WO2017195256A1 - Optical scanning type observation device and optical scanning type observation method - Google Patents

Optical scanning type observation device and optical scanning type observation method Download PDF

Info

Publication number
WO2017195256A1
WO2017195256A1 PCT/JP2016/063770 JP2016063770W WO2017195256A1 WO 2017195256 A1 WO2017195256 A1 WO 2017195256A1 JP 2016063770 W JP2016063770 W JP 2016063770W WO 2017195256 A1 WO2017195256 A1 WO 2017195256A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
brightness
unit
optical scanning
detection unit
Prior art date
Application number
PCT/JP2016/063770
Other languages
French (fr)
Japanese (ja)
Inventor
森 健
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2018516233A priority Critical patent/JPWO2017195256A1/en
Priority to PCT/JP2016/063770 priority patent/WO2017195256A1/en
Publication of WO2017195256A1 publication Critical patent/WO2017195256A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor

Definitions

  • the present invention relates to an optical scanning observation apparatus and an optical scanning observation method that perform observation by scanning light on an observation object and detecting light obtained by irradiation of the light.
  • an optical fiber that guides illumination light from a light source is vibrated so that the tip of the optical fiber forms a spiral orbit (a spiral orbit), and the illumination light emitted from the tip of the optical fiber is observed.
  • Illumination light is emitted from the tip of the optical fiber so as to form a spot on the object, and light such as transmitted light, reflected light, or fluorescence obtained from the observation object irradiated with the illumination light is detected and detected.
  • An optical scanning observation apparatus is known that generates an image by converting the emitted light into an electrical signal by a photoelectric conversion means (see, for example, Patent Document 1).
  • laser light is used as illumination light emitted from an optical fiber.
  • Patent Document 1 in consideration of the safety of laser light to human eyes, the amount of laser light is controlled based on whether or not the scope is inserted into a body cavity.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an optical scanning observation apparatus and an optical scanning observation method in which the brightness of an image obtained by controlling the amount of laser light does not change. .
  • One aspect of the present invention is directed to an optical scanning unit that scans an object with pulsed light, a brightness detection unit that detects information about brightness based on the pulsed light, and the optical scanning unit on the object.
  • a pulse per unit time of the pulsed light based on information relating to the brightness detected by the brightness detection unit and a light detection unit that detects reflected light from the object by scanning the pulsed light
  • An optical scanning observation apparatus including a control unit that controls to change the number of light emission.
  • the brightness detection unit may be a light amount detection unit that detects a light amount signal corresponding to the light amount of the pulsed light as information on the brightness.
  • the said light quantity detection part may detect the light quantity signal proportional to the light quantity of the said pulsed light.
  • the said light quantity detection part may detect the light quantity signal proportional to the average light quantity of the said pulsed light.
  • the control unit decreases the number of pulse emission per unit time of the pulsed light when the information on the brightness detected by the brightness detection unit is equal to or greater than a predetermined threshold. You may control.
  • strength of the reflected light detected by the said light detection part may be provided, and the said brightness detection part may be the said light detection part.
  • the said image generation part may be provided with the pixel interpolation part which performs the interpolation of the pixel which comprises the said image.
  • the said pixel interpolation part may change the interpolation method of the pixel which comprises the said image according to the said pulse light emission number controlled by the said control part.
  • the control unit decreases the number of pulse emission per unit time of the pulsed light when the information on the brightness detected by the brightness detection unit is equal to or less than a predetermined threshold. You may control.
  • the optical scanning unit scans the pulsed light on the object
  • the brightness detecting unit detects information about the brightness based on the pulsed light
  • the control unit receives light emitted from the object by the controlled irradiation of the pulsed light, and generating an image based on the intensity of the light received by the light detection unit. Is an optical scanning observation method.
  • FIG. 1 is a block diagram illustrating a schematic configuration of an optical scanning endoscope apparatus that is an example of an optical scanning observation apparatus according to a first embodiment of the present invention. It is a figure which shows the relationship between the pulse light emission number per unit time and the light quantity in (a) normal mode and (b) restriction
  • FIG. 2 is an overview diagram schematically showing a scope of the optical scanning endoscope apparatus shown in FIG. 1. It is sectional drawing of the front-end
  • FIG. 3 is a flowchart relating to the operation of the optical scanning endoscope apparatus shown in FIG. 1. It is a figure which shows the pixel arrangement
  • FIG. 1 is a block diagram showing a schematic configuration of an optical scanning endoscope apparatus 10 which is an example of an optical scanning observation apparatus according to the first embodiment of the present invention.
  • the optical scanning endoscope apparatus 10 according to the present embodiment includes a scope 20, a control device main body 30, and a display 40.
  • the control device main body 30 is a control unit 31, a light emission control unit 32, and laser light sources 33R, 33G, and 33B (hereinafter, also referred to as lasers 33R, 33G, and 33B.
  • the laser 33R is also controlled.
  • 33G and 33B are also collectively referred to as “light source 33”.)
  • a coupler 34 a light amount detection unit 50 (brightness detection unit), and a light amount instruction unit 51.
  • the light emission control unit 32 emits light from the three lasers 33R, 33G, and 33B that emit laser beams of the three primary colors of red (R), green (G), and blue (B), respectively, according to the control signal transmitted by the control unit 31.
  • the timing is controlled, and pulsed light is emitted from the lasers 33R, 33G, and 33B, respectively.
  • the light source 33 for example, a DPSS laser (semiconductor excitation solid-state laser) or a laser diode can be used.
  • Laser light emitted from the light source 33 is coupled by the coupler 34 to the illumination optical fiber 11 that is the same single mode fiber.
  • the configuration of the light source 33 of the optical scanning endoscope apparatus 10 is not limited to this, and a plurality of other light sources may be used.
  • the light source 33 and the coupler 34 may be housed in a separate housing from the control device main body 30 connected to the control device main body 30 by a signal line.
  • the illumination optical fiber 11 is connected to the tip of the scope 20.
  • the light incident on the illumination optical fiber 11 from the coupler 34 is guided to the distal end portion of the scope 20 and emitted toward the observation object 100 as illumination light.
  • the actuator 21 (light scanning unit) provided in the scope 20 is driven to vibrate, so that the illumination light emitted from the illumination optical fiber 11 is spirally trajectory (spiral) on the surface of the observation object 100. The trajectory is drawn and scanned.
  • the actuator 21 is controlled by the control unit 31 via the actuator driver 38 of the control device main body 30.
  • Light such as reflected light, scattered light, or fluorescence obtained from the observation object 100 by irradiation of illumination light is received by the distal ends 12a of a plurality of detection optical fibers 12 constituted by multimode fibers, and passes through the scope 20. The light is guided to the control device main body 30.
  • the light amount detection unit 50 detects information about brightness based on the pulsed light emitted from the tip 11 c of the illumination optical fiber 11 from the coupler 34 and outputs the signal to the light amount instruction unit 51. Specifically, the light amount detection unit 50 detects a light amount signal proportional to the laser light amount from the coupler 34 as information related to brightness based on pulsed light, and outputs the light amount signal to the light amount instruction unit 51.
  • the laser light quantity indicates the total emission amount of the laser emitted from the tip 11c of the illumination optical fiber 11 per unit time.
  • the light quantity instruction unit 51 adjusts the number of pulse emission per unit time based on the light quantity signal output from the light quantity detection unit 50 and proportional to the laser light quantity emitted from the tip 11c of the illumination optical fiber 11. It has become. That is, assuming that the amount of light per pulse is A, the brightness of the generated image can be adjusted while maintaining the detection sensitivity of the light detection unit 35 by adjusting the number of pulse emission per unit time without changing A. The image is acquired without change.
  • the light amount instruction unit 51 sets the number of pulse emission during normal imaging as the normal mode.
  • the limit mode is set to reduce the number of pulse emission (FIGS. 2A and 2B). reference). Note that the number of pulse emissions in the normal mode is greater than the number of pulse emissions in the limited mode, and the number of pulse emissions in each mode can be determined in advance.
  • the light quantity instruction unit 51 outputs a setting signal for the number of pulse light emission to the control unit 31. The number of pulse emission is adjusted at the image generation timing of the next frame.
  • the control device body 30 further includes a light detection unit 35 and an image generation unit 37 including a pixel interpolation unit 36.
  • the light detection unit 35 includes a photodiode or the like, and converts light guided by the detection optical fiber 12 into an electrical signal.
  • the electrical signal may be an analog value or a digital value.
  • the output of the light detection unit 35 is output to the image generation unit 37 after offset correction.
  • the control unit 31 calculates information on the scanning position on the scanning path from information such as the start time, amplitude, and phase of the oscillating voltage applied to the actuator driver 38, and sends the calculated information to the image generation unit 37. Thereby, the output signal from the light detection unit 35 is associated with the scanning position information.
  • control part 31 may hold
  • the image generation unit 37 performs interpolation processing of pixels constituting the image by the pixel interpolation unit 36 on each wavelength signal output from the light detection unit 35, and performs necessary image processing such as enhancement processing and gamma processing. Then, an image of the observation object 100 is generated and displayed on the display 40.
  • the pixel interpolation unit 36 may change the interpolation method of the pixels constituting the image in accordance with the number of pulse light emissions output from the control unit 31. Specifically, interpolation processing parameters (such as the number and distance of pixels used for interpolation) may be determined in advance according to the above-described mode.
  • control unit 31 synchronously controls the light emission control unit 32, the actuator driver 38, the pixel interpolation unit 36, and the image generation unit 37.
  • FIG. 3 is an overview diagram schematically showing the scope 20.
  • the scope 20 includes an operation unit 22 and an insertion unit 23.
  • the operation unit 22 is connected to the illumination optical fiber 11, the detection optical fiber 12 and the wiring cable 13 from the control device main body 30.
  • the illumination optical fiber 11, the detection optical fiber 12, and the wiring cable 13 pass through the insertion portion 23 and are led to the distal end portion 24 of the insertion portion 23 (portion in the broken line portion in FIG. 3).
  • FIG. 4 is an enlarged vertical sectional view showing the distal end portion 24 of the insertion portion 23 of the scope 20 of FIG.
  • the distal end portion 24 includes an actuator 21, projection lenses 25 a and 25 b, an illumination optical fiber 11 that passes through the central portion, and a detection optical fiber 12 that passes through the outer peripheral portion.
  • the actuator 21 includes an actuator tube 27 fixed to the inside of the insertion portion 23 of the scope 20 by a mounting ring 26, and a fiber holding member 29 and piezoelectric elements 28a, 28b, 28c, and 28d arranged in the actuator tube 27 (see FIG. 5 (a) and FIG. 5 (b)).
  • the illuminating optical fiber 11 is supported by a fiber holding member 29, and a fixed end 11a supported by the fiber holding member 29 to a tip 11c constitute a swinging portion 11b that is swingably supported.
  • the detection optical fiber 12 is disposed so as to pass through the outer peripheral portion of the insertion portion 23 and extends to the distal end of the distal end portion 24. Furthermore, a detection lens (not shown) is provided at the distal end portion 12a of each fiber of the detection optical fiber 12.
  • the projection lenses 25a and 25b and the detection lens are arranged at the forefront of the tip portion 24.
  • the projection lenses 25 a and 25 b are arranged so that the laser light emitted from the tip 11 c of the illumination optical fiber 11 is substantially condensed on the observation object 100. Therefore, the projection lenses 25a and 25b constitute an optical system that irradiates the observation object 100 with the light emitted from the illumination optical fiber 11.
  • the detection lens is arranged after the detection lens by taking in the light reflected or scattered or refracted by the observation object 100 or the fluorescence or the like by the laser light condensed on the observation object 100.
  • the optical fiber for detection 12 is arranged so as to be condensed and coupled.
  • the projection lenses 25a and 25b are not limited to the two-lens configuration, and may be configured by one lens or a plurality of other lenses.
  • FIG. 5A is a diagram showing a vibration drive mechanism of the actuator 21 and the swinging portion 11b of the illumination optical fiber 11 of the optical scanning endoscope apparatus 10, and FIG. FIG.
  • the illumination optical fiber 11 passes through the center of the fiber holding member 29 having a prismatic shape, and is thereby fixed and held by the fiber holding member 29.
  • the four side surfaces of the fiber holding member 29 face the + Y direction and the + X direction and the opposite directions, respectively.
  • the pair of piezoelectric elements 28a and 28c for driving in the Y direction are fixed in the + Y direction and the ⁇ Y direction of the fiber holding member 29, and the pair of piezoelectric elements 28b for driving in the X direction are fixed in the + X direction and the ⁇ X direction. 28d is fixed.
  • the wiring cable 13 from the actuator driver 38 of the control device main body 30 is connected to each piezoelectric element 28a, 28b, 28c, 28d.
  • the piezoelectric elements 28b and 28d arranged opposite to each other with the fiber holding member 29 interposed therebetween cause the fiber holding member 29 to bend when one of the piezoelectric elements 28b and 28d expands, and the vibration is generated in the X direction by repeating this. Can be made.
  • piezoelectric elements 28b and 28d in the X direction piezoelectric elements having the same expansion / contraction direction with respect to the polarity of the voltage to be applied are used, and voltages having the same magnitude but opposite polarity are always applied.
  • piezoelectric elements 28a and 28c in the Y direction piezoelectric elements having the same expansion / contraction direction with respect to the polarity of the applied voltage are used, and voltages having the same magnitude in the opposite direction are always applied.
  • the actuator driver 38 controls the piezoelectric elements 28a, 28b, 28c, and 28d so that the tip 11c of the illumination optical fiber 11 draws a spiral orbit (a spiral orbit). Specifically, an AC voltage whose amplitude changes from 0 to the maximum value is applied to the piezoelectric elements 28b and 28d for driving in the X direction and the piezoelectric elements 28a and 28c for driving in the Y direction. The AC voltages are 90 ° out of phase with each other, and the frequency is set in the vicinity of the same resonance frequency. Thus, the laser light emitted from the tip 11c sequentially scans the surface of the observation object 100 so as to draw a spiral locus.
  • the above-described functions of the control unit 31, the light amount detection unit 50, and the light amount instruction unit 51 are realized by, for example, a general-purpose or dedicated computer.
  • the computer includes a central processing unit (CPU), a main storage device such as a RAM, and an auxiliary storage device such as a hard disk and various memories, and the control unit described above is included in the auxiliary storage device.
  • a program for causing the CPU to execute the processes of the light quantity detection unit 50 and the light quantity instruction unit 51 is stored.
  • the program is loaded from the auxiliary storage device to the main storage device and executed, so that the CPU realizes the processing of the control unit 31, the light amount detection unit 50, and the light amount instruction unit 51.
  • the distal end of the insertion portion 23 is opposed to the observation object 100.
  • laser light is emitted from the tip 11 c of the illumination optical fiber 11 to the observation object 100.
  • the tip 21 c of the illumination optical fiber 11 is spirally vibrated by the actuator 21 (light scanning unit), so that laser light as pulse light is spirally scanned on the observation object 100.
  • the scanning of the pulsed light of the lasers 33R, 33G, and 33B of the respective colors may be emitted sequentially or simultaneously. In the present embodiment, it is assumed that light is emitted sequentially.
  • a light quantity signal proportional to the emitted laser light is detected and output by the light quantity detector 50 (step S1).
  • the light amount instruction unit 51 compares the light amount signal with a predetermined threshold value (step S2).
  • the threshold value of the light amount signal is set to a value smaller than the signal level corresponding to 5 mW, for example, when the tip light amount of the tip 11c of the illumination optical fiber 11 is to be 5 mW or less. Then, the comparison result is sent to the control unit 31, and a signal for changing the pulse emission number of the next frame in the control unit 31 is sent to the light emission control unit 32.
  • step S3 when the light amount signal is smaller than the threshold value (step S2 / Yes), the control unit 31 controls the pulse emission number so as to be the normal mode pulse emission number (step S3).
  • step S4 when the light quantity signal is equal to or greater than the threshold value (step S2 / No), the control unit 31 reduces the number of pulse light emission so as to be the number of pulse light emission in the limit mode (step S4).
  • the light emission control unit 32 determines the number of pulse light emission per unit time of the pulsed light and controls the light amount (step S5).
  • Laser irradiation is performed to control the amount of light and acquire an image of the next frame (step S6), and the reflected light of the pulsed light reflected on the surface of the observation object 100 is received by the detection optical fiber 12 and light
  • the detection unit 35 performs photoelectric conversion to an electrical signal.
  • R, G, and B signal values indicating the intensity of the reflected light of R, G, and B are obtained, and the image of the observation object 100 is associated with the laser light irradiation position in the image generation unit 37.
  • Generated step S7, and the generated image is displayed on the display 40 (step S8).
  • the pixel here shows the information used for the image generation which scanned the light and received the light reflected from the observation object 100, and is different from the pixel of 1 dot at the time of displaying on the display 40.
  • the image data when the light amount signal is equal to or greater than the threshold value, the image data can be generated without changing the detection sensitivity of the light detection unit 35 by reducing the number of pulse emission per unit time. . That is, the amount of laser light from the end of the fiber can be reduced without changing the amount of light emitted per pulse, and observation can be performed without changing the brightness of the image. As a result, it is possible to provide an optical scanning observation apparatus in which the brightness of an image obtained does not change even when the amount of laser light is controlled.
  • the number of pulse emission in the limit mode is set to 1/3.
  • the number of pulse emission may be changed according to the degree of reduction of the light amount.
  • a general interpolation method may be used in which a plurality of pixels to be interpolated are added and then averaged with the number of used pixels.
  • the light quantity instruction unit 51 may receive a signal from the outside without receiving a signal from the light quantity detection unit 50, for example. For example, when it is desired to adjust the laser light amount according to the observation conditions or the user's intention, a signal may be manually input to the light amount instruction unit 51.
  • the light amount detection unit 50 detects the light amount signal proportional to the light amount of the pulsed light.
  • the present invention is not limited thereto, and the light amount signal corresponding to the light amount of the pulsed light may be detected.
  • a light amount signal proportional to the average light amount of pulsed light may be used.
  • the light amount of pulsed light here includes an average light amount that is a light amount obtained by averaging the light amount per pulse and the light amount per unit time indicated by symbol A in FIGS. 2 (a) and 2 (b). The average amount of pulsed light decreases when the number of pulse emission per unit time decreases, so that the emission time decreases, and when the number of pulse emission per unit time increases, it increases because the emission time increases. .
  • optical scanning endoscope apparatus 60 which is an example of the optical scanning endoscope apparatus 60 according to the second embodiment of the present invention will be described with reference to FIG.
  • the optical scanning endoscope apparatus 60 according to the present embodiment is the first embodiment in that the determination of changing the light amount by the light amount instruction unit 51 is determined from the obtained image instead of the signal from the light amount detection unit 50. It is different from the form. Therefore, in the present embodiment, a method for judging from the obtained image will be mainly described, and the same reference numerals are given to the same components as those in the first embodiment, and the description thereof will be omitted.
  • the image generation unit 37 receives a signal obtained by receiving the reflected light from the observation object 100 by the detection optical fiber 12 and converting it into an electrical signal by the light detection unit 35.
  • the light detection unit 35 also functions as a brightness detection unit, and outputs the signal converted into the electrical signal to the light amount instruction unit 51 as information on brightness based on pulsed light.
  • the light quantity instruction unit 51 adjusts the number of pulse emission based on the electrical signal from the light detection unit 35. Specifically, the light quantity instruction unit 51 performs pulse light emission based on whether or not the number of pixels whose luminance level is equal to or lower than a predetermined threshold in the electrical signal from the light detection unit 35 is more than half of the total number of pixels. Give instructions to change the number. That is, when the number of pixels equal to or less than the threshold value is smaller than half of the total number of pixels, the light quantity instruction unit 51 further checks whether or not a plurality of frames are continuous. Instructs the number to enter normal mode. On the other hand, when the number of pixels equal to or less than the above threshold value is half or more of the total number of pixels, the light quantity instruction unit 51 checks whether or not a plurality of frames are continued. Is instructed to enter the restricted mode.
  • optical scanning endoscope apparatus 60 Next, the operation of the thus configured optical scanning endoscope apparatus 60 will be described with reference to FIG.
  • the operation of the optical scanning endoscope apparatus 60 according to the present embodiment is different in the determination method used for adjusting the number of pulse emission, and the other steps are the same as those in the first embodiment. Therefore, a determination method used for adjusting the number of pulse emission will be described.
  • step S11 When laser light is emitted from the tip 11c of the illumination optical fiber 11 to the observation object 100, reflected light is detected by the detection optical fiber 12 in the light detection unit 35 (step S11). The detected reflected light is converted into an electric signal and transmitted to the light quantity instruction unit 51 (step S12). As described above, the light quantity instruction unit 51 calculates the number of pixels having a brightness equal to or lower than a predetermined threshold (step S13). Then, it is compared whether or not the number of pixels below the threshold is less than half of the total number of pixels (step S14). The comparison result is sent to the control unit 31, and a signal for changing the number of pulse emission of the next frame in the control unit 31 is sent to the light emission control unit 32.
  • step S14 / Yes when the number of pixels equal to or less than the threshold is less than half of the total number of pixels (step S14 / Yes), the light quantity instruction unit 51 compares whether or not this condition continues for a plurality of frames (step S14 / Yes). Step S15). As a result of the comparison, when a plurality of frames are continuous (step S15 / Yes), it is determined that the distance from the observation object 100 is short, so the control unit 31 sets the pulse emission number to the pulse emission number in the normal mode. Control is performed (step S16).
  • step S17 the light quantity instruction unit 51 compares whether or not this condition continues for a plurality of frames.
  • step S17 the control unit 31 sets the pulse emission number so that the pulse emission number in the limit mode is obtained.
  • the light emission control unit 32 determines the number of pulse light emission per unit time of the pulsed light, and controls the laser light quantity (step S19). Then, the laser light quantity is controlled to perform laser irradiation for acquiring an image of the next frame (step S20), and an image of the observation object 100 is generated in the image generation unit 37 (step S21). It is displayed on the display 40 (step S22).
  • the laser irradiation for acquiring an image of the next frame is performed without changing the pulse emission number ( Step S20) and subsequent steps are the same.
  • the observation object 100 is far away, that is, in the observation object It is determined that there is no state suitable for observation, and an image can be acquired with the number of pulse emission in the limited mode. By doing in this way, it can be judged from the feature of an image whether it is an observation object.
  • the image can be acquired by changing the laser light quantity without changing the brightness of the obtained image.
  • the light detection unit 35 since the light detection unit 35 also functions as the light amount detection unit 50 of the first embodiment, the configuration as a device can be simplified.
  • the brightness of the image is determined based on whether or not the number of pixels below the threshold for the luminance level is half of the total number of pixels.
  • the present invention is not limited to this. An arbitrary value such as / 3 or 4/5 may be set.
  • the brightness level is determined as the brightness of the image.
  • the present invention is not limited to this, and the determination may be made using the average brightness of the obtained image, or a histogram based on the brightness of the pixels. The determination may be made based on whether or not intermediate luminance is generated from the shape. By doing in this way, when the observation object 100 is close, the pixel has a certain level of brightness, so that the distance can be determined and controlled from the brightness.
  • the light quantity instruction unit 51 may be able to input a signal from the outside without receiving a signal from the light detection unit 35, for example.
  • a signal can be manually input to the light quantity instruction unit 51.
  • the determination of the adjustment of the pulse emission number is performed at the timing of image generation of the next frame.
  • the present invention is not limited to this, and a plurality of frames may be consecutive.
  • the interpolation method for generating an image has generated an image regardless of the number of pulse emission, but the interpolation method of pixels constituting the image may be changed according to the number of pulse emission.
  • the number of pixels used for interpolation processing when generating an image may be changed in accordance with the number of light pulses emitted. Specifically, when an image is generated with the number of light pulses emitted in the normal mode, here, four pixels close to the pixel to be interpolated are used, depending on the distance between each of the four points and the pixel to be interpolated. Weighting is performed to generate interpolated pixels.
  • the number of pulse emission is reduced in the limit mode
  • the number of emission of the pulse light is reduced to, for example, 1/3 of the normal mode, so that the pulse interval is wider than that in the normal mode. That is, the number of pixels used for image generation is smaller than that before thinning. Therefore, interpolation processing is performed using two pixels close to the stored pixel.
  • the two pixels necessary for the interpolation processing are weighted according to the distance between each of the two points and the pixel to be interpolated to generate a pixel to be interpolated.
  • I ′ V12 / A ′ + V21 / B ′ It is calculated by.
  • a ′ and B ′ are coefficients corresponding to the distance
  • V is the brightness of the pixel.
  • the range used for the interpolation processing when generating the image may be changed according to the number of light pulses emitted. Specifically, when an image is generated with the number of light pulses of the normal mode, interpolation processing is performed using pixels within a predetermined distance X from the pixel to be interpolated.
  • interpolation is performed using pixels within a predetermined distance Y from the pixel to be interpolated.
  • the distances X and Y are set so that X ⁇ Y, and the range is set so that at least one pixel is included.
  • the present invention is not limited to the above-described embodiments, and various changes and applications can be made without departing from the spirit of the invention.
  • the present invention is applicable not only to medical endoscope apparatuses but also to so-called industrial endoscope apparatuses such as chemical plants and aircraft engines.
  • the present invention can be applied to an optical scanning microscope apparatus.
  • the optical scanning unit that performs spiral scanning is not limited to the actuator 21 using the piezoelectric elements 28a, 28b, 28c, and 28d.
  • the optical scanning unit includes a permanent magnet and an electromagnetic coil and is driven by electromagnetic force. It is also possible to use an actuator or a galvanometer mirror that generates a force.
  • laser beams of three colors R, G, and B are used.
  • the present invention is not limited to this.
  • two colors of B and G may be used, or R, G, and B may be used.
  • a combination of colors other than B may be used.
  • the illumination light emitted from the illumination optical fiber 11 is scanned so as to draw a spiral trajectory on the observation surface of the observation object 100.
  • the scanning trajectory is not limited to this.
  • other shapes for example, a raster shape or a Lissajous shape
  • the scanning is not limited to the scanning using the illumination optical fiber 11, and other scanning methods (for example, a galvano mirror scanner) may be used.
  • Optical scanning observation apparatus 11 Illumination optical fiber 11a Fixed end 11b Oscillating part 11c End 12 Detection optical fiber 13 Wiring cable 20 Scope 21 Actuator (optical scanning part) 22 Operation part 23 Insertion part 24 Tip part 25a, 25b Projection lens 26 Mounting ring 27 Actuator tube 28a, 28b, 28c, 28d Piezoelectric element 29 Fiber holding member 30 Control device main body 31 Control part 32 Light emission control part 33R, 33G, 33B Laser light source (laser) 34 coupler 35 light detector (brightness detector) 36 pixel interpolation unit 37 image generation unit 38 actuator driver 40 display 50 light quantity detection unit (brightness detection unit) 51 Light intensity instruction unit 100 Observation object (object)

Abstract

The purpose of the present invention is to keep the brightness of an obtained image unchanged even when the light quantity of laser light is controlled. An optical scanning type observation device (10) according to the present invention is provided with: an optical scanning unit (20) that causes pulse light to be scanned over an object; a brightness sensing unit (50) that senses information about brightness based on the pulse light; a light detection unit that detects reflected light from the object in response to the pulse light scanning performed over the object by the optical scanning unit (20); and a control unit (31) that performs control, on the basis of the information about the brightness sensed by the brightness sensing unit (50), so as to change the number of times of pulse emission, per unit time, of pulse light.

Description

光走査型観察装置および光走査型観察方法Optical scanning observation apparatus and optical scanning observation method
 本発明は、観察対象物上で光を走査させ、該光の照射により得られた光を検出して観察を行う光走査型観察装置および光走査型観察方法に関する。 The present invention relates to an optical scanning observation apparatus and an optical scanning observation method that perform observation by scanning light on an observation object and detecting light obtained by irradiation of the light.
 従来、光源からの照明光を導光する光ファイバを、該光ファイバの先端部が螺旋軌道(渦巻き状の軌道)を描くように振動させ、光ファイバの先端部から射出された照明光が観察対象物上でスポットを形成するように光ファイバの先端部から照明光を射出し、照明光が照射された観察対象物から得られる透過光、反射光、または蛍光等の光を検出し、検出された光を光電変換手段により電気信号に変換して、画像を生成する光走査型観察装置が知られている(例えば、特許文献1参照。)。 Conventionally, an optical fiber that guides illumination light from a light source is vibrated so that the tip of the optical fiber forms a spiral orbit (a spiral orbit), and the illumination light emitted from the tip of the optical fiber is observed. Illumination light is emitted from the tip of the optical fiber so as to form a spot on the object, and light such as transmitted light, reflected light, or fluorescence obtained from the observation object irradiated with the illumination light is detected and detected. An optical scanning observation apparatus is known that generates an image by converting the emitted light into an electrical signal by a photoelectric conversion means (see, for example, Patent Document 1).
 このような光走査型観察装置では、光ファイバから射出される照明光としてレーザ光が用いられる。
 特許文献1では、レーザ光の人の目に対する安全性を考慮して、スコープが体腔内に挿入されているか否かに基づいて、レーザ光の光量を制御している。
In such an optical scanning observation apparatus, laser light is used as illumination light emitted from an optical fiber.
In Patent Document 1, in consideration of the safety of laser light to human eyes, the amount of laser light is controlled based on whether or not the scope is inserted into a body cavity.
特許第5388732号公報Japanese Patent No. 5388732
 しかしながら、特許文献1に開示される発明では、レーザ光の光量を制御し、安全なレベルに制限するためにレーザ光の出力レベルを制御している。そのため、レーザ光の出力レベルを下げた場合、得られる画像の明るさが暗くなるという課題があった。 However, in the invention disclosed in Patent Document 1, the amount of laser light is controlled, and the output level of laser light is controlled in order to limit it to a safe level. Therefore, when the output level of the laser beam is lowered, there is a problem that the brightness of the obtained image becomes dark.
 本発明は上記事情に鑑みてなされたもので、レーザ光の光量を制御しても得られる画像の明るさが変化しない光走査型観察装置および光走査型観察方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an optical scanning observation apparatus and an optical scanning observation method in which the brightness of an image obtained by controlling the amount of laser light does not change. .
 本発明の一態様は、パルス光を対象物上で走査させる光走査部と、前記パルス光に基づく明るさに関する情報を検知する明るさ検知部と、前記光走査部により前記対象物上において前記パルス光が走査されることにより、前記対象物からの反射光を検出する光検出部と、前記明るさ検知部により検知された前記明るさに関する情報に基づいて前記パルス光の単位時間あたりのパルス発光数を変化させるように制御する制御部とを備える光走査型観察装置である。 One aspect of the present invention is directed to an optical scanning unit that scans an object with pulsed light, a brightness detection unit that detects information about brightness based on the pulsed light, and the optical scanning unit on the object. A pulse per unit time of the pulsed light based on information relating to the brightness detected by the brightness detection unit and a light detection unit that detects reflected light from the object by scanning the pulsed light An optical scanning observation apparatus including a control unit that controls to change the number of light emission.
 上記態様においては、前記明るさ検知部が、前記明るさに関する情報として前記パルス光の光量に対応した光量信号を検知する光量検知部であってもよい。
 また、上記態様においては、前記光量検知部が、前記パルス光の光量に比例した光量信号を検知してもよい。
In the above aspect, the brightness detection unit may be a light amount detection unit that detects a light amount signal corresponding to the light amount of the pulsed light as information on the brightness.
Moreover, in the said aspect, the said light quantity detection part may detect the light quantity signal proportional to the light quantity of the said pulsed light.
 また、上記態様においては、前記光量検知部は、前記パルス光の平均光量に比例した光量信号を検知してもよい。
 また、上記態様においては、前記制御部は、前記明るさ検知部により検知された前記明るさに関する情報が所定の閾値以上の場合に前記パルス光の単位時間あたりのパルス発光数を減少させるように制御してもよい。
Moreover, in the said aspect, the said light quantity detection part may detect the light quantity signal proportional to the average light quantity of the said pulsed light.
Further, in the above aspect, the control unit decreases the number of pulse emission per unit time of the pulsed light when the information on the brightness detected by the brightness detection unit is equal to or greater than a predetermined threshold. You may control.
 また、上記態様においては、前記光検出部により検出された反射光の強度に基づいて画像を生成する画像生成部を備え、前記明るさ検知部が前記光検出部であってもよい。
 また、上記態様においては、前記画像生成部が、前記画像を構成する画素の補間を行う画素補間部を備えていてもよい。
Moreover, in the said aspect, the image generation part which produces | generates an image based on the intensity | strength of the reflected light detected by the said light detection part may be provided, and the said brightness detection part may be the said light detection part.
Moreover, in the said aspect, the said image generation part may be provided with the pixel interpolation part which performs the interpolation of the pixel which comprises the said image.
 また、上記態様においては、前記画素補間部が、前記制御部によって制御された前記パルス発光数に応じて、前記画像を構成する画素の補間方法を変更してもよい。
 また、上記態様においては、前記制御部は、前記明るさ検知部により検知された前記明るさに関する情報が所定の閾値以下の場合に前記パルス光の単位時間あたりのパルス発光数を減少させるように制御してもよい。
Moreover, in the said aspect, the said pixel interpolation part may change the interpolation method of the pixel which comprises the said image according to the said pulse light emission number controlled by the said control part.
Further, in the above aspect, the control unit decreases the number of pulse emission per unit time of the pulsed light when the information on the brightness detected by the brightness detection unit is equal to or less than a predetermined threshold. You may control.
 また、本発明の他の態様は、光走査部が、パルス光を対象物上で走査させるステップと、明るさ検知部が、前記パルス光に基づく明るさに関する情報を検知するステップと、制御部が、前記明るさ検知部により検知された前記明るさに関する情報が所定の閾値以下である場合に、前記パルス光の単位時間あたりのパルス発光数を減少させるように制御するステップと、光検出部が、前記制御された前記パルス光の照射により前記対象物から発せられる光を受光するステップと、画像生成部が、前記光検出部により受光された光の強度に基づいて画像を生成するステップとを含む光走査型観察方法である。 In another aspect of the present invention, the optical scanning unit scans the pulsed light on the object, the brightness detecting unit detects information about the brightness based on the pulsed light, and the control unit. A step of controlling to reduce the number of pulse emission per unit time of the pulsed light when the information on the brightness detected by the brightness detection unit is a predetermined threshold value or less; and a light detection unit Receiving light emitted from the object by the controlled irradiation of the pulsed light, and generating an image based on the intensity of the light received by the light detection unit. Is an optical scanning observation method.
 本発明によれば、レーザ光の光量を制御しても得られる画像の明るさを変化させないようにすることができるという効果を奏する。 According to the present invention, there is an effect that it is possible to prevent the brightness of the obtained image from changing even if the amount of laser light is controlled.
本発明の第1実施形態に係る光走査型観察装置の一例である光走査型内視鏡装置の概略構成を示すブロック図である。1 is a block diagram illustrating a schematic configuration of an optical scanning endoscope apparatus that is an example of an optical scanning observation apparatus according to a first embodiment of the present invention. 図1に示す光走査型観察装置の(a)通常モード、(b)制限モードにおける単位時間あたりのパルス発光数と光量との関係を示す図である。It is a figure which shows the relationship between the pulse light emission number per unit time and the light quantity in (a) normal mode and (b) restriction | limiting mode of the optical scanning observation apparatus shown in FIG. 図1に示す光走査型内視鏡装置のスコープを概略的に示す概観図である。FIG. 2 is an overview diagram schematically showing a scope of the optical scanning endoscope apparatus shown in FIG. 1. 図3に示すスコープの先端部の断面図である。It is sectional drawing of the front-end | tip part of the scope shown in FIG. 図1に示す光走査型内視鏡装置のアクチュエータおよび照明用光ファイバの揺動部を示す(a)側面図、(b)(a)のA-A断面図である。2A is a side view showing an actuator and a swinging portion of an illumination optical fiber of the optical scanning endoscope apparatus shown in FIG. 1, and FIG. 2B is a cross-sectional view taken along line AA of FIG. 図1に示す光走査型内視鏡装置の動作に係るフローチャートである。3 is a flowchart relating to the operation of the optical scanning endoscope apparatus shown in FIG. 1. 画像生成する際の補間処理に関する画素配置を示す図である。It is a figure which shows the pixel arrangement | position regarding the interpolation process at the time of image generation. 本発明の第2実施形態に係る光走査型観察装置の一例である光走査型内視鏡装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the optical scanning type endoscope apparatus which is an example of the optical scanning type observation apparatus which concerns on 2nd Embodiment of this invention. 図8に示す光走査型内視鏡装置の動作に係るフローチャートである。It is a flowchart which concerns on operation | movement of the optical scanning endoscope apparatus shown in FIG.
 以下、本発明の実施の形態について、図面を参照して説明する。
 なお、以下の実施形態により本発明が限定されるものではない。
 また、図面の記載において、同一又は対応する要素には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率等は、現実と異なる場合があることに留意する必要がある。
Embodiments of the present invention will be described below with reference to the drawings.
In addition, this invention is not limited by the following embodiment.
In the description of the drawings, the same or corresponding elements are denoted by the same reference numerals as appropriate. Also, it should be noted that the drawings are schematic, and the relationship between the dimensions of each element, the ratio of each element, and the like may differ from the actual situation.
(第1実施形態)
 図1は、本発明の第1実施形態に係る光走査型観察装置の一例である光走査型内視鏡装置10の概略構成を示すブロック図である。本実施形態に係る光走査型内視鏡装置10は、スコープ20と、制御装置本体30と、ディスプレイ40とを備えている。
(First embodiment)
FIG. 1 is a block diagram showing a schematic configuration of an optical scanning endoscope apparatus 10 which is an example of an optical scanning observation apparatus according to the first embodiment of the present invention. The optical scanning endoscope apparatus 10 according to the present embodiment includes a scope 20, a control device main body 30, and a display 40.
 制御装置本体30は、光走査型内視鏡装置10全体を制御する制御部31、発光制御部32、レーザ光源33R,33G,33B(以下、レーザ33R,33G,33Bとも言う。また、レーザ33R,33G,33Bを包括的に「光源33」とも言う。)、結合器34、光量検知部50(明るさ検知部)および光量指示部51を備えている。発光制御部32は、制御部31によって送信される制御信号に従って、それぞれ赤色(R)、緑色(G)および青色(B)の三原色のレーザ光を射出する3つのレーザ33R,33G,33Bの発光タイミングを制御し、レーザ33R,33G,33Bからそれぞれパルス光を射出させるようになっている。 The control device main body 30 is a control unit 31, a light emission control unit 32, and laser light sources 33R, 33G, and 33B (hereinafter, also referred to as lasers 33R, 33G, and 33B. The laser 33R is also controlled. , 33G and 33B are also collectively referred to as “light source 33”.), A coupler 34, a light amount detection unit 50 (brightness detection unit), and a light amount instruction unit 51. The light emission control unit 32 emits light from the three lasers 33R, 33G, and 33B that emit laser beams of the three primary colors of red (R), green (G), and blue (B), respectively, according to the control signal transmitted by the control unit 31. The timing is controlled, and pulsed light is emitted from the lasers 33R, 33G, and 33B, respectively.
 光源33としては、例えば、DPSSレーザ(半導体励起固体レーザ)やレーザダイオードを使用することができる。光源33から射出されるレーザ光は、結合器34により同一のシングルモードファイバである照明用光ファイバ11に結合される。もちろん、光走査型内視鏡装置10の光源33の構成はこれに限られるものではなく、他の複数の光源を用いるものであってもよい。また、光源33および結合器34は、制御装置本体30と信号線で結ばれた制御装置本体30とは別の筐体に収納されていてもよい。 As the light source 33, for example, a DPSS laser (semiconductor excitation solid-state laser) or a laser diode can be used. Laser light emitted from the light source 33 is coupled by the coupler 34 to the illumination optical fiber 11 that is the same single mode fiber. Of course, the configuration of the light source 33 of the optical scanning endoscope apparatus 10 is not limited to this, and a plurality of other light sources may be used. The light source 33 and the coupler 34 may be housed in a separate housing from the control device main body 30 connected to the control device main body 30 by a signal line.
 照明用光ファイバ11は、スコープ20の先端部まで繋がっている。結合器34から照明用光ファイバ11に入射した光は、スコープ20の先端部まで導光され照明光として観察対象物100に向けて射出される。その際、スコープ20に備えられたアクチュエータ21(光走査部)が振動駆動されることによって、照明用光ファイバ11から射出された照明光は、観察対象物100の表面上を螺旋軌道(渦巻き状の軌道)を描いて走査されるようになっている。 The illumination optical fiber 11 is connected to the tip of the scope 20. The light incident on the illumination optical fiber 11 from the coupler 34 is guided to the distal end portion of the scope 20 and emitted toward the observation object 100 as illumination light. At this time, the actuator 21 (light scanning unit) provided in the scope 20 is driven to vibrate, so that the illumination light emitted from the illumination optical fiber 11 is spirally trajectory (spiral) on the surface of the observation object 100. The trajectory is drawn and scanned.
 このアクチュエータ21は、制御装置本体30のアクチュエータドライバ38を介して制御部31により制御されている。照明光の照射により観察対象物100から得られる反射光、散乱光あるいは蛍光などの光は、マルチモードファイバにより構成される複数の検出用光ファイバ12の先端12aで受光され、スコープ20内を通り制御装置本体30まで導光されるようになっている。 The actuator 21 is controlled by the control unit 31 via the actuator driver 38 of the control device main body 30. Light such as reflected light, scattered light, or fluorescence obtained from the observation object 100 by irradiation of illumination light is received by the distal ends 12a of a plurality of detection optical fibers 12 constituted by multimode fibers, and passes through the scope 20. The light is guided to the control device main body 30.
 光量検知部50は、照明用光ファイバ11の先端11cから射出されるパルス光に基づく明るさに関する情報を結合器34から検知して、その信号を光量指示部51に出力する。具体的には、光量検知部50は、パルス光に基づく明るさに関する情報としてレーザ光量に比例する光量信号を結合器34から検知して、当該光量信号を光量指示部51に出力する。
 ここで、レーザ光量とは、照明用光ファイバ11の先端11cから射出されるレーザの単位時間あたりの総出射量を示す。
The light amount detection unit 50 detects information about brightness based on the pulsed light emitted from the tip 11 c of the illumination optical fiber 11 from the coupler 34 and outputs the signal to the light amount instruction unit 51. Specifically, the light amount detection unit 50 detects a light amount signal proportional to the laser light amount from the coupler 34 as information related to brightness based on pulsed light, and outputs the light amount signal to the light amount instruction unit 51.
Here, the laser light quantity indicates the total emission amount of the laser emitted from the tip 11c of the illumination optical fiber 11 per unit time.
 光量指示部51は、光量検知部50から出力された、照明用光ファイバ11の先端11cから射出されるレーザ光量に比例する光量信号に基づいて、単位時間あたりのパルス発光数を調整するようになっている。すなわち、1パルスあたりの光量をAとすると、Aは変えずに単位時間あたりのパルス発光数を調整することで、光検出部35の検出感度を維持したまま、生成される画像の明るさを変えることなく画像を取得するようにしたものである。 The light quantity instruction unit 51 adjusts the number of pulse emission per unit time based on the light quantity signal output from the light quantity detection unit 50 and proportional to the laser light quantity emitted from the tip 11c of the illumination optical fiber 11. It has become. That is, assuming that the amount of light per pulse is A, the brightness of the generated image can be adjusted while maintaining the detection sensitivity of the light detection unit 35 by adjusting the number of pulse emission per unit time without changing A. The image is acquired without change.
 光量指示部51は、光量検知部50より出力された光量信号が信号閾値としての所定の閾値より小さい場合には、通常モードとして通常撮像時のパルス発光数となるよう設定する。一方、光量検知部50より出力された光量信号が信号閾値としての所定の閾値以上の場合には、制限モードとしてパルス発光数を少なくするよう設定する(図2(a)、図2(b)参照)。なお、通常モードのパルス発光数の方が制限モードのパルス発光数より多く、それぞれのモードのパルス発光数は予め決めておくことができる。
 以上のようにして、光量指示部51は、パルス発光数の設定信号を制御部31に出力する。パルス発光数の調整は、次フレームの画像生成のタイミングで行う。
When the light amount signal output from the light amount detection unit 50 is smaller than a predetermined threshold value as a signal threshold value, the light amount instruction unit 51 sets the number of pulse emission during normal imaging as the normal mode. On the other hand, when the light quantity signal output from the light quantity detection unit 50 is equal to or greater than a predetermined threshold value as a signal threshold value, the limit mode is set to reduce the number of pulse emission (FIGS. 2A and 2B). reference). Note that the number of pulse emissions in the normal mode is greater than the number of pulse emissions in the limited mode, and the number of pulse emissions in each mode can be determined in advance.
As described above, the light quantity instruction unit 51 outputs a setting signal for the number of pulse light emission to the control unit 31. The number of pulse emission is adjusted at the image generation timing of the next frame.
 制御装置本体30は、光検出部35と、画素補間部36を含む画像生成部37とをさらに備えている。光検出部35は、フォトダイオード等を含んで構成され、検出用光ファイバ12により導光されてきた光を電気信号に変換する。なお、電気信号は、アナログ値でもよいし、デジタル値でもよい。 The control device body 30 further includes a light detection unit 35 and an image generation unit 37 including a pixel interpolation unit 36. The light detection unit 35 includes a photodiode or the like, and converts light guided by the detection optical fiber 12 into an electrical signal. The electrical signal may be an analog value or a digital value.
 この光検出部35の出力は、オフセット補正された後、画像生成部37に出力される。制御部31は、アクチュエータドライバ38に印加する振動電圧の起動時刻、振幅および位相などの情報から走査経路上の走査位置の情報を算出し、算出した情報を画像生成部37に送る。これにより、光検出部35からの出力信号と、走査位置情報とが関連付けられる。 The output of the light detection unit 35 is output to the image generation unit 37 after offset correction. The control unit 31 calculates information on the scanning position on the scanning path from information such as the start time, amplitude, and phase of the oscillating voltage applied to the actuator driver 38, and sends the calculated information to the image generation unit 37. Thereby, the output signal from the light detection unit 35 is associated with the scanning position information.
 なお、制御部31は、事前に算出された走査位置情報を予めテーブルとして保持していてもよい。画像生成部37は、光検出部35から出力される各波長の信号を、画素補間部36にて画像を構成する画素の補間処理を行い、強調処理、ガンマ処理等の必要な画像処理を行って観察対象物100の画像を生成し、ディスプレイ40に表示する。なお、画素補間部36は、制御部31から出力されるパルス発光数に応じて画像を構成する画素の補間方法を変更してもよい。具体的には、補間処理のパラメータ(補間に用いる画素の数や距離など)が上述モードに応じて予め決められていてもよい。 In addition, the control part 31 may hold | maintain previously the scanning position information calculated as a table. The image generation unit 37 performs interpolation processing of pixels constituting the image by the pixel interpolation unit 36 on each wavelength signal output from the light detection unit 35, and performs necessary image processing such as enhancement processing and gamma processing. Then, an image of the observation object 100 is generated and displayed on the display 40. Note that the pixel interpolation unit 36 may change the interpolation method of the pixels constituting the image in accordance with the number of pulse light emissions output from the control unit 31. Specifically, interpolation processing parameters (such as the number and distance of pixels used for interpolation) may be determined in advance according to the above-described mode.
 上記の各処理において、制御部31は、発光制御部32、アクチュエータドライバ38、画素補間部36、および画像生成部37を同期制御する。 In each process described above, the control unit 31 synchronously controls the light emission control unit 32, the actuator driver 38, the pixel interpolation unit 36, and the image generation unit 37.
 図3は、スコープ20を概略的に示す概観図である。スコープ20は、操作部22および挿入部23を備える。操作部22には、制御装置本体30からの照明用光ファイバ11、検出用光ファイバ12および配線ケーブル13が、それぞれ接続されている。これら照明用光ファイバ11、検出用光ファイバ12および配線ケーブル13は挿入部23内部を通り、挿入部23の先端部24(図3における破線部内の部分)まで導かれている。 FIG. 3 is an overview diagram schematically showing the scope 20. The scope 20 includes an operation unit 22 and an insertion unit 23. The operation unit 22 is connected to the illumination optical fiber 11, the detection optical fiber 12 and the wiring cable 13 from the control device main body 30. The illumination optical fiber 11, the detection optical fiber 12, and the wiring cable 13 pass through the insertion portion 23 and are led to the distal end portion 24 of the insertion portion 23 (portion in the broken line portion in FIG. 3).
 図4は、図3のスコープ20の挿入部23の先端部24を拡大して示す縦断面図である。先端部24は、アクチュエータ21、投影用レンズ25a,25b、中心部を通る照明用光ファイバ11および外周部を通る検出用光ファイバ12を備えている。 FIG. 4 is an enlarged vertical sectional view showing the distal end portion 24 of the insertion portion 23 of the scope 20 of FIG. The distal end portion 24 includes an actuator 21, projection lenses 25 a and 25 b, an illumination optical fiber 11 that passes through the central portion, and a detection optical fiber 12 that passes through the outer peripheral portion.
 アクチュエータ21は、取付環26によりスコープ20の挿入部23の内部に固定されたアクチュエータ管27、並びに、アクチュエータ管27内に配置されるファイバ保持部材29および圧電素子28a,28b,28c,28d(図5(a)および図5(b)参照)を備えている。
 照明用光ファイバ11は、ファイバ保持部材29で支持されるとともにファイバ保持部材29で支持された固定端11aから先端11cまでが、揺動可能に支持された揺動部11bとなっている。一方、検出用光ファイバ12は挿入部23の外周部を通るように配置され、先端部24の先端まで延びている。さらに、検出用光ファイバ12の各ファイバの先端部12aには図示しない検出用レンズを備える。
The actuator 21 includes an actuator tube 27 fixed to the inside of the insertion portion 23 of the scope 20 by a mounting ring 26, and a fiber holding member 29 and piezoelectric elements 28a, 28b, 28c, and 28d arranged in the actuator tube 27 (see FIG. 5 (a) and FIG. 5 (b)).
The illuminating optical fiber 11 is supported by a fiber holding member 29, and a fixed end 11a supported by the fiber holding member 29 to a tip 11c constitute a swinging portion 11b that is swingably supported. On the other hand, the detection optical fiber 12 is disposed so as to pass through the outer peripheral portion of the insertion portion 23 and extends to the distal end of the distal end portion 24. Furthermore, a detection lens (not shown) is provided at the distal end portion 12a of each fiber of the detection optical fiber 12.
 さらに、投影用レンズ25a,25bおよび検出用レンズ(図示せず)は、先端部24の最先端に配置される。投影用レンズ25a,25bは、照明用光ファイバ11の先端11cから射出されたレーザ光が、観察対象物100上に略集光するように配置されている。したがって、投影用レンズ25a,25bは、照明用光ファイバ11から射出された光を観察対象物100に向けて照射する光学系を構成する。 Furthermore, the projection lenses 25a and 25b and the detection lens (not shown) are arranged at the forefront of the tip portion 24. The projection lenses 25 a and 25 b are arranged so that the laser light emitted from the tip 11 c of the illumination optical fiber 11 is substantially condensed on the observation object 100. Therefore, the projection lenses 25a and 25b constitute an optical system that irradiates the observation object 100 with the light emitted from the illumination optical fiber 11.
 また、検出用レンズは、観察対象物100上に集光されたレーザ光が、観察対象物100により反射、散乱あるいは屈折等をした光、または、蛍光等を取り込み、検出用レンズの後に配置された検出用光ファイバ12に集光、結合させるように配置される。なお、投影用レンズ25a,25bは、二枚構成に限られず、一枚や他の複数枚のレンズにより構成しても良い。 Further, the detection lens is arranged after the detection lens by taking in the light reflected or scattered or refracted by the observation object 100 or the fluorescence or the like by the laser light condensed on the observation object 100. The optical fiber for detection 12 is arranged so as to be condensed and coupled. The projection lenses 25a and 25b are not limited to the two-lens configuration, and may be configured by one lens or a plurality of other lenses.
 図5(a)は、光走査型内視鏡装置10のアクチュエータ21の振動駆動機構および照明用光ファイバ11の揺動部11bを示す図であり、図5(b)は図5(a)のA-A断面図である。照明用光ファイバ11は角柱状の形状を有するファイバ保持部材29の中央を貫通し、これによってファイバ保持部材29により固定され保持される。ファイバ保持部材29の4つの側面は、それぞれ+Y方向および+X方向並びにこれらの反対方向に向いている。そして、ファイバ保持部材29の+Y方向および-Y方向にはY方向駆動用の一対の圧電素子28a,28cが固定され、+X方向および-X方向にはX方向駆動用の一対の圧電素子28b,28dが固定される。 FIG. 5A is a diagram showing a vibration drive mechanism of the actuator 21 and the swinging portion 11b of the illumination optical fiber 11 of the optical scanning endoscope apparatus 10, and FIG. FIG. The illumination optical fiber 11 passes through the center of the fiber holding member 29 having a prismatic shape, and is thereby fixed and held by the fiber holding member 29. The four side surfaces of the fiber holding member 29 face the + Y direction and the + X direction and the opposite directions, respectively. The pair of piezoelectric elements 28a and 28c for driving in the Y direction are fixed in the + Y direction and the −Y direction of the fiber holding member 29, and the pair of piezoelectric elements 28b for driving in the X direction are fixed in the + X direction and the −X direction. 28d is fixed.
 各圧電素子28a,28b,28c,28dには、制御装置本体30のアクチュエータドライバ38からの配線ケーブル13が接続されている。 The wiring cable 13 from the actuator driver 38 of the control device main body 30 is connected to each piezoelectric element 28a, 28b, 28c, 28d.
 ファイバ保持部材29を挟んで対向配置された圧電素子28b,28dは、互いに一方が伸びるとき他方が縮むことによって、ファイバ保持部材29に撓みを生じさせ、これを繰り返すことによりX方向の振動を発生させることができる。Y方向の振動についても同様である。例えば、X方向の圧電素子28b,28dとして、印加する電圧の極性に対して伸縮方向の同じ圧電素子を用い、常に正負が反対で大きさの等しい電圧を印加する。同様に、Y方向の圧電素子28a,28c間にも、印加する電圧の極性に対して伸縮方向の同じ圧電素子を用い、常に反対方向で大きさの等しい電圧を印加する。 The piezoelectric elements 28b and 28d arranged opposite to each other with the fiber holding member 29 interposed therebetween cause the fiber holding member 29 to bend when one of the piezoelectric elements 28b and 28d expands, and the vibration is generated in the X direction by repeating this. Can be made. The same applies to the vibration in the Y direction. For example, as the piezoelectric elements 28b and 28d in the X direction, piezoelectric elements having the same expansion / contraction direction with respect to the polarity of the voltage to be applied are used, and voltages having the same magnitude but opposite polarity are always applied. Similarly, between the piezoelectric elements 28a and 28c in the Y direction, piezoelectric elements having the same expansion / contraction direction with respect to the polarity of the applied voltage are used, and voltages having the same magnitude in the opposite direction are always applied.
 アクチュエータドライバ38は、照明用光ファイバ11の先端11cが螺旋状の軌道(渦巻き状の軌道)を描くように、圧電素子28a,28b,28c,28dを制御する。具体的には、X方向駆動用の圧電素子28b,28dとY方向駆動用の圧電素子28a,28cとに、振幅が0から最大値まで時間的に変化する交流電圧を印加する。この交流電圧は、互いに位相が90°異なり、周波数は同一の共振周波数の近傍に設定される。これによって、先端11cから射出されるレーザ光は観察対象物100の表面を、螺旋状の軌跡を描くように順次走査する。 The actuator driver 38 controls the piezoelectric elements 28a, 28b, 28c, and 28d so that the tip 11c of the illumination optical fiber 11 draws a spiral orbit (a spiral orbit). Specifically, an AC voltage whose amplitude changes from 0 to the maximum value is applied to the piezoelectric elements 28b and 28d for driving in the X direction and the piezoelectric elements 28a and 28c for driving in the Y direction. The AC voltages are 90 ° out of phase with each other, and the frequency is set in the vicinity of the same resonance frequency. Thus, the laser light emitted from the tip 11c sequentially scans the surface of the observation object 100 so as to draw a spiral locus.
 本実施形態において、制御部31、光量検知部50および光量指示部51の上述の機能は、例えば、汎用または専用のコンピュータによって実現される。具体的には、コンピュータは、中央演算処理装置(CPU)と、RAMのような主記憶装置と、ハードディスクや各種メモリのような補助記憶装置とを備え、該補助記憶装置に、上述した制御部31、光量検知部50および光量指示部51の処理をCPUに実行させるためのプログラムが記憶されている。このプログラムが補助記憶装置から主記憶装置にロードされて実行されることによって、CPUが制御部31、光量検知部50、光量指示部51の処理を実現するようになっている。 In the present embodiment, the above-described functions of the control unit 31, the light amount detection unit 50, and the light amount instruction unit 51 are realized by, for example, a general-purpose or dedicated computer. Specifically, the computer includes a central processing unit (CPU), a main storage device such as a RAM, and an auxiliary storage device such as a hard disk and various memories, and the control unit described above is included in the auxiliary storage device. 31, a program for causing the CPU to execute the processes of the light quantity detection unit 50 and the light quantity instruction unit 51 is stored. The program is loaded from the auxiliary storage device to the main storage device and executed, so that the CPU realizes the processing of the control unit 31, the light amount detection unit 50, and the light amount instruction unit 51.
 次に、このように構成された本実施形態に係る光走査型内視鏡装置10の動作について図6のフローチャートを用いて説明する。
 本実施形態に係る光走査型内視鏡装置10を用いて観察対象物100を観察するには、挿入部23の先端を観察対象物100に対向させる。これにより、照明用光ファイバ11の先端11cから観察対象物100にレーザ光が射出される。このときに、アクチュエータ21(光走査部)によって照明用光ファイバ11の先端11cが螺旋振動させられることによって、パルス光としてのレーザ光が観察対象物100上において螺旋走査される。この際、各色のレーザ33R,33G,33Bのパルス光の走査は順次発光してもよいし、同時に発光してもよい。本実施形態では、順次発光しているものとして説明する。
Next, the operation of the optical scanning endoscope apparatus 10 according to the present embodiment configured as described above will be described with reference to the flowchart of FIG.
In order to observe the observation object 100 using the optical scanning endoscope apparatus 10 according to the present embodiment, the distal end of the insertion portion 23 is opposed to the observation object 100. As a result, laser light is emitted from the tip 11 c of the illumination optical fiber 11 to the observation object 100. At this time, the tip 21 c of the illumination optical fiber 11 is spirally vibrated by the actuator 21 (light scanning unit), so that laser light as pulse light is spirally scanned on the observation object 100. At this time, the scanning of the pulsed light of the lasers 33R, 33G, and 33B of the respective colors may be emitted sequentially or simultaneously. In the present embodiment, it is assumed that light is emitted sequentially.
 照明用光ファイバ11の先端11cから観察対象物100にレーザ光が射出されると、射出されたレーザ光に比例する光量信号が光量検知部50において検知され出力される(ステップS1)。次に光量指示部51において光量信号と予め決められた閾値とが比較される(ステップS2)。ここで、光量信号の閾値は、例えば照明用光ファイバ11の先端11cの先端光量を5mW以下にしたいときには5mWに相当する信号レベルより小さい値に設定する。そして、比較した結果が制御部31に送られ、制御部31において次フレームのパルス発光数を変える信号が発光制御部32に送られる。 When laser light is emitted from the tip 11c of the illumination optical fiber 11 to the observation object 100, a light quantity signal proportional to the emitted laser light is detected and output by the light quantity detector 50 (step S1). Next, the light amount instruction unit 51 compares the light amount signal with a predetermined threshold value (step S2). Here, the threshold value of the light amount signal is set to a value smaller than the signal level corresponding to 5 mW, for example, when the tip light amount of the tip 11c of the illumination optical fiber 11 is to be 5 mW or less. Then, the comparison result is sent to the control unit 31, and a signal for changing the pulse emission number of the next frame in the control unit 31 is sent to the light emission control unit 32.
 具体的には、光量信号が閾値より小さい場合(ステップS2/Yes)、制御部31は、通常モードのパルス発光数となるようパルス発光数の制御を行う(ステップS3)。一方、光量信号が閾値以上の場合(ステップS2/No)、制御部31は、制限モードのパルス発光数となるようパルス発光数の削減を行う(ステップS4)。 Specifically, when the light amount signal is smaller than the threshold value (step S2 / Yes), the control unit 31 controls the pulse emission number so as to be the normal mode pulse emission number (step S3). On the other hand, when the light quantity signal is equal to or greater than the threshold value (step S2 / No), the control unit 31 reduces the number of pulse light emission so as to be the number of pulse light emission in the limit mode (step S4).
 制御部31の設定に基づいて、発光制御部32は、パルス光の単位時間あたりのパルス発光数を決定し、光量を制御する(ステップS5)。光量を制御して次フレームの画像を取得するためのレーザ照射を行い(ステップS6)、観察対象物100の表面において反射されたパルス光の反射光は、検出用光ファイバ12により受光され、光検出部35で電気信号に光電変換される。これにより、R、G、Bの反射光の強度を示すR、G、Bの信号値が得られ、画像生成部37においてレーザ光の照射位置と対応付けられることによって観察対象物100の画像が生成され(ステップS7)、生成された画像がディスプレイ40に表示される(ステップS8)。 Based on the setting of the control unit 31, the light emission control unit 32 determines the number of pulse light emission per unit time of the pulsed light and controls the light amount (step S5). Laser irradiation is performed to control the amount of light and acquire an image of the next frame (step S6), and the reflected light of the pulsed light reflected on the surface of the observation object 100 is received by the detection optical fiber 12 and light The detection unit 35 performs photoelectric conversion to an electrical signal. As a result, R, G, and B signal values indicating the intensity of the reflected light of R, G, and B are obtained, and the image of the observation object 100 is associated with the laser light irradiation position in the image generation unit 37. Generated (step S7), and the generated image is displayed on the display 40 (step S8).
 ここで、画像を生成する際の画素の補間方法について図7を用いて説明する。図7は、補間される1画素(図中:黒塗りの丸)あたりに対し、螺旋状の走査軌跡上に配置されている画素(図中:白抜きの丸)を用いて補間処理が行われる。ここでは、補間される画素に近接する4つの画素を用いて、各4点と補間される画素との距離に応じて重み付けを行い、補間される画素が生成される。図7において補間される画素の明るさをIとすると、
 I=V33/A+V24/B+V23/C+V32/D
にて算出される。ここでA、B、C、Dは距離に応じた係数、Vは画素の明るさとなる。
Here, a pixel interpolation method when generating an image will be described with reference to FIG. In FIG. 7, for each pixel to be interpolated (in the figure: black circles), interpolation processing is performed using pixels (in the figure: white circles) arranged on a spiral scanning locus. Is called. Here, using four pixels close to the pixel to be interpolated, weighting is performed according to the distance between each of the four points and the pixel to be interpolated, thereby generating an interpolated pixel. If the brightness of the pixel to be interpolated in FIG.
I = V33 / A + V24 / B + V23 / C + V32 / D
It is calculated by. Here, A, B, C, and D are coefficients corresponding to the distance, and V is the brightness of the pixel.
 このようにすることで、複数点から補って画像を生成することにより滑らかな画像になる。
 なお、ここでいう画素とは、光を走査して観察対象物100から反射した光を受光した画像生成に使用する情報を示し、ディスプレイ40に表示する際の1ドットの画素とは異なる。
In this way, a smooth image can be obtained by generating an image supplemented from a plurality of points.
In addition, the pixel here shows the information used for the image generation which scanned the light and received the light reflected from the observation object 100, and is different from the pixel of 1 dot at the time of displaying on the display 40.
 本実施形態によれば、光量信号が閾値以上の場合に、単位時間あたりのパルス発光数を減少させることで、光検出部35の検出感度を変更させることなく、画像データを生成することができる。つまり、1パルスあたりの射出光量を変えずにファイバ端からのレーザ光量を低下させることができ、画像の明るさが変わることなく観察することができる。結果、レーザ光の光量を制御しても得られる画像の明るさが変化しない光走査型観察装置が提供できる。 According to the present embodiment, when the light amount signal is equal to or greater than the threshold value, the image data can be generated without changing the detection sensitivity of the light detection unit 35 by reducing the number of pulse emission per unit time. . That is, the amount of laser light from the end of the fiber can be reduced without changing the amount of light emitted per pulse, and observation can be performed without changing the brightness of the image. As a result, it is possible to provide an optical scanning observation apparatus in which the brightness of an image obtained does not change even when the amount of laser light is controlled.
 なお、本実施形態においては、制限モードのパルス発光数を1/3としたが、光量を少なくする度合に応じて変化させてもよい。
 また、補間方法に関しては、補間される画素を複数使用して加算したのち使用した画素の数で平均化するなどの一般的な補間方法を用いてもよい。
In the present embodiment, the number of pulse emission in the limit mode is set to 1/3. However, the number of pulse emission may be changed according to the degree of reduction of the light amount.
As for the interpolation method, a general interpolation method may be used in which a plurality of pixels to be interpolated are added and then averaged with the number of used pixels.
 なお、本実施形態においては、光量指示部51は、光量検知部50からの信号を受けずに、例えば外部から信号入力できるようにしてもよい。例えば、観察条件やユーザの意思によってレーザ光量を調整したい場合に、手動で光量指示部51に信号を入力してもよい。 In the present embodiment, the light quantity instruction unit 51 may receive a signal from the outside without receiving a signal from the light quantity detection unit 50, for example. For example, when it is desired to adjust the laser light amount according to the observation conditions or the user's intention, a signal may be manually input to the light amount instruction unit 51.
 また、本実施形態においては、光量検知部50は、パルス光の光量に比例した光量信号を検知するとしたが、これに限らず、パルス光の光量に対応した光量信号を検知すればよい。例えば、パルス光の平均光量に比例した光量信号でもよい。
 ここでいうパルス光の光量とは、図2(a)および図2(b)に符号Aで示す1パルスあたりの光量および単位時間あたりの光量を平均化した光量である平均光量を含むものである。パルス光の平均光量は、単位時間あたりのパルス発光数が減少すると発光している時間が少なくなるため減少し、単位時間あたりのパルス発光数が増加すると発光している時間が多くなるため増加する。
In the present embodiment, the light amount detection unit 50 detects the light amount signal proportional to the light amount of the pulsed light. However, the present invention is not limited thereto, and the light amount signal corresponding to the light amount of the pulsed light may be detected. For example, a light amount signal proportional to the average light amount of pulsed light may be used.
The light amount of pulsed light here includes an average light amount that is a light amount obtained by averaging the light amount per pulse and the light amount per unit time indicated by symbol A in FIGS. 2 (a) and 2 (b). The average amount of pulsed light decreases when the number of pulse emission per unit time decreases, so that the emission time decreases, and when the number of pulse emission per unit time increases, it increases because the emission time increases. .
(第2実施形態)
 次に、本発明の第2実施形態に係る光走査型内視鏡装置60の一例である光走査型内視鏡装置60について図8を用いて説明する。
 本実施形態に係る光走査型内視鏡装置60は、光量指示部51により光量を変更する判断を、光量検知部50からの信号ではなく、得られた画像から判断する点において、第1実施形態と異なっている。したがって、本実施形態においては、得られた画像から判断する方法について主に説明し、第1実施形態と共通する構成については同一の符号を付して説明を省略する。
(Second Embodiment)
Next, an optical scanning endoscope apparatus 60 which is an example of the optical scanning endoscope apparatus 60 according to the second embodiment of the present invention will be described with reference to FIG.
The optical scanning endoscope apparatus 60 according to the present embodiment is the first embodiment in that the determination of changing the light amount by the light amount instruction unit 51 is determined from the obtained image instead of the signal from the light amount detection unit 50. It is different from the form. Therefore, in the present embodiment, a method for judging from the obtained image will be mainly described, and the same reference numerals are given to the same components as those in the first embodiment, and the description thereof will be omitted.
 本実施形態において、画像生成部37には、観察対象物100による反射光が検出用光ファイバ12により受光され光検出部35で電気信号に変換された信号が入力される。また光検出部35は、明るさ検知部としても機能し、上記電気信号に変換された信号をパルス光に基づく明るさに関する情報として光量指示部51に出力する。 In the present embodiment, the image generation unit 37 receives a signal obtained by receiving the reflected light from the observation object 100 by the detection optical fiber 12 and converting it into an electrical signal by the light detection unit 35. The light detection unit 35 also functions as a brightness detection unit, and outputs the signal converted into the electrical signal to the light amount instruction unit 51 as information on brightness based on pulsed light.
 光量指示部51は、光検出部35からの電気信号に基づいてパルス発光数を調整する。
 具体的には、光量指示部51は、光検出部35からの電気信号において、その輝度レベルが所定の閾値以下となる画素の数が全体の画素の数の半分より多いか否かでパルス発光数を変更する指示を行う。すなわち、光量指示部51は、上記閾値以下の画素数が全体の画素数の半分より小さい場合には、さらに複数フレーム連続しているか否かを確認し、連続している場合には、パルス発光数を通常モードにする指示を行う。
 一方、光量指示部51は、上記閾値以下の画素数が全体の画素数の半分以上の場合に、さらに複数フレーム連続しているか否かを確認し、連続している場合には、パルス発光数を制限モードにする指示を行う。
The light quantity instruction unit 51 adjusts the number of pulse emission based on the electrical signal from the light detection unit 35.
Specifically, the light quantity instruction unit 51 performs pulse light emission based on whether or not the number of pixels whose luminance level is equal to or lower than a predetermined threshold in the electrical signal from the light detection unit 35 is more than half of the total number of pixels. Give instructions to change the number. That is, when the number of pixels equal to or less than the threshold value is smaller than half of the total number of pixels, the light quantity instruction unit 51 further checks whether or not a plurality of frames are continuous. Instructs the number to enter normal mode.
On the other hand, when the number of pixels equal to or less than the above threshold value is half or more of the total number of pixels, the light quantity instruction unit 51 checks whether or not a plurality of frames are continued. Is instructed to enter the restricted mode.
 次に、このように構成された光走査型内視鏡装置60の動作について図9を用いて説明する。
 本実施形態に係る光走査型内視鏡装置60の動作は、パルス発光数を調整するために用いる判断方法が異なり、他のステップは第1実施形態と同一である。したがって、パルス発光数を調整するために用いる判断方法について説明する。
Next, the operation of the thus configured optical scanning endoscope apparatus 60 will be described with reference to FIG.
The operation of the optical scanning endoscope apparatus 60 according to the present embodiment is different in the determination method used for adjusting the number of pulse emission, and the other steps are the same as those in the first embodiment. Therefore, a determination method used for adjusting the number of pulse emission will be described.
 照明用光ファイバ11の先端11cから観察対象物100にレーザ光が射出されると、光検出部35において検出用光ファイバ12により反射光が検出される(ステップS11)。検出された反射光は電気信号に変換され、光量指示部51に送信される(ステップS12)。光量指示部51では、上述したように、予め決められた閾値以下の明るさの画素数が算出される(ステップS13)。そして、閾値以下の画素数が全体の画素数の半分より少ないか否かを比較する(ステップS14)。比較した結果が制御部31に送られ、制御部31において次フレームのパルス発光数を変える信号が発光制御部32に送られる。 When laser light is emitted from the tip 11c of the illumination optical fiber 11 to the observation object 100, reflected light is detected by the detection optical fiber 12 in the light detection unit 35 (step S11). The detected reflected light is converted into an electric signal and transmitted to the light quantity instruction unit 51 (step S12). As described above, the light quantity instruction unit 51 calculates the number of pixels having a brightness equal to or lower than a predetermined threshold (step S13). Then, it is compared whether or not the number of pixels below the threshold is less than half of the total number of pixels (step S14). The comparison result is sent to the control unit 31, and a signal for changing the number of pulse emission of the next frame in the control unit 31 is sent to the light emission control unit 32.
 具体的には、閾値以下の画素数が全体の画素数の半分より少ない場合(ステップS14/Yes)、光量指示部51は、複数フレーム連続してこの条件が続いているか否かを比較する(ステップS15)。比較した結果、複数フレーム連続している場合(ステップS15/Yes)に、観察対象物100との距離が近いと判断されるため、制御部31はパルス発光数を通常モードのパルス発光数となるよう制御を行う(ステップS16)。 Specifically, when the number of pixels equal to or less than the threshold is less than half of the total number of pixels (step S14 / Yes), the light quantity instruction unit 51 compares whether or not this condition continues for a plurality of frames (step S14 / Yes). Step S15). As a result of the comparison, when a plurality of frames are continuous (step S15 / Yes), it is determined that the distance from the observation object 100 is short, so the control unit 31 sets the pulse emission number to the pulse emission number in the normal mode. Control is performed (step S16).
 一方、閾値以下の画素数が半分以上の場合(ステップS14/No)、光量指示部51は、複数フレーム連続してこの条件が続いているか否かを比較する(ステップS17)。比較した結果、複数フレーム連続している場合(ステップS17/Yes)に、観察対象物100との距離が遠いと判断されるため、制御部31は制限モードのパルス発光数となるようパルス発光数の削減を行う(ステップS18)。 On the other hand, when the number of pixels equal to or less than the threshold is more than half (step S14 / No), the light quantity instruction unit 51 compares whether or not this condition continues for a plurality of frames (step S17). As a result of the comparison, when a plurality of frames are continuous (step S17 / Yes), since it is determined that the distance from the observation object 100 is long, the control unit 31 sets the pulse emission number so that the pulse emission number in the limit mode is obtained. (Step S18).
 制御部31の設定に基づいて、発光制御部32は、パルス光の単位時間あたりのパルス発光数を決定し、レーザ光量を制御する(ステップS19)。そして、レーザ光量を制御し、次フレームの画像を取得するためのレーザ照射を行い(ステップS20)、画像生成部37において観察対象物100の画像が生成され(ステップS21)、生成された画像がディスプレイ40に表示される(ステップS22)。
 上記において、複数フレーム連続していない場合((ステップS15/No)および(ステップS17/No))は、パルス発光数を変更させることなく、次フレームの画像を取得するためのレーザ照射を行い(ステップS20)、以降は同様である。
