利要求5所述的方法,其中,当所述多个基站中包括至少一个第一基站和至少一个第二基站时,所述按照预设规则配置用户设备UE在多个基站中每个基站的功率分配规则包括:
    分别配置所述多个基站中源基站的所述至少一个第一基站和所述至少一个第二基站的第三功率总和以及所述多个基站中目标基站的所述至少一个第一基站和所述至少一个第二基站的第四功率总和;
    分别按照默认比例分配所述第三基站功率总和以及所述第四功率总和,或者按照配置给所述UE的所述第一基站和第二基站的配置比例分配所述第三基站功率总和以及所述第四功率总和。
  9. 根据权利要求5至8中任一项所述的方法,其中,所述按照预设规则配置用户设备UE在多个基站中每个基站的功率分配规则包括:
    配置所述每个基站的功率分配比例,按照所述功率分配比例分配所述UE在所有基站的发射功率,其中,所述功率分配比例为默认比例或者配置给所述UE的配置比例。
  10. 一种功率控制装置,所述装置包括:
    获取模块,设置为:获取功率分配规则;
    分配模块,设置为:当收到切换指令或开始接入目标侧时,按照所述功 率分配规则分配用户设备UE在多个基站中每个基站的发射功率;
    通信模块,设置为:根据所述发射功率与所述每个基站进行通信;其中,所述多个基站包括切换前的所有源基站和切换后的所有目标基站。
  11. 根据权利要求10所述的装置,其中,所述获取模块是设置为:
    接收基站配置的所述功率分配规则,或者是默认的所述功率分配规则。
  12. 根据权利要求10或11所述的装置,其中,所述分配模块是设置为:
    当收到切换指令或开始接入目标侧时,根据所述获取的功率分配规则重新分配UE在多个基站中每个基站的发射功率。
  13. 根据权利要求10或11所述的装置,所述装置还包括:
    断开模块,设置为:当切换过程结束时,断开与源基站的通信,采用新的功率分配规则;或者,
    设置为:当切换过程结束时保持与源基站的通信,直到接收到目标基站发送的断开指示后,断开与源基站的通信,采用新的功率分配规则。
  14. 一种功率控制装置,所述装置包括:
    配置模块,设置为:按照预设规则配置用户设备UE在多个基站中每个基站的功率分配规则,其中,所述多个基站包括切换前的所有源基站和切换后的所有目标基站;
    发送模块,设置为:将所述功率分配规则发送给所述UE。
  15. 根据权利要求14所述的装置,其中,当所述多个基站中仅包括至少一个第一基站或至少一个第二基站时,所述配置模块是设置为:
    配置所述至少一个第一基站或至少一个第二基站的功率总和;
    给所述第一基站或第二基站按照默认比例分配所述功率总和,或者按照配置给所述UE的所述第一基站或第二基站的配置比例分配所述功率总和。
  16. 根据权利要求14所述的装置,其中,当所述多个基站中包括至少一个第一基站和至少一个第二基站时,所述配置模块是设置为:
    分别配置所述至少一个第一基站的第一功率总和以及所述至少一个第二基站的第二功率总和;
    分别按照默认比例分配所述第一基站功率总和以及所述第二功率总和,或者按照配置给所述UE的所述第一基站和第二基站的配置比例分配所述第一基站功率总和以及所述第二功率总和。
  17. 根据权利要求14所述的装置,其中,当所述多个基站中包括至少一个第一基站和至少一个第二基站时,所述配置模块是设置为:
    分别配置所述多个基站中源基站的所述至少一个第一基站和所述至少一个第二基站的第三功率总和以及所述多个基站中目标基站的所述至少一个第一基站和所述至少一个第二基站的第四功率总和;
    分别按照默认比例分配所述第三基站功率总和以及所述第四功率总和,或者按照配置给所述UE的所述第一基站和第二基站的配置比例分配所述第三基站功率总和以及所述第四功率总和。
  18. 根据权利要求14~17任一项所述的装置,其中,所述配置模块是设置为:
    配置所述每个基站的功率分配比例,按照所述功率分配比例分配所述UE在所有基站的发射功率,其中,所述功率分配比例为默认比例或者配置给所述UE的配置比例。
PCT/CN2017/088065 2016-07-21 2017-06-13 功率控制方法及装置 WO2018014677A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/319,184 US11019579B2 (en) 2016-07-21 2017-06-13 Power control method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610581437.8A CN107645766B (zh) 2016-07-21 2016-07-21 功率控制方法及装置
CN201610581437.8 2016-07-21

Publications (1)

Publication Number Publication Date
WO2018014677A1 true WO2018014677A1 (zh) 2018-01-25

Family

ID=60993032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088065 WO2018014677A1 (zh) 2016-07-21 2017-06-13 功率控制方法及装置

Country Status (3)

Country Link
US (1) US11019579B2 (zh)
CN (1) CN107645766B (zh)
WO (1) WO2018014677A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788723B (zh) * 2019-11-08 2022-08-09 华为技术有限公司 功率控制的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349441A (zh) * 2013-08-07 2015-02-11 夏普株式会社 上行功率控制方法以及基站和用户设备
CN104427604A (zh) * 2013-08-28 2015-03-18 上海贝尔股份有限公司 一种用于分配上行功率的方法和设备
CN105282834A (zh) * 2014-05-30 2016-01-27 中兴通讯股份有限公司 一种功率分配的方法及装置
CN105282847A (zh) * 2014-06-20 2016-01-27 中国移动通信集团公司 一种无线资源管理方法及装置
US20160044606A1 (en) * 2014-08-06 2016-02-11 Sharp Laboratories Of America, Inc. Systems and methods for dual-connectivity operation

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1106730C (zh) * 1997-09-19 2003-04-23 松下电器产业株式会社 无线电通信设备和方法
US6708041B1 (en) * 1997-12-15 2004-03-16 Telefonaktiebolaget Lm (Publ) Base station transmit power control in a CDMA cellular telephone system
JP3479840B2 (ja) * 2000-11-22 2003-12-15 日本電気株式会社 移動通信制御方法及びそのシステム並びに移動局
DE10125013A1 (de) * 2001-05-22 2002-11-28 Siemens Ag Verfahren zur Synchronisation von Basisstationen in einem Funk-Kommunikationssystem
KR20060028813A (ko) * 2003-07-18 2006-04-03 닛본 덴끼 가부시끼가이샤 송신 전력 제어의 추종성을 향상시킨 이동통신 시스템
JP2005277612A (ja) * 2004-03-24 2005-10-06 Nec Corp 移動通信システム、無線基地局及びそれらに用いる送信電力制御方法
US20090047962A1 (en) * 2007-08-14 2009-02-19 Rao Anil M Transfer-of uplink power control parameters during handovers
WO2010060749A1 (en) * 2008-11-03 2010-06-03 Nokia Siemens Networks Oy Random access preamble transmission design with multiple available random access channel resources
JP5662913B2 (ja) * 2011-09-16 2015-02-04 株式会社日立製作所 無線通信システム及び基地局
CN102625336B (zh) * 2012-03-02 2015-01-21 中兴通讯股份有限公司 异构网络中干扰管理方法及装置
CN104254118B (zh) * 2013-06-28 2018-03-02 国网浙江省电力公司嘉兴供电公司 功率控制方法、装置及ue
EP2854460B1 (en) * 2013-09-27 2017-04-05 Sun Patent Trust Power control and power headroom reporting for dual connectivity
CN104581917B (zh) * 2013-10-11 2019-02-01 上海诺基亚贝尔股份有限公司 多连接无线通信系统中对用户侧的传输功率缩减的方法
EP3160196A4 (en) * 2014-06-20 2017-12-20 Sharp Kabushiki Kaisha Terminal device, base station device, and communication method
CN105578535A (zh) * 2014-10-08 2016-05-11 展讯通信(上海)有限公司 一种小区硬切换处理系统及方法以及移动终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349441A (zh) * 2013-08-07 2015-02-11 夏普株式会社 上行功率控制方法以及基站和用户设备
CN104427604A (zh) * 2013-08-28 2015-03-18 上海贝尔股份有限公司 一种用于分配上行功率的方法和设备
CN105282834A (zh) * 2014-05-30 2016-01-27 中兴通讯股份有限公司 一种功率分配的方法及装置
CN105282847A (zh) * 2014-06-20 2016-01-27 中国移动通信集团公司 一种无线资源管理方法及装置
US20160044606A1 (en) * 2014-08-06 2016-02-11 Sharp Laboratories Of America, Inc. Systems and methods for dual-connectivity operation

Also Published As

Publication number Publication date
US20190268859A1 (en) 2019-08-29
US11019579B2 (en) 2021-05-25
CN107645766B (zh) 2021-08-27
CN107645766A (zh) 2018-01-30

Similar Documents

Publication Publication Date Title
CN112865947B (zh) 测量间隔的配置方法及装置、存储介质、电子装置
US10231156B2 (en) Data transmission method and device, and data transmission control method and device
CN107666727B (zh) 能力协商的方法及装置、系统
JP6148635B2 (ja) ユーザ装置及びアップリンクデータ送信方法
CN107371205B (zh) 基站间切换方法及装置
US10129766B2 (en) Quality of service management methods, quality of service management devices and quality of service management system
EP3713296A1 (en) Method and device for managing pcell or pscell
WO2018059335A1 (zh) 一种逻辑信道的调度方法、装置及系统
JP7035190B2 (ja) Pscellハンドオーバーのための方法および装置
JP5890879B1 (ja) ユーザ装置、基地局、上り送信電力報告方法、及びパラメータ通知方法
KR102207468B1 (ko) 페이징 영역 확정 방법, 접속망 노드 및 코어망 노드
EP3090599B1 (en) Methods and apparatuses for proximity-based service
TWI755521B (zh) 處理雙連結中的通訊的裝置及方法
JP2017041868A (ja) ワイヤレス通信ネットワークにおけるx2リンク管理のための方法及びシステム
JP5866420B1 (ja) ユーザ装置、基地局、及び上り送信電力報告方法
US11005740B2 (en) Data transmission method, device, and network system
JP2022516436A (ja) 通信方法及び装置、端末、ネットワークデバイス、並びに記憶媒体
CN104254066A (zh) 状态信息传递、去激活的方法、站点设备和终端设备
WO2018014677A1 (zh) 功率控制方法及装置
WO2015170667A1 (ja) ユーザ装置、及び送信制御方法
JP2016527828A5 (zh)
CN111225417A (zh) 实现负载均衡的方法、装置和存储介质
WO2016119267A1 (zh) 一种用户设备迁移方法、核心网设备、接入网设备及系统
WO2021088006A1 (zh) 通信方法和通信装置
WO2020088402A1 (zh) 信道管理方法、接入点和站点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830313

Country of ref document: EP

Kind code of ref document: A1