WO2018012040A1 - 缶成形装置 - Google Patents

缶成形装置 Download PDF

Info

Publication number
WO2018012040A1
WO2018012040A1 PCT/JP2017/011606 JP2017011606W WO2018012040A1 WO 2018012040 A1 WO2018012040 A1 WO 2018012040A1 JP 2017011606 W JP2017011606 W JP 2017011606W WO 2018012040 A1 WO2018012040 A1 WO 2018012040A1
Authority
WO
WIPO (PCT)
Prior art keywords
die table
forming
compressed gas
supply path
tool
Prior art date
Application number
PCT/JP2017/011606
Other languages
English (en)
French (fr)
Inventor
昭二 松尾
徹也 大瀬
Original Assignee
ユニバーサル製缶株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニバーサル製缶株式会社 filed Critical ユニバーサル製缶株式会社
Publication of WO2018012040A1 publication Critical patent/WO2018012040A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/28Deep-drawing of cylindrical articles using consecutive dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material

Definitions

  • the present invention relates to supply of compressed gas in a can molding apparatus.
  • the present invention also relates to a can forming apparatus, and more particularly, to a configuration for supplying compressed air, hydraulic pressure, electric power, and processing oil to a forming tool disposed on a die table.
  • a bottomed cylindrical can having a can body (wall) and a bottom (bottom), and a screw cap is screwed onto the open end of the can Bottled cans are known.
  • the can body of such a bottle can is squeezed obliquely so that the upper part is constricted, and a screw groove for screwing a screw cap is provided on the opening side.
  • a metal plate made of aluminum or an aluminum alloy is drawn into a cup shape using a cupping press (can base), and a DI press is used. Redrawn and then stretched by several stages of ironing. After adjusting the height of the can body thus obtained by trimming, printing is performed on the peripheral surface of the can body. Then, a bottle can is manufactured through the necking process which performs the drawing process of the opening end side of a can body.
  • a bottle necker that is a can forming apparatus used in the necking process rotates a turntable in which a large number of can body holding parts that support the bottom side of the can body are arranged in an annular shape. Then, a number of necking dies arranged in a ring shape on the die table so as to face each can body holding portion are sequentially pressed against the opening end side of the can body held by the can body holding portion, In particular, the drawing is performed (see, for example, Patent Document 1).
  • the working oil is supplied so as to prevent the can body from becoming high temperature due to plastic deformation and to cause smooth plastic deformation.
  • electric power is supplied toward the drive motor of the rotary processing tool that forms a screw groove into which the screw cap is screwed onto the opening end side of the can body.
  • hydraulic pressure is supplied toward a hydraulic lock mechanism that fixes the die table to the rod that supports the die table.
  • the present invention has been made in view of the above-described circumstances, and it is an object of the present invention to reduce the possibility of operation stoppage of a can molding apparatus due to a malfunction of an electromagnetic valve that controls opening and closing of a compressed gas supply pipe.
  • the present invention has been made in view of the above-described circumstances, and enables efficient layout of the supply path in the die table and prevents disconnection of the supply path extending toward the die table forming tool.
  • An object of the present invention is to provide a can forming apparatus capable of performing the above.
  • a can molding apparatus has a large number of can body holding portions for detachably holding a can body on one side.
  • a turntable that can be rotated around a central axis, and a molding tool that is arranged to face the turntable and molds the can body is arranged in an annular shape on one side.
  • a die table capable of reciprocating along the axial direction of the central axis, a main body having a reciprocating mechanism for reciprocating the die table along the central axis, and the respective molding tools.
  • a can forming apparatus comprising compressed gas supply means for supplying compressed air, the compressed gas supply means supplying a compressed gas source and the compressed gas from the compressed gas source toward the forming tool.
  • Air supply pipe to be sent and provided in the middle of the air supply pipe A plurality of solenoid valves that are opened and closed by a signal current, wherein the air supply pipe is branched toward each of the plurality of molding tools on the downstream side of the one solenoid valve.
  • the internal pressure of the can body is increased from the atmospheric pressure (outside air pressure) by sending compressed gas from the supply pipe through the core.
  • the compressed gas supply means for feeding the compressed gas to the can body is branched into a plurality of supply pipes on the downstream side (die table side) from the electromagnetic valve.
  • the electromagnetic valve may be provided in the main body.
  • the compressed gas supply means is provided with a solenoid valve in the main body, and a supply pipe on the downstream side of the solenoid valve is further branched by a die table.
  • the die table is provided with an oiling tool that constitutes an oil supply means, and processing oil is applied to the can body being processed. For this reason, processing oil always adheres to the die table, and the oil table is easily damaged.
  • the solenoid valve for controlling the compressed gas is provided adjacent to the die table forming tool, the processing oil is very likely to adhere to the solenoid valve, and the attached processing oil enters and is dried and solidified. As a result, the solenoid valve was prone to failure.
  • the electromagnetic valve is not soiled by the processing oil by providing the electromagnetic valve in the main body part away from the die table as in this embodiment. For this reason, it becomes possible to further reduce the failure occurrence rate of the electromagnetic valve and further reduce the probability that the can molding apparatus stops operating.
  • a cable carrier that houses the air supply pipe is installed between the main body portion and the die table, and one air supply pipe is provided on the die table side of the cable carrier. You may branch toward each said shaping
  • a surge tank may be further provided between the compressed gas source and the electromagnetic valve.
  • an excessive inflow of compressed gas can be temporarily stored, and the gas flow rate can be leveled as a buffer.
  • the air supply pipe extending from one electromagnetic valve may branch toward at least three or more molding tools.
  • the can molding apparatus of the present invention may further include a supply path extending from the main body portion toward the molding tool of the die table, and the die table may be provided with a storage section that stores the supply path.
  • the can molding apparatus of the present invention by providing a supply path storage portion for storing the supply path in the die table, a large number of supply paths branching on the die table side can be routed in an orderly manner, and maintenance of a large number of supply paths is performed. Can be made easier.
  • the supply paths can be prevented from rubbing or falling off due to the reciprocating motion of the die table, and the occurrence of problems due to supply path wear can be reliably prevented. can do.
  • the supply path is at least one of the air supply pipe that supplies compressed gas, the electric wire that supplies electric power, and the oil hose that supplies processing oil toward the forming tool. It may be.
  • the supply path is housed in a cable carrier provided between the main body portion and the die table and swingably following the reciprocation of the die table. Also good.
  • the other end side of the cable carrier reciprocates together with the die table, so that the supply path extending from the other end side of the cable carrier toward the housing portion of the die table is greatly swung by the reciprocating motion of the die table. It is possible to prevent wear and damage due to rubbing between the table and the table.
  • the storage portion may form a polygon when viewed from the turntable side.
  • the storage section may include a relay terminal arranged on the supply path.
  • one supply path may branch toward the plurality of forming tools before the die table side end of the cable carrier.
  • the cable carrier may be partitioned into a plurality of regions along the extension direction.
  • two relay terminals are provided on the outer periphery of the storage portion, and when the die table is divided into two regions on the left and right by a vertical line passing through the center of the die table, The relay terminal is connected to the supply path extending toward the molding tool disposed in the left region of the die table, and the other relay terminal is connected to the molding tool disposed in the right region of the die table. You may connect to the said supply path extended toward each.
  • the present invention it is possible to reduce the possibility of operation stoppage of the can molding apparatus due to the malfunction of the electromagnetic valve for controlling the opening / closing of the compressed gas supply pipe.
  • FIG. 1st embodiment of this invention It is a schematic diagram which shows the structure of the compressed gas supply means of the can molding apparatus of 1st embodiment of this invention. It is an external appearance perspective view which shows the can shaping
  • FIG. 1 is a flowchart showing an example of a bottle can manufacturing process step by step.
  • FIG. 2 is a schematic diagram showing changes in the can shape in each step.
  • the plate blanking process S1 the cupping process (drawing process) S2, the DI process (drawing and ironing process) S3, the trimming process S4, the printing / painting (can outer surface) process S5, the painting (can inner surface) process S6, the necking process
  • the can is manufactured through S7 and the screw forming step S8 in this order.
  • the plate material punching step S1 for example, a rolled material made of an Al alloy material is punched, and a disk-shaped plate material (blank) W as shown in FIG. 2A is formed (punched).
  • the cupping step (drawing step) S2 as shown in FIG. 2B, the plate material W is drawn (capping) by a cupping press to form a cup-shaped body (can base material) W1.
  • DI step (drawing and squeezing step) S3 as shown in FIG. 2 (c)
  • DI processing re-drawing and squeezing processing
  • the height of the opening end 11a of the can body W2 is not uniform, so the trimming process is performed on the opening end 11a using a trimming device, and the can body as shown in FIG.
  • the can body W3 is washed to remove the lubricating oil and the like, and then subjected to a surface treatment and dried. Then, as shown in FIG. 2 (e), printing and coating of the outer surface side 11b of the can body W3 are performed. (Printing / painting (can outer surface) step S5), and then the inner surface 11c of the can body W3 is coated (painting (can inner surface) step S6).
  • the can forming apparatus is a can body necking apparatus used in the necking step S7 and the screw forming step S8.
  • a can body (bottle can) 10 having a neck portion 13 which is constricted on the open end 11a side of the can body 11 is manufactured (see FIG. 2 (f)).
  • the can body (bottle can) 10 obtained through each of the above steps is then filled with contents such as beverages inside, and further fitted with the screw groove 14 to cover the opening of the neck portion 13. Is attached, and the inside of the can 10 is sealed.
  • FIG. 3 is an external perspective view showing the can molding apparatus (necking apparatus) of the first embodiment.
  • FIG. 4 is a plan view of the can molding device as viewed from one side surface.
  • the can forming device (necking processing device) 20 is used, for example, in the necking step S7 and the screw forming step S8 described above, and is provided with a main body portion 21 and a turn provided so as to be rotatable around the central axis TA of the main body portion 21.
  • a table 23 and a die table 24 arranged to face the turntable 23 are provided. More specifically, a connecting shaft 29 that connects the turntable 23 and the die table 24 is provided on the front side of the main body 21 (the side on which the turntable 23 is provided).
  • the central axis TA is a virtual axis that passes through the center of a cross section that is parallel to the axial direction of the connecting shaft 29 and perpendicular to the axial direction of the connecting shaft 29.
  • the turntable 23 is supported so as to be rotatable around the connecting shaft 29.
  • the die table 24 is supported so as to reciprocate along the connecting shaft 29.
  • the can molding apparatus 20 is provided with a compressed gas supply means 25 for supplying a compressed gas toward the die table 24 and an oil supply means 26 for supplying processing oil.
  • the main body 21 supports the turntable 23 and the die table 24.
  • the main body 21 includes a rotation mechanism (not shown) for rotating the turntable 23 around the center axis TA (around the connecting shaft 29), and an axis line of the center axis TA (axis line of the connecting shaft 29). Is provided with a reciprocating mechanism (not shown) that reciprocates with a predetermined width.
  • the turntable 23 is formed by, for example, a large number of can body holding parts 31 arranged in an annular shape on one side 23a of a table body (base material) 23A having a ring-shaped flat plate. Consists of.
  • the turntable 23 is rotatably supported by an index (not shown) provided on the main body 21 and rotates intermittently around a central axis TA (connection shaft 29). In the first embodiment, the turntable 23 rotates in the counterclockwise direction Q in FIG.
  • the die table 24 includes, for example, a ring-shaped table main body 24 ⁇ / b> A in which a large number of forming tools 40 are arranged in an annular shape on one surface 24 a facing the turntable 23.
  • the die table 24 is supported by a connecting shaft 129 provided in the main body 21 so as to be capable of reciprocating along the axial direction of the connecting shaft 29.
  • the die table 24 repeats an approaching movement and a separating movement with a predetermined width with respect to the turntable 23 along the table axis TA by a reciprocating mechanism (not shown) provided in the main body 21. Then, after the completion of one stroke (reciprocating movement) consisting of this approaching movement and separation movement, before the next one stroke starts, the turntable 23 has a predetermined amount along the circumferential direction, for example, a forming tool for the opposing die table 24. It rotates in the counterclockwise direction Q by one.
  • the shape of the opening end side of the can body W3 in which the bottom portion is held by the can body holding portion 31 is processed by the molding tool 40.
  • FIG. 5 is an enlarged plan view of a main part showing the die table.
  • the table main body 24A of the die table 24 has a disk shape or a circular ring shape.
  • the die table 24 is arranged coaxially on the outer side in the table radial direction with respect to the inner ring body 41 and the inner ring body 41 coupled to the coupling shaft 29 (see FIGS. 3 and 4) of the main body 21.
  • the outer ring body 42 and the ring bodies 41, 42 are connected to each other in the table radial direction, and are provided with a plurality of ribs 43 arranged at intervals in the table circumferential direction.
  • a plurality of forming tools 40 are arranged on the outer ring body 42 of the die table 24 along the circumferential direction.
  • the outer ring body 42 is provided with a plurality of attachment holes 45 along the table circumferential direction.
  • the plurality of forming tools 40 can be attached to these attachment holes 45 in the order of processing into the can body.
  • the plurality of molding tools 40 include a die processing tool (neck forming die) 48 and a rotary processing tool 49.
  • a large number of die processing tools 48 and a plurality of rotary processing tools 49 are detachably disposed in the plurality of mounting holes 45 of the die table 24 in the order of processing to the can body. It should be noted that some of the plurality of mounting holes 45 may be empty spaces in which the forming tool 40 cannot be mounted.
  • the die processing tool 48 moves in a can axis direction (a direction parallel to the central axis TA) with respect to the can, and draws the neck portion 13 by reducing the diameter of the opening end side of the can body, Die processing such as diameter expansion processing for expanding the peripheral wall is performed.
  • Die processing such as diameter expansion processing for expanding the peripheral wall is performed.
  • One die processing tool 48 applies one type of die processing to the can.
  • the rotary processing tool 49 moves around the can axis with respect to the can, and by rotating around the can axis, the peripheral wall of the can is rotated such as trimming, screw forming, curling, and throttle (curl caulking). Is to be applied.
  • the rotating body is subjected to rotation processing by one rotation processing tool 49.
  • Rotational tool 49 has a forming part that rotates the can and a tool spindle that rotatably supports the can body.
  • the tool spindle spindle shaft portion thereof
  • the drive motor is disposed on the die table 24.
  • the tool spindle (spindle shaft portion thereof) is rotated by a rotational driving force transmitted from a drive motor, and the forming portion performs a rotation process on the can body using this rotational force.
  • reference numeral 49A is a trimming processing tool
  • reference numeral 49B is a curl processing tool
  • reference numeral 49C is a throttle processing tool.
  • the die table 24 includes an oiling tool 46 that constitutes an oil supply means 26 and applies processing oil to the can body W3.
  • FIG. 6 is an enlarged cross-sectional view of a main part showing a die processing tool of the die table and a can holding part of the turntable.
  • the die processing tool 48 includes a mold 33 that performs die processing on the can body W3, and a core 34 that is inserted into the can body W3 and supports the can body W3 from the inside during molding.
  • a molding surface 33a that is in contact with the can body W3 is shaped like a processed shape.
  • a drawing mold that reduces the diameter of the opening end side of the can body to form the neck portion 13 is illustrated.
  • the core 34 is provided with one end of an air supply pipe (pressure pipe) 52 that feeds compressed air into the can body W3.
  • an air supply pipe 52 forms part of the compressed gas supply means 25 which will be described in detail later.
  • the internal pressure of the can body W3 is increased from the atmospheric pressure (external air pressure) by sending compressed air from the air supply pipe 52.
  • the mold 33 is pressed against the can body W3, the can body W3 is prevented from being deformed except at the mold contact portion.
  • FIG. 7 is a schematic diagram showing the configuration of the compressed gas supply means.
  • the compressed gas supply means 25 is provided with a compressed gas source 51, a plurality of supply pipes 52 for sending compressed gas from the compressed gas source 51 toward the respective molding tools 40, and a signal current. And a plurality of solenoid valves 53 that are opened and closed by Further, it is preferable that a surge tank 54 is further provided between the compressed gas source 51 and the electromagnetic valve 53.
  • the compressed gas source 51 includes, for example, a compressor or a compressed gas tank. Such a compressed gas source 51 is disposed outside the main body 21.
  • compressed air is normally used as compressed gas, besides this, compressed nitrogen gas and mixed compressed gas of arbitrary components can be used, and are not limited.
  • the surge tank 54 serves to level the gas flow rate as a buffer by temporarily storing an excessive inflow of compressed gas.
  • the compressed gas source 51 to the surge tank 54 are connected by a one-line air supply pipe 52A, and branch to four lines of air supply pipes 52A1 to 52A4 on the downstream side of the surge tank 54.
  • an on-off valve 55, a pressure gauge 56, and the like may be further provided in the middle of the air supply pipe 52A that connects the compressed gas source 51 and the surge tank 54.
  • Solenoid valves 53A to 53F are attached to the six lines of supply pipes 52A1 to 52A6 branched by the surge tank 54, respectively.
  • the electromagnetic valves 53A to 53F open and close the valve (valve) by moving the plunger by the magnetic force of the solenoid, and control the opening and closing of the compressed gas flowing through the air supply pipes 52A1 to 52A6.
  • FIG. 7 for the sake of clarity, air supply lines connected to approximately half of the many forming tools 40 provided on the die table 24 are illustrated. Therefore, the actual number of solenoid valves and air supply pipes is not limited and is appropriately selected according to the number of forming tools 40 installed.
  • the opening / closing of the solenoid valves 53A to 53F is controlled by connecting / disconnecting a signal current applied to the solenoid.
  • the signal current is controlled by a control unit (not shown) of the can molding apparatus 20.
  • the electromagnetic valves 53A to 53F are opened only while the die table 24 shown in FIG. 3 reciprocates with respect to the turntable 23 along the table axis TA, and the turntable 23 moves along the circumferential direction.
  • the electromagnetic valves 553A to 53F are controlled to be closed while the die table 24 is rotated by one molding tool.
  • the surge tank 54 and the solenoid valves 53A to 53F are provided in the main body 21.
  • the surge tank 54 and the solenoid valves 53A to 53F are attached to the outer surface of the casing of the main body 21.
  • Cable carriers 56A and 56B are installed between the main body 21 and the die table 24 (see FIG. 3).
  • the cable carriers 56A and 56B are, for example, bendable rectangular tubular members made of an oil-resistant resin, and are provided to be bent 180 ° downward on the die table 24 side.
  • the bending positions of the cable carriers 56 ⁇ / b> A and 56 ⁇ / b> B change in accordance with the reciprocation of the die table 24, and follow the reciprocation of the die table 24.
  • the cable carriers 56A and 56B accommodate the supply pipes 52A1 to 52A6 inside.
  • the supply pipes 52A1 to 52A6 on the downstream side of the electromagnetic valves 53A to 53F are accommodated in the cable carriers 56A and 56B, and are extended from the main body portion 21 toward the die table 24.
  • the air supply pipes 52A1, 52A2, and 52A3 are accommodated in the cable carrier 56A and extend from the main body 21 toward the die table 24, and the air supply pipes 52A4, 52A5, and 52A6 are accommodated in the cable carrier 56B. It extends from the main body 21 toward the die table 24.
  • the cable carriers 56 ⁇ / b> A and 56 ⁇ / b> B also accommodate a power line that drives the tool spindle of the rotary processing tool 49 provided on the die table 24.
  • the air supply pipes 52A1 to 52A6 are branched from the ends of the cable carriers 56A and 56B on the die table 24 side, that is, inside the die table 24, for example, into four air supply pipes, and are individually provided on the die table 24.
  • To the forming tool 40 In the first embodiment shown in FIG. 7, approximately half of the 48 molding tools 40 arranged on the die table 24 are illustrated, and an example in which an air supply pipe 52 is connected to each is illustrated. However, the air supply pipe 52 does not have to be particularly connected to the rotary processing tool 49 in the forming tool 40. Further, the forming tool 40 to which the air supply pipe 52 is connected can be arbitrarily selected.
  • the can molding apparatus 20 when drawing can be performed on the opening side of the can body W3 (see FIG. 2 (e)) formed in the previous process using the can molding apparatus (necking apparatus) 20, the supply pipe 52 When the mold 33 is pressed against the can body W3 by sending the compressed gas through the child 34 and increasing the internal pressure of the can body W3 to be higher than the atmospheric pressure (external pressure), the can body W3 is other than the mold contact portion. To prevent deformation.
  • the six air supply pipes 52A1 to 52A6 are further branched on the downstream side (die table side) from the electromagnetic valves 53A to 53F, and the individual forming tools 40 are further branched. It is connected to the.
  • the number of electromagnetic valves that have conventionally been provided by the number of molding tools can be integrated into a number of electromagnetic valves 53A to 53F that is significantly smaller than the number of molding tools 40.
  • the input timing of the compressed gas fed into the inside of the can body W3 is only during the reciprocation of all the forming tools 40, there is no need to change the introduction timing of the compressed gas for each can body W3.
  • a number of solenoid valves are not provided individually.
  • the number of electromagnetic valves should be at least smaller than the number of molding tools 40. For example, it is possible to reduce the probability that the can molding apparatus 20 stops operating due to a failure of the electromagnetic valve, and the number of electromagnetic valves integrated with respect to the number of molding tools 40 is not limited.
  • the compressed gas supply means 25 is provided with solenoid valves 53A to 53F in the main body 21, and supply pipes (pressure pipes) 52A1 to 52A6 on the downstream side of these solenoid valves 53A to 53F are individually molded by the die table 24. Further branching toward 40.
  • the die table 24 is provided with an oiling tool 46 that constitutes the oil supply means 26, and the processing oil is applied to the can body W3 being processed. For this reason, the processing oil always adheres to the die table 24, and the oil table is easily damaged.
  • the compression valve control electromagnetic valve is provided adjacent to the die table forming tool, the processing oil is very easily attached to the electromagnetic valve, and by drying and solidifying the attached processing oil, The solenoid valve was prone to failure.
  • the electromagnetic valves 53A to 53F are not contaminated by the processing oil by providing the electromagnetic valves 53A to 53F in the main body 21 away from the die table 24 as in the first embodiment. For this reason, the failure occurrence rate of the electromagnetic valves 53A to 53F can be further reduced, and the probability that the can molding apparatus 20 stops operating can be further reduced.
  • cable carriers 56A and 56B are installed between the main body 21 and the die table 24, and the supply pipes (pressure pipes) 52A1 to 52A6, the power line for driving the tool spindle of the rotary processing tool 49, and the like are accommodated.
  • the air supply pipes 52A1 to 52A6 and the power line processing oil can be prevented from being contaminated or corroded.
  • the number of solenoid valves, the number of branches of the supply pipe, the number of forming tools, etc. mentioned in the first embodiment are examples, and the supply pipe is directed to each of the plurality of forming tools on the downstream side of one solenoid valve. If it is the structure formed by branching, the number of these solenoid valves, the number of branches of the air supply pipe, the number of forming tools, etc. are not limited, and can be any number.
  • the second embodiment is different from the first embodiment in that it further includes a supply path.
  • the configuration of the basic second embodiment other than the supply path is basically the same as that of the first embodiment.
  • the oil supply means 26 of the first embodiment and other associated configurations may be provided.
  • a processing oil source 56 and an oil hose 53 shown in FIG. 9 described later may be provided.
  • the description of the same configuration as that of the first embodiment is minimized, and only the configuration different from the first example will be described in detail.
  • FIG. 1 is a flowchart showing an example of a bottle can manufacturing process step by step.
  • FIG. 2 is a schematic diagram showing changes in the can shape in each step.
  • the plate blanking process S1 the cupping process (drawing process) S2, the DI process (drawing and ironing process) S3, the trimming process S4, the printing / painting (can outer surface) process S5, the painting (can inner surface) process S6, the necking process
  • the can is manufactured through S7 and the screw forming step S8 in this order.
  • the plate material punching step S1 for example, a rolled material made of an Al alloy material is punched, and a disk-shaped plate material (blank) W as shown in FIG. 2A is formed (punched).
  • the cupping step (drawing step) S2 as shown in FIG. 2B, the plate material W is drawn (capping) by a cupping press to form a cup-shaped body (can base material) W1.
  • DI step (drawing and squeezing step) S3 as shown in FIG. 2 (c)
  • DI processing re-drawing and squeezing processing
  • the opening end portion 11a of the can body W2 is non-uniform, the opening end portion 11a is trimmed using a trimming device, and the can body as shown in FIG.
  • the can body W3 is washed to remove the lubricating oil and the like, and then subjected to a surface treatment and dried. Then, as shown in FIG. 2 (e), printing and coating of the outer surface side 11b of the can body W3 are performed. (Printing / painting (can outer surface) step S5), and then the inner surface 11c of the can body W3 is coated (painting (can inner surface) step S6).
  • a neck portion 13 having a constricted shape so as to be smoothly inclined is formed on the opening end portion 11a side of the can body 11 (necking step S7). Furthermore, a thread groove 14 (see FIG. 2G) that matches the shape of the cap is provided in the neck portion 13 at the opening end portion of the neck portion 13 using a rotary processing tool (molding tool) (screw molding). Step S8).
  • the can forming apparatus according to the present embodiment is a can body necking apparatus used in the necking step S7 and the screw forming step S8. By such a necking apparatus, a can body (bottle can) 10 having a constricted neck portion 13 and a screw groove 14 on the open end 11a side of the can body 11 is manufactured (see FIG. 2G). .
  • the can body (bottle can) 10 obtained through each of the above steps is then filled with contents such as beverages inside, and further fitted with the screw groove 14 to cover the opening of the neck portion 13. Is attached, and the inside of the can 10 is sealed.
  • FIG. 8 is an external perspective view showing a can forming apparatus (necking apparatus) according to the second embodiment.
  • FIG. 9 is a side view of the can molding device as viewed from one side.
  • the can forming device (necking processing device) 120 is used, for example, in the necking step S7 and the screw forming step S8 described above, and is provided with a main body 121 and a turn provided to be rotatable around the central axis TA of the main body 121.
  • a table 123 and a die table 124 arranged to face the turntable 123 are provided. More specifically, a connecting shaft 129 that connects the turntable 123 and the die table 124 is provided on the front side of the main body 121 (the side on which the turntable 123 is provided).
  • the central axis TA is an imaginary axis that passes through the center of a cross section that is parallel to the axial direction of the connecting shaft 129 and perpendicular to the axial direction of the connecting shaft 129.
  • the turntable 213 is supported so as to be rotatable around the connecting shaft 129.
  • the die table 124 is supported so as to reciprocate along the connecting shaft 129.
  • the main body 121 supports the turntable 123 and the die table 124.
  • the main body 121 includes a rotation mechanism (not shown) that rotates the turntable 123 around the center axis TA (about the connecting shaft 129), and an axis line of the center axis TA (an axis line of the connecting shaft 129). Is provided with a reciprocating mechanism (not shown) that reciprocates with a predetermined width.
  • the turntable 123 has, for example, a large number of can body holding parts 131 arranged in an annular shape on one side 123a of a table main body (base material) 123A having a ring-shaped flat plate. Consists of.
  • the turntable 123 is rotatably supported by an index (not shown) provided on the main body 121 and rotates intermittently around the central axis TA (connection shaft 129). In the second embodiment, the turntable 123 rotates in the counterclockwise direction Q in FIG.
  • the die table 124 includes, for example, a ring-shaped table main body 124A, a molding tool 140 arranged in a ring shape on one side 124a of the table main body 124A facing the turntable 123, and the center of the table main body 124A.
  • a supply path storage section (storage section) 124B provided on the side.
  • the die table 124 is supported by a connecting shaft 129 provided in the main body 121 so as to be capable of reciprocating along the axial direction of the connecting shaft 129.
  • the die table 124 is repeatedly moved toward and away from the turntable 123 along the table axis TA with a predetermined width by a reciprocating mechanism (not shown) provided in the main body 121. Then, after the completion of one stroke (reciprocating movement) consisting of the approaching movement and the separation movement, before the next one stroke starts, the turntable 123 has a predetermined amount along the circumferential direction, for example, a forming tool for the opposing die table 124. It rotates in the counterclockwise direction Q by one.
  • the opening end side of the can body W3 in which the bottom portion is held by the can body holding part 131 is processed by the forming tool 140.
  • FIG. 10 is an enlarged plan view of a main part showing the die table.
  • the table main body 124A of the die table 124 has a disc shape or a circular ring shape.
  • the die table 124 is connected to the connecting shaft 129 (see FIGS. 8 and 9) of the main body 121, and is coaxially disposed on the outer side in the table radial direction with respect to the inner ring body 141.
  • the outer ring body 142 and the ring bodies 141 and 142 are connected to each other in the table radial direction, and a plurality of ribs 143 arranged at intervals in the table circumferential direction are provided.
  • a plurality of forming tools 140 are arranged on the outer ring body 142 of the die table 124 along the circumferential direction.
  • the outer ring body 142 is provided with a plurality of attachment holes 145 along the circumferential direction of the table.
  • the plurality of forming tools 140 can be attached to these attachment holes 145 in the order of processing into the can.
  • the plurality of forming tools 140 include a die processing tool (neck forming mold) 148, a rotary processing tool 149, and an oiling tool 146.
  • a large number of die processing tools 148 and a plurality of rotary processing tools 149 are detachably disposed in the plurality of mounting holes 145 of the die table 124 in the order of processing to the can body.
  • An oiling tool 146 is disposed at an arbitrary position. Note that some of the plurality of mounting holes 145 may be empty spaces in which the forming tool 140 is not mounted.
  • the die processing tool 148 moves in a can axis direction (a direction parallel to the center axis TA) with respect to the can, and draws the neck portion 13 by reducing the diameter of the opening end side of the can body, Die processing such as diameter expansion processing for expanding the peripheral wall is performed.
  • Die processing such as diameter expansion processing for expanding the peripheral wall is performed.
  • One die processing tool 148 applies one type of die processing to the can.
  • compressed air that increases the internal pressure in the can body is an air hose 151 (a supply pipe 52 in the first embodiment) that constitutes a supply path 150 described later. It is the structure supplied via E.).
  • the rotary processing tool 149 moves around the can axis with respect to the can, and by rotating around the can axis, the peripheral wall of the can is rotated such as trimming, screw forming, curling, and throttle (curling caulking). Is to be applied.
  • a rotating process is applied to the can by one rotating process tool 149.
  • the rotary processing tool 149 includes a molding unit that rotates the can, and a tool spindle that rotatably supports the can body.
  • the tool spindle spindle shaft portion thereof
  • the drive motor is disposed on the die table 124.
  • the tool spindle (spindle shaft portion thereof) is rotated by a rotational driving force transmitted from a drive motor, and the forming portion performs a rotation process on the can body using this rotational force.
  • Electric power for operating the drive motor is supplied to the rotary processing tool 149 via an electric wire 152 constituting a supply path 150 described later.
  • reference numeral 149A is a trimming processing tool
  • reference numeral 149B is a curl processing tool
  • reference numeral 149C is a throttle processing tool.
  • the oiling tool 146 is a tool for applying processing oil to a molded part of a can body, for example, an opening end side, and includes an oil pad (not shown) and a pad rotating device (not shown) for rotating the oil pad. .
  • Such an oiling tool 146 is disposed at an arbitrary position between the die processing tool 148 and the rotary processing tool 149, and supplies the processing oil to the forming part of the can body being processed.
  • the oil impregnated in the oil pad is supplied to the oiling tool 146 through an oil hose 153 constituting a supply path 150 described later.
  • the oiling tool 146 is supplied with compressed air that operates the pad rotating device via an air hose 151 that constitutes a supply path 150 described later.
  • cable carriers 161 and 161 are installed between the main body 121 and the die table 124.
  • the cable carriers 161 and 161 are, for example, bendable rectangular tubular members made of an oil resistant resin.
  • the cable carriers 161 and 161 have one end sides fixed to the main body side trays 162 and 162, and the other end sides fixed to the die table side trays 163 and 163.
  • the main body side trays 162 and 162 are fixed to the main body 121.
  • the die table side trays 163 and 163 are fixed to the die table 124 and move back and forth with the die table 124 along the central axis TA.
  • the cable carriers 161 and 161 are provided on the die table 124 side so as to be bent 180 ° downward. With such a configuration, the bending positions of the cable carriers 161 and 161 change according to the reciprocation of the die table side trays 163 and 163 fixed to the die table 124, and follow the reciprocation of the die table 124.
  • an air hose 151, an electric wire 152, an oil hose 153, etc. that constitute a supply path 150 for supplying compressed air, electric power, processing oil, etc. to the forming tool 140, respectively.
  • One end of the air hose 151 is connected to a compressed air supply source 54 such as a compressor. Further, one end side of the electric wire 152 is connected to the power source 155. Note that the power source 155 supplies power of a plurality of voltages, and the electric wires 152 are provided corresponding to the respective voltages.
  • a processing oil supply source 156 that includes a pump, an oil tank, and the like.
  • FIG. 11 is an explanatory diagram showing a supply path storage section (storage section) and its peripheral portion.
  • FIG. 11 shows the upper half of the die table in the vertical direction in order to clarify details.
  • the cable carriers 161 and 161 are divided into a plurality of sections along the extending direction, for example, 16 sections in the second embodiment, by a partition member 161a.
  • Each section accommodates an air hose 151, an electric wire 152, an oil hose 153, or a hydraulic hose (not shown) that applies hydraulic pressure to lock the die table 124 and the connecting shaft 129. Is done.
  • the supply path 150 does not need to be accommodated in all the sections, and the supply path 150 may be accommodated in an arbitrary section.
  • the supply path storage portion (storage portion) 124B is fixed to the inner ring body 141 of the die table 124.
  • the supply path storage portion 124 ⁇ / b> B may be fixed to the outer ring body 142 in addition to being fixed to the inner ring body 141.
  • the supply path storage portion 124B is formed in an octagon when viewed from the turntable 123 side (for example, a regular octagon shape). Such a supply path storage portion 124B can store a large number of supply paths 150 in a hollow interior. In addition, it is also preferable that a locking tool such as a clip that locks the supply path 150 to prevent swinging is provided inside the supply path storage portion 124B.
  • the supply path storage unit 124B may be formed in a polygonal shape such as a quadrangular shape, a hexagonal shape, or a decagonal shape (for example, a regular rectangular shape, a regular hexagonal shape, a regular decagonal shape, etc.).
  • Relay terminals 166a and 166b for connecting the air hoses 151 to each other are provided on two outer surfaces (outer peripheral portions) of the octagonal supply path storage portion 124B. Specifically, the relay terminals 166a and 166b are housed inside the air hose 151 passing through the cable carriers 161 and 161 and the supply path housing portion 124B, and branch toward the die processing tool 148 and the oiling tool 146, respectively. Then, the air hose 151 extending is connected.
  • one of the relay terminals 166a becomes the left region E1 of the die table 124.
  • the other relay terminal 166b is connected to an air hose 151 extending toward the forming tool 140 disposed in the right region E2 of the die table 124.
  • the compressed air supplied from the compressed air supply source 54 arranged on the main body 121 side is guided to the die table 124 side via the air hose 151 passing through the cable carriers 161 and 161 and supplied.
  • the data is input to the relay terminals 166a and 166b provided in the path storage unit 124B.
  • the compressed air is stored in the supply path storage portion 124B from the relay terminals 166a and 166b, and is branched and connected to the plurality of forming tools 140 (the die processing tool 148 and the oiling tool 146). It is supplied to each forming tool 140 via the hose 151.
  • the compressed air supplied to the oiling tool 146 is input to a pad rotating device (not shown) that rotates the oil pad.
  • the oil hose 153 extending from the processing oil supply source 156 is accommodated in one or a plurality of regions partitioned by the partition member 161a disposed inside the cable carriers 161 and 161, and guided to the die table 124 side.
  • a relay terminal 167 for connecting the oil hoses 153 to each other is provided on one outer surface (outer peripheral portion) of the octagonal supply path storage portion 124B.
  • the relay terminal 167 includes an oil hose 153 that passes through the cable carrier 161, an oil hose 153 that is housed in the supply path housing portion 124B, and extends toward each oiling tool 146 (see FIG. 10). Connect.
  • the relay terminal 167 branches the flow path of the oil hose 153 into a plurality, and a plurality of oil hoses 153, 153.
  • the branched oil hoses 153, 153,... are accommodated inside the supply path accommodating portion 124B, and extend to and connect to the individual oiling tools 146, respectively.
  • the processing oil supplied from the processing oil supply source 156 arranged on the main body 121 side is guided to the die table 124 side via the oil hose 153 passing through the cable carriers 161 and 161 and supplied.
  • the data is input to the relay terminal 167 provided in the path storage unit 124B.
  • the processing oil is branched to the relay terminal 167 and is supplied to each oiling tool 146 via an oil hose 153 that is stored in the supply path storage portion 124 ⁇ / b> B and extends to the oiling tool 146.
  • the electric power supplied from the power source 155 arranged on the main body 121 side is guided to the die table 124 side via the electric wires 152 passing through the cable carriers 161 and 161, and is stored in the supply path storage portion 124B. Is supplied to the rotary processing tool 149 via the electric wire 152.
  • Such electric wires 152 can be provided with a plurality of types of electric wires 152 corresponding to a plurality of voltages.
  • cable carriers 161 and 161 for housing the supply path 150 are installed between the main body 121 and the die table 124.
  • One end of each of the cable carriers 161 and 161 is fixed to the main body side trays 162 and 162, and the other end is fixed to the die table side trays 163 and 163.
  • the supply path 150 extends from the other end side of the cable carriers 161 and 161 toward the supply path storage portion 124 ⁇ / b> B of the die table 124.
  • the other ends of the cable carriers 161 and 161 reciprocate together with the die table 124, so that the supply path that extends from the other end of the cable carriers 161 and 161 toward the supply path storage portion 124B of the die table 124.
  • 150 oscillates greatly by the reciprocating motion of the die table 124, and there is no possibility of causing wear or damage due to rubbing with the die table 124. Therefore, it is possible to reliably prevent air leakage from the air hose 151 forming the supply path 150, oil leakage from the oil hose 153, electric leakage of the electric wire 152, and the like. In addition, the life of the supply path 150 can be extended and the maintenance cost can be reduced.
  • a supply path storage portion 124B for storing the supply path 150 is provided in the die table 124, and the relay terminals 166a, 166b for connecting the supply paths 150 to the supply path storage section 124B.
  • 167a, 167 can orderly supply a large number of supply paths 150, 150... Branched on the die table 124 side, and facilitate maintenance of the large number of supply paths 150, 150.
  • the supply paths 150, 150 are prevented from being rubbed or dropped due to the reciprocating motion of the die table 124.
  • the peripheral surface of the supply path storage portion 124B can be made a flat outer surface. This makes it possible to easily attach the relay terminals 166a, 166b, and 167 so as to be exposed on the outer surface of the supply path storage portion 124B.
  • an air hose, an electric wire, an oil hose, or a hydraulic hose is given as an example of the supply path, but the type of the supply path is not limited to this, and is arranged on a die table. It may be a conveyance path for supplying gas, liquid, power source and the like supplied to the processed tool.
  • a flexible hollow tube having a quadrangular cross section is used as the cable carrier.
  • a bellows tube having a circular cross section may be used as the cable carrier.
  • the shape is not limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

缶体(10)を着脱可能に保持するターンテーブル(23、123)と、缶体(10)を成形する成形具(40、140)を一面側に円環状に配列してなるダイテーブル(24、124)と、ターンテーブル(23、123)およびダイテーブル(24、124)を支持する本体部(21、121)と、それぞれの成形具に向けて圧縮空気を供給する圧縮ガス供給手段(25)と、を備え、圧縮ガス供給手段(25)は、圧縮ガス源(51)と、該圧縮ガス源からそれぞれの成形具に向けて圧縮ガスを送る給気管(52)と、給気管の途上に設けられ、信号電流により開閉する複数の電磁弁(53)と、を有し、給気管(52)は、1つの電磁弁(53)よりも下流側において、複数の成形具のそれぞれに向けて分岐してなる。

Description

缶成形装置
 この発明は、缶成形装置における圧縮ガスの供給に関するものである。
 また、この発明は、缶成形装置に関し、詳しくは、ダイテーブルに配された成形具に向けて、圧縮空気、油圧、電力および加工油をそれぞれ供給するための構成に関するものである。
 本願は、2016年7月11日に日本に出願された特願2016-136746号及び2016年11月30日に日本に出願された特願2016-232301号に基づき優先権を主張し、その内容をここに援用する。
 飲料等の内容物が充填、密封される缶体として、缶胴(ウォール)と缶底(ボトム)を有する有底筒状の缶体と、該缶体の開口端部にネジキャップが螺着されたボトル缶が知られている。こうしたボトル缶の缶体は、上部がくびれるように斜めに絞られ、開口部側にはネジキャップを螺着するためのネジ溝が設けられている。
 このようなボトル缶を製造する際には、例えば、アルミニウムやアルミニウム合金製の金属板を、カッピングプレスを用いてカップ形状に絞り加工(Drawing)したもの(缶基材)を、DIプレスを用いて再絞りし、さらに数段階のしごき加工(Ironing)で引き伸ばす。こうして得られた缶体の高さをトリミング加工により整えた後、缶体の周面にプリントを行う。その後、缶体の開口端側の絞り加工を行うネッキング工程を経て、ボトル缶が製造される。
 こうしたボトル缶の製造において、ネッキング工程に用いられる缶成形装置であるボトルネッカーは、缶体の底部側を支持する缶体保持部を多数、円環状に配列させたターンテーブルを回転させる。そして、それぞれの缶体保持部に対向するように、ダイテーブルに円環状に多数配列されたネッキング金型を、缶体保持部に保持された缶体の開口端側に順番に押し付けて、段階的に絞り加工を行うものである(例えば、特許文献1を参照)。
 このようなボトルネッカーでは、ネッキング金型を缶体の開口端側に押し付けて絞り加工を行う際に、缶体の開口端側を内側から支持する中子を介して、缶体の内部に圧縮空気を送り込んでいる。これによって、缶体内部の内圧が高められ、缶体加工時の衝撃による缶体の潰れなどの変形を防止している。
 このため、従来のボトルネッカーでは、圧縮空気の供給、遮断を制御するために、1つのネッキング金型に対して1つの電磁弁が設けられていた。
 また、缶体の開口端側の絞り加工を行う際に、缶体が塑性変形によって高温になることを防止するとともに、円滑な塑性変形を生じさせるように、加工油が供給されている。
 また、缶体の開口端側にネジキャップを螺合させるネジ溝を形成する回転加工ツールの駆動モータに向けて、電力が供給されている。
 更に、ダイテーブルを支持するロッドに対してダイテーブルを固定する油圧ロック機構に向けて、油圧が供給されている。
 従来、これら圧縮空気、加工油、電力、および油圧は、ダイテーブル側から延びる供給路を介して、ネッキング金型、加工油供給部、および油圧ロック機構に向けてそれぞれ供給されていた。
日本国特開2008-126266号公報(A)
 しかしながら、従来のボトルネッカーでは、1つのネッキング金型に対して1つの電磁弁を設ける構成であったために、多数のネッキング金型に対応した多数の電磁弁が必要になり、電磁弁の何れかが故障してボトルネッカーが停止する確率が高いという課題があった。
 また、従来のボトルネッカーでは、電磁弁がダイテーブル側に設けられていたために、ネッキング金型から缶体に供給される成形油により電磁弁が汚損して故障しやすいという課題もあった。
 この発明は、前述した事情に鑑みてなされたものであって、圧縮ガスの給気管の開閉を制御する電磁弁の不具合に起因した、缶成形装置の稼働停止の可能性を低減することを目的とする。
 また、上記課題に加えて、従来のボトルネッカーでは、上述した供給路がダイテーブル側の外部からダイテーブルに向けてそれぞれ直接接続されているために、ダイテーブルにおいてこれら供給路を構成するエアーホース、電線、オイルホースなどが交錯して供給路のレイアウトが複雑になり、供給路のメンテナンスが煩雑になるという課題があった。
 また、前後動するダイテーブルにこうした供給路を外部から直接接続すると、供給路に大きな振動が直接伝わって接続が外れたり断線しやすくなったりするといった懸念もあった。
 この発明は、前述した事情に鑑みてなされたものであって、ダイテーブル内において供給路の効率的なレイアウトを可能にし、かつダイテーブルの成形具に向けて延びる供給路の断線を防止することが可能な缶成形装置を提供することを目的とする。
 上記課題を解決するために、本願発明の一態様の缶成形装置(以下、「本願発明の缶成形装置」と称する)は、缶体を着脱可能に保持する多数の缶体保持部を一面側に円環状に配列してなり、中心軸に回りで回動可能なターンテーブルと、該ターンテーブルに対向するように配され、缶体を成形する成形具を一面側に円環状に配列してなり、前記中心軸の軸線方向に沿って往復動可能なダイテーブルと、前記ダイテーブルを前記中心軸に沿って往復動させる往復動機構を備えた本体部と、それぞれの前記成形具に向けて圧縮空気を供給する圧縮ガス供給手段と、を備えた缶成形装置であって、前記圧縮ガス供給手段は、圧縮ガス源と、該圧縮ガス源からそれぞれの前記成形具に向けて前記圧縮ガスを送る給気管と、前記給気管の途上に設けられ、信号電流により開閉する複数の電磁弁と、を有し、前記給気管は、1つの前記電磁弁よりも下流側において、複数の前記成形具のそれぞれに向けて分岐してなることを特徴とする。
 缶成形装置を用いて、缶体の開口側に対して絞り加工を行う際には、給気管から中子を介して圧縮ガスを送り込んで缶体の内圧を大気圧(外気圧)よりも高めることによって、金型を缶体に押し付ける際に、缶体が金型当接部分以外で変形することを防止する。こうした圧縮ガスを缶体に送り込む圧縮ガス供給手段は、電磁弁よりも下流側(ダイテーブル側)において、複数の給気管に分岐させている。これによって、従来は成形具の数だけ個別に設けられていた電磁弁が、成形具よりも少ない数の電磁弁に集約できる。
 もとより電磁弁は、ソレノイドによってプランジャなど弁体を機械的に可動させるために故障することも多い。そして、1つの電磁弁が故障しただけで、缶成形装置の稼働を止める必要が生じる。このため、本実施形態のように、電磁弁の数を成形具の数よりも少なくすることによって、電磁弁の故障による缶成形装置の稼働停止の可能性を大幅に低減することが可能になる。
 本願発明の缶成形装置では、前記電磁弁は、前記本体部に設けられてもよい。
 また、圧縮ガス供給手段は、電磁弁を本体部に設け、この電磁弁の下流側の給気管を、ダイテーブルで更に分岐させている。ダイテーブルには、油供給手段を構成する油付けツールが設けられており、加工中の缶体には加工用オイルが塗布されている。このため、ダイテーブルは常に加工用オイルが付着し、油による汚損が生じやすい。従来のように、ダイテーブルの成形具に隣接して圧縮ガス制御用の電磁弁を設けた構成では、電磁弁に加工用オイルが極めて付着しやすく、付着した加工用オイルの浸入や乾燥固化などによって、電磁弁が故障しやすかった。
 このため、本実施形態のように、電磁弁をダイテーブルから離れた本体部に設けることによって、電磁弁が加工用オイルによって汚損することが無い。このため、電磁弁の故障発生率を一層低減し、缶成形装置が稼働停止する確率をより一層低くすることが可能になる。
 本願発明の缶成形装置では、前記本体部と前記ダイテーブルとの間には、内部に前記給気管を収容するケーブルキャリアが架設され、1つの前記給気管は、前記ケーブルキャリアの前記ダイテーブル側末端より先において、個々の前記成形具に向けて分岐してもよい。
 本体部とダイテーブルとの間にケーブルキャリアを架設し、給気管を収容することによって、給気管の加工用オイルによる汚損や腐食を防止することができる。
 本願発明の缶成形装置では、前記圧縮ガス源と前記電磁弁との間には、更にサージタンクが設けられてもよい。
 圧縮ガス源と電磁弁との間にサージタンクを設けることによって、圧縮ガスの過剰な流入量を一時的に蓄えて、バッファとしてガス流量を平準化させることができる。
 本願発明の缶成形装置では、1つの前記電磁弁から延びる前記給気管は、少なくとも3つ以上の前記成形具に向けて分岐してもよい。
 本願発明の缶成形装置は、前記本体部から前記ダイテーブルの前記成形具に向けて延びる供給路をさらに備え、前記ダイテーブルには、前記供給路を収納する収納部が設けられてもよい。
 本願発明の缶成形装置によれば、ダイテーブルに供給路を収納する供給路収納部を設けることよって、ダイテーブル側で分岐する多数の供給路を整然と引き回すことができ、多数の供給路のメンテナンスを容易にすることができる。
 また、ダイテーブル側の多数の供給路を供給路収納部に収納することにより、ダイテーブルの往復動による供給路どうしの擦れや脱落を防止し、供給路の損耗による不具合の発生を確実に防止することができる。
 本願発明の缶成形装置では、前記供給路は、前記成形具に向けて、圧縮ガスを供給する前記給気管、電力を供給する電線、加工油を供給するオイルホースのうち、少なくともいずれか1つであってもよい。
 本願発明の缶成形装置では、前記供給路は、前記本体部と前記ダイテーブルとの間に架設され、前記ダイテーブルの往復動に追従して揺動可能に設けられたケーブルキャリアに収容されてもよい。
 これによって、ケーブルキャリアの他端側はダイテーブルとともに往復動するため、ケーブルキャリアの他端側からダイテーブルの収納部に向けて延びる供給路が、ダイテーブルの往復動によって大きく揺動し、ダイテーブルとの間で擦れによる摩耗や破損を引き起こすことを防止することが可能になる。
 本願発明の缶成形装置では、前記収納部は、前記ターンテーブル側から見た時に、多角形を成してもよい。
 本願発明の缶成形装置では、前記収納部は、前記供給路の経路上に配される中継ターミナルを備えてもよい。
 本願発明の缶成形装置では、1つの前記供給路は、前記ケーブルキャリアの前記ダイテーブル側末端より先において、複数の前記成形具に向けて分岐してもよい。
 本願発明の缶成形装置では、前記ケーブルキャリアは、その延長方向に沿って内部が複数の領域に区画されてもよい。
 本願発明の缶成形装置では、前記中継ターミナルは前記収納部の外周部に2つ設けられ、前記ダイテーブルの中心を通る鉛直線によって、前記ダイテーブルを左右の2つの領域に分けた時に、一方の前記中継ターミナルは前記ダイテーブルの左領域に配された前記成形具に向けてそれぞれ延びる前記供給路に接続され、他方の前記中継ターミナルは前記ダイテーブルの右領域に配された前記成形具に向けてそれぞれ延びる前記供給路に接続されてもよい。
 本願発明によれば、圧縮ガスの給気管の開閉を制御するための電磁弁の不具合に起因する缶成形装置の稼働停止の可能性を低減することができる。
 また、ダイテーブルの成形具に向けて延びる供給路の損傷を防止するとともに、ダイテーブル内において供給路の効率的なレイアウトが可能になる缶成形装置を提供することができる。
DI缶の製造工程を段階的に示したフローチャートである。 各工程における缶体形状の変化を示す模式図である。 本願発明の第一実施形態の缶成形装置(ネッキング加工装置)を示す外観斜視図である。 本願発明の第一実施形態の缶成形装置(ネッキング加工装置)を示す平面図である。 本願発明の第一実施形態の缶成形装置のダイテーブルの要部を示す要部拡大平面図である。 本願発明の第一実施形態の缶成形装置のダイテーブルのダイ加工ツールとターンテーブルの缶体保持部とを示す要部拡大断面図である。 本願発明の第一実施形態の缶成形装置の圧縮ガス供給手段の構成を示す模式図である。 本願発明の第二実施形態の缶成形装置(ネッキング加工装置)を示す外観斜視図である。 本願発明の第二実施形態の缶成形装置を示す側面図である。 本願発明の第二実施形態の缶成形装置のダイテーブルを示す要部拡大平面図である。 本願発明の第二実施形態の缶成形装置の供給路収納部(収納部)とその周辺部分を示す説明図である。
 (第一実施形態)
 以下、図面を参照して、本願発明の一第一実施形態の缶成形装置について説明する。なお、以下に示す各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本願発明を限定するものではない。また、以下の説明で用いる図面は、本願発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
 最初に、缶体の一例であるボトル缶の製造工程の一連の流れを説明する。
 図1は、ボトル缶の製造工程の一例を段階的に示したフローチャートである。図2は、各工程における缶体形状の変化を示す模式図である。
 ボトル缶は、板材打ち抜き工程S1、カッピング工程(絞り工程)S2、DI工程(絞りしごき工程)S3、トリミング工程S4、印刷・塗装(缶外面)工程S5、塗装(缶内面)工程S6、ネッキング工程S7、ネジ成形工程S8をこの順に経て、製缶される。
 板材打ち抜き工程S1では、例えば、Al合金材料からなる圧延材を打ち抜いて、図2(a)に示されるような、円板状の板材(ブランク)Wを成形する(打ち抜き加工する)。カッピング工程(絞り工程)S2では、図2(b)に示されるように、板材Wをカッピングプレスによって絞り加工(カッピング加工)して、カップ状体(缶基材)W1に成形する。DI工程(絞りしごき工程)S3では、DI加工装置によって、図2(c)に示されるように、カップ状体W1にDI加工(再絞りしごき加工)を施して、缶胴11と缶底12とが一体の有底筒状の缶体W2を成形する。
 トリミング工程S4では、缶体W2の開口端部11aの高さが不均一であるため、トリミング装置を用いて開口端部11aのトリミング加工を行ない、図4(d)に示すような、缶胴11の開口端部11aの高さが全周にわたって均等に揃えられた、トリミング加工後の缶体W3を成形する。
 この後、缶体W3を洗浄して潤滑油等を除去した後に、表面処理を施して乾燥し、次いで、図2(e)に示すように、缶体W3の外面側11bの印刷および塗装を行い(印刷・塗装(缶外面)工程S5)、その後、缶体W3の内面側11cの塗装を行う(塗装(缶内面)工程S6)。
 次に、ダイ加工ツール(ネック形成金型)を用いて、缶胴11の開口端部11a側に、縮径加工を施し、滑らかに傾斜するテーパー部と円筒部をなすネック部13を成形する(ネッキング工程S7)。更に、ネック部13の円筒部に、回転加工ツール(成形具)を用いて、キャップの形状に合わせたネジ溝14(図2(g)を参照)が成形される(ネジ成形工程S8)。
 本第一実施形態である缶成形装置は、こうしたネッキング工程S7やネジ成形工程S8で用いられる缶体のネッキング加工装置である。このようなネッキング加工装置によって、缶胴11の開口端部11a側に、くびれたネック部13を有する缶体(ボトル缶)10が製造される(図2(f)を参照)。
 以上のような各工程を経て得られた缶体(ボトル缶)10は、その後、内部に飲料等の内容物が充填され、更にネジ溝14と嵌合してネック部13の開口を覆うキャップが取り付けられ、缶体10の内部が密封される。
 図3は、第一実施形態の缶成形装置(ネッキング加工装置)を示す外観斜視図である。また、図4は、缶成形装置を一方の側面から見た時の平面図である。
 缶成形装置(ネッキング加工装置)20は、例えば、前述したネッキング工程S7やネジ成形工程S8に用いられ、本体部21と、この本体部21の中心軸TA回りで回動可能に設けられたターンテーブル23と、このターンテーブル23に対向するように配されたダイテーブル24とを備えている。
 より詳しく説明すると、本体部21の前面側(ターンテーブル23が設けられている側)には、ターンテーブル23とダイテーブル24を連結する連結軸29が設けられている。中心軸TAは、この連結軸29の軸方向に平行で、かつ連結軸29の軸方向に垂直な断面の中心を通る仮想軸線である。ターンテーブル23は、連結軸29に回りに回動可能に支持されている。ダイテーブル24は、連結軸29に沿って往復動可能に支持されている。
 また、缶成形装置20には、ダイテーブル24に向けて圧縮ガスを供給する圧縮ガス供給手段25や、加工用オイルを供給する油供給手段26が設けられている。
 本体部21は、ターンテーブル23やダイテーブル24を、支持する。この本体部21には、ターンテーブル23を中心軸TA回り(連結軸29回り)で回動させる回動機構(図示略)や、ダイテーブル24を中心軸TAの軸線(連結軸29の軸線)に沿って所定幅で往復動させる往復動機構(図示略)が設けられている。
 ターンテーブル23は、例えばリング状の平板を備えたテーブル本体(基材)23Aの一面側23aに、缶体のボトム部分を保持可能な多数の缶体保持部31が円環状に配列されたものからなる。このターンテーブル23は、本体部21に設けられたインデックス(図示略)によって回動可能に支持され、中心軸TA(連結軸29)の周りを間欠的に回動する。本第一実施形態では、ターンテーブル23は、図3中の反時計回り方向Qに回動する。
 ダイテーブル24は、例えばリング状を成すテーブル本体24Aのうち、ターンテーブル23に対向する一面側24aに、多数の成形具40が円環状に配列されたものからなる。
 このダイテーブル24は、本体部21に設けられた連結軸129によって、連結軸29の軸方向に沿って往復動可能に支持される。
 ダイテーブル24は、本体部21に設けられた往復動機構(図示略)によって、テーブル軸TAに沿ってターンテーブル23に対して、所定の幅で接近移動と離間移動とを繰り返す。そして、この接近移動と離間移動からなる1ストローク(往復動)完了後の、次の1ストローク開始前に、ターンテーブル23が、周方向に沿って所定量、例えば対向するダイテーブル24の成形具1つ分だけ、反時計回り方向Qに回動する。
 そして、ダイテーブル24とターンテーブル23とが接近離間する1ストローク毎に、缶体保持部31によってボトム部分が保持された缶体W3の開口端側が成形具40によって形状加工される。
 図5は、ダイテーブルを示す要部拡大平面図である。
 本第一実施形態において、ダイテーブル24のテーブル本体24Aは、円板状又は円形リング状を成している。詳しくは、ダイテーブル24は、本体部21の連結軸29(図3、4参照)に連結される内リング体41と、内リング体41に対してテーブル径方向の外側に同軸に配置される外リング体42と、これらのリング体41、42どうしをテーブル径方向に接続するとともに、テーブル周方向に互いに間隔をあけて配置される複数のリブ43と、を備えている。
 ダイテーブル24の外リング体42には、成形具40が周方向に沿って複数配設される。こうした成形具40をダイテーブル24に取り付けるために、外リング体42には、取付孔45がテーブル周方向に沿って複数設けられている。複数の成形具40は、缶体への加工順にこれらの取付孔45に取り付け可能とされている。
 複数の成形具40には、ダイ加工ツール(ネック形成金型)48と、回転加工ツール49と、が含まれている。本第一実施形態では、ダイテーブル24の複数の取付孔45に、多数のダイ加工ツール48と、複数の回転加工ツール49とが、缶体への加工順に着脱可能に配設されている。なお、複数の取付孔45のうち、いくつかは成形具40が取り付けられない空きスペースとされていてもよい。
 ダイ加工ツール48は、缶に対して缶軸方向(中心軸TAに平行な方向)に移動し、缶体の開口端側を縮径してネック部13を形成する絞り加工や、缶体の周壁を拡径する拡径加工等のダイ加工を施すものである。1つのダイ加工ツール48によって、1種類のダイ加工が缶に対して施される。
 回転加工ツール49は、缶に対して缶軸回りに移動し、この缶軸回りの回転動作により缶の周壁に、トリミング加工、ねじ成形加工、カール加工、スロットル(カールかしめ)加工等の回転加工を施すものである。1つの回転加工ツール49によって、回転加工が缶体に対して施される。
 回転加工ツール49は、缶に回転加工を施す成形部と、缶体を回転自在に支持するツールスピンドルと、を有している。また、特に図示していないが、ツールスピンドル(のスピンドル軸部)は、ベルト等の伝達部材を介して、駆動モータに連結されている。駆動モータは、ダイテーブル24に配設されている。ツールスピンドル(のスピンドル軸部)は、駆動モータから伝達される回転駆動力によって回転させられ、この回転力を利用して成形部は、缶体に対して回転加工を施す。
 なお、図5に示される複数の回転加工ツール49のうち、符号49Aはトリミング加工ツールであり、符号49Bはカール加工ツールであり、符号49Cはスロットル加工ツールである。また、ダイテーブル24には、油供給手段26を構成し、缶体W3に対して加工用オイルを付与する油付けツール46が配されている。
 図6は、ダイテーブルのダイ加工ツールとターンテーブルの缶体保持部とを示す要部拡大断面図である。
 ダイ加工ツール48は、缶体W3にダイ加工を施す金型33と、缶体W3の内部に挿入されて、成形時に缶体W3を内側から支持する中子34とを備えている。金型33は、缶体W3と接する成形面33aが、加工形状を象った形状にされている。なお、図6に示す第一実施形態では、金型33の一例として、缶体の開口端側を縮径してネック部13を形成する絞り加工金型を示している。
 中子34には、缶体W3の内部に圧縮空気を送り込む給気管(圧力配管)52の一端が配されている。こうした給気管52は、後ほど詳述する圧縮ガス供給手段25の一部を成す。例えば、金型33によって缶体W3にネック部13を形成する際に、給気管52から圧縮空気を送り込むことによって、缶体W3の内圧を大気圧(外気圧)よりも高める。これによって、金型33を缶体W3に押し付ける際に、缶体W3が金型当接部分以外で変形することを防止する。
 図7は圧縮ガス供給手段の構成を示す模式図である。
 圧縮ガス供給手段25は、圧縮ガス源51と、この圧縮ガス源51からそれぞれの成形具40に向けて圧縮ガスを送る複数の給気管52と、この給気管52の途上に設けられ、信号電流により開閉する複数の電磁弁53とを備えている。また、圧縮ガス源51と電磁弁53との間には、更にサージタンク54が設けられていることが好ましい。
 圧縮ガス源51は、例えば、コンプレッサや圧縮ガスタンクなどから構成されている。
こうした圧縮ガス源51は、本体部21の外部に配置されている。なお、圧縮ガスとしては、通常は圧縮空気を用いるが、これ以外にも、圧縮窒素ガスや任意の成分の混合圧縮ガスを用いることができ、限定されるものではない。
 サージタンク54は、圧縮ガスの過剰な流入量を一時的に蓄えることによって、バッファとしてガス流量を平準化させるものである。本第一実施形態では、圧縮ガス源51からサージタンク54までは1ラインの給気管52Aで接続され、サージタンク54よりも下流側で4ラインの給気管52A1~52A4に分岐する。また、圧縮ガス源51とサージタンク54とを接続する給気管52Aの途上には、更に開閉弁55や圧力計56などか設けられていてもよい。
 サージタンク54で分岐した6ラインの給気管52A1~52A6には、それぞれ電磁弁53A~53Fが取り付けられている。電磁弁53A~53Fは、ソレノイドの磁力によってプランジャを動かすことで弁(バルブ)を開閉し、給気管52A1~52A6を流れる圧縮ガスの開放、遮断を制御する。
 なお、この図7においては、説明を明瞭にするために、ダイテーブル24に設けられた多数の成形具40のうち略半数に接続される給気ラインを図示している。よって、電磁弁や給気管の実際の数は限定されるものでは無く、成形具40の設置数に応じて適宜選択される。
 このような電磁弁53A~53Fの開閉は、ソレノイドに印加する信号電流の断接によって制御される。信号電流の制御は、缶成形装置20の制御部(図示略)によって行われる。具体的な制御例としては、図3に示すダイテーブル24がテーブル軸TAに沿ってターンテーブル23に対して往復動する間だけ電磁弁53A~53Fを開き、ターンテーブル23が、周方向に沿ってダイテーブル24の成形具1つ分だけ回動する間は電磁弁553A~53Fを閉めるように制御する。
 圧縮ガス供給手段25のうち、少なくともサージタンク54および電磁弁53A~53Fは、本体部21に設けられている。例えば、本第一実施形態では、サージタンク54および電磁弁53A~53Fは、本体部21の筐体外面に取り付けられている。
 本体部21とダイテーブル24との間には、ケーブルキャリア56A、56Bが架設されている(図3参照)。ケーブルキャリア56A、56Bは、例えば、耐油性樹脂からなる屈曲自在な四角筒状の部材であり、ダイテーブル24側において、下方に180°湾曲するように設けられている。こうしたケーブルキャリア56A、56Bは、ダイテーブル24の往復動に合わせて屈曲位置が変化し、ダイテーブル24の往復動に追従する。ケーブルキャリア56A、56Bは、給気管52A1~52A6を内部に収容する。
 電磁弁53A~53Fよりも下流側の給気管52A1~52A6は、ケーブルキャリア56A、56Bに収容され、本体部21からダイテーブル24に向けて延長されている。
 第一実施形態では、給気管52A1、52A2、52A3はケーブルキャリア56Aに収容されて本体部21からダイテーブル24に向けて延び、また、給気管52A4、52A5、52A6はケーブルキャリア56Bに収容されて本体部21からダイテーブル24に向けて延びている。なお、ケーブルキャリア56A、56Bには、ダイテーブル24に設けられる回転加工ツール49のツールスピンドルを駆動する電力線なども併せて収容される。
 給気管52A1~52A6は、ケーブルキャリア56A、56Bのダイテーブル24側の末端より先、即ち、ダイテーブル24の内部において、例えば4本の給気管に分岐して、ダイテーブル24に設けられた個々の成形具40に導かれる。なお、図7に示す第一実施形態においては、ダイテーブル24に配された48個の成形具40のうち略半数を図示し、それぞれに給気管52を接続した例を示している。但し、成形具40のうち、回転加工ツール49に対しては、給気管52を特に接続しなくてもよい。また、給気管52が接続される成形具40は任意に選択することができる。
 以上のような構成の第一実施形態の缶成形装置20の作用を説明する。
 缶成形装置(ネッキング加工装置)20を用いて、例えば、前工程で成型した缶体W3(図2(e)参照)の開口側に対して絞り加工を行う際には、給気管52から中子34を介して圧縮ガスを送り込んで缶体W3の内圧を大気圧(外気圧)よりも高めることによって、金型33を缶体W3に押し付ける際に、缶体W3が金型当接部分以外で変形することを防止する。
 こうした圧縮ガスを缶体W3に送り込む圧縮ガス供給手段25は、電磁弁53A~53Fよりも下流側(ダイテーブル側)において、6つの給気管52A1~52A6がそれぞれ更に分岐して個々の成形具40に接続されている。これによって、従来は成形具の数だけ個別に設けられていた電磁弁が、成形具40の数よりも大幅に少ない数の電磁弁53A~53Fに集約できる。
 もとより電磁弁は、ソレノイドによってプランジャなど弁体を機械的に可動させるために故障することも多い。そして、1つの電磁弁が故障しただけで、缶成形装置20の稼働を止める必要が生じる。このため、第一実施形態のように、電磁弁の数を成形具の数よりも大幅に少なくすることによって、電磁弁の故障による缶成形装置20の稼働停止の可能性を大幅に低減することが可能になる。
 例えば、故障発生率が同一の電磁弁を24個の成形具のそれぞれに用いた構成と、第一実施形態のように、6個の電磁弁53A~53Fに集約した構成を比較すると、いずれかの電磁弁の故障によって缶成形装置20が稼働停止する確率を1/4(理論値)に低減することができる。
 なお、缶体W3の内部に送り込む圧縮ガスの入力タイミングは、全ての成形具40が往復動する間だけであるので、缶体W3毎に圧縮ガスの導入タイミングを変える必要はなく、成形具の数だけ個別に電磁弁を設けなくても何ら問題は無い。
 また、第一実施形態では、24個の成形具40に対して6個の電磁弁53A~53Fに集約させた例を示しているが、少なくとも成形具40の数よりも電磁弁の数が少なければ、電磁弁の故障によって缶成形装置20が稼働停止する確率を低減することが可能であり、成形具40の数に対する電磁弁の集約数が限定されるものでは無い。
 一方、圧縮ガス供給手段25は、電磁弁53A~53Fを本体部21に設け、これら電磁弁53A~53Fの下流側の給気管(圧力配管)52A1~52A6を、ダイテーブル24で個々の成形具40に向けて更に分岐させている。ダイテーブル24には、油供給手段26を構成する油付けツール46が設けられており、加工中の缶体W3は加工用オイルが塗布されている。このため、ダイテーブル24は常に加工用オイルが付着し、油による汚損が生じやすい。従来のように、ダイテーブルの成形具に隣接して圧縮ガス制御用の電磁弁を設けた構成では、電磁弁に加工用オイルが極めて付着しやすく、付着した加工用オイルの乾燥固化などによって、電磁弁が故障しやすかった。
 このため、第一実施形態のように、電磁弁53A~53Fをダイテーブル24から離れた本体部21に設けることによって、電磁弁53A~53Fが加工用オイルによって汚損することが無い。このため、電磁弁53A~53Fの故障発生率を一層低減し、缶成形装置20が稼働停止する確率をより一層低くすることができる。
 また、こうした本体部21とダイテーブル24との間にケーブルキャリア56A、56Bを架設し、給気管(圧力配管)52A1~52A6や、回転加工ツール49のツールスピンドル駆動用電力線などを収容することによって、これら給気管52A1~52A6や電力線の加工用オイルによる汚損や腐食を防止することができる。
 なお、ケーブルキャリア56A、56Bをダイテーブル24側において下方に180°湾曲するように形成することによって、ケーブルキャリア56A、56Bの内部にダイテーブル24から飛散した加工用オイルが入り込むことも防止できる。
 第一実施形態で挙げた電磁弁の数や給気管の分岐数、成形具の数などは一例であり、給気管が1つの電磁弁よりも下流側において、複数の成形具のそれぞれに向けて分岐してなる構成であれば、これら電磁弁の数、給気管の分岐数、成形具の数などが限定されるものではなく、任意の数にすることができる。
 以上、発願明の第一実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
(第二実施形態)
 以下、図面を参照して、本願発明の第二実施形態の缶成形装置について説明する。
 第二実施形態は、供給路をさらに備える点で第一実施形態と相違する。供給路以外の基本的な第二実施形態の構成は、第一実施形態と基本的に同一である。
 第二実施形態では、第一実施形態の油供給手段26及びその他付随の構成が設けられていてもよい。また、第一実施形態の油供給手段26の代わりとして、後述の図9に示す加工油源56及びオイルホース53等が設けられてもよい。
 以下の第二実施形態の説明においては、第一実施形態と同一の構成の説明は、最小限に止め、第一実施例と相違する構成のみを詳しく説明する。
 第二実施形態の説明においても第一実施形態の説明と同様に、以下に示す各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本願発明を限定するものではない。また、以下の説明で用いる図面は、本願発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
 缶体の一例であるボトル缶の製造工程の一連の流れは、第一実施形態と同じである。 図1は、ボトル缶の製造工程の一例を段階的に示したフローチャートである。図2は、各工程における缶体形状の変化を示す模式図である。
 ボトル缶は、板材打ち抜き工程S1、カッピング工程(絞り工程)S2、DI工程(絞りしごき工程)S3、トリミング工程S4、印刷・塗装(缶外面)工程S5、塗装(缶内面)工程S6、ネッキング工程S7、ネジ成形工程S8をこの順に経て、製缶される。
 板材打ち抜き工程S1では、例えば、Al合金材料からなる圧延材を打ち抜いて、図2(a)に示されるような、円板状の板材(ブランク)Wを成形する(打ち抜き加工する)。カッピング工程(絞り工程)S2では、図2(b)に示されるように、板材Wをカッピングプレスによって絞り加工(カッピング加工)して、カップ状体(缶基材)W1に成形する。DI工程(絞りしごき工程)S3では、DI加工装置によって、図2(c)に示されるように、カップ状体W1にDI加工(再絞りしごき加工)を施して、缶胴11と缶底12とが一体の有底筒状の缶体W2を成形する。
 トリミング工程S4では、缶体W2の開口端部11aの高さが不均一であるため、トリミング装置を用いて開口端部11aのトリミング加工を行ない、図49(d)に示すような、缶胴11の開口端部11aの高さが全周にわたって均等に揃えられた、トリミング加工後の缶体W3を成形する。
 この後、缶体W3を洗浄して潤滑油等を除去した後に、表面処理を施して乾燥し、次いで、図2(e)に示すように、缶体W3の外面側11bの印刷および塗装を行い(印刷・塗装(缶外面)工程S5)、その後、缶体W3の内面側11cの塗装を行う(塗装(缶内面)工程S6)。
 次に、ダイ加工ツール(ネック形成金型)を用いて、缶胴11の開口端部11a側に、滑らかに傾斜するようにくびれた形状をなすネック部13を成形する(ネッキング工程S7)。更に、ネック部13の開口端部に、回転加工ツール(成形具)を用いて、キャップの形状に合わせたネジ溝14(図2(g)を参照)がネック部13に設けられる(ネジ成形工程S8)。
 本実施形態である缶成形装置は、こうしたネッキング工程S7やネジ成形工程S8で用いられる缶体のネッキング加工装置である。このようなネッキング加工装置によって、缶胴11の開口端部11a側に、くびれたネック部13およびネジ溝14を有する缶体(ボトル缶)10が製造される(図2(g)を参照)。
 以上のような各工程を経て得られた缶体(ボトル缶)10は、その後、内部に飲料等の内容物が充填され、更にネジ溝14と嵌合してネック部13の開口を覆うキャップが取り付けられ、缶体10の内部が密封される。
 図8は、第二実施形態の缶成形装置(ネッキング加工装置)を示す外観斜視図である。また、図9は、缶成形装置を一方の側面から見た時の側面図である。
 缶成形装置(ネッキング加工装置)120は、例えば、前述したネッキング工程S7やネジ成形工程S8に用いられ、本体部121と、この本体部121の中心軸TA回りで回動可能に設けられたターンテーブル123と、このターンテーブル123に対向するように配されたダイテーブル124とを備えている。
 より詳しく説明すると、本体部121の前面側(ターンテーブル123が設けられている側)には、ターンテーブル123とダイテーブル124を連結する連結軸129が設けられている。中心軸TAは、この連結軸129の軸方向に平行で、かつ連結軸129の軸方向に垂直な断面の中心を通る仮想軸線である。ターンテーブル213は、連結軸129に回りに回動可能に支持されている。ダイテーブル124は、連結軸129に沿って往復動可能に支持されている。
 本体部121は、ターンテーブル123やダイテーブル124を支持する。この本体部121には、ターンテーブル123を中心軸TA回り(連結軸129回り)で回動させる回動機構(図示略)や、ダイテーブル124を中心軸TAの軸線(連結軸129の軸線)に沿って所定幅で往復動させる往復動機構(図示略)が設けられている。
 ターンテーブル123は、例えばリング状の平板を備えたテーブル本体(基材)123Aの一面側123aに、缶体のボトム部分を保持可能な多数の缶体保持部131が円環状に配列されたものからなる。このターンテーブル123は、本体部121に設けられたインデックス(図示略)によって回動可能に支持され、中心軸TA(連結軸129)の周りを間欠的に回動する。第二実施形態では、ターンテーブル123は、図8中の反時計回り方向Qに回動する。
 ダイテーブル124は、例えばリング状を成すテーブル本体124Aと、このテーブル本体124Aのうち、ターンテーブル123に対向する一面側124aに、円環状に多数配列された成形具140と、テーブル本体124Aの中心寄りに設けられた供給路収納部(収納部)124Bと、を備えている。
 このダイテーブル124は、本体部121に設けられた連結軸129によって、連結軸129の軸方向に沿って往復動可能に支持される。
 ダイテーブル124は、本体部121に設けられた往復動機構(図示略)によって、テーブル軸TAに沿ってターンテーブル123に対して、所定の幅で接近移動と離間移動とを繰り返す。そして、この接近移動と離間移動からなる1ストローク(往復動)完了後の、次の1ストローク開始前に、ターンテーブル123が、周方向に沿って所定量、例えば対向するダイテーブル124の成形具1つ分だけ、反時計回り方向Qに回動する。
 そして、ダイテーブル124とターンテーブル123とが接近離間する1ストローク毎に、缶体保持部131によってボトム部分が保持された缶体W3の開口端側が成形具140によって形状加工される。
 図10は、ダイテーブルを示す要部拡大平面図である。
 第二実施形態において、ダイテーブル124のテーブル本体124Aは、円板状又は円形リング状を成している。詳しくは、ダイテーブル124は、本体部121の連結軸129(図8、9参照)に連結される内リング体141と、内リング体141に対してテーブル径方向の外側に同軸に配置される外リング体142と、これらのリング体141、142どうしをテーブル径方向に接続するとともに、テーブル周方向に互いに間隔をあけて配置される複数のリブ143と、を備えている。
 ダイテーブル124の外リング体142には、成形具140が周方向に沿って複数配設される。こうした成形具140をダイテーブル124に取り付けるために、外リング体142には、取付孔145がテーブル周方向に沿って複数設けられている。複数の成形具140は、缶体への加工順にこれらの取付孔145に取り付け可能とされている。
 複数の成形具140には、ダイ加工ツール(ネック形成金型)148と、回転加工ツール149と、油付けツール146とが含まれている。第二実施形態では、ダイテーブル124の複数の取付孔145に、多数のダイ加工ツール148と、複数の回転加工ツール149とが、缶体への加工順に着脱可能に配設されている。また、任意の位置に油付けツール146が配設されている。なお、複数の取付孔145のうち、いくつかは成形具140が取り付けられない空きスペースとされていてもよい。
 ダイ加工ツール148は、缶に対して缶軸方向(中心軸TAに平行な方向)に移動し、缶体の開口端側を縮径してネック部13を形成する絞り加工や、缶体の周壁を拡径する拡径加工等のダイ加工を施すものである。1つのダイ加工ツール148によって、1種類のダイ加工が缶に対して施される。
 このダイ加工ツール148には、缶体加工時の潰れを防止するために、缶体内の内圧を高める圧縮空気が、後述する供給路150を構成するエアーホース151(第一実施形態における給気管52に相当)を介して供給される構成となっている。
 回転加工ツール149は、缶に対して缶軸回りに移動し、この缶軸回りの回転動作により缶の周壁に、トリミング加工、ねじ成形加工、カール加工、スロットル(カールかしめ)加工等の回転加工を施すものである。1つの回転加工ツール149によって、回転加工が缶体に対して施される。
 回転加工ツール149は、缶に回転加工を施す成形部と、缶体を回転自在に支持するツールスピンドルと、を有している。また、特に図示していないが、ツールスピンドル(のスピンドル軸部)は、ベルト等の伝達部材を介して、駆動モータに連結されている。駆動モータは、ダイテーブル124に配設されている。ツールスピンドル(のスピンドル軸部)は、駆動モータから伝達される回転駆動力によって回転させられ、この回転力を利用して成形部は、缶体に対して回転加工を施す。
 この回転加工ツール149には、駆動モータを動作させる電力が、後述する供給路150を構成する電線152を介して供給される。
 なお、図10に示される複数の回転加工ツール149のうち、符号149Aはトリミング加工ツールであり、符号149Bはカール加工ツールであり、符号149Cはスロットル加工ツールである。
 油付けツール146は、缶体の成形部分、例えば開口端側に加工油を塗布するツールであり、オイルパッド(図示略)やこのオイルパッドを回転させるパッド回転装置(図示略)を備えている。こうした油付けツール146は、ダイ加工ツール148や回転加工ツール149の間の任意の位置に配置され、加工中の缶体の成形部位に加工油を供給する。
 この油付けツール146には、オイルパッドに含浸させるオイルが、後述する供給路150を構成するオイルホース153を介して供給される。また、油付けツール146には、パッド回転装置を動作させる圧縮空気が、後述する供給路150を構成するエアーホース151を介して供給される。
 再び図8、図9を参照して、本体部121とダイテーブル124との間には、ケーブルキャリア161、161が架設されている。ケーブルキャリア161、161は、例えば、耐油性樹脂からなる屈曲自在な四角筒状の部材である。ケーブルキャリア161、161は、それぞれの一端側が本体側トレイ162、162に固定され、それぞれの他端側がダイテーブル側トレイ163、163に固定されている。
 本体側トレイ162、162は本体部121に固定されている。また、ダイテーブル側トレイ163、163は、ダイテーブル124に固定され、中心軸TAに沿ってダイテーブル124とともに前後動する。ケーブルキャリア161、161は、ダイテーブル124側において、下方に180°湾曲するように設けられている。こうした構成によって、ケーブルキャリア161、161は、ダイテーブル124に固定されたダイテーブル側トレイ163、163の往復動に合わせて屈曲位置が変化し、ダイテーブル124の往復動に追従する。
 ケーブルキャリア161、161の内部には、成形具140に対して圧縮空気、電力、加工油などをそれぞれ供給するための供給路150を構成するエアーホース151、電線152、オイルホース153等が収容される。
 エアーホース151の一端側はコンプレッサなどの圧縮空気供給源54に接続されている。
 また、電線152の一端側は電源155に接続されている。なお、電源155は、複数の電圧の電力を供給し、電線152は、それぞれの電圧に対応して設けられている。オイルホース153の一端側は、ポンプやオイルタンクなどから構成されている加工油供給源156に接続されている。
 図11は、供給路収納部(収納部)とその周辺部分を示す説明図である。なお、図11は、細部を明瞭にするためにダイテーブルの鉛直方向の上半分を示している。
 ケーブルキャリア161、161は、その内部が区画部材161aによって、延長方向に沿った複数の区画、第二実施形態では例えば16区画に分けられている。それぞれの区画には、供給路150を構成するエアーホース151、電線152、オイルホース153、あるいは、ダイテーブル124と連結軸129とをロックするための油圧を加える油圧ホース(図示略)などが収容される。なお、全ての区画に供給路150が収容される必要は無く、任意の区画に供給路150が収容されればよい。
 供給路収納部(収納部)124Bは、ダイテーブル124の内リング体141に固定される。
 なお、供給路収納部124Bは内リング体141に固定される以外にも、外リング体142に固定される構成であってもよい。
 第二実施形態では、供給路収納部124Bは、ターンテーブル123側から見た時に八角形に形成されている(例えば正八角形形状)。こうした供給路収納部124Bは、中空の内部に、供給路150が多数収納可能とされる。また、供給路収納部124Bの内部には、供給路150を係止して揺動を防ぐクリップなどの係止具を備えていることも好ましい。
 なお、供給路収納部124Bは、八角形以外にも、四角形、六角形、十角形など、多角形に形成されていればよい(例えば正四角形、正六角形、正十角形形状等)。
 こうした八角形の供給路収納部124Bのうちの2つの外側面(外周部)には、それぞれエアーホース151どうしを接続する中継ターミナル166a、166bが設けられている。具体的には、中継ターミナル166a、166bは、ケーブルキャリア161、161を通るエアーホース151と、供給路収納部124Bの内部に収容され、それぞれのダイ加工ツール148や油付けツール146に向けて分岐して延びるエアーホース151とを接続する。
 例えば、第二実施形態では、ダイテーブル124の中心を通る仮想鉛直線Pによってダイテーブル124を左右の2つの領域E1、E2に分けた時に、一方の中継ターミナル166aはダイテーブル124の左領域E1に配された成形具140(ダイ加工ツール148、油付けツール146)に向けてそれぞれ延びるエアーホース151に接続される。また、他方の中継ターミナル166bはダイテーブル124の右領域E2に配された成形具140に向けてそれぞれ延びるエアーホース151に接続される。
 このような構成によって、本体部121側に配された圧縮空気供給源54から供給された圧縮空気は、ケーブルキャリア161、161内を通るエアーホース151を介してダイテーブル124側に誘導され、供給路収納部124Bに設けられた中継ターミナル166a、166bに入力される。そして、圧縮空気は、この中継ターミナル166a、166bから供給路収納部124Bの内部に収容され、複数の成形具140(ダイ加工ツール148、油付けツール146)に向けて分岐して接続されたエアーホース151を介して、個々の成形具140に供給される。油付けツール146に供給された圧縮空気は、オイルパッドを回転させるパッド回転装置(図示略)に入力される。
 ケーブルキャリア161、161の内部に配された区画部材161aによって区画された領域の1つないし複数には、加工油供給源156から延びるオイルホース153が収容され、ダイテーブル124側に誘導される。
 八角形の供給路収納部124Bのうちの1つの外側面(外周部)には、オイルホース153どうしを接続する中継ターミナル167が設けられている。具体的には、中継ターミナル167は、ケーブルキャリア161を通るオイルホース153と、供給路収納部124Bの内部に収容され、それぞれの油付けツール146(図10参照)に向けて延びるオイルホース153とを接続する。
 中継ターミナル167は、オイルホース153の流路を複数に分岐させ、複数のオイルホース153、153…が接続される。そして、分岐されたオイルホース153、153…は、供給路収納部124Bの内部に収容され、個々の油付けツール146に向けてそれぞれ延びて接続される。
 このような構成によって、本体部121側に配された加工油供給源156から供給された加工油は、ケーブルキャリア161、161内を通るオイルホース153を介してダイテーブル124側に誘導され、供給路収納部124Bに設けられた中継ターミナル167に入力される。そして、加工油は、この中継ターミナル167で分岐して供給路収納部124Bの内部に収容され油付けツール146に延びるオイルホース153を介して、個々の油付けツール146に供給される。
 なお、本体部121側に配された電源155から供給された電力は、ケーブルキャリア161、161内を通る電線152を介してダイテーブル124側に誘導され、供給路収納部124Bの内部に収容された電線152を介して回転加工ツール149に供給される。こうした電線152は、複数の電圧に対応した複数種の電線152を設けることができる。
 以上のような構成の本願発明の缶成形装置の作用を説明する。
 本願発明の缶成形装置120では、本体部121とダイテーブル124との間に、供給路150を収容するケーブルキャリア161、161が架設されている。このケーブルキャリア161、161は、一端側が本体側トレイ162、162に固定され、他端側がダイテーブル側トレイ163、163に固定されている。そして、供給路150は、ケーブルキャリア161、161の他端側からダイテーブル124の供給路収納部124Bに向けて延びている。
 このような構成によって、ケーブルキャリア161、161の他端側はダイテーブル124とともに往復動するため、ケーブルキャリア161、161の他端側からダイテーブル124の供給路収納部124Bに向けて延びる供給路150が、ダイテーブル124の往復動によって大きく揺動し、ダイテーブル124との間で擦れによる摩耗や破損を引き起こす虞が無い。よって、供給路150を成すエアーホース151からの空気漏れや、オイルホース153からのオイル漏れ、電線152の漏電などを確実に防止することができる。また、供給路150の寿命を長くして、メンテナンスコストを低減することができる。
 また、本願発明の缶成形装置120では、ダイテーブル124に供給路150を収納する供給路収納部124Bを設け、また、この供給路収納部124Bに供給路150どうしを接続する中継ターミナル166a、166b、167a、167を設けることによって、ダイテーブル124側で分岐する多数の供給路150、150…を整然と引き回すことができ、多数の供給路150、150…のメンテナンスを容易にすることができる。
 また、ダイテーブル124側の多数の供給路150、150…を供給路収納部124Bに収納することにより、ダイテーブル124の往復動による供給路150、150どうしの擦れや脱落を防止し、供給路150を成すエアーホース151からの空気漏れや、オイルホース153からのオイル漏れ、電線152の漏電などを確実に防止することができる。
 また、供給路収納部124Bを例えば八角形など多角形に形成することによって、供給路収納部124Bの周面を平坦な外側面にすることができる。これによって、供給路収納部124Bの外面に露出するように、中継ターミナル166a、166b、167を容易に取り付けることが可能になる。
 以上、本願発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 例えば、上述した第二実施形態では、供給路の一例として、エアーホース、電線、オイルホース、あるいは油圧ホースを挙げたが、供給路の種類はこれに限定されるものでは無く、ダイテーブルに配列された加工具に供給される気体、液体、動力源などを供給するための搬送路であればよい。
 また、上述した第二実施形態では、ケーブルキャリアとして、断面が四角形の屈曲自在な中空管を用いているが、これ以外にも、例えば、断面円形の蛇腹管などをケーブルキャリアとして用いることもでき、その形状が限定されるものでは無い。
 缶成形装置を用いた金属製ボトル缶の製造を、より効率的に行うことができるようになる。
 10  缶体(ボトル缶)
 20  缶成形装置(ネッキング加工装置)
 21  本体部
 23  ターンテーブル
 24  ダイテーブル
 25  圧縮ガス供給手段
 29  連結軸
 40  成形具
 51  圧縮ガス源
 53  電磁弁
 54  サージタンク
 120  缶成形装置(ネッキング加工装置)
 121  本体部
 123  ターンテーブル
 124  ダイテーブル
 124A  テーブル本体
 124B  供給路収納部(収納部)
 129  連結軸
 140  成形具
 150  供給路
 151  エアーホース
 152  電線
 153  オイルホース
 161  ケーブルキャリア
 166a、166b、167  中継ターミナル

Claims (13)

  1.  缶体を着脱可能に保持する多数の缶体保持部を一面側に円環状に配列してなり、中心軸回りで回動可能なターンテーブルと、該ターンテーブルに対向するように配され、缶体を成形する成形具を一面側に円環状に配列してなり、前記中心軸の軸線方向に沿って往復動可能なダイテーブルと、前記ダイテーブルを前記中心軸に沿って往復動させる往復動機構を備えた本体部と、それぞれの前記成形具に向けて圧縮空気を供給する圧縮ガス供給手段と、を備えた缶成形装置であって、
     前記圧縮ガス供給手段は、圧縮ガス源と、該圧縮ガス源からそれぞれの前記成形具に向けて前記圧縮ガスを送る給気管と、前記給気管の途上に設けられ、信号電流により開閉する複数の電磁弁と、を有し、
     前記給気管は、1つの前記電磁弁よりも下流側において、複数の前記成形具のそれぞれに向けて分岐してなることを特徴とする缶成形装置。
  2.  前記電磁弁は、前記本体部に設けられていることを特徴とする請求項1に記載の缶成形装置。
  3.  前記本体部と前記ダイテーブルとの間には、内部に前記給気管を収容するケーブルキャリアが架設され、1つの前記給気管は、前記ケーブルキャリアの前記ダイテーブル側末端より先において、個々の前記成形具に向けて分岐していることを特徴とする請求項2に記載の缶成形装置。
  4.  前記圧縮ガス源と前記電磁弁との間には、更にサージタンクが設けられていることを特徴とする請求項1から3のいずれか一項に記載の缶成形装置。
  5.  1つの前記電磁弁から延びる前記給気管は、少なくとも3つ以上の前記成形具に向けて分岐していることを特徴とする請求項1から4のいずれか一項に記載の缶成形装置。
  6.  前記本体部から前記ダイテーブルの前記成形具に向けて延びる供給路をさらに備え、
     前記ダイテーブルには、前記供給路を収納する収納部が設けられていることを特徴とする請求項1又は2に記載の缶成形装置。
  7.  前記供給路は、前記成形具に向けて、圧縮ガスを供給する前記給気管、電力を供給する電線、加工油を供給するオイルホースのうち、少なくともいずれか1つであることを特徴とする請求項6に記載の缶成形装置。
  8.  前記供給路は、前記本体部と前記ダイテーブルとの間に架設され、前記ダイテーブルの往復動に追従して揺動可能に設けられたケーブルキャリアに収容されることを特徴とする請求項6または7に記載の缶成形装置。
  9.  前記収納部は、前記ターンテーブル側から見た時に、多角形を成すことを特徴とする請求項6に記載の缶成形装置。
  10.  前記収納部は、前記供給路の経路上に配される中継ターミナルを備えたことを特徴とする請求項6から8のいずれか一項に記載の缶成形装置。
  11.  1つの前記供給路は、前記ケーブルキャリアの前記ダイテーブル側末端より先において、複数の前記成形具に向けて分岐していることを特徴とする請求項8に記載の缶成形装置。
  12.  前記ケーブルキャリアは、その延長方向に沿って内部が複数の領域に区画されていることを特徴とする請求項8または11に記載の缶成形装置。
  13.  前記中継ターミナルは前記収納部の外周部に2つ設けられ、
     前記ダイテーブルの中心を通る鉛直線によって、前記ダイテーブルを左右の2つの領域に分けた時に、一方の前記中継ターミナルは前記ダイテーブルの左領域に配された前記成形具に向けてそれぞれ延びる前記供給路に接続され、他方の前記中継ターミナルは前記ダイテーブルの右領域に配された前記成形具に向けてそれぞれ延びる前記供給路に接続されることを特徴とする請求項10に記載の缶成形装置。
PCT/JP2017/011606 2016-07-11 2017-03-23 缶成形装置 WO2018012040A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016136746 2016-07-11
JP2016-136746 2016-07-11
JP2016232301 2016-11-30
JP2016-232301 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018012040A1 true WO2018012040A1 (ja) 2018-01-18

Family

ID=60952990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011606 WO2018012040A1 (ja) 2016-07-11 2017-03-23 缶成形装置

Country Status (1)

Country Link
WO (1) WO2018012040A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136831U (ja) * 1984-09-17 1985-09-11 ナシヨナル、キヤン、コ−ポレ−シヨン 容器作成装置
JP2008043965A (ja) * 2006-08-11 2008-02-28 Daiwa Can Co Ltd ボトル型缶の製造装置
JP2009078290A (ja) * 2007-09-26 2009-04-16 Mitsubishi Materials Corp 缶製造装置およびこれを用いた缶製造方法
US20100212130A1 (en) * 2009-02-26 2010-08-26 Belvac Production Machinery, Inc. Self compensating sliding air valve mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136831U (ja) * 1984-09-17 1985-09-11 ナシヨナル、キヤン、コ−ポレ−シヨン 容器作成装置
JP2008043965A (ja) * 2006-08-11 2008-02-28 Daiwa Can Co Ltd ボトル型缶の製造装置
JP2009078290A (ja) * 2007-09-26 2009-04-16 Mitsubishi Materials Corp 缶製造装置およびこれを用いた缶製造方法
US20100212130A1 (en) * 2009-02-26 2010-08-26 Belvac Production Machinery, Inc. Self compensating sliding air valve mechanism

Similar Documents

Publication Publication Date Title
CN101151138B (zh) 用于成型各种高度的热塑性材料的容器并具有高度可调的底部的成型设备
CN104379453A (zh) 灌装部件及灌装机
CN101267893B (zh) 居间锁定环
EP3978220B1 (en) Liquid blow molding device
JP2013132884A (ja) ブロー成形装置およびブロー成形容器の製造方法
CN100594115C (zh) 用于吹塑模制空心件的装置
WO2012035792A1 (ja) 二重エアゾール容器の製造方法、二重エアゾール容器、および、二重エアゾール容器の製造装置。
JP2013001120A (ja) 滑り軸受上ピボットシャフトガイド付きブロー成形機
WO2018012040A1 (ja) 缶成形装置
JP2011067866A (ja) 耐食性エアゾール容器の製造方法、耐食性エアゾール容器およびエアゾール容器の製造装置
CN107635744B (zh) 液体吹塑成型装置以及液体吹塑成型方法
EP3196463B1 (en) Improved air compressor
US20110189332A1 (en) Air cartridge devices and methods of using same
JP4898886B2 (ja) 飲料ディスペンサ用容器のキャップ、これを備えた飲料ディスペンサ用容器、飲料ディスペンサシステム、並びに、そのキャップの製造装置及び製造方法
JP6914125B2 (ja) 缶成形装置
JP2018089684A (ja) 缶成形装置
CN108421911A (zh) 冷凝器铜管用气体胀管机
JP2022020319A (ja) 缶成形装置の往復直線運動機構および缶成形装置
JP5747412B2 (ja) ブロー成形装置及び容器の製造方法
US20140353884A1 (en) Blow molding device and a method for manufacturing a blow molded container
JP2018012140A (ja) 缶成形装置
CN108290337A (zh) 用于校准薄膜软管的校准装置和方法
JP4343839B2 (ja) プラグ形状のポンプ
JP5851308B2 (ja) 内容液入りボトルの製造方法
JP2018183969A (ja) 液体入り容器の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827174

Country of ref document: EP

Kind code of ref document: A1