Based on the setting of the control unit 31, the light emission control unit 32 determines the number of pulse light emission per unit time of the pulsed light, and controls the laser light quantity (step S19). Then, the laser light quantity is controlled to perform laser irradiation for acquiring an image of the next frame (step S20), and an image of the observation object 100 is generated in the image generation unit 37 (step S21). It is displayed on the display 40 (step S22).
In the above, when a plurality of frames are not continuous ((Step S15 / No) and (Step S17 / No)), laser irradiation for acquiring an image of the next frame is performed without changing the pulse emission number ( Step S20) and subsequent steps are the same.
 以上から、取得した画像の明るさにおいて、輝度レベルが閾値以下の画素数が全体の画素数の半分より少ない場合、複数フレーム連続しているかを確認することで、観察対象物100が近いか否かを判断することができる。観察対象物100が近い場合に、通常モードで撮像することで、通常観察に適した画像を取得することができる。 From the above, in the brightness of the acquired image, when the number of pixels whose luminance level is less than or equal to the threshold value is less than half of the total number of pixels, whether or not the observation object 100 is close is confirmed by confirming whether a plurality of frames are continuous. Can be determined. When the observation object 100 is close, an image suitable for normal observation can be acquired by imaging in the normal mode.
 同様に、取得した画像の明るさにおいて、輝度レベルが閾値以下の画素数が全体の画素数の半分以上の場合、複数フレーム連続しているときは、観察対象物100が遠い、つまり観察対象ではない、もしくは観察に適した状態ではないと判断し、制限モードのパルス発光数で画像を取得することができる。このようにすることで、観察対象か否かを画像の特徴で判断することができる。 Similarly, in the brightness of the acquired image, when the number of pixels whose luminance level is less than or equal to the threshold value is more than half of the total number of pixels, when a plurality of frames are continuous, the observation object 100 is far away, that is, in the observation object It is determined that there is no state suitable for observation, and an image can be acquired with the number of pulse emission in the limited mode. By doing in this way, it can be judged from the feature of an image whether it is an observation object.
 さらに、得られる画像の明るさが変わることなく、レーザ光量を変化させて画像を取得することができる。特に、本第2実施形態によれば、光検出部35が第1実施形態の光量検知部50の機能を兼ねているため、装置としての構成を簡素化できる。 Furthermore, the image can be acquired by changing the laser light quantity without changing the brightness of the obtained image. In particular, according to the second embodiment, since the light detection unit 35 also functions as the light amount detection unit 50 of the first embodiment, the configuration as a device can be simplified.
 なお、本実施形態では、画像の明るさとして、輝度レベルについて閾値以下の画素数が全体の画素数の半分か否かで判断するようにしたが、これに限らず、全体の画素数の1/3や4/5など、任意の値を設定してもよい。 In this embodiment, the brightness of the image is determined based on whether or not the number of pixels below the threshold for the luminance level is half of the total number of pixels. However, the present invention is not limited to this. An arbitrary value such as / 3 or 4/5 may be set.
 また、本実施形態では、画像の明るさとして、輝度レベルについて判断するようにしたが、これに限られず、得られる画像の平均輝度を用いて判断してもよいし、画素の明るさによるヒストグラム形状から中間輝度が発生しているか否かで判断してもよい。このようにすることで、観察対象物100が近いときは画素がある程度の明るさを有するため、その明るさから距離を判断し、制御することができる。 In this embodiment, the brightness level is determined as the brightness of the image. However, the present invention is not limited to this, and the determination may be made using the average brightness of the obtained image, or a histogram based on the brightness of the pixels. The determination may be made based on whether or not intermediate luminance is generated from the shape. By doing in this way, when the observation object 100 is close, the pixel has a certain level of brightness, so that the distance can be determined and controlled from the brightness.
 また、本実施形態では、光量指示部51は、光検出部35からの信号を受けずに、例えば外部から信号入力できるようにしてもよい。例えば、観察条件によってレーザ光量を調整したい場合に、手動で光量指示部51に信号を入力することができる。 Further, in the present embodiment, the light quantity instruction unit 51 may be able to input a signal from the outside without receiving a signal from the light detection unit 35, for example. For example, when it is desired to adjust the laser light quantity according to the observation conditions, a signal can be manually input to the light quantity instruction unit 51.
 また、本実施形態では、パルス発光数の調整の判断は、次フレームの画像生成のタイミングで行うとしたが、これに限られず、複数フレーム連続した場合でもよい。 In this embodiment, the determination of the adjustment of the pulse emission number is performed at the timing of image generation of the next frame. However, the present invention is not limited to this, and a plurality of frames may be consecutive.
 本発明では、画像生成する際の補間方法は、パルス発光数に関わらず画像を生成してきたが、パルス発光数に応じて画像を構成する画素の補間方法を変更してもよい。 In the present invention, the interpolation method for generating an image has generated an image regardless of the number of pulse emission, but the interpolation method of pixels constituting the image may be changed according to the number of pulse emission.
 例えば、パルス光の発光数に応じて、画像生成する際の補間処理に使用する画素の数を変更してもよい。
 具体的には、通常モードのパルス光の発光数で画像生成する場合、ここでは、補間される画素に近接する4つの画素を用いて、各4点と補間される画素との距離に応じて重み付けを行い、補間される画素が生成される。
For example, the number of pixels used for interpolation processing when generating an image may be changed in accordance with the number of light pulses emitted.
Specifically, when an image is generated with the number of light pulses emitted in the normal mode, here, four pixels close to the pixel to be interpolated are used, depending on the distance between each of the four points and the pixel to be interpolated. Weighting is performed to generate interpolated pixels.
 一方、制限モードにおいてパルス発光数を減少させた場合に、パルス光の発光数が例えば通常モードの1/3に間引かれるため、通常モードに比べてパルス間隔が開く。つまり、画像生成に使用する画素数が間引き前に比べて少なくなる。そこで保管される画素に近接する2つの画素を用いて、補間処理を行う。補間処理に必要な2つの画素について、各2点と補間される画素との距離に応じて重み付けを行い、補間される画素が生成される。このとき、補間される画素の明るさをI’とすると、
 I’=V12/A’+V21/B’
にて算出される。ここでA’,B’は距離に応じた係数、Vは画素の明るさとなる。
 このように、補間される画素から近い画素のみを用いて画像を生成することにより、信頼度の低い画素を用いることによる画像のノイズが低減される。
On the other hand, when the number of pulse emission is reduced in the limit mode, the number of emission of the pulse light is reduced to, for example, 1/3 of the normal mode, so that the pulse interval is wider than that in the normal mode. That is, the number of pixels used for image generation is smaller than that before thinning. Therefore, interpolation processing is performed using two pixels close to the stored pixel. The two pixels necessary for the interpolation processing are weighted according to the distance between each of the two points and the pixel to be interpolated to generate a pixel to be interpolated. At this time, if the brightness of the interpolated pixel is I ′,
I ′ = V12 / A ′ + V21 / B ′
It is calculated by. Here, A ′ and B ′ are coefficients corresponding to the distance, and V is the brightness of the pixel.
Thus, by generating an image using only pixels close to the pixel to be interpolated, image noise due to using pixels with low reliability is reduced.
 さらに、例えば、パルス光の発光数に応じて、画像生成する際の補間処理に使用する範囲を変えてもよい。
 具体的には、通常モードのパルス光の発光数で画像生成する場合、ここでは、補間される画素から既定の距離X内の範囲にある画素を用いて補間処理を行う。
Furthermore, for example, the range used for the interpolation processing when generating the image may be changed according to the number of light pulses emitted.
Specifically, when an image is generated with the number of light pulses of the normal mode, interpolation processing is performed using pixels within a predetermined distance X from the pixel to be interpolated.
 一方、制限モードにおいてパルス発光数を減少させて、通常モードに比べてパルス間隔が開いているときに画像生成する場合、補間される画素から既定の距離Y内の範囲にある画素を用いて補間処理を行う。ここで、X<Yとなるように、距離XおよびYを設定し、少なくとも1つの画素が含まれるように範囲を設定する。
 このように、パルス間隔が比較的密な場合には、狭範囲の画素を用いて補間し、パルス間隔が空いている場合には広範囲の画素を用いて補間することで、保管に必要な十分な画素を確保して、滑らかな画像を生成することができる。
On the other hand, in the limited mode, when the number of pulse emission is reduced and the image is generated when the pulse interval is wider than in the normal mode, interpolation is performed using pixels within a predetermined distance Y from the pixel to be interpolated. Process. Here, the distances X and Y are set so that X <Y, and the range is set so that at least one pixel is included.
Thus, when the pulse interval is relatively dense, interpolation is performed using a narrow range of pixels, and when the pulse interval is open, interpolation is performed using a wide range of pixels, which is sufficient for storage. As a result, a smooth image can be generated.
 本発明は、上述した各実施の形態に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更や応用が可能であることは勿論である。また、本発明は、医療用の内視鏡装置のみならず、化学プラント、航空機のエンジンなど、いわゆる工業用の内視鏡装置にも適用可能である。更には、光走査型顕微鏡装置などにも適用することが可能である。なお、本発明においては、螺旋状の走査をする光走査部としては、圧電素子28a,28b,28c,28dを用いたアクチュエータ21に限られず、例えば、永久磁石と電磁コイルを備え電磁力により駆動力を発生させるアクチュエータあるいはガルバノミラーを用いることも可能である。 The present invention is not limited to the above-described embodiments, and various changes and applications can be made without departing from the spirit of the invention. The present invention is applicable not only to medical endoscope apparatuses but also to so-called industrial endoscope apparatuses such as chemical plants and aircraft engines. Furthermore, the present invention can be applied to an optical scanning microscope apparatus. In the present invention, the optical scanning unit that performs spiral scanning is not limited to the actuator 21 using the piezoelectric elements 28a, 28b, 28c, and 28d. For example, the optical scanning unit includes a permanent magnet and an electromagnetic coil and is driven by electromagnetic force. It is also possible to use an actuator or a galvanometer mirror that generates a force.
 また、上記各実施形態ではR、G、Bの3色のレーザ光を用いたが、これに限られるものではなく、3色のうち例えばBとGの2色でもよいし、R、G、B以外の色を追加した組み合わせでもよい。 In each of the above embodiments, laser beams of three colors R, G, and B are used. However, the present invention is not limited to this. For example, two colors of B and G may be used, or R, G, and B may be used. A combination of colors other than B may be used.
 また、上記各実施形態では、照明用光ファイバ11から射出した照明光を、観察対象物100の観察表面上において螺旋軌道を描くように走査するとしたが、走査軌跡はこれに限定されるものではなく、他の形状(例えば、ラスタ状またはリサージュ状)であってもよい。また照明用光ファイバ11を用いた走査に限定されるものではなく、他の方式の走査(例えば、ガルバノミラースキャナ等)であっても勿論よい。 In each of the above embodiments, the illumination light emitted from the illumination optical fiber 11 is scanned so as to draw a spiral trajectory on the observation surface of the observation object 100. However, the scanning trajectory is not limited to this. Alternatively, other shapes (for example, a raster shape or a Lissajous shape) may be used. Further, the scanning is not limited to the scanning using the illumination optical fiber 11, and other scanning methods (for example, a galvano mirror scanner) may be used.
 10,60  光走査型観察装置
 11  照明用光ファイバ
 11a  固定端
 11b  揺動部
 11c  先端
 12  検出用光ファイバ
 13  配線ケーブル
 20  スコープ
 21  アクチュエータ(光走査部)
 22  操作部
 23  挿入部
 24  先端部
 25a,25b  投影用レンズ
 26  取付環
 27  アクチュエータ管
 28a,28b,28c,28d  圧電素子
 29  ファイバ保持部材
 30  制御装置本体
 31  制御部
 32  発光制御部
 33R,33G,33B  レーザ光源(レーザ)
 34  結合器
 35  光検出部(明るさ検知部)
 36  画素補間部
 37  画像生成部
 38  アクチュエータドライバ
 40  ディスプレイ
 50  光量検知部(明るさ検知部)
 51  光量指示部
 100 観察対象物(対象物)
 
DESCRIPTION OF SYMBOLS 10,60 Optical scanning observation apparatus 11 Illumination optical fiber 11a Fixed end 11b Oscillating part 11c End 12 Detection optical fiber 13 Wiring cable 20 Scope 21 Actuator (optical scanning part)
22 Operation part 23 Insertion part 24 Tip part 25a, 25b Projection lens 26 Mounting ring 27 Actuator tube 28a, 28b, 28c, 28d Piezoelectric element 29 Fiber holding member 30 Control device main body 31 Control part 32 Light emission control part 33R, 33G, 33B Laser light source (laser)
34 coupler 35 light detector (brightness detector)
36 pixel interpolation unit 37 image generation unit 38 actuator driver 40 display 50 light quantity detection unit (brightness detection unit)
51 Light intensity instruction unit 100 Observation object (object)

Claims (10)

  1.  パルス光を対象物上で走査させる光走査部と、
     前記パルス光に基づく明るさに関する情報を検知する明るさ検知部と、
     前記光走査部により前記対象物上において前記パルス光が走査されることにより、前記対象物からの反射光を検出する光検出部と、
     前記明るさ検知部により検知された前記明るさに関する情報に基づいて前記パルス光の単位時間あたりのパルス発光数を変化させるように制御する制御部とを備える光走査型観察装置。
    An optical scanning unit that scans an object with pulsed light; and
    A brightness detector for detecting information on brightness based on the pulsed light;
    A light detection unit that detects reflected light from the object by scanning the pulsed light on the object by the light scanning unit;
    An optical scanning observation apparatus comprising: a control unit that controls to change the number of pulsed light emission per unit time of the pulsed light based on information on the brightness detected by the brightness detecting unit.
  2.  前記明るさ検知部が、前記明るさに関する情報として前記パルス光の光量に対応した光量信号を検知する光量検知部である請求項1に記載の光走査型観察装置。 2. The optical scanning observation apparatus according to claim 1, wherein the brightness detection unit is a light amount detection unit that detects a light amount signal corresponding to the light amount of the pulsed light as information on the brightness.
  3.  前記光量検知部が、前記パルス光の光量に比例した光量信号を検知する請求項2に記載の光走査型観察装置。 3. The optical scanning observation apparatus according to claim 2, wherein the light amount detection unit detects a light amount signal proportional to the light amount of the pulsed light.
  4.  前記光量検知部は、前記パルス光の平均光量に比例した光量信号を検知する請求項3に記載の光走査型観察装置。 4. The optical scanning observation apparatus according to claim 3, wherein the light amount detection unit detects a light amount signal proportional to an average light amount of the pulsed light.
  5.  前記制御部は、前記明るさ検知部により検知された前記明るさに関する情報が所定の閾値以上の場合に前記パルス光の単位時間あたりのパルス発光数を減少させるように制御する請求項1から請求項4のいずれかに記載の光走査型観察装置。 The said control part is controlled so that the pulse light emission number per unit time of the said pulsed light may be decreased when the information regarding the said brightness detected by the said brightness detection part is more than a predetermined threshold value. Item 5. The optical scanning observation device according to any one of Items 4 to 6.
  6.  前記光検出部により検出された反射光の強度に基づいて画像を生成する画像生成部を備え、
     前記明るさ検知部が前記光検出部である請求項1に記載の光走査型観察装置。
    An image generation unit that generates an image based on the intensity of the reflected light detected by the light detection unit;
    The optical scanning observation apparatus according to claim 1, wherein the brightness detection unit is the light detection unit.
  7.  前記画像生成部が、前記画像を構成する画素の補間を行う画素補間部を備える請求項6に記載の光走査型観察装置。 The optical scanning observation apparatus according to claim 6, wherein the image generation unit includes a pixel interpolation unit that performs interpolation of pixels constituting the image.
  8.  前記画素補間部が、前記制御部によって制御された前記パルス発光数に応じて、前記画像を構成する画素の補間方法を変更する請求項7に記載の光走査型観察装置。 The optical scanning observation apparatus according to claim 7, wherein the pixel interpolation unit changes a method of interpolating pixels constituting the image in accordance with the number of pulse emission controlled by the control unit.
  9.  前記制御部は、前記明るさ検知部により検知された前記明るさに関する情報が所定の閾値以下の場合に前記パルス光の単位時間あたりのパルス発光数を減少させるように制御する請求項1、請求項6から請求項8のいずれかに記載の光走査型観察装置。 The said control part is controlled so that the pulse emission number per unit time of the said pulsed light may be decreased when the information regarding the said brightness detected by the said brightness detection part is below a predetermined threshold value. Item 9. The optical scanning observation apparatus according to any one of Items 6 to 8.
  10.  光走査部が、パルス光を対象物上で走査させるステップと、
     明るさ検知部が、前記パルス光に基づく明るさに関する情報を検知するステップと、
     制御部が、前記明るさ検知部により検知された前記明るさに関する情報が所定の閾値以下である場合に、前記パルス光の単位時間あたりのパルス発光数を減少させるように制御するステップと、
     光検出部が、前記制御された前記パルス光の照射により前記対象物から発せられる光を受光するステップと、
     画像生成部が、前記光検出部により受光された光の強度に基づいて画像を生成するステップとを含む光走査型観察方法。
     
    The optical scanning unit scanning the object with pulsed light; and
    A brightness detection unit detecting information on brightness based on the pulsed light;
    A control unit, when the information on the brightness detected by the brightness detection unit is less than or equal to a predetermined threshold, controlling to reduce the number of pulse emission per unit time of the pulsed light;
    A light detection unit receiving light emitted from the object by the controlled irradiation of the pulsed light; and
    And a step of generating an image based on an intensity of light received by the light detection unit.
PCT/JP2016/063770 2016-05-09 2016-05-09 Optical scanning type observation device and optical scanning type observation method WO2017195256A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018516233A JPWO2017195256A1 (en) 2016-05-09 2016-05-09 Optical scanning observation apparatus and optical scanning observation method
PCT/JP2016/063770 WO2017195256A1 (en) 2016-05-09 2016-05-09 Optical scanning type observation device and optical scanning type observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063770 WO2017195256A1 (en) 2016-05-09 2016-05-09 Optical scanning type observation device and optical scanning type observation method

Publications (1)

Publication Number Publication Date
WO2017195256A1 true WO2017195256A1 (en) 2017-11-16

Family

ID=60266388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063770 WO2017195256A1 (en) 2016-05-09 2016-05-09 Optical scanning type observation device and optical scanning type observation method

Country Status (2)

Country Link
JP (1) JPWO2017195256A1 (en)
WO (1) WO2017195256A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263730A (en) * 2006-03-28 2007-10-11 Olympus Corp Multiple photon exciting type observation device
JP2008292722A (en) * 2007-05-24 2008-12-04 Olympus Corp Scanning type optical device
JP2015119930A (en) * 2013-12-25 2015-07-02 オリンパス株式会社 Optical scanning observation device
JP2015530616A (en) * 2012-09-07 2015-10-15 ライカ ミクロジュステムス ツェーエムエス ゲーエムベーハー Confocal laser scanning microscope with pulsed controlled laser source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263730A (en) * 2006-03-28 2007-10-11 Olympus Corp Multiple photon exciting type observation device
JP2008292722A (en) * 2007-05-24 2008-12-04 Olympus Corp Scanning type optical device
JP2015530616A (en) * 2012-09-07 2015-10-15 ライカ ミクロジュステムス ツェーエムエス ゲーエムベーハー Confocal laser scanning microscope with pulsed controlled laser source
JP2015119930A (en) * 2013-12-25 2015-07-02 オリンパス株式会社 Optical scanning observation device

Also Published As

Publication number Publication date
JPWO2017195256A1 (en) 2018-11-22

Similar Documents

Publication Publication Date Title
US9651774B2 (en) Optical scanning observation apparatus having variable sampling time, and method and computer readable storage device
US10151914B2 (en) Optical scanning observation apparatus
JP6203109B2 (en) Optical scanning image forming apparatus and optical scanning image forming method
WO2015182139A1 (en) Optical scanning-type observation device and optical scanning-type observation method
JP2012152244A (en) Optical fiber scanning device
US20160327782A1 (en) Optical scanning observation apparatus
US20170227755A1 (en) Optical scanning endoscope apparatus
JP2017009992A (en) Image projection device
WO2016116963A1 (en) Optical scanning method and optical scanning device
WO2017195256A1 (en) Optical scanning type observation device and optical scanning type observation method
US10025087B2 (en) Optical scanning observation apparatus
JP2015136580A (en) Optical scanning endoscope apparatus
JP6416277B2 (en) Optical scanning endoscope device
JP6218596B2 (en) Scanning observation device
WO2016116968A1 (en) Optical scanning device
US20170325668A1 (en) Scanning endoscope device and method for controlling the same
US20180309915A1 (en) Optical scanning observation apparatus and method for adjusting irradiation parameter of pulsed laser light
JPWO2016116962A1 (en) Optical scanning method and optical scanning device
US20170273548A1 (en) Laser scanning observation apparatus
JP6234217B2 (en) Method of operating optical scanning device
WO2017109814A1 (en) Light scanning observation device
JP6424035B2 (en) Optical scanning observation apparatus and pulsed laser beam irradiation parameter adjustment method
JP5945390B2 (en) Observation apparatus, operation method of observation apparatus, and image processing program

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018516233

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901605

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901605

Country of ref document: EP

Kind code of ref document: A1