WO2018011986A1 - Scanning endoscope - Google Patents

Scanning endoscope Download PDF

Info

Publication number
WO2018011986A1
WO2018011986A1 PCT/JP2016/071024 JP2016071024W WO2018011986A1 WO 2018011986 A1 WO2018011986 A1 WO 2018011986A1 JP 2016071024 W JP2016071024 W JP 2016071024W WO 2018011986 A1 WO2018011986 A1 WO 2018011986A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
current
light
light amount
characteristic
Prior art date
Application number
PCT/JP2016/071024
Other languages
French (fr)
Japanese (ja)
Inventor
祐平 高田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2016/071024 priority Critical patent/WO2018011986A1/en
Publication of WO2018011986A1 publication Critical patent/WO2018011986A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Definitions

  • the present invention relates to a scanning endoscope.
  • the present invention has been made in view of the above-described circumstances, and provides a scanning endoscope capable of acquiring an image with good image quality even when the amount of light is reduced due to deterioration of a laser light source. It is aimed.
  • One embodiment of the present invention includes a laser light source unit, a current control unit that controls a drive current of the laser light source unit, an optical fiber that guides laser light emitted from the laser light source unit, and an emission of the optical fiber.
  • a scanner that vibrates an end and scans the laser light emitted from the emission end in a two-dimensional manner, a light amount detection unit that detects a light amount of the laser light emitted from the laser light source unit, and the light amount detection unit
  • a characteristic generation unit that generates a current light amount characteristic that associates the light amount detected by the current control unit with the drive current input to the laser light source unit, and the current control unit includes the characteristic In the scanning endoscope, the driving current is controlled so as to be a target light amount based on the current light amount characteristic generated by the generation unit.
  • the laser light source having a light amount determined based on the current light amount characteristic is emitted from the laser light source unit and guided by the optical fiber. It is emitted and ejected from the exit end.
  • the laser light emitted from the exit end is scanned two-dimensionally on the subject, so that return light from each scanning position of the subject is detected and associated with the scanning position.
  • an image of the subject can be acquired.
  • the light amount of the laser light emitted from the laser light source unit is detected by the light amount detection unit, and a current light amount characteristic in which the detected light amount is associated with the drive current is generated and generated by the characteristic generation unit. Based on the current light quantity characteristics, the drive current is controlled by the current control unit so as to achieve the target light quantity.
  • the laser light source part deteriorates over time, the light quantity decreases even if a constant drive current is input to the laser light source part, so the current light quantity characteristic fluctuates, and if the same current light quantity characteristic is used, the target light quantity It becomes impossible to obtain a drive current for achieving the above.
  • the drive current for achieving the target light amount is calculated based on the current light amount characteristic generated by detecting the light amount of the laser light from the laser light source unit, the target light amount can be achieved with high accuracy. Thus, it is possible to acquire an image with good image quality.
  • the laser light source unit includes a plurality of laser light sources that respectively emit the laser beams having different wavelength ranges, and the characteristic generation unit generates the current light amount characteristic for each of the laser light sources,
  • the target light amount of the laser light source may be a fixed value having a predetermined light amount ratio.
  • the laser light source unit includes a plurality of laser light sources that respectively emit the laser beams having different wavelength ranges, and the characteristic generation unit generates the current light amount characteristic for each of the laser light sources.
  • a target light amount setting unit that sets the light amount that can be achieved by the current light amount characteristic after the update by the drive current that achieves the target light amount before the update by the current light amount characteristic may be provided.
  • the laser light source unit deteriorates with time, the light amount detected by the light amount detection unit decreases.
  • the amount of light that can be achieved when a drive current that achieves the target light amount before update is input is set as a new target light amount. Since the target light amount is set by the target light amount setting unit so as to be the light amount ratio, the light amount ratio is kept constant so as not to fluctuate.
  • the laser light source unit includes a plurality of laser light sources that respectively emit the laser beams having different wavelength ranges, and the characteristic generation unit generates the current light amount characteristic for each of the laser light sources.
  • the drive current that is updated and has the predetermined light quantity ratio as the target light quantity of each laser light source and achieves the target light quantity before update by the updated current light quantity characteristic is equal to or less than a predetermined threshold value Is a fixed value, and when the value exceeds the threshold, the laser light source detected by the light amount detection unit has the greatest decrease in light amount before the update due to the current light amount characteristic before the update.
  • a target light amount setting unit that sets the light amount that can be achieved by the updated current light amount characteristic by the drive current that achieves the target light amount may be provided.
  • the target light quantity setting unit fixes the constant light quantity until the drive current exceeding the predetermined threshold is required to obtain the target light quantity as the deterioration of the laser light source progresses.
  • the target light amount setting unit reduces the target light amount to prevent an excessive increase in the current input to the deteriorated laser light source. Can be prevented from being accelerated.
  • the laser light source unit includes a plurality of laser light sources that respectively emit the laser beams having different wavelength ranges, and the characteristic generation unit generates the current light amount characteristic for each of the laser light sources.
  • a target light amount setting unit that is updated and has a predetermined light amount ratio as a target light amount of each laser light source and is set by a predetermined function that decreases with time may be provided.
  • the drive current is controlled so that the target light amount decreases with time according to a predetermined function, so that an excessive increase in the current input to the deteriorated laser light source is prevented, and the laser light source Can be prevented from being accelerated.
  • the target light amount setting unit is configured to use the drive current that achieves the target light amount before the update by the current light amount characteristic before the update.
  • a large target light amount may be set.
  • the target light quantity is lower than the target light quantity before the update, but cannot be achieved without increasing the drive current, so that the target light quantity can be lowered gradually without affecting the image quality.
  • the lifetime of the light source can be extended.
  • the characteristic generation unit may generate the current light quantity characteristic at a predetermined timing.
  • the present invention it is possible to obtain an image with good image quality even when the light amount is reduced due to deterioration of the laser light source.
  • FIG. 1 is an overall configuration diagram showing a scanning endoscope according to an embodiment of the present invention. It is a figure which shows the time change of the light quantity of the laser beam inject
  • the scanning endoscope 1 includes an endoscope body 2, a control device 3, and a display 4.
  • the endoscope body 2 includes a single mode fiber (optical fiber) 5 that guides laser light, and a scanner 6 that vibrates the exit end 5a of the single mode fiber 5 in a direction perpendicular to the longitudinal axis of the single mode fiber 5. And a light receiving fiber 7 for receiving the return light from the subject A.
  • the scanner 6 includes piezoelectric elements (not shown) arranged at equal intervals in the circumferential direction on the side surface of the single mode fiber 5 at a position spaced apart from the exit end 5 a of the single mode fiber 5.
  • the control device 3 causes a plurality of laser light sources 8 a, 8 b, and 8 c that respectively emit laser beams in the respective RGB wavelength regions and the laser light emitted from the laser light sources 8 a, 8 b, and 8 c to enter the single mode fiber 5.
  • a light source unit (laser light source unit) 10 having a coupler 9 is provided.
  • a light amount detector 11 is connected to the coupler 9. The light quantity detection unit 11 branches and detects a part of the light quantity of the laser light emitted from each laser light source 8a, 8b, 8c, for example, 1% to 5%.
  • control device 3 includes a current control unit 12 that controls each of the laser light sources 8a, 8b, and 8c, an actuator driver 13 that controls the scanner 6, and a photodetector that detects return light received by the light receiving fiber 7. 14, the AD converter (ADC) 15 that AD converts the return light detected by the photodetector 14, the intensity of the return light converted into a digital signal by the AD converter 15, and the scanning position
  • a signal processing unit 16 that generates an image of the return light and a control unit (characteristic generation unit, target light amount setting unit) 17 that controls them are provided.
  • a storage unit 18 is connected to the control unit 17.
  • the control unit 17 generates a current light amount characteristic based on the light amount detected by the light amount detection unit 11 and stores the generated current light amount characteristic in the storage unit 18 to update it.
  • the control unit 17 reads the latest current light amount characteristic stored in the storage unit 18 and calculates a drive current for achieving the target light amount.
  • the target light amount is a fixed value.
  • the current controller 12 drives the laser light sources 8a, 8b, and 8c in the order of RGB.
  • the light amount detection unit 11 constantly monitors the light amount in order to monitor a sudden light amount abnormality during use of the endoscope, and the detected light amount data is stored in the storage unit 18.
  • the laser light emitted from the emission end 5a of the single mode fiber 5 is non-diffused light, light energy that is limited to such an extent that it can be avoided by blinking or the like even when directly incident on the eyes is emitted.
  • the amount of emitted laser light is set to an average of 5 mW or less for the entire RGB so that a sufficient amount of light can be irradiated within the range of laser safety.
  • the current light amount characteristic is generated by using a process of gradually decreasing the laser light amount after the use of the endoscope and before the emission of the laser light is completely stopped. That is, as shown in FIG. 2, a data set in which the drive currents input from the current control unit 12 to the laser light sources 8 a, 8 b, and 8 c in the above process are associated with the light amounts detected by the light amount detection unit 11. By storing a plurality of sets, it is possible to generate a current light quantity characteristic.
  • the generated current light quantity characteristic is stored in the storage unit 18.
  • the inclination a and the threshold current I th is the unknown can be determined by the least square method using the read out from the storage unit 18, a data set of the drive current I and light intensity L at a plurality of points (Step S2). Then, by using the inclination a and the threshold current I th determined by the equation (1), so that the laser beam of the target light quantity L 0 is emitted, the current value I 0 'is calculated (step S3).
  • the scanning endoscope 1 is used by controlling the drive current to a value I 0 that can emit the laser light having the target light quantity L 0 .
  • the current light quantity characteristic represented by the formula (1) is obtained by the above method, and the target light quantity L is obtained at the next power-on.
  • a drive current I 0 ′ capable of emitting zero laser light is calculated.
  • At least two locations measurement data for generating the current light quantity characteristic enough for example, be a point-to-point threshold current I th and the endoscope during use amount. Then, when prompted the gradient a and the threshold current I th, by fitting the equation (1), the laser light source 8a after deterioration, 8b, by 8c, a drive current I 0 for achieving the target light quantity L 0 ' Can be calculated.
  • the laser light sources 8a, 8b, and 8c are driven by the drive current I 0 ′ (step S4), so that the laser light with the target light amount can always be output and the deterioration of the image quality can be prevented. it can.
  • the amount of laser light emitted from a plurality of laser light sources 8a, 8b, and 8c having different wavelength ranges has a constant light amount ratio in order to obtain illumination light of a desired color, but the laser light sources 8a, 8b,
  • the ratio can be kept constant.
  • the current control unit 12 is used by using a process of gradually decreasing the laser light amount after the use of the endoscope and before the laser light emission is completely stopped.
  • the current light quantity characteristic is generated by storing the drive current input to each of the laser light sources 8a, 8b, and 8c and the light quantity detected by the light quantity detector 11 in association with each other.
  • the amount of light change when the drive current is decreased by one step is equal to the amount of light change when the drive current is increased by one step, as shown in FIGS.
  • the light amount may be increased within a range not exceeding the initial target light amount.
  • the current light quantity characteristic may be measured in the process of gradually increasing the light quantity immediately before the emission of laser light for use with an endoscope.
  • the current light quantity characteristic may be measured when the light quantity falls below a predetermined level, for example, when it is reduced by 10%. If the fluctuation is within the range, an appropriate image quality can be obtained, and the current change frequency is low, so that the deterioration of the laser light sources 8a, 8b, and 8c can be further reduced. Alternatively, the measurement may be performed periodically at regular intervals, for example, every 500 hours.
  • FIG. 7 and FIG. 8 when photographing is performed using one of the forward and return periods, and the laser light sources 8 a, 8 b, and 8 c are turned off during the other period, the laser light sources 8 a, 8 b, and 8 c that are being photographed are used.
  • the current light quantity characteristic may be measured either when the laser light source 8a, 8b, or 8c is changed from the OFF state to the ON state. The amount of light can be adjusted with high frequency, and fluctuations in the amount of light can be suppressed.
  • the drive current is increased so as to return to the initial target light amount, so that the light amount and the light amount even if the laser light sources 8a, 8b, and 8c deteriorate.
  • the change of the target light amount may be allowed and only the light amount ratio may be maintained constant.
  • the drive current input to the laser light sources 8a, 8b, and 8c becomes excessive when the deterioration becomes large.
  • 8b, 8c may be accelerated. Therefore, keeping the light quantity constant is effective when the degree of deterioration is relatively slow and small.
  • the laser light sources 8a, 8b, and 8c when the laser light sources 8a, 8b, and 8c are turned off, the laser light sources 8a, 8b, and 8c in which the light amount detected by the light amount detection unit 11 has been reduced most greatly are used as a reference.
  • the drive current may be set so that the light quantity ratio is constant.
  • the amount of laser light from the laser light source 8b in the G wavelength region is greatly reduced, so that the light from the laser light source 8b in the G wavelength region at the end of use of the endoscope is reduced.
  • the amount of laser light is stored. Further, the light quantity ratio of RGB and the current light quantity characteristic of each laser light source 8a, 8b, 8c are stored.
  • the control unit 17 reads the stored data (step S1), and the stored laser light source 8b in the G wavelength range at the end of the use of the endoscope. Based on the stored RGB light quantity ratio, the target light quantity of the laser light from the laser light sources 8a and 8c in the RB wavelength region is calculated (step S8). Thereafter, based on the obtained RGB target light amount and the stored current light amount characteristic, a drive current that can achieve the light amount of the laser light from each of the laser light sources 8a, 8b, and 8c is calculated. Good (step S9).
  • the control unit 17 reads the stored data (step S1), calculates the coefficient of equation (1), and calculates the target light amount.
  • a drive current I 0 ′ capable of achieving L 0 is calculated (steps S2 and S3). It is determined whether or not the calculated drive current I 0 ′ exceeds a predetermined threshold (step S10).
  • the control unit 17 stores the light amount of the laser light from the laser light source 8b in the G wavelength region at the end of use of the stored endoscope as a reference. Based on the RGB light quantity ratio, the target light quantity of the laser light from the laser light sources 8a and 8c in the RB wavelength region is calculated (step S8). Thereafter, based on the obtained RGB target light amount and the stored current light amount characteristic, a drive current that can achieve the light amount of the laser light from each of the laser light sources 8a, 8b, and 8c is calculated. Good (step S9).
  • the target light amount is set by a function that decreases with time as shown in FIG. Also good.
  • the process is performed in the same manner as in FIG. 4, and the target light amount reduction line is used in the process of calculating the drive current I 0 ′ in step S3.
  • the target light quantity reduction line is defined as a function in which the target light quantity decreases with time. In the example shown in FIG. 12, it is a linear function in which the light quantity reduction rate is constant.
  • the function of the target light quantity reduction line is a function that allows light quantity degradation within a range that does not significantly affect the image quality, for example, 30% light quantity reduction after 5000 hours.
  • the function is a function that gradually decreases rather than a decrease in light amount due to actual deterioration of the laser light sources 8a, 8b, and 8c, and the target light amount is not returned to the initial value, but slightly lower than that.
  • the target light amount is not returned to the initial value, but slightly lower than that.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

For the purpose of acquiring an image having good image quality even when deterioration of a laser light source causes a reduction in the amount of light, a scanning endoscope (1) according to the present invention is equipped with: a laser light source unit (10); a current control unit (12) that controls a drive current for the laser light source unit (10); an optical fiber (5) that guides the laser light output from the laser light source unit (10); a scanner (6) that vibrates an emission end (5a) of the optical fiber (5) and two-dimensionally scans the laser light emitted from the emission end (5a); a light amount detection unit (11) that detects the amount of laser light output from the laser light source unit (10); and a characteristic generation unit (17) that generates light-amount-and-current characteristics in which are associated the amount of laser light detected by the light amount detection unit (11) and the drive current input into the laser light source unit (10) by the current control unit (12), said current control unit (12) controlling the driving current on the basis of the light-amount-and-current characteristics generated by the characteristic generation unit (17) so that the target light amount is emitted.

Description

走査型内視鏡Scanning endoscope
 本発明は、走査型内視鏡に関するものである。 The present invention relates to a scanning endoscope.
 レーザ光源からのレーザ光を導光する光ファイバの射出端を振動させて、射出端から射出されるレーザ光を被写体において2次元的に走査させ、被写体の各走査位置から戻る光を受光することにより画像を取得する走査型内視鏡が知られている(例えば、特許文献1参照。)。
 この走査型内視鏡は、観察画像内の任意のエリアに対して走査位置に応じて照明光量を調節することにより、画像処理によることなく観察画像の明るさを調節している。
Vibrating the exit end of the optical fiber that guides the laser light from the laser light source, scanning the laser light emitted from the exit end two-dimensionally on the subject, and receiving the light returning from each scanning position of the subject There is known a scanning endoscope that acquires an image by the method (for example, see Patent Document 1).
This scanning endoscope adjusts the brightness of an observation image without performing image processing by adjusting the amount of illumination light according to the scanning position for an arbitrary area in the observation image.
特開2010-115391号公報JP 2010-115391 A
 走査型内視鏡によって良好な画質の観察画像を得るためには、十分な光量を出力することが望ましいが、長時間にわたってレーザ光源を使用し続けると、レーザ光源が劣化して光量が低下してしまい、画質が低下してしまうという不都合がある。
 本発明は、上述した事情に鑑みてなされたものであって、レーザ光源の劣化により光量が低下しても、良好な画質の画像を取得することができる走査型内視鏡を提供することを目的としている。
In order to obtain an observation image with good image quality by a scanning endoscope, it is desirable to output a sufficient amount of light, but if the laser light source is used for a long time, the laser light source deteriorates and the light amount decreases. As a result, the image quality is degraded.
The present invention has been made in view of the above-described circumstances, and provides a scanning endoscope capable of acquiring an image with good image quality even when the amount of light is reduced due to deterioration of a laser light source. It is aimed.
 本発明の一態様は、レーザ光源部と、該レーザ光源部の駆動電流を制御する電流制御部と、前記レーザ光源部から発せられたレーザ光を導光する光ファイバと、該光ファイバの射出端を振動させて、該射出端から射出される前記レーザ光を2次元的に走査させるスキャナと、前記レーザ光源部から発せられる前記レーザ光の光量を検出する光量検出部と、該光量検出部により検出された前記光量と、前記電流制御部により前記レーザ光源部に入力された前記駆動電流とを対応づけた電流光量特性を生成する特性生成部とを備え、前記電流制御部が、前記特性生成部により生成された前記電流光量特性に基づいて目標光量となるように前記駆動電流を制御する走査型内視鏡である。 One embodiment of the present invention includes a laser light source unit, a current control unit that controls a drive current of the laser light source unit, an optical fiber that guides laser light emitted from the laser light source unit, and an emission of the optical fiber. A scanner that vibrates an end and scans the laser light emitted from the emission end in a two-dimensional manner, a light amount detection unit that detects a light amount of the laser light emitted from the laser light source unit, and the light amount detection unit A characteristic generation unit that generates a current light amount characteristic that associates the light amount detected by the current control unit with the drive current input to the laser light source unit, and the current control unit includes the characteristic In the scanning endoscope, the driving current is controlled so as to be a target light amount based on the current light amount characteristic generated by the generation unit.
 本態様によれば、電流制御部により制御された駆動電流がレーザ光源部に印加されると、電流光量特性に基づいて決定される光量のレーザ光がレーザ光源部から発せられ、光ファイバにより導光されて射出端から射出される。スキャナの作動により射出端を振動させることにより、射出端から射出されたレーザ光が被写体において2次元的に走査されるので、被写体の各走査位置からの戻り光を検出し走査位置と対応づけることにより、被写体の画像を取得することができる。 According to this aspect, when the drive current controlled by the current control unit is applied to the laser light source unit, the laser light source having a light amount determined based on the current light amount characteristic is emitted from the laser light source unit and guided by the optical fiber. It is emitted and ejected from the exit end. By oscillating the exit end by the operation of the scanner, the laser light emitted from the exit end is scanned two-dimensionally on the subject, so that return light from each scanning position of the subject is detected and associated with the scanning position. Thus, an image of the subject can be acquired.
 この場合において、レーザ光源部から発せられたレーザ光の光量が光量検出部により検出され、検出された光量と駆動電流とが対応づけられた電流光量特性が特性生成部により生成され、生成された電流光量特性に基づいて、電流制御部において目標光量を達成するように駆動電流が制御される。 In this case, the light amount of the laser light emitted from the laser light source unit is detected by the light amount detection unit, and a current light amount characteristic in which the detected light amount is associated with the drive current is generated and generated by the characteristic generation unit. Based on the current light quantity characteristics, the drive current is controlled by the current control unit so as to achieve the target light quantity.
 レーザ光源部が経時的に劣化すると、一定の駆動電流をレーザ光源部に入力していても光量が低下するので、電流光量特性が変動してしまい、同じ電流光量特性を用いたのでは目標光量を達成するための駆動電流を求めることができなくなる。本態様によれば、レーザ光源部からのレーザ光の光量を検出して生成した電流光量特性により、目標光量を達成するための駆動電流を算出するので、目標光量を精度よく達成することができて、良好な画質の画像を取得することができる。 If the laser light source part deteriorates over time, the light quantity decreases even if a constant drive current is input to the laser light source part, so the current light quantity characteristic fluctuates, and if the same current light quantity characteristic is used, the target light quantity It becomes impossible to obtain a drive current for achieving the above. According to this aspect, since the drive current for achieving the target light amount is calculated based on the current light amount characteristic generated by detecting the light amount of the laser light from the laser light source unit, the target light amount can be achieved with high accuracy. Thus, it is possible to acquire an image with good image quality.
 上記態様においては、前記レーザ光源部が、波長域の異なる前記レーザ光をそれぞれ射出する複数のレーザ光源を備え、前記特性生成部が、前記レーザ光源毎に前記電流光量特性を生成し、各前記レーザ光源の前記目標光量が、所定の光量比を有する固定値であってもよい。
 このようにすることで、複数のレーザ光源から波長域の異なるレーザ光が、所定の光量比を有する目標光量で射出され、レーザ光源部から所定の色合いの照明光が射出される。この状態で、いずれかのレーザ光源の劣化が発生しても、レーザ光源毎に生成された電流光量特性に基づいて、駆動電流が制御されるので、レーザ光源毎に固定値である目標光量を精度よく回復できて、良好な画質の画像を取得することができる。
In the above aspect, the laser light source unit includes a plurality of laser light sources that respectively emit the laser beams having different wavelength ranges, and the characteristic generation unit generates the current light amount characteristic for each of the laser light sources, The target light amount of the laser light source may be a fixed value having a predetermined light amount ratio.
By doing so, laser beams having different wavelength ranges are emitted from a plurality of laser light sources with a target light amount having a predetermined light amount ratio, and illumination light of a predetermined color is emitted from the laser light source unit. In this state, even if any of the laser light sources deteriorates, the drive current is controlled based on the current light amount characteristics generated for each laser light source. Therefore, a target light amount that is a fixed value is set for each laser light source. The image can be recovered with high accuracy and an image with good image quality can be acquired.
 また、上記態様においては、前記レーザ光源部が、波長域の異なる前記レーザ光をそれぞれ射出する複数のレーザ光源を備え、前記特性生成部が、前記レーザ光源毎に前記電流光量特性を生成して更新し、各前記レーザ光源の前記目標光量として、所定の光量比を有するとともに、前記光量検出部により検出される前記光量の低下が最も大きないずれかの前記レーザ光源に対して、更新前の前記電流光量特性により更新前の前記目標光量を達成する前記駆動電流によって、更新後の前記電流光量特性により達成可能な前記光量に設定する目標光量設定部を備えていてもよい。 Further, in the above aspect, the laser light source unit includes a plurality of laser light sources that respectively emit the laser beams having different wavelength ranges, and the characteristic generation unit generates the current light amount characteristic for each of the laser light sources. Update the target light quantity of each laser light source with a predetermined light quantity ratio and the laser light source with the greatest decrease in the light quantity detected by the light quantity detection unit, before the update A target light amount setting unit that sets the light amount that can be achieved by the current light amount characteristic after the update by the drive current that achieves the target light amount before the update by the current light amount characteristic may be provided.
 このようにすることで、レーザ光源部が経時的に劣化すると、光量検出部により検出される光量が低下する。光量の低下が最も大きなレーザ光源に対しては、更新前の目標光量を達成する駆動電流を入力したときに達成可能な光量を新たな目標光量とし、他のレーザ光源に対しては、所定の光量比となるように目標光量設定部により目標光量が設定されるので、光量比率が変動しないように一定に保たれる。レーザ光源が劣化した場合に目標光量を下げることで、劣化したレーザ光源に入力される電流の過度の増大を防止して、レーザ光源が加速的に劣化することを防止することができる。 In this way, when the laser light source unit deteriorates with time, the light amount detected by the light amount detection unit decreases. For laser light sources with the greatest decrease in light amount, the amount of light that can be achieved when a drive current that achieves the target light amount before update is input is set as a new target light amount. Since the target light amount is set by the target light amount setting unit so as to be the light amount ratio, the light amount ratio is kept constant so as not to fluctuate. By reducing the target light amount when the laser light source is deteriorated, an excessive increase in the current input to the deteriorated laser light source can be prevented, and the laser light source can be prevented from being acceleratedly deteriorated.
 また、上記態様においては、前記レーザ光源部が、波長域の異なる前記レーザ光をそれぞれ射出する複数のレーザ光源を備え、前記特性生成部が、前記レーザ光源毎に前記電流光量特性を生成して更新し、各前記レーザ光源の前記目標光量として、所定の光量比を有するとともに、更新後の前記電流光量特性により更新前の前記目標光量を達成する前記駆動電流が、所定の閾値以下の場合には、固定値であり、前記閾値を超える場合には、前記光量検出部により検出される前記光量の低下が最も大きないずれかの前記レーザ光源に対して、更新前の前記電流光量特性により更新前の前記目標光量を達成する前記駆動電流によって、更新後の前記電流光量特性により達成可能な前記光量に設定する目標光量設定部を備えていてもよい。 Further, in the above aspect, the laser light source unit includes a plurality of laser light sources that respectively emit the laser beams having different wavelength ranges, and the characteristic generation unit generates the current light amount characteristic for each of the laser light sources. When the drive current that is updated and has the predetermined light quantity ratio as the target light quantity of each laser light source and achieves the target light quantity before update by the updated current light quantity characteristic is equal to or less than a predetermined threshold value Is a fixed value, and when the value exceeds the threshold, the laser light source detected by the light amount detection unit has the greatest decrease in light amount before the update due to the current light amount characteristic before the update. A target light amount setting unit that sets the light amount that can be achieved by the updated current light amount characteristic by the drive current that achieves the target light amount may be provided.
 このようにすることで、レーザ光源の劣化が進行して目標光量を得るために所定の閾値を超える駆動電流が必要となるまでは、目標光量設定部が、目標光量を固定して一定の光量のレーザ光を射出させ、所定の閾値を超えた場合には、目標光量設定部が、目標光量を下げることで、劣化したレーザ光源に入力される電流の過度の増大を防止して、レーザ光源が加速的に劣化することを防止することができる。 By doing so, the target light quantity setting unit fixes the constant light quantity until the drive current exceeding the predetermined threshold is required to obtain the target light quantity as the deterioration of the laser light source progresses. When the laser beam is emitted and the predetermined threshold value is exceeded, the target light amount setting unit reduces the target light amount to prevent an excessive increase in the current input to the deteriorated laser light source. Can be prevented from being accelerated.
 また、上記態様においては、前記レーザ光源部が、波長域の異なる前記レーザ光をそれぞれ射出する複数のレーザ光源を備え、前記特性生成部が、前記レーザ光源毎に前記電流光量特性を生成して更新し、各前記レーザ光源の前記目標光量として、所定の光量比を有するとともに、経時的に低下する所定の関数により設定する目標光量設定部を備えていてもよい。 Further, in the above aspect, the laser light source unit includes a plurality of laser light sources that respectively emit the laser beams having different wavelength ranges, and the characteristic generation unit generates the current light amount characteristic for each of the laser light sources. A target light amount setting unit that is updated and has a predetermined light amount ratio as a target light amount of each laser light source and is set by a predetermined function that decreases with time may be provided.
 このようにすることで、所定の関数に従って経時的に低下する目標光量となるように駆動電流が制御されるので、劣化したレーザ光源に入力される電流の過度の増大を防止して、レーザ光源が加速的に劣化することを防止することができる。 In this way, the drive current is controlled so that the target light amount decreases with time according to a predetermined function, so that an excessive increase in the current input to the deteriorated laser light source is prevented, and the laser light source Can be prevented from being accelerated.
 また、上記態様においては、前記目標光量設定部が、更新前の前記電流光量特性により更新前の前記目標光量を達成する前記駆動電流によって、更新後の前記電流光量特性により達成可能な前記光量より大きい目標光量を設定してもよい。
 このようにすることで、更新前の目標光量より低いが、駆動電流を増大させなければ達成できない光量を目標光量とすることにより、目標光量を緩やかに低下させて画質に影響を与えずにレーザ光源の寿命を延長させることができる。
 また、上記態様においては、前記特性生成部が、前記電流光量特性の生成を所定のタイミングで行うようにしてもよい。
Further, in the above aspect, the target light amount setting unit is configured to use the drive current that achieves the target light amount before the update by the current light amount characteristic before the update. A large target light amount may be set.
In this way, the target light quantity is lower than the target light quantity before the update, but cannot be achieved without increasing the drive current, so that the target light quantity can be lowered gradually without affecting the image quality. The lifetime of the light source can be extended.
In the above aspect, the characteristic generation unit may generate the current light quantity characteristic at a predetermined timing.
 本発明によれば、レーザ光源の劣化により光量が低下しても、良好な画質の画像を取得することができるという効果を奏する。 According to the present invention, it is possible to obtain an image with good image quality even when the light amount is reduced due to deterioration of the laser light source.
本発明の一実施形態に係る走査型内視鏡を示す全体構成図である。1 is an overall configuration diagram showing a scanning endoscope according to an embodiment of the present invention. 図1の走査型内視鏡のレーザ光源から射出されるレーザ光の光量の時間変化を示す図である。It is a figure which shows the time change of the light quantity of the laser beam inject | emitted from the laser light source of the scanning endoscope of FIG. 図1の走査型内視鏡におけるレーザ光源の駆動電流の算出方法を説明する図である。It is a figure explaining the calculation method of the drive current of the laser light source in the scanning endoscope of FIG. 図3のレーザ光源の駆動電流の調節方法を説明するフローチャートである。4 is a flowchart illustrating a method for adjusting a drive current of the laser light source of FIG. 3. 図3の駆動電流の算出方法の変形例を示す図である。It is a figure which shows the modification of the calculation method of the drive current of FIG. 図5のレーザ光源の駆動電流の調節方法を説明するフローチャートである。6 is a flowchart illustrating a method for adjusting a drive current of the laser light source of FIG. 5. 図1の走査型内視鏡における電流光量特性の測定タイミングの一例を示す図である。It is a figure which shows an example of the measurement timing of the electric current light quantity characteristic in the scanning endoscope of FIG. 図1の走査型内視鏡における電流光量特性の測定タイミングの他の例を示す図である。It is a figure which shows the other example of the measurement timing of the current light quantity characteristic in the scanning endoscope of FIG. 図1の走査型内視鏡の変形例におけるレーザ光源から射出されるレーザ光の光量の時間変化を示す図である。It is a figure which shows the time change of the light quantity of the laser beam inject | emitted from the laser light source in the modification of the scanning endoscope of FIG. 図9のレーザ光源の駆動電流の調節方法を説明するフローチャートである。10 is a flowchart illustrating a method for adjusting the drive current of the laser light source of FIG. 9. 図1の走査型内視鏡の他の変形例におけるレーザ光源の駆動電流の調節方法を説明するフローチャートである。10 is a flowchart for explaining a method for adjusting a drive current of a laser light source in another modification of the scanning endoscope of FIG. 図1の走査型内視鏡の他の変形例におけるレーザ光源から射出されるレーザ光の光量の時間変化を示す図である。It is a figure which shows the time change of the light quantity of the laser beam inject | emitted from the laser light source in the other modification of the scanning endoscope of FIG.
 以下、本発明の一実施形態に係る走査型内視鏡1について、図面を参照して以下に説明する。
 本実施形態に係る走査型内視鏡1は、図1に示されるように、内視鏡本体2と、制御装置3と、ディスプレイ4とを備えている。
Hereinafter, a scanning endoscope 1 according to an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the scanning endoscope 1 according to the present embodiment includes an endoscope body 2, a control device 3, and a display 4.
 内視鏡本体2は、レーザ光を導光するシングルモードファイバ(光ファイバ)5と、該シングルモードファイバ5の射出端5aをシングルモードファイバ5の長手軸に直交する方向に振動させるスキャナ6と、被写体Aからの戻り光を受光する受光ファイバ7とを備えている。
 スキャナ6は、シングルモードファイバ5の射出端5aから所定距離をあけた位置においてシングルモードファイバ5の側面に周方向に等間隔に配置された圧電素子(図示略)を備えている。
The endoscope body 2 includes a single mode fiber (optical fiber) 5 that guides laser light, and a scanner 6 that vibrates the exit end 5a of the single mode fiber 5 in a direction perpendicular to the longitudinal axis of the single mode fiber 5. And a light receiving fiber 7 for receiving the return light from the subject A.
The scanner 6 includes piezoelectric elements (not shown) arranged at equal intervals in the circumferential direction on the side surface of the single mode fiber 5 at a position spaced apart from the exit end 5 a of the single mode fiber 5.
 制御装置3は、RGBの各波長域のレーザ光をそれぞれ射出する複数のレーザ光源8a,8b,8cと、各レーザ光源8a,8b,8cから射出されたレーザ光をシングルモードファイバ5に入射させる結合器9とを有する光源部(レーザ光源部)10を備えている。結合器9には光量検出部11が接続されている。光量検出部11は、各レーザ光源8a,8b,8cから発せられたレーザ光の光量の一部、例えば、1%から5%を分岐して検出するようになっている。 The control device 3 causes a plurality of laser light sources 8 a, 8 b, and 8 c that respectively emit laser beams in the respective RGB wavelength regions and the laser light emitted from the laser light sources 8 a, 8 b, and 8 c to enter the single mode fiber 5. A light source unit (laser light source unit) 10 having a coupler 9 is provided. A light amount detector 11 is connected to the coupler 9. The light quantity detection unit 11 branches and detects a part of the light quantity of the laser light emitted from each laser light source 8a, 8b, 8c, for example, 1% to 5%.
 また、制御装置3には、各レーザ光源8a,8b,8cを制御する電流制御部12と、スキャナ6を制御するアクチュエータドライバ13と、受光ファイバ7によって受光された戻り光を検出する光検出器14と、該光検出器14により検出された戻り光をAD変換するAD変換器(ADC)15と、該AD変換器15によりデジタル信号に変換された戻り光の強度と、走査位置とを対応づけて戻り光の画像を生成する信号処理部16と、これらを制御する制御部(特性生成部、目標光量設定部)17とを備えている。 Further, the control device 3 includes a current control unit 12 that controls each of the laser light sources 8a, 8b, and 8c, an actuator driver 13 that controls the scanner 6, and a photodetector that detects return light received by the light receiving fiber 7. 14, the AD converter (ADC) 15 that AD converts the return light detected by the photodetector 14, the intensity of the return light converted into a digital signal by the AD converter 15, and the scanning position In addition, a signal processing unit 16 that generates an image of the return light and a control unit (characteristic generation unit, target light amount setting unit) 17 that controls them are provided.
 制御部17には、記憶部18が接続されている。制御部17は、光量検出部11により検出された光量に基づいて電流光量特性を生成し、生成された電流光量特性を記憶部18に記憶することにより更新するようになっている。
 制御部17は、記憶部18に記憶された直近の電流光量特性を読み出して、目標光量を達成するための駆動電流を算出するようになっている。本実施形態においては、目標光量は固定値である。
A storage unit 18 is connected to the control unit 17. The control unit 17 generates a current light amount characteristic based on the light amount detected by the light amount detection unit 11 and stores the generated current light amount characteristic in the storage unit 18 to update it.
The control unit 17 reads the latest current light amount characteristic stored in the storage unit 18 and calculates a drive current for achieving the target light amount. In the present embodiment, the target light amount is a fixed value.
 電流制御部12は、各レーザ光源8a,8b,8cをRGBの順にパルス駆動するようになっている。光量検出部11は、内視鏡使用中の突発的な光量異常を監視するために、光量を常にモニタしており、検出された光量データは記憶部18に記憶されるようになっている。 The current controller 12 drives the laser light sources 8a, 8b, and 8c in the order of RGB. The light amount detection unit 11 constantly monitors the light amount in order to monitor a sudden light amount abnormality during use of the endoscope, and the detected light amount data is stored in the storage unit 18.
 シングルモードファイバ5の射出端5aから射出されるレーザ光は非拡散光であるため、直接目に入射しても瞬き等で回避することができる程度に制限された、光エネルギが射出されるように設計されている。例えば、レーザ安全の範囲内で十分な光量を照射できるように、射出されるレーザ光の光量はRGB全体で平均5mW以下に設定されている。 Since the laser light emitted from the emission end 5a of the single mode fiber 5 is non-diffused light, light energy that is limited to such an extent that it can be avoided by blinking or the like even when directly incident on the eyes is emitted. Designed to. For example, the amount of emitted laser light is set to an average of 5 mW or less for the entire RGB so that a sufficient amount of light can be irradiated within the range of laser safety.
 ここで、電流光量特性の生成方法について、以下に説明する。
 電流光量特性を生成するには、例えば、内視鏡使用後、レーザ光の射出を完全に停止するまでの間に、レーザ光量を徐々に低下させる過程を利用して生成する。すなわち、図2に示されるように、上記過程において電流制御部12から各レーザ光源8a,8b,8cに入力される駆動電流と、光量検出部11により検出された光量とを対応づけてデータセットを複数組記憶することにより、電流光量特性を生成することができる。生成された電流光量特性は記憶部18に記憶されるようになっている。
Here, a method for generating the current light quantity characteristic will be described below.
In order to generate the current light amount characteristic, for example, the current light amount characteristic is generated by using a process of gradually decreasing the laser light amount after the use of the endoscope and before the emission of the laser light is completely stopped. That is, as shown in FIG. 2, a data set in which the drive currents input from the current control unit 12 to the laser light sources 8 a, 8 b, and 8 c in the above process are associated with the light amounts detected by the light amount detection unit 11. By storing a plurality of sets, it is possible to generate a current light quantity characteristic. The generated current light quantity characteristic is stored in the storage unit 18.
 次に、生成された電流光量特性を利用した駆動電流の調節方法について、以下に説明する。
 レーザ光の射出が完全に停止するまでの間の過程で複数組の電流と光量のデータセットが記憶され、レーザ光の射出が完全に停止された後、電源が再投入されてレーザ光が射出されるときには、図4に示されるように、記憶部18に記憶されているデータセットが読み出されて(ステップS1)、電流光量特性が算出される。
Next, a method for adjusting the drive current using the generated current light quantity characteristic will be described below.
Multiple sets of current and light quantity data sets are stored in the process until the laser beam emission is completely stopped. After the laser beam emission is completely stopped, the power is turned on again and the laser beam is emitted. When this is done, as shown in FIG. 4, the data set stored in the storage unit 18 is read (step S1), and the current light quantity characteristic is calculated.
 ここでは、図3に示されるように閾値電流Ithを超えてレーザ光を発振すると、光量が電流増加分に比例することを利用して、電流光量特性として、次式(1)に示される一次関数を用いている。
 L=a×(I-Ith)       (1)
 ここで、Lは光量、aは傾き、Iは駆動電流である。
Here, when oscillates laser light exceeds the threshold current I th as shown in FIG. 3, by utilizing the fact that light intensity is proportional to the current increment, as a current light amount characteristics are shown in the following formula (1) A linear function is used.
L = a × (I−I th ) (1)
Here, L is the amount of light, a is the slope, and I is the drive current.
 この関数において、傾きaと閾値電流Ithは未知数であるので、記憶部18から読み出された、複数点の駆動電流Iと光量Lとのデータセットを用いて最小自乗法により求めることができる(ステップS2)。
 そして、求められた傾きaと閾値電流Ithを用いて、式(1)により、目標光量Lのレーザ光が射出されるように、電流値I′が算出される(ステップS3)。
In this function, the inclination a and the threshold current I th is the unknown can be determined by the least square method using the read out from the storage unit 18, a data set of the drive current I and light intensity L at a plurality of points (Step S2).
Then, by using the inclination a and the threshold current I th determined by the equation (1), so that the laser beam of the target light quantity L 0 is emitted, the current value I 0 'is calculated (step S3).
 すなわち、図3に二点鎖線で示される電流光量特性に従って、目標光量Lのレーザ光を射出可能な値Iに駆動電流を制御して走査型内視鏡1を使用していたところ、レーザ光源8a,8b,8cの経時的な劣化によって、内視鏡使用終了時に光量Lまで低下した。この場合には電流光量特性は、図3に実線で示されるように変化しているため、上記方法によって式(1)で示される電流光量特性を求め、次回の電源再投入時には、目標光量Lのレーザ光を射出可能な駆動電流I′を算出する。 That is, according to the current light quantity characteristic indicated by the two-dot chain line in FIG. 3, the scanning endoscope 1 is used by controlling the drive current to a value I 0 that can emit the laser light having the target light quantity L 0 . a laser light source 8a, 8b, the deterioration over time of 8c, was reduced to the amount of light L 1 at the time of endoscope use ends. In this case, since the current light quantity characteristic changes as indicated by a solid line in FIG. 3, the current light quantity characteristic represented by the formula (1) is obtained by the above method, and the target light quantity L is obtained at the next power-on. A drive current I 0 ′ capable of emitting zero laser light is calculated.
 電流光量特性を生成するための測定データは少なくとも2地点あれば足り、例えば、閾値電流Ithと内視鏡使用時の光量の2地点でよい。
 そして、傾きaと閾値電流Ithが求められたら、式(1)に当てはめることにより、劣化後のレーザ光源8a,8b,8cによって、目標光量Lを達成するための駆動電流I′を算出することができる。
If at least two locations measurement data for generating the current light quantity characteristic enough, for example, be a point-to-point threshold current I th and the endoscope during use amount.
Then, when prompted the gradient a and the threshold current I th, by fitting the equation (1), the laser light source 8a after deterioration, 8b, by 8c, a drive current I 0 for achieving the target light quantity L 0 ' Can be calculated.
 電源再投入後は、駆動電流I′によってレーザ光源8a,8b,8cを駆動する(ステップS4)ことにより、常に目標光量のレーザ光を出力することができ、画質の低下を防止することができる。
 波長域の異なる複数のレーザ光源8a,8b,8cから射出されるレーザ光の光量は、所望の色合いの照明光を得るために一定の光量比を有しているが、レーザ光源8a,8b,8c毎に目標光量を定め、レーザ光源8a,8b,8c毎に電流光量特性を生成して、目標光量を達成可能な駆動電流をレーザ光源8a,8b,8c毎に求めることにより、光量および光量比を一定に保持することができる。
After the power is turned on again, the laser light sources 8a, 8b, and 8c are driven by the drive current I 0 ′ (step S4), so that the laser light with the target light amount can always be output and the deterioration of the image quality can be prevented. it can.
The amount of laser light emitted from a plurality of laser light sources 8a, 8b, and 8c having different wavelength ranges has a constant light amount ratio in order to obtain illumination light of a desired color, but the laser light sources 8a, 8b, By determining a target light amount for each laser source 8c, generating a current light amount characteristic for each of the laser light sources 8a, 8b, and 8c, and obtaining a drive current that can achieve the target light amount for each of the laser light sources 8a, 8b, and 8c, The ratio can be kept constant.
 なお、本実施形態においては、図2においては、内視鏡使用後、レーザ光の射出を完全に停止するまでの間に、レーザ光量を徐々に低下させる過程を利用して、電流制御部12から各レーザ光源8a,8b,8cに入力される駆動電流と、光量検出部11により検出された光量とを対応づけて記憶することにより電流光量特性を生成することとした。これに代えて、駆動電流を1ステップ(例えば、10mAステップ)減少させたときの光量変化量と、駆動電流を1ステップ増加させたときの光量変化量が等しいとして、図5および図6に示されるように、内視鏡使用後に、駆動電流を1ステップ減少させたときの光量変化量のみを測定して記憶しておき、次回の内視鏡使用時に、駆動電流を1ステップ増加させて、初期の目標光量を超えない範囲で光量を増加させてもよい。 In this embodiment, in FIG. 2, the current control unit 12 is used by using a process of gradually decreasing the laser light amount after the use of the endoscope and before the laser light emission is completely stopped. Thus, the current light quantity characteristic is generated by storing the drive current input to each of the laser light sources 8a, 8b, and 8c and the light quantity detected by the light quantity detector 11 in association with each other. Instead, the amount of light change when the drive current is decreased by one step (for example, 10 mA step) is equal to the amount of light change when the drive current is increased by one step, as shown in FIGS. As shown in the figure, after the endoscope is used, only the amount of change in the amount of light when the drive current is decreased by one step is measured and stored, and the drive current is increased by one step when the endoscope is used next time. The light amount may be increased within a range not exceeding the initial target light amount.
 すなわち、次回の内視鏡使用時には、制御部17が、電流光量特性として、記憶部18に記憶されているデータセット(I,L)、(I,L)および(I,L)を読み出し(ステップS1)、駆動電流を1ステップΔI=I-Iだけ減少させたときの光量変化量ΔL=L-Lを算出し(ステップS5)、駆動電流を1ステップΔIだけ増加させたときの光量L′=L+ΔLが初期の目標光量Lを超えていないか否かを判定し(ステップS6)、超えていない場合に、光量L′を達成可能な電流I′=I+ΔIに駆動電流を設定し(ステップS3)、新たな目標光量Lを更新してもよい(ステップS7)。これにより、制御部17における計算負荷を軽減することができる。 That is, when the endoscope is used next time, the control unit 17 uses the data sets (I 0 , L 0 ), (I 1 , L 1 ) and (I 2 , L 2) reads (step S1), and calculates a light amount change amount [Delta] L = L 1 -L 2 when the driving current was reduced by 1 step [Delta] I = I 1 -I 2 (step S5), and the driving current 1 It is determined whether or not the light amount L 1 ′ = L 1 + ΔL when increased by step ΔI does not exceed the initial target light amount L 0 (step S6), and if not, the light amount L 1 ′ is achieved. The drive current may be set to a possible current I 0 ′ = I 1 + ΔI (step S3), and the new target light amount L 0 may be updated (step S7). Thereby, the calculation load in the control part 17 can be reduced.
 また、電流光量特性は、内視鏡使用のためのレーザ光の射出直前の徐々に光量を増加していく過程において測定してもよい。これにより、より直前の光量に基づいて駆動電流を制御でき、より正確に光量を調節することができるという利点がある。 Further, the current light quantity characteristic may be measured in the process of gradually increasing the light quantity immediately before the emission of laser light for use with an endoscope. Thereby, there is an advantage that the drive current can be controlled based on the immediately preceding light amount, and the light amount can be adjusted more accurately.
 また、電流光量特性は、光量が所定のレベルを下回ったとき、例えば、10%低下したとき等に測定してもよい。その範囲の変動であれば、適正な画質が得られ、電流の変更頻度が少ないため、レーザ光源8a,8b,8cの劣化をより軽減することができる。あるいは、一定時間毎に定期的に、例えば、500時間経過毎に、測定してもよい。 Further, the current light quantity characteristic may be measured when the light quantity falls below a predetermined level, for example, when it is reduced by 10%. If the fluctuation is within the range, an appropriate image quality can be obtained, and the current change frequency is low, so that the deterioration of the laser light sources 8a, 8b, and 8c can be further reduced. Alternatively, the measurement may be performed periodically at regular intervals, for example, every 500 hours.
 また、撮影のフレームレートで、シングルモードファイバ5の射出端5aを中心から外周に向かって螺旋状に移動させ(往路)、外周から中心に向かって移動させる(復路)場合に、図7および図8に示されるように、その往路または復路の一方の期間を使って撮影を行い、他方の期間はレーザ光源8a,8b,8cをオフにする場合に、撮影中のレーザ光源8a,8b,8cのオン状態からオフ状態に遷移させるとき、あるいは、レーザ光源8a,8b,8cのオフ状態からオン状態に遷移させるときのいずれかにおいて電流光量特性を測定することにしてもよい。高い頻度で光量を調整でき、光量の変動を抑えることができる。 Further, when the exit end 5a of the single mode fiber 5 is spirally moved from the center toward the outer periphery (outward path) and moved from the outer periphery toward the center (return path) at the photographing frame rate, FIG. 7 and FIG. As shown in FIG. 8, when photographing is performed using one of the forward and return periods, and the laser light sources 8 a, 8 b, and 8 c are turned off during the other period, the laser light sources 8 a, 8 b, and 8 c that are being photographed are used. The current light quantity characteristic may be measured either when the laser light source 8a, 8b, or 8c is changed from the OFF state to the ON state. The amount of light can be adjusted with high frequency, and fluctuations in the amount of light can be suppressed.
 また、本実施形態においては、全てのレーザ光源8a,8b,8cにおいて、初期の目標光量に戻すように駆動電流を増大させることとして、レーザ光源8a,8b,8cが劣化しても光量および光量比の両方を保持し続ける場合について説明したが、これに代えて、図9に示されるように、目標光量の変化は許容し、光量比のみを一定に維持することにしてもよい。 In the present embodiment, in all the laser light sources 8a, 8b, and 8c, the drive current is increased so as to return to the initial target light amount, so that the light amount and the light amount even if the laser light sources 8a, 8b, and 8c deteriorate. Although the case where both of the ratios are continuously maintained has been described, instead of this, as shown in FIG. 9, the change of the target light amount may be allowed and only the light amount ratio may be maintained constant.
 すなわち、レーザ光源8a,8b,8cが劣化しても光量を一定に保持し続ける場合には、劣化が大きくなるとレーザ光源8a,8b,8cに入力する駆動電流が過大となるため、レーザ光源8a,8b,8cの劣化が加速する虞がある。したがって、光量を一定に保持し続けるのは、劣化の度合いが比較的緩やかで小さい場合に効果的である。 That is, if the light amount is kept constant even if the laser light sources 8a, 8b, and 8c are deteriorated, the drive current input to the laser light sources 8a, 8b, and 8c becomes excessive when the deterioration becomes large. , 8b, 8c may be accelerated. Therefore, keeping the light quantity constant is effective when the degree of deterioration is relatively slow and small.
 これに代えて、レーザ光源8a,8b,8cをオフにしたときに、光量検出部11により検出された光量が最も大きく低下していたレーザ光源8a,8b,8cを基準として、それ以外のレーザ光源8a,8b,8cについては、光量比が一定となるように駆動電流を設定するようにしてもよい。 Instead, when the laser light sources 8a, 8b, and 8c are turned off, the laser light sources 8a, 8b, and 8c in which the light amount detected by the light amount detection unit 11 has been reduced most greatly are used as a reference. For the light sources 8a, 8b, and 8c, the drive current may be set so that the light quantity ratio is constant.
 図9および図10に示されるように、Gの波長域のレーザ光源8bからのレーザ光の光量が最も大きく低下するので、内視鏡使用終了時点でのGの波長域のレーザ光源8bからのレーザ光の光量を記憶する。また、RGBの光量比、および各レーザ光源8a,8b,8cの電流光量特性を記憶しておく。 As shown in FIG. 9 and FIG. 10, the amount of laser light from the laser light source 8b in the G wavelength region is greatly reduced, so that the light from the laser light source 8b in the G wavelength region at the end of use of the endoscope is reduced. The amount of laser light is stored. Further, the light quantity ratio of RGB and the current light quantity characteristic of each laser light source 8a, 8b, 8c are stored.
 そして、内視鏡の使用を再開するときには、制御部17が、記憶しておいたデータを読み出し(ステップS1)、記憶されている内視鏡使用終了時点でのGの波長域のレーザ光源8bからのレーザ光の光量を基準として、記憶されているRGBの光量比に基づいてRBの波長域のレーザ光源8a,8cからのレーザ光の目標光量を算出する(ステップS8)。その後、求められたRGBの目標光量と、記憶されている電流光量特性とに基づいて、算出される各レーザ光源8a,8b,8cからのレーザ光の光量を達成し得る駆動電流を算出すればよい(ステップS9)。 When the use of the endoscope is resumed, the control unit 17 reads the stored data (step S1), and the stored laser light source 8b in the G wavelength range at the end of the use of the endoscope. Based on the stored RGB light quantity ratio, the target light quantity of the laser light from the laser light sources 8a and 8c in the RB wavelength region is calculated (step S8). Thereafter, based on the obtained RGB target light amount and the stored current light amount characteristic, a drive current that can achieve the light amount of the laser light from each of the laser light sources 8a, 8b, and 8c is calculated. Good (step S9).
 このようにすることで、内視鏡使用再開時の目標光量を劣化の最も大きなレーザ光源8a,8b,8cに合わせて低く設定することにより、駆動電流を低く抑えて、レーザ光源8a,8b,8cの加速的な劣化の進行を防止することができる。また、光量比を一定に維持するので、画像の色合いが変化しないように維持することができるという利点がある。 In this way, by setting the target light quantity when resuming the use of the endoscope to be low in accordance with the laser light sources 8a, 8b, 8c having the greatest deterioration, the drive current is kept low, and the laser light sources 8a, 8b, It is possible to prevent the progressive deterioration of 8c. Further, since the light quantity ratio is kept constant, there is an advantage that the hue of the image can be kept unchanged.
 また、上述したように、劣化が大きくなって駆動電流が所定の閾値を超えるまでは、光量を一定に保持することとし、閾値を超えた場合には、光量の低下を許容して、光量比を一定に保持することにしてもよい。
 すなわち、図11に示されるように、内視鏡の使用を再開するときには、制御部17が、記憶しておいたデータを読み出し(ステップS1)、式(1)の係数を算出して目標光量Lを達成可能な駆動電流I′を算出する(ステップS2,S3)。算出された駆動電流I′が所定の閾値を超えているか否かを判定する(ステップS10)。
In addition, as described above, the amount of light is kept constant until the deterioration becomes large and the drive current exceeds a predetermined threshold value. May be held constant.
That is, as shown in FIG. 11, when the use of the endoscope is resumed, the control unit 17 reads the stored data (step S1), calculates the coefficient of equation (1), and calculates the target light amount. A drive current I 0 ′ capable of achieving L 0 is calculated (steps S2 and S3). It is determined whether or not the calculated drive current I 0 ′ exceeds a predetermined threshold (step S10).
 そして、算出された駆動電流I′が所定の閾値を超えていない場合には、算出された駆動電流I′でレーザ光源8a,8b,8cを駆動し(ステップS4)、駆動電流I′が所定の閾値を超えている場合には、制御部17が、記憶されている内視鏡使用終了時点でのGの波長域のレーザ光源8bからのレーザ光の光量を基準として、記憶されているRGBの光量比に基づいてRBの波長域のレーザ光源8a,8cからのレーザ光の目標光量を算出する(ステップS8)。その後、求められたRGBの目標光量と、記憶されている電流光量特性とに基づいて、算出される各レーザ光源8a,8b,8cからのレーザ光の光量を達成し得る駆動電流を算出すればよい(ステップS9)。 If the calculated drive current I 0 ′ does not exceed the predetermined threshold, the laser light sources 8a, 8b, and 8c are driven with the calculated drive current I 0 ′ (step S4), and the drive current I 0 When ′ exceeds a predetermined threshold, the control unit 17 stores the light amount of the laser light from the laser light source 8b in the G wavelength region at the end of use of the stored endoscope as a reference. Based on the RGB light quantity ratio, the target light quantity of the laser light from the laser light sources 8a and 8c in the RB wavelength region is calculated (step S8). Thereafter, based on the obtained RGB target light amount and the stored current light amount characteristic, a drive current that can achieve the light amount of the laser light from each of the laser light sources 8a, 8b, and 8c is calculated. Good (step S9).
 また、本実施形態においては、図2に示されるように目標光量を固定値とすることに代えて、図12に示されるように、経時的に低下する関数により目標光量を設定することにしてもよい。処理は図4と同様にして行われ、ステップS3の駆動電流I′を算出する処理において、目標光量低下ラインが用いられる。 In this embodiment, instead of setting the target light amount to a fixed value as shown in FIG. 2, the target light amount is set by a function that decreases with time as shown in FIG. Also good. The process is performed in the same manner as in FIG. 4, and the target light amount reduction line is used in the process of calculating the drive current I 0 ′ in step S3.
 すなわち、目標光量低下ラインは、目標光量が経時的に低下していく関数でとして定義される。図12に示す例では、光量低下率が一定となる一次関数である。目標光量低下ラインの関数としては、画質にあまり影響しない範囲の光量劣化、例えば、5000時間後に30%の光量低下を許容するような関数である。 That is, the target light quantity reduction line is defined as a function in which the target light quantity decreases with time. In the example shown in FIG. 12, it is a linear function in which the light quantity reduction rate is constant. The function of the target light quantity reduction line is a function that allows light quantity degradation within a range that does not significantly affect the image quality, for example, 30% light quantity reduction after 5000 hours.
 本実施形態においては、レーザ光源8a,8b,8cの実際の劣化による光量低下よりも緩やかに低下する関数となっており、目標光量を初期の値に戻すのではなく、それよりも若干下がった値に戻すことにより、レーザ光源8a,8b,8cに入力する駆動電流の過度の増大を防止して、劣化が加速されることを防止することができる。その結果、画質に影響を与えることなく、レーザ光源8a,8b,8cの寿命を延長することができるという利点がある。 In the present embodiment, the function is a function that gradually decreases rather than a decrease in light amount due to actual deterioration of the laser light sources 8a, 8b, and 8c, and the target light amount is not returned to the initial value, but slightly lower than that. By returning to the value, it is possible to prevent an excessive increase in the drive current input to the laser light sources 8a, 8b, and 8c and to prevent the deterioration from being accelerated. As a result, there is an advantage that the lifetime of the laser light sources 8a, 8b, and 8c can be extended without affecting the image quality.
 1 走査型内視鏡
 5 シングルモードファイバ(光ファイバ)
 5a 射出端
 6 スキャナ
 8a,8b,8c レーザ光源
 10 光源部(レーザ光源部)
 11 光量検出部
 12 電流制御部
 17 制御部(特性生成部、目標光量設定部)
1 Scanning endoscope 5 Single mode fiber (optical fiber)
5a Ejection end 6 Scanner 8a, 8b, 8c Laser light source 10 Light source part (laser light source part)
11 Light quantity detection part 12 Current control part 17 Control part (characteristic generation part, target light quantity setting part)

Claims (7)

  1.  レーザ光源部と、
     該レーザ光源部の駆動電流を制御する電流制御部と、
     前記レーザ光源部から発せられたレーザ光を導光する光ファイバと、
     該光ファイバの射出端を振動させて、該射出端から射出される前記レーザ光を2次元的に走査させるスキャナと、
     前記レーザ光源部から発せられる前記レーザ光の光量を検出する光量検出部と、
     該光量検出部により検出された前記光量と、前記電流制御部により前記レーザ光源部に入力された前記駆動電流とを対応づけた電流光量特性を生成する特性生成部とを備え、
     前記電流制御部が、前記特性生成部により生成された前記電流光量特性に基づいて目標光量となるように前記駆動電流を制御する走査型内視鏡。
    A laser light source unit;
    A current control unit for controlling the drive current of the laser light source unit;
    An optical fiber that guides laser light emitted from the laser light source unit;
    A scanner that vibrates the emission end of the optical fiber and scans the laser light emitted from the emission end in a two-dimensional manner;
    A light amount detection unit for detecting a light amount of the laser light emitted from the laser light source unit;
    A characteristic generation unit that generates a current light amount characteristic that associates the light amount detected by the light amount detection unit with the drive current input to the laser light source unit by the current control unit;
    The scanning endoscope in which the current control unit controls the drive current so as to obtain a target light amount based on the current light amount characteristic generated by the characteristic generation unit.
  2.  前記レーザ光源部が、波長域の異なる前記レーザ光をそれぞれ射出する複数のレーザ光源を備え、
     前記特性生成部が、前記レーザ光源毎に前記電流光量特性を生成し、
     各前記レーザ光源の前記目標光量が、所定の光量比を有する固定値である請求項1に記載の走査型内視鏡。
    The laser light source unit includes a plurality of laser light sources that respectively emit the laser beams having different wavelength ranges,
    The characteristic generation unit generates the current light quantity characteristic for each laser light source,
    The scanning endoscope according to claim 1, wherein the target light amount of each laser light source is a fixed value having a predetermined light amount ratio.
  3.  前記レーザ光源部が、波長域の異なる前記レーザ光をそれぞれ射出する複数のレーザ光源を備え、
     前記特性生成部が、前記レーザ光源毎に前記電流光量特性を生成して更新し、
     各前記レーザ光源の前記目標光量として、所定の光量比を有するとともに、前記光量検出部により検出される前記光量の低下が最も大きないずれかの前記レーザ光源に対して、更新前の前記電流光量特性により更新前の前記目標光量を達成する前記駆動電流によって、更新後の前記電流光量特性により達成可能な前記光量に設定する目標光量設定部を備える請求項1に記載の走査型内視鏡。
    The laser light source unit includes a plurality of laser light sources that respectively emit the laser beams having different wavelength ranges,
    The characteristic generation unit generates and updates the current light quantity characteristic for each laser light source,
    The current light quantity characteristic before update with respect to any one of the laser light sources having a predetermined light quantity ratio as the target light quantity of each of the laser light sources and having the greatest decrease in the light quantity detected by the light quantity detection unit The scanning endoscope according to claim 1, further comprising: a target light amount setting unit configured to set the light amount achievable by the current light amount characteristic after the update by the driving current that achieves the target light amount before the update.
  4.  前記レーザ光源部が、波長域の異なる前記レーザ光をそれぞれ射出する複数のレーザ光源を備え、
     前記特性生成部が、前記レーザ光源毎に前記電流光量特性を生成して更新し、
     各前記レーザ光源の前記目標光量として、所定の光量比を有するとともに、更新後の前記電流光量特性により更新前の前記目標光量を達成する前記駆動電流が、所定の閾値以下の場合には、固定値であり、前記閾値を超える場合には、前記光量検出部により検出される前記光量の低下が最も大きないずれかの前記レーザ光源に対して、更新前の前記電流光量特性により更新前の前記目標光量を達成する前記駆動電流によって、更新後の前記電流光量特性により達成可能な前記光量に設定する目標光量設定部を備える請求項1に記載の走査型内視鏡。
    The laser light source unit includes a plurality of laser light sources that respectively emit the laser beams having different wavelength ranges,
    The characteristic generation unit generates and updates the current light quantity characteristic for each laser light source,
    The target light amount of each laser light source has a predetermined light amount ratio and is fixed when the drive current that achieves the target light amount before update by the updated current light amount characteristic is equal to or less than a predetermined threshold. When the value exceeds the threshold value, the target before update is updated by the current light quantity characteristic before update for any one of the laser light sources detected by the light quantity detection unit with the greatest decrease in the light quantity. The scanning endoscope according to claim 1, further comprising a target light amount setting unit configured to set the light amount that can be achieved by the updated current light amount characteristic by the driving current that achieves the light amount.
  5.  前記レーザ光源部が、波長域の異なる前記レーザ光をそれぞれ射出する複数のレーザ光源を備え、
     前記特性生成部が、前記レーザ光源毎に前記電流光量特性を生成して更新し、
     各前記レーザ光源の前記目標光量として、所定の光量比を有するとともに、経時的に低下する所定の関数により設定する目標光量設定部を備える請求項1に記載の走査型内視鏡。
    The laser light source unit includes a plurality of laser light sources that respectively emit the laser beams having different wavelength ranges,
    The characteristic generation unit generates and updates the current light quantity characteristic for each laser light source,
    2. The scanning endoscope according to claim 1, further comprising a target light amount setting unit that has a predetermined light amount ratio as a target light amount of each of the laser light sources and sets a predetermined function that decreases with time.
  6.  前記目標光量設定部が、更新前の前記電流光量特性により更新前の前記目標光量を達成する前記駆動電流によって、更新後の前記電流光量特性により達成可能な前記光量より大きい目標光量を設定する請求項5に記載の走査型内視鏡。 The target light quantity setting unit sets a target light quantity that is larger than the light quantity that can be achieved by the updated current light quantity characteristic by the drive current that achieves the target light quantity before update by the current light quantity characteristic before update. Item 6. The scanning endoscope according to Item 5.
  7.  前記特性生成部が、前記電流光量特性の生成を所定のタイミングで行う請求項2から請求項6のいずれかに記載の走査型内視鏡。 The scanning endoscope according to any one of claims 2 to 6, wherein the characteristic generation unit generates the current light quantity characteristic at a predetermined timing.
PCT/JP2016/071024 2016-07-15 2016-07-15 Scanning endoscope WO2018011986A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/071024 WO2018011986A1 (en) 2016-07-15 2016-07-15 Scanning endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/071024 WO2018011986A1 (en) 2016-07-15 2016-07-15 Scanning endoscope

Publications (1)

Publication Number Publication Date
WO2018011986A1 true WO2018011986A1 (en) 2018-01-18

Family

ID=60952347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071024 WO2018011986A1 (en) 2016-07-15 2016-07-15 Scanning endoscope

Country Status (1)

Country Link
WO (1) WO2018011986A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414982A (en) * 1987-07-08 1989-01-19 Sony Corp Semiconductor laser device
JPH088478A (en) * 1994-06-20 1996-01-12 Fujitsu Ltd Ld driving current limiting circuit
JPH11274628A (en) * 1998-03-26 1999-10-08 Kdd Corp Semiconductor laser driving device
JP2005317841A (en) * 2004-04-30 2005-11-10 Matsushita Electric Ind Co Ltd Semiconductor laser device
JP2008270452A (en) * 2007-04-19 2008-11-06 Dainippon Screen Mfg Co Ltd Light beam emission apparatus, image recording apparatus, and method of measuring intensity of light beam
JP2009236983A (en) * 2008-03-26 2009-10-15 Hitachi Via Mechanics Ltd Laser diode output adjustment method
JP2009239032A (en) * 2008-03-27 2009-10-15 Nippon Avionics Co Ltd Laser diode driving circuit and laser welding power source
JP2015065392A (en) * 2013-09-26 2015-04-09 アルプス電気株式会社 Video display device
JP2016002406A (en) * 2014-06-19 2016-01-12 オリンパス株式会社 Optical scanning type endoscope apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414982A (en) * 1987-07-08 1989-01-19 Sony Corp Semiconductor laser device
JPH088478A (en) * 1994-06-20 1996-01-12 Fujitsu Ltd Ld driving current limiting circuit
JPH11274628A (en) * 1998-03-26 1999-10-08 Kdd Corp Semiconductor laser driving device
JP2005317841A (en) * 2004-04-30 2005-11-10 Matsushita Electric Ind Co Ltd Semiconductor laser device
JP2008270452A (en) * 2007-04-19 2008-11-06 Dainippon Screen Mfg Co Ltd Light beam emission apparatus, image recording apparatus, and method of measuring intensity of light beam
JP2009236983A (en) * 2008-03-26 2009-10-15 Hitachi Via Mechanics Ltd Laser diode output adjustment method
JP2009239032A (en) * 2008-03-27 2009-10-15 Nippon Avionics Co Ltd Laser diode driving circuit and laser welding power source
JP2015065392A (en) * 2013-09-26 2015-04-09 アルプス電気株式会社 Video display device
JP2016002406A (en) * 2014-06-19 2016-01-12 オリンパス株式会社 Optical scanning type endoscope apparatus

Similar Documents

Publication Publication Date Title
US9651774B2 (en) Optical scanning observation apparatus having variable sampling time, and method and computer readable storage device
US20120188623A1 (en) Scanning image display device and method of controlling the same
US8804230B2 (en) Light amplifier and laser processing device
US9636005B2 (en) Endoscope system having light intensity adjustment with movable optical system
US11146764B2 (en) Control device, optical scanning device, display apparatus, and control method
JP2018000228A (en) Illumination device, control method of illumination device, and imaging system
CN110488488B (en) Control device, optical scanning device, display device, and control method
US7822083B2 (en) Laser light intensity control device, laser light intensity control method, and image forming apparatus
JP2003344798A (en) Laser scanner
WO2018011986A1 (en) Scanning endoscope
JP4792723B2 (en) Image forming apparatus
US10833477B2 (en) Drive unit and light-emitting device
WO2017072837A1 (en) Optical-scanning-type endoscope device and method for controlling optical-scanning-type endoscope device
WO2017068738A1 (en) Light source driving device and image display device
US20190349088A1 (en) Optical transmission device and method for controlling optical transmission device
US11426060B2 (en) Optical scanning endoscope device
US10453370B1 (en) Control apparatus, optical scanning apparatus, display apparatus, and control method
JP2009236983A (en) Laser diode output adjustment method
WO2017195256A1 (en) Optical scanning type observation device and optical scanning type observation method
JP2004253653A (en) Light source device, device and method for controlling light-emitting module
WO2017072838A1 (en) Optical-scanning-type observation device and method for controlling optical-scanning-type observation device
US8072656B2 (en) Image forming apparatus and optical controller
JP2004193348A (en) Laser diode control device, threshold decision method for controlling, and laser diode control method
JP2021015227A (en) Laser projection display device and laser source drive method
JP2006140421A (en) Light amount controller and light amount control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP