WO2017109814A1 - Light scanning observation device - Google Patents

Light scanning observation device Download PDF

Info

Publication number
WO2017109814A1
WO2017109814A1 PCT/JP2015/006359 JP2015006359W WO2017109814A1 WO 2017109814 A1 WO2017109814 A1 WO 2017109814A1 JP 2015006359 W JP2015006359 W JP 2015006359W WO 2017109814 A1 WO2017109814 A1 WO 2017109814A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
irradiation
light emission
emission timing
light source
Prior art date
Application number
PCT/JP2015/006359
Other languages
French (fr)
Japanese (ja)
Inventor
森 健
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2015/006359 priority Critical patent/WO2017109814A1/en
Publication of WO2017109814A1 publication Critical patent/WO2017109814A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements

Definitions

  • the present invention relates to a scanning observation apparatus that performs observation by scanning light on an object and detecting light obtained by irradiation with the light.
  • the tip of the fiber is vibrated so as to draw a spiral trajectory (a spiral trajectory), and the illumination light emitted from the fiber is irradiated so as to form a spot on the observation target, and the irradiation position is scanned.
  • an optical scanning observation apparatus that detects signal light such as transmitted light, reflected light, or fluorescence obtained from an observation object and converts it into an electrical signal by a photoelectric conversion means to generate image data.
  • signal light such as transmitted light, reflected light, or fluorescence obtained from an observation object and converts it into an electrical signal by a photoelectric conversion means to generate image data.
  • the tip of the fiber is usually vibrated in the vicinity of the resonance frequency, and the amplitude is temporally changed between 0 and the maximum value by scanning one frame. Therefore, while the angular velocity of the spiral trajectory is approximately constant, the scanning speed on the observation object is slow in the vicinity of the scanning center having a small amplitude, and the distance from the scanning center increases, that is, the peripheral portion of the acquired image. Scanning speed increases. For this reason, when illumination light irradiation and sampling are performed at a fixed frequency, illumination light irradiation spots are dense in the vicinity of the scanning center and sparse in the outer periphery.
  • Patent Document 1 the detection timing of the image signal is adjusted such that unnecessary irradiation spots are thinned with light so that the illumination light irradiation density is substantially constant over the entire scanning region.
  • Patent Document 1 is not limited to observation of an endoscopic image when a monochromatic light source is used, and does not describe a case of acquiring a color image.
  • light sources of different colors such as red (R), green (G), and blue (B) are prepared, and pulsed light from these light sources is used.
  • a method of irradiating the observation target while sequentially switching and detecting the obtained reflected light as image data corresponding to each color is conceivable.
  • the adjustment of the detection timing of the image signal based on Patent Document 1 is applied to such a method, it is possible to suppress the emission of unnecessary illumination light to some extent.
  • Such a method is not a suitable method for acquiring a color image because illumination light of different colors is irradiated to the scanning region at a uniform frequency. For example, when an image is displayed with three primary colors of red, green, and blue, it is known that even if thinning blue which has little contribution to luminance is thinned, the influence on the image is small. However, the emission timing for each color is not controlled. For this reason, even if the technique of Patent Document 1 is adopted in a color scanning observation apparatus, it is not optimized for color image observation, and wasteful power is consumed.
  • an object of the present invention made by paying attention to these points is to provide a scanning observation apparatus that is suitable for displaying a color image and suppressing the power consumption by reducing the number of light emission times of the light source.
  • the invention of an optical scanning observation apparatus that achieves the above object is as follows.
  • a light source that selectively emits light of different colors;
  • a light emission timing control unit for controlling the light emission timing of the light source for each color of light emitted from the light source;
  • a fiber that guides light from the light source and emits the light from a tip portion that is swingably supported;
  • a drive unit that vibrates and drives the tip of the fiber in a spiral manner;
  • a light detection unit that detects light obtained from the object by the light irradiation and converts the light into an electrical signal;
  • a signal processing unit that generates an image signal based on an electrical signal from the light detection unit,
  • the light emission timing control unit is configured such that an irradiation density of light emitted from the fiber per unit angle in a central region including a center of a spiral locus on the object is a unit in an outer peripheral region around the central region.
  • the light emission timing of the light source is controlled so that the irradiation density of light of at least one of the plurality of different colors is different from the irradiation density of light of other colors, which is smaller than the irradiation density per angle. It is a feature.
  • the light emission timing control unit increases the irradiation density of the light emitted from the fiber per unit angle from the center of the spiral trajectory toward the outside during irradiation of the central region.
  • the light emission timing of the light source is controlled so that the irradiation density of the light emitted from the fiber per unit angle is substantially constant.
  • the light emission timing control unit controls the light source so that a light emission frequency ratio of light having a high contribution to image quality among the plurality of different colors is higher than a light emission frequency ratio of other colors. It is preferable.
  • the light emission timing control unit emits light from the light source so as to shift the irradiation position on the object of light having a high light emission frequency ratio in the circumferential direction of the spiral scan for each turn. Control timing.
  • the light emission timing control unit may emit light from the light source at a higher irradiation density than the irradiation density of the central region and the outer peripheral region with respect to the designated region set on the central region and / or the outer peripheral region. You may make it control the light emission timing of the said light source so that it may irradiate.
  • the emission density of the light emitted from the fiber per unit angle in the central region including the center of the spiral locus on the object is determined by the light emission timing control unit is the outer peripheral region around the central region.
  • the light emission timing of the light source is controlled so that the irradiation density of light of at least one of a plurality of different colors is different from the irradiation density of light of other colors. It is possible to provide an optical scanning observation apparatus that is suitable for displaying a color image and has reduced power consumption by reducing the number of light emission times of a light source.
  • FIG. 1 is a block diagram illustrating a schematic configuration of an optical scanning endoscope apparatus that is an example of an optical scanning observation apparatus according to a first embodiment.
  • FIG. FIG. 2 is an overview diagram schematically showing a scope of the optical scanning endoscope of FIG. 1. It is sectional drawing of the front-end
  • FIG. 1 is a block diagram illustrating a schematic configuration of an optical scanning endoscope apparatus which is an example of an optical scanning observation apparatus according to the first embodiment.
  • the optical scanning endoscope apparatus 10 includes a scope 20, a control device main body 30, and a display 40.
  • the control device main body 30 includes a control unit 31 that controls the entire optical scanning endoscope device 10, a light emission timing control unit 32, lasers 33R, 33G, and 33B, and a coupler 34.
  • the light emission timing control unit 32 includes three lasers 33R, 33G that emit laser beams of three primary colors of red (R), green (G), and blue (B), respectively, according to the light emission timing table 32a transmitted by the control unit 31.
  • the light emission timing of 33B is controlled.
  • the light emission timing from the start of scanning of each frame is stored for each color laser 33R, 33G, 33B, and the light emission timing control unit 32 performs the laser 33R of the color specified in the light emission timing table 32a.
  • the light emission timing table 32 a can be stored in advance as data in a memory in the control unit 31 in order to obtain an illumination light irradiation pattern determined on the object 100.
  • the control unit 31 calculates the emission timing of each of the lasers 33R, 33G, and 33B in accordance with the observation conditions of the object 100 such as the required resolution, the light reflection and absorption characteristics of the object 100, and the like. It can also be.
  • the lasers 33R, 33G, and 33B for example, a DPSS laser (semiconductor excitation solid-state laser) or a laser diode can be used.
  • the paths of the laser beams emitted from the lasers 33R, 33G, and 33B are coupled by the coupler 34 to the illumination optical fiber 11 that is the same single mode fiber.
  • the configuration of the light source of the optical scanning endoscope apparatus 10 is not limited to this, and a plurality of other light sources may be used.
  • the lasers 33R, 33G, and 33B and the coupler 34 may be housed in a separate housing from the control device main body 30 that is connected to the control device main body 30 by a signal line.
  • the illumination optical fiber 11 is connected to the distal end portion of the scope 20, and light incident on the illumination optical fiber 11 from the coupler 34 is guided to the distal end portion of the scope 20 and directed toward the object 100 as illumination light. Irradiated.
  • the actuator 21 driving unit
  • the actuator 21 is driven to vibrate, so that the illumination light emitted from the illumination optical fiber 11 scans on the observation surface of the object 100 so as to draw a spiral trajectory.
  • the actuator 21 is controlled from the control unit 31 via the actuator driver 38 of the control device main body 30.
  • Signal light such as reflected light, scattered light, and fluorescence obtained from the object 100 by irradiation of illumination light is received at the tips of a plurality of detection optical fibers 12 constituted by multimode fibers, and passes through the scope 20.
  • the light is guided to the control device main body 30.
  • the control device main body 30 further includes a photodetector 35 for processing signal light, an ADC (analog-digital converter) 36, and a signal processing unit 37.
  • the photodetector 35 includes a photodiode or the like, and converts the signal light guided by the detection optical fiber 12 into an electrical signal.
  • the output of the photodetector 35 is offset-corrected, converted to a digital signal by the ADC 36, and output to the signal processing unit 37.
  • the control unit 31 calculates information on the scanning position on the scanning path from information such as the start time, amplitude, and phase of the oscillating voltage applied by the actuator driver 38 and passes the information to the signal processing unit 37. Thereby, the output signal from the photodetector 35 is associated with the scanning position information.
  • control unit 31 may hold the scanning position information calculated in advance as a table.
  • the signal processing unit 37 synchronizes the signals of each wavelength output from the ADC 36 in a time division manner, performs necessary image processing such as interpolation processing, enhancement processing, and ⁇ processing to generate an image of the object 100, and displays 40 To display.
  • control unit 31 synchronously controls the light emission timing control unit 32, the photodetector 35, the actuator driver 38, and the signal processing unit 37.
  • FIG. 2 is an overview diagram schematically showing the scope 20.
  • the scope 20 includes an operation unit 22 and an insertion unit 23.
  • the operation unit 22 is connected to the illumination optical fiber 11, the detection optical fiber 12, and the wiring cable 13 from the control device main body 30.
  • the illumination optical fiber 11, the detection optical fiber 12, and the wiring cable 13 pass through the insertion portion 23 and are guided to the distal end portion 24 of the insertion portion 23 (portion in the broken line portion in FIG. 2).
  • FIG. 3 is an enlarged cross-sectional view showing the distal end portion 24 of the insertion portion 23 of the scope 20 of FIG.
  • the tip 24 includes the actuator 21, projection lenses 25a and 25b, the illumination optical fiber 11 passing through the center, and the detection optical fiber 12 passing through the outer periphery.
  • the actuator 21 includes an actuator tube 27 fixed inside the insertion portion 23 of the scope 20 by a mounting ring 26, a fiber holding member 29 and piezoelectric elements 28a to 28d disposed in the actuator tube 27 (FIG. 4A). And (b)).
  • the illuminating optical fiber 11 is supported by a fiber holding member 29, and a fixed end 11a supported by the fiber holding member 29 to a tip end portion 11c constitute a swinging portion 11b that is swingably supported.
  • the detection optical fiber 12 is disposed so as to pass through the outer peripheral portion of the insertion portion 23 and extends to the distal end of the distal end portion 24. Further, a detection lens (not shown) is provided at the tip of each fiber of the detection optical fiber 12.
  • the projection lenses 25a and 25b and the detection lens are arranged at the forefront of the tip 24.
  • the projection lenses 25 a and 25 b are arranged so that the laser light emitted from the distal end portion 11 c of the illumination optical fiber 11 is substantially condensed on the object 100. Therefore, the projection lenses 25 a and 25 b constitute an optical system that irradiates the light emitted from the illumination optical fiber 11 toward the object 100.
  • the detection lens captures light, such as light reflected or scattered or refracted by the object 100 or fluorescence, as signal light by the laser light collected on the object 100, and is disposed after the detection lens. It arrange
  • the projection lenses 25a and 25b are not limited to the two-lens configuration, and may be configured by one lens or a plurality of other lenses.
  • FIG. 4A is a diagram showing a vibration driving mechanism of the actuator 21 and the swinging portion 11b of the illumination optical fiber 11 of the optical scanning endoscope apparatus 10, and FIG. 4B is a diagram illustrating FIG. FIG.
  • the illumination optical fiber 11 passes through the center of the fiber holding member 29 having a prismatic shape, and is thereby fixed and held by the fiber holding member 29.
  • the four side surfaces of the fiber holding member 29 face the + Y direction and the + X direction and the opposite directions, respectively.
  • the pair of piezoelectric elements 28a and 28c for driving in the Y direction are fixed in the + Y direction and the ⁇ Y direction of the fiber holding member 29, and the pair of piezoelectric elements 28b and 28d for driving in the X direction in the + X direction and ⁇ X direction. Is fixed.
  • the wiring cable 13 from the actuator driver 38 of the control device main body 30 is connected to each of the piezoelectric elements 28a to 28d.
  • the actuator driver 38 controls the piezoelectric elements 28a to 28d so that the distal end portion 11c of the illumination optical fiber 11 has a spiral trajectory. Specifically, an AC voltage whose amplitude changes from 0 to the maximum value is applied to the X-direction driving piezoelectric elements 28b and 28d and the Y-direction driving piezoelectric elements 28a and 28c. The AC voltages are 90 ° out of phase with each other, and the frequency is set in the vicinity of the same resonance frequency. Thus, the laser light emitted from the tip portion 11c sequentially scans the surface of the object 100 so as to draw a spiral locus.
  • FIG. 5 is a diagram showing the distribution of irradiation spots for each color on the object 100.
  • This figure shows the irradiation spot in the range of 90 ° from the scanning center with the lower right vertex as the scanning center O of the spiral scanning.
  • the illumination light from the lasers 33R, 33G, and 33B is scanned over 360 ° around the scanning center O.
  • black circles indicate red illumination light irradiation spots 50R
  • white circles indicate green illumination light irradiation spots 50G
  • shaded circles indicate blue illumination light irradiation spots 50B.
  • a fan-shaped arc indicated by a solid line indicates a scanning path (the locus of the center of the imaging position when light is emitted from the illumination optical fiber regardless of whether light is emitted).
  • the irradiation region of the illumination light on the object 100 includes a circular central region 51 including the scanning center O and an outer peripheral region 52 around the central region 51 (in FIG. 5, each 1/4 of the direction 90 ° from the scanning center). (Only the part of is shown).
  • the irradiation spots 50R, 50G, and 50B of red, green, and blue by the illumination light emitted from the laser 33R, laser 33G, and laser 33B are scanned while irradiating the outer peripheral region 52.
  • Irradiation density per unit angle per rotation viewed from the center O is substantially constant regardless of the distance from the scanning center O.
  • the irradiation spots 50R, 50G, and 50B are linearly aligned in the radial direction.
  • the irradiation density per unit angle of the irradiation spots 50R, 50G, and 50B for each round of the spiral scanning is smaller than the irradiation density of the outer peripheral region 52.
  • the irradiation density per unit angle of the irradiation spots 50R, 50G, and 50B of the respective colors increases from the scanning center O toward the outside.
  • the radius of the central region 51 is about 0.1 to 0.5 when the radius of the irradiation region of the illumination light on the object 100 is 1.
  • the green irradiation spots 50G are distributed at a density that is approximately twice that of the red and blue irradiation spots 50R and 50B. That is, the laser 33G that emits green light has a light emission frequency ratio that is approximately twice that of the lasers 33R and 33B that emit red and blue light.
  • the reason why the irradiation ratio of the green laser 33G is increased is that green contributes more to luminance information than red and blue.
  • the emission order of the lasers 33R, 33G, and 33B of each color is repeated from blue (B) ⁇ green (G) ⁇ red (R) ⁇ green (G), and irradiation on the object 100 in the outer peripheral region 52 is performed.
  • the spots 50R, 50G, and 50B are arranged such that the irradiation spot 50G for green illumination light is continuously arranged in the radial direction, and the irradiation spot 50R for red illumination light and the irradiation spot 50B for blue illumination light Are set in the light emission timing table 32a so as to be alternately switched every round.
  • the resolution of the observation image of the object 100 can be further increased by doubling the irradiation density of the green irradiation spot compared to the case where the irradiation spots of red, blue, and green are evenly arranged. .
  • the light emission timing control unit 32 controls the lasers 33R, 33G, and 33B according to the light emission order and the light emission timing set in the light emission timing table 32a, so that the illumination light is emitted from the central region 51 of the object 100. Since the irradiation density per unit angle of the irradiation spots 50R, 50G, and 50B is reduced, the irradiation spots 50R, 50G, and 50B are concentrated in the vicinity of the scanning center O, and the laser 33R is not performed without unnecessary laser irradiation. , 33G, 33B can be reduced in the number of times of light emission.
  • the irradiation ratio of the green illumination light that is highly involved in the image quality is made higher than the irradiation ratio of the red and blue illumination light, that is, the emission frequency ratio of the green laser 33G is increased between the red and blue lasers 33R and 33B. Since the ratio is higher than the number of times of light emission, the number of times of irradiation of the lasers 33R, 33G, and 33B for obtaining the same resolution may be reduced as compared with the case where the three lasers 33R, 33G, and 33B emit light at an equal ratio. it can. Therefore, it is possible to reduce power consumption due to light emission of the lasers 33R, 33G, and 33B.
  • the irradiation density per unit angle of the illumination light for each round of the spiral scanning is made constant in the outer peripheral region 52, the irradiation spots 50R, 50G, and 50B are regularly arranged in the radiation direction as shown in FIG. Is possible. Therefore, operations such as interpolation processing of missing color components at each pixel position of the image generated by the signal processing unit 37 are facilitated. Further, in FIG. 5, the light is emitted at a predetermined angle for every turn, but the light may be emitted at a different angle for each turn without synchronizing the scanning of the fiber and the light emission timing.
  • FIG. 6 is a diagram showing a distribution of irradiation spots for each color on the object 100 according to the second embodiment.
  • the light emission timing table 32a is set so as to irradiate the object 100 with a pattern of irradiation spots 50R, 50G, and 50B different from the first embodiment.
  • the present embodiment has the same configuration as that of the optical scanning endoscope apparatus 10 according to the first embodiment described with reference to FIGS. 1 to 4 except that data set in the light emission timing table 32a is different. Therefore, the same components are denoted by the same reference numerals, and the description thereof is omitted.
  • green and red repeats and green and blue repeats are alternately arranged along a spiral scanning locus for each turn.
  • the repetition of green and red and the repetition of green and blue are switched at a predetermined angular position (not shown) of any one of the spiral trajectories.
  • the position of the irradiation spot 50G of the color having the highest light emission frequency ratio for each round in the outer peripheral region 52 is shifted in the circumferential direction of the scanning locus. That is, in FIG. 5, the green irradiation spot 50G is linearly aligned in the radial direction in the outer peripheral region 52, but in FIG.
  • the position of the green irradiation spot 50G is shifted in the circumferential direction for each round of spiral scanning. Therefore, the green irradiation spot 50G and the blue or red irradiation spots 50R and 50B are alternately irradiated in the radiation direction.
  • the green irradiation spot is more irradiated with illumination light than in the case of FIG. Evenly arranged within.
  • the accuracy of interpolation is increased, and the resolution can be further increased.
  • the illumination density of the illumination light can be further reduced with the same resolution, so that power consumption can be reduced. 6 also has a configuration in which light is emitted at a predetermined angle in the same manner as in FIG. 5, but light is emitted at different angles for each turn without synchronizing the fiber scanning and the light emission timing. I do not care.
  • FIG. 7 is a diagram showing the distribution of irradiation spots for each color on the object according to the third embodiment.
  • the irradiation density in the designated area 53 is increased, and the resolution of the observation image in the designated area 53 is further increased. is there.
  • the interval of the light emission timing corresponding to the light emission of each color in the designated area 53 of the data set in the light emission timing table 32a is set short.
  • Such a designated region 53 can be set for the control unit 31 by using a non-illustrated input device while the user of the optical scanning endoscope apparatus 10 is viewing an observation image displayed on the display 40. can do.
  • the control unit 31 calculates the data of the light emission timing table 32a for update, sends it to the light emission timing control unit 32, and replaces it with the light emission timing table 32a being observed. .
  • This increases the irradiation density of the irradiation spots 50R, 50G, and 50B for the designated region 53, and enables high-resolution observation.
  • the light emission timing table 32a is not obtained by calculation each time, but some patterns may be prepared in the control unit 31 in advance and selected from them. Since other configurations are the same as those of the optical scanning observation apparatus according to the first embodiment described with reference to FIGS. 1 to 4, the same components are denoted by the same reference numerals, and the description thereof is omitted.
  • the designated region 53 may be partially enlarged and displayed by the signal processing unit 37.
  • the present invention is not limited to the above embodiment, and many variations or modifications are possible.
  • the irradiation density per unit angle of the irradiation spot of the illumination light is substantially constant in the outer peripheral area of the object, but the irradiation density per unit angle of the irradiation spot in the outer peripheral area is set as the irradiation direction. It can also be changed according to the position of.
  • the light emission timing table data can be set in various ways.
  • the light emission frequency ratio is not limited to the green laser 33G. If the red image is highly involved in the image, the red laser 33R emission frequency ratio is set so that the irradiation density of the red illumination light is increased. It is also possible to increase the ratio of the number of times of light emission of other specific light sources, such as by increasing the ratio of the number of times of light emission of the light source of a specific color.
  • the light source is not limited to the three colors of red, green, and blue, and other combinations of a plurality of colors are possible.
  • the present invention can be applied not only to an optical scanning endoscope apparatus but also to an optical scanning microscope apparatus.
  • the drive unit that performs spiral scanning is not limited to an actuator that uses a piezoelectric element.
  • an actuator that includes a permanent magnet and an electromagnetic coil and generates a driving force by an electromagnetic force may be used.
  • Optical scanning endoscope apparatus 11 Illumination optical fiber 11a Fixed end 11b Oscillating part 11c Tip part 12 Detection optical fiber 13 Wiring cable 20 Scope 21 Actuator 22 Operation part 23 Insertion part 24 Tip part 25a, 25b Projection lens 26 Mounting ring 27 Actuator tube 28a to 28d Piezoelectric element 29 Fiber holding member 30 Control device main body 31 Controller 32 Light emission timing controller 32a Light emission table 33R, 33G, 33B Laser 34 Coupler 35 Photo detector 36 ADC 37 Signal processor 38 Actuator driver 40 Display 51 Central area 52 Outer peripheral area 53 Specified area

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

This light scanning observation device 10 includes: light sources 33R, 33G, 33B of different colors; a light emitting timing control unit 32; an illumination optical fiber 11 that emits light from the light sources from a distal end onto a subject 100; a drive unit 21 that helically drives the distal end of the illumination optical fiber 11; a light detector 35 that converts light obtained when the subject is irradiated with the light into an electrical signal; and a signal processing unit 37 that generates an image signal on the basis of the electrical signal. The light emitting timing control unit 32 controls the light emitting timings of the light sources 33R, 33G, 33B so that an irradiation density per unit angle in a central region of helical scan is less than an irradiation density per unit angle in a peripheral region thereof and so that an irradiation density of light of at least one color is different from the irradiation densities of light of the other colors .

Description

光走査型観察装置Optical scanning observation device
 本発明は、対象物上で光を走査させ、該光の照射により得られた光を検出して観察を行う走査型観察装置に関する。 The present invention relates to a scanning observation apparatus that performs observation by scanning light on an object and detecting light obtained by irradiation with the light.
 ファイバの先端部を、螺旋軌道(渦巻き状の軌道)を描くように振動させ、ファイバから射出される照明光を観察対象物上でスポットを形成するように照射し、その照射位置を走査させることによって、観察対象物から得られる透過光、反射光、または、蛍光等の信号光を検出し、光電変換手段により電気信号に変換して、画像データを生成する光走査型観察装置が知られている(例えば、特許文献1参照)。 The tip of the fiber is vibrated so as to draw a spiral trajectory (a spiral trajectory), and the illumination light emitted from the fiber is irradiated so as to form a spot on the observation target, and the irradiation position is scanned. There is known an optical scanning observation apparatus that detects signal light such as transmitted light, reflected light, or fluorescence obtained from an observation object and converts it into an electrical signal by a photoelectric conversion means to generate image data. (For example, refer to Patent Document 1).
 このような装置では、通常ファイバの先端部は共振周波数の近傍で振動され、1フレームの走査で振幅を0と最大値との間で時間的に変化させる。したがって、螺旋軌道の角速度はおよそ一定値となる一方、観察対象物上の走査速度は振幅の小さい走査中心の近傍では遅く、走査中心からの距離が離れるほど、すなわち取得する画像の周辺部ほど、走査速度が速くなる。このため、固定周波数で照明光の照射およびサンプリングを行うと、走査中心近傍では照明光の照射スポットが密集し、外周部ではまばらとなる。特に、走査中心の近傍の複数の照射スポットが、生成される画像の同一の表示座標に割り当てられる場合は、重複する画像データの一部を破棄するという無駄が生じていた。このため、特許文献1では、不必要な照射スポットへの光の照射を間引き、照明光の照射密度が走査領域の全域において略一定となるように、画像信号の検出タイミングを調整している。 In such an apparatus, the tip of the fiber is usually vibrated in the vicinity of the resonance frequency, and the amplitude is temporally changed between 0 and the maximum value by scanning one frame. Therefore, while the angular velocity of the spiral trajectory is approximately constant, the scanning speed on the observation object is slow in the vicinity of the scanning center having a small amplitude, and the distance from the scanning center increases, that is, the peripheral portion of the acquired image. Scanning speed increases. For this reason, when illumination light irradiation and sampling are performed at a fixed frequency, illumination light irradiation spots are dense in the vicinity of the scanning center and sparse in the outer periphery. In particular, when a plurality of irradiation spots in the vicinity of the scanning center are assigned to the same display coordinates of the generated image, there is a waste of discarding part of the overlapping image data. For this reason, in Patent Document 1, the detection timing of the image signal is adjusted such that unnecessary irradiation spots are thinned with light so that the illumination light irradiation density is substantially constant over the entire scanning region.
特開2013-121455号公報JP 2013-121455 A
 しかし、特許文献1に開示される発明では、単色光源を用いた場合の内視鏡画像の観察についてのみにとどまり、カラー画像を取得する場合については記載されていない。一方、光走査型観察装置でカラー画像を取得するためには、赤色(R)、緑色(G)、青色(B)等異なる複数の色の光源を用意し、これらの光源からのパルス光を順次切り替えながら観察対象に照射し、得られた反射光を各色に対応した画像データとして検出するという方法が考えられる。このような方法に、特許文献1に基づく画像信号の検出タイミングの調整を適用した場合、ある程度不要な照明光の発光を抑制することができる。 However, the invention disclosed in Patent Document 1 is not limited to observation of an endoscopic image when a monochromatic light source is used, and does not describe a case of acquiring a color image. On the other hand, in order to obtain a color image with an optical scanning observation device, light sources of different colors such as red (R), green (G), and blue (B) are prepared, and pulsed light from these light sources is used. A method of irradiating the observation target while sequentially switching and detecting the obtained reflected light as image data corresponding to each color is conceivable. When the adjustment of the detection timing of the image signal based on Patent Document 1 is applied to such a method, it is possible to suppress the emission of unnecessary illumination light to some extent.
 しかしながら、このような方法では、異なる各色の照明光を均一の頻度で走査領域に照射することになるため、カラー画像の取得に好適な方法となっていない。例えば、赤色,緑色,青色の3原色で画像を表示する場合、輝度に対して寄与が少ない青色を間引いても画像に対する影響が少ないことが知られているが、特許文献1の走査型観察装置では色ごとの発光タイミングの制御は行われていない。このため、カラーの走査型観察装置に、特許文献1の技術を採用しても、カラー画像の観察に最適化されたものとならず、無駄な電力が消費されることとなる。 However, such a method is not a suitable method for acquiring a color image because illumination light of different colors is irradiated to the scanning region at a uniform frequency. For example, when an image is displayed with three primary colors of red, green, and blue, it is known that even if thinning blue which has little contribution to luminance is thinned, the influence on the image is small. However, the emission timing for each color is not controlled. For this reason, even if the technique of Patent Document 1 is adopted in a color scanning observation apparatus, it is not optimized for color image observation, and wasteful power is consumed.
 したがって、これらの点に着目してなされた本発明の目的は、カラー画像の表示に適し、光源の発光回数を少なくして消費電力を抑制した走査型観察装置を提供することにある。 Therefore, an object of the present invention made by paying attention to these points is to provide a scanning observation apparatus that is suitable for displaying a color image and suppressing the power consumption by reducing the number of light emission times of the light source.
 上記目的を達成する光走査型観察装置の発明は、
 複数の異なる色の光を選択的に射出する光源と、
 前記光源から射出される光の色ごとに、前記光源の発光タイミングを制御する発光タイミング制御部と、
 前記光源からの光を導光して揺動可能に支持された先端部から対象物に射出するファイバと、
 前記ファイバの前記先端部を螺旋状に振動駆動する駆動部と、
 前記ファイバから射出された光を対象物に向けて照射するための光学系と、
 前記光の照射により前記対象物から得られた光を検出して電気信号に変換する光検出部と、
 前記光検出部からの電気信号に基づいて画像信号を生成する信号処理部と
を備え、
 前記発光タイミング制御部は、前記対象物上の螺旋状の軌跡の中心を含む中央領域における、単位角度当たりの前記ファイバから射出される光の照射密度が、前記中央領域の周りの外周領域における単位角度当たりの照射密度よりも小さく、且つ、前記複数の異なる色のうち少なくとも1色の光の照射密度は他の色の光の照射密度と異なるように、前記光源の発光タイミングを制御することを特徴とするものである。
The invention of an optical scanning observation apparatus that achieves the above object is as follows.
A light source that selectively emits light of different colors;
A light emission timing control unit for controlling the light emission timing of the light source for each color of light emitted from the light source;
A fiber that guides light from the light source and emits the light from a tip portion that is swingably supported;
A drive unit that vibrates and drives the tip of the fiber in a spiral manner;
An optical system for irradiating the light emitted from the fiber toward the object;
A light detection unit that detects light obtained from the object by the light irradiation and converts the light into an electrical signal;
A signal processing unit that generates an image signal based on an electrical signal from the light detection unit,
The light emission timing control unit is configured such that an irradiation density of light emitted from the fiber per unit angle in a central region including a center of a spiral locus on the object is a unit in an outer peripheral region around the central region. The light emission timing of the light source is controlled so that the irradiation density of light of at least one of the plurality of different colors is different from the irradiation density of light of other colors, which is smaller than the irradiation density per angle. It is a feature.
 好適には、前記発光タイミング制御部は、前記中央領域を照射中は、前記単位角度当たりの前記ファイバから射出される光の照射密度を、前記螺旋状の軌跡の中心から外側に向かって増加させ、前記外周領域を照射中は、前記単位角度当たりの前記ファイバから射出される光の照射密度を略一定とするように、前記光源の発光タイミングを制御する。 Preferably, the light emission timing control unit increases the irradiation density of the light emitted from the fiber per unit angle from the center of the spiral trajectory toward the outside during irradiation of the central region. During the irradiation of the outer peripheral region, the light emission timing of the light source is controlled so that the irradiation density of the light emitted from the fiber per unit angle is substantially constant.
 また、前記発光タイミング制御部は、前記複数の異なる色のうち画質への関与が高い色の光の発光回数比率を、他の色の発光回数比率よりも高くするように、前記光源を制御することが好ましい。 Further, the light emission timing control unit controls the light source so that a light emission frequency ratio of light having a high contribution to image quality among the plurality of different colors is higher than a light emission frequency ratio of other colors. It is preferable.
 さらに好ましくは、前記発光タイミング制御部は、前記発光回数比率の高い色の光の前記対象物上の照射位置を、周回ごとに前記螺旋状の走査の周方向にずらすように、前記光源の発光タイミングを制御する。 More preferably, the light emission timing control unit emits light from the light source so as to shift the irradiation position on the object of light having a high light emission frequency ratio in the circumferential direction of the spiral scan for each turn. Control timing.
 また、前記発光タイミング制御部は、前記中央領域および/または前記外周領域上に設定された指定領域に対して、前記光源からの光を前記中央領域および前記外周領域の照射密度より高い照射密度で照射するように、前記光源の発光タイミングを制御するようにしても良い。 In addition, the light emission timing control unit may emit light from the light source at a higher irradiation density than the irradiation density of the central region and the outer peripheral region with respect to the designated region set on the central region and / or the outer peripheral region. You may make it control the light emission timing of the said light source so that it may irradiate.
 本発明によれば、発光タイミング制御部が、対象物上の螺旋状の軌跡の中心を含む中央領域における、単位角度当たりのファイバから射出される光の照射密度が、中央領域の周りの外周領域における単位角度当たりの照射密度よりも小さく、且つ、複数の異なる色のうち少なくとも1色の光の照射密度は他の色の光の照射密度と異なるように、光源の発光タイミングを制御するので、カラー画像の表示に適し、光源の発光回数を少なくして消費電力を抑制した光走査型観察装置を提供することができる。 According to the present invention, the emission density of the light emitted from the fiber per unit angle in the central region including the center of the spiral locus on the object is determined by the light emission timing control unit is the outer peripheral region around the central region. The light emission timing of the light source is controlled so that the irradiation density of light of at least one of a plurality of different colors is different from the irradiation density of light of other colors. It is possible to provide an optical scanning observation apparatus that is suitable for displaying a color image and has reduced power consumption by reducing the number of light emission times of a light source.
第1実施の形態に係る光走査型観察装置の一例である光走査型内視鏡装置の概略構成を示すブロック図である。1 is a block diagram illustrating a schematic configuration of an optical scanning endoscope apparatus that is an example of an optical scanning observation apparatus according to a first embodiment. FIG. 図1の光走査型内視鏡のスコープを概略的に示す概観図である。FIG. 2 is an overview diagram schematically showing a scope of the optical scanning endoscope of FIG. 1. 図2のスコープの先端部の断面図である。It is sectional drawing of the front-end | tip part of the scope of FIG. 光走査型内視鏡装置のアクチュエータおよび照明用光ファイバの揺動部を示す図であり、図4(a)は側面図、図4(b)は図4(a)のA-A断面図である。It is a figure which shows the actuator of the optical scanning endoscope apparatus and the rocking | fluctuation part of the optical fiber for illumination, FIG. 4 (a) is a side view, FIG.4 (b) is AA sectional drawing of Fig.4 (a). It is. 対象物上の色ごとの照射スポットの分布を示す図である。It is a figure which shows distribution of the irradiation spot for every color on a target object. 第2実施の形態に係る対象物上の色ごとの照射スポットの分布を示す図である。It is a figure which shows distribution of the irradiation spot for every color on the target object which concerns on 2nd Embodiment. 第3実施の形態に係る対象物上の色ごとの照射スポットの分布を示す図である。It is a figure which shows distribution of the irradiation spot for every color on the target object which concerns on 3rd Embodiment.
 以下、本発明の実施の形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1実施の形態)
 図1は、第1実施の形態に係る光走査型観察装置の一例である光走査型内視鏡装置の概略構成を示すブロック図である。光走査型内視鏡装置10は、スコープ20と、制御装置本体30とディスプレイ40とによって構成されている。
(First embodiment)
FIG. 1 is a block diagram illustrating a schematic configuration of an optical scanning endoscope apparatus which is an example of an optical scanning observation apparatus according to the first embodiment. The optical scanning endoscope apparatus 10 includes a scope 20, a control device main body 30, and a display 40.
 制御装置本体30は、光走査型内視鏡装置10全体を制御する制御部31、発光タイミング制御部32、レーザ33R、33G、33B、および結合器34を含んで構成される。発光タイミング制御部32は、制御部31によって送信される発光タイミングテーブル32aに従って、それぞれ赤色(R)、緑色(G)および青色(B)の三原色のレーザ光を射出する3つのレーザ33R、33G、33Bの発光タイミングを制御する。発光タイミングテーブル32aには、各色のレーザ33R,33G,33Bごとに、各フレームの走査開始からの発光タイミングが格納され、発光タイミング制御部32は、発光タイミングテーブル32aで指定された色のレーザ33R,33G,33Bを順次指定されたタイミングで発光させる。なお、発光タイミングテーブル32aは、対象物100上で定められた照明光の照射パターンを得るために、予め制御部31内のメモリにデータとして格納しておくことができる。しかし、必要とされる解像度などの対象物100の観察条件や対象物100の光の反射、吸収の特性等に応じて、制御部31が各レーザ33R,33G,33Bの発光タイミングを算出するようにすることもできる。 The control device main body 30 includes a control unit 31 that controls the entire optical scanning endoscope device 10, a light emission timing control unit 32, lasers 33R, 33G, and 33B, and a coupler 34. The light emission timing control unit 32 includes three lasers 33R, 33G that emit laser beams of three primary colors of red (R), green (G), and blue (B), respectively, according to the light emission timing table 32a transmitted by the control unit 31. The light emission timing of 33B is controlled. In the light emission timing table 32a, the light emission timing from the start of scanning of each frame is stored for each color laser 33R, 33G, 33B, and the light emission timing control unit 32 performs the laser 33R of the color specified in the light emission timing table 32a. , 33G, 33B are made to emit light at the designated timing in sequence. The light emission timing table 32 a can be stored in advance as data in a memory in the control unit 31 in order to obtain an illumination light irradiation pattern determined on the object 100. However, the control unit 31 calculates the emission timing of each of the lasers 33R, 33G, and 33B in accordance with the observation conditions of the object 100 such as the required resolution, the light reflection and absorption characteristics of the object 100, and the like. It can also be.
 レーザ33R、33G、33Bとしては、例えば、DPSSレーザ(半導体励起固体レーザ)やレーザダイオードを使用することができる。レーザ33R、33G、33Bから出射されるレーザ光の経路は、結合器34により同一のシングルモードファイバである照明用光ファイバ11に結合される。もちろん、光走査型内視鏡装置10の光源の構成はこれに限られず、他の複数の光源を用いるものであっても良い。また、レーザ33R、33G、33Bおよび結合器34は、制御装置本体30と信号線で結ばれた制御装置本体30とは別の筐体に収納されていても良い。 As the lasers 33R, 33G, and 33B, for example, a DPSS laser (semiconductor excitation solid-state laser) or a laser diode can be used. The paths of the laser beams emitted from the lasers 33R, 33G, and 33B are coupled by the coupler 34 to the illumination optical fiber 11 that is the same single mode fiber. Of course, the configuration of the light source of the optical scanning endoscope apparatus 10 is not limited to this, and a plurality of other light sources may be used. The lasers 33R, 33G, and 33B and the coupler 34 may be housed in a separate housing from the control device main body 30 that is connected to the control device main body 30 by a signal line.
 照明用光ファイバ11は、スコープ20の先端部まで繋がっており、結合器34から照明用光ファイバ11に入射した光は、スコープ20の先端部まで導光され照明光として対象物100に向けて照射される。その際、アクチュエータ21(駆動部)が振動駆動されることによって、照明用光ファイバ11を出射した照明光は、対象物100の観察表面上を螺旋軌道を描くように走査する。このアクチュエータ21は、制御装置本体30のアクチュエータドライバ38を介して制御部31から制御されている。照明光の照射により対象物100から得られる反射光、散乱光、蛍光などの信号光は、マルチモードファイバにより構成される複数の検出用光ファイバ12の先端で受光して、スコープ20内を通り制御装置本体30まで導光される。 The illumination optical fiber 11 is connected to the distal end portion of the scope 20, and light incident on the illumination optical fiber 11 from the coupler 34 is guided to the distal end portion of the scope 20 and directed toward the object 100 as illumination light. Irradiated. At that time, the actuator 21 (driving unit) is driven to vibrate, so that the illumination light emitted from the illumination optical fiber 11 scans on the observation surface of the object 100 so as to draw a spiral trajectory. The actuator 21 is controlled from the control unit 31 via the actuator driver 38 of the control device main body 30. Signal light such as reflected light, scattered light, and fluorescence obtained from the object 100 by irradiation of illumination light is received at the tips of a plurality of detection optical fibers 12 constituted by multimode fibers, and passes through the scope 20. The light is guided to the control device main body 30.
 制御装置本体30は、信号光を処理するための光検出器35、ADC(アナログ-デジタル変換器)36および信号処理部37をさらに備える。光検出器35は、フォトダイオード等を含んで構成され、検出用光ファイバ12により導光されてきた信号光を電気信号に変換する。この光検出器35の出力は、オフセット補正をした後、ADC36でデジタル信号に変換され、信号処理部37に出力される。制御部31は、アクチュエータドライバ38により印加した振動電圧の起動時刻、振幅および位相などの情報から走査経路上の走査位置の情報を算出し、信号処理部37に渡す。これにより、光検出器35からの出力信号と、走査位置情報とが関連付けられる。なお、制御部31は、事前に算出された走査位置情報を予めテーブルとして保持していても良い。信号処理部37は、ADC36から時分割で出力される各波長の信号を同時化し、補間処理、強調処理、γ処理等の必要な画像処理を行って対象物100の画像を生成し、ディスプレイ40に表示する。 The control device main body 30 further includes a photodetector 35 for processing signal light, an ADC (analog-digital converter) 36, and a signal processing unit 37. The photodetector 35 includes a photodiode or the like, and converts the signal light guided by the detection optical fiber 12 into an electrical signal. The output of the photodetector 35 is offset-corrected, converted to a digital signal by the ADC 36, and output to the signal processing unit 37. The control unit 31 calculates information on the scanning position on the scanning path from information such as the start time, amplitude, and phase of the oscillating voltage applied by the actuator driver 38 and passes the information to the signal processing unit 37. Thereby, the output signal from the photodetector 35 is associated with the scanning position information. Note that the control unit 31 may hold the scanning position information calculated in advance as a table. The signal processing unit 37 synchronizes the signals of each wavelength output from the ADC 36 in a time division manner, performs necessary image processing such as interpolation processing, enhancement processing, and γ processing to generate an image of the object 100, and displays 40 To display.
 上記の各処理において、制御部31は、発光タイミング制御部32、光検出器35、アクチュエータドライバ38、および、信号処理部37を同期制御する。 In each process described above, the control unit 31 synchronously controls the light emission timing control unit 32, the photodetector 35, the actuator driver 38, and the signal processing unit 37.
 図2は、スコープ20を概略的に示す概観図である。スコープ20は、操作部22および挿入部23を備える。操作部22には、制御装置本体30からの照明用光ファイバ11、検出用光ファイバ12、および、配線ケーブル13が、それぞれ接続されている。これら照明用光ファイバ11、検出用光ファイバ12および配線ケーブル13は挿入部23内部を通り、挿入部23の先端部24(図2における破線部内の部分)まで導かれている。 FIG. 2 is an overview diagram schematically showing the scope 20. The scope 20 includes an operation unit 22 and an insertion unit 23. The operation unit 22 is connected to the illumination optical fiber 11, the detection optical fiber 12, and the wiring cable 13 from the control device main body 30. The illumination optical fiber 11, the detection optical fiber 12, and the wiring cable 13 pass through the insertion portion 23 and are guided to the distal end portion 24 of the insertion portion 23 (portion in the broken line portion in FIG. 2).
 図3は、図2のスコープ20の挿入部23の先端部24を拡大して示す断面図である。先端部24は、アクチュエータ21、投影用レンズ25a,25b、中心部を通る照明用光ファイバ11および外周部を通る検出用光ファイバ12を含んで構成される。 FIG. 3 is an enlarged cross-sectional view showing the distal end portion 24 of the insertion portion 23 of the scope 20 of FIG. The tip 24 includes the actuator 21, projection lenses 25a and 25b, the illumination optical fiber 11 passing through the center, and the detection optical fiber 12 passing through the outer periphery.
 アクチュエータ21は、取付環26によりスコープ20の挿入部23の内部に固定されたアクチュエータ管27、並びに、アクチュエータ管27内に配置されるファイバ保持部材29および圧電素子28a~28d(図4(a)および(b)参照)を含んで構成される。照明用光ファイバ11は、ファイバ保持部材29で支持されるとともにファイバ保持部材29で支持された固定端11aから先端部11cまでが、揺動可能に支持された揺動部11bとなっている。一方、検出用光ファイバ12は挿入部23の外周部を通るように配置され、先端部24の先端まで延びている。さらに、検出用光ファイバ12の各ファイバの先端部には図示しない検出用レンズを備える。 The actuator 21 includes an actuator tube 27 fixed inside the insertion portion 23 of the scope 20 by a mounting ring 26, a fiber holding member 29 and piezoelectric elements 28a to 28d disposed in the actuator tube 27 (FIG. 4A). And (b)). The illuminating optical fiber 11 is supported by a fiber holding member 29, and a fixed end 11a supported by the fiber holding member 29 to a tip end portion 11c constitute a swinging portion 11b that is swingably supported. On the other hand, the detection optical fiber 12 is disposed so as to pass through the outer peripheral portion of the insertion portion 23 and extends to the distal end of the distal end portion 24. Further, a detection lens (not shown) is provided at the tip of each fiber of the detection optical fiber 12.
 さらに、投影用レンズ25a、25bおよび検出用レンズ(図示せず)は、先端部24の最先端に配置される。投影用レンズ25a、25bは、照明用光ファイバ11の先端部11cから射出されたレーザ光が、対象物100上に略集光するように配置されている。したがって、投影用レンズ25a,25bは、照明用光ファイバ11から射出された光を対象物100に向けて照射する光学系を構成する。また、検出用レンズは、対象物100上に集光されたレーザ光が、対象物100により反射、散乱、屈折等をした光、又は、蛍光等を信号光として取り込み、検出用レンズの後に配置された検出用光ファイバ12に集光、結合させるように配置される。なお、投影用レンズ25a,25bは、二枚構成に限られず、一枚や他の複数枚のレンズにより構成しても良い。 Furthermore, the projection lenses 25a and 25b and the detection lens (not shown) are arranged at the forefront of the tip 24. The projection lenses 25 a and 25 b are arranged so that the laser light emitted from the distal end portion 11 c of the illumination optical fiber 11 is substantially condensed on the object 100. Therefore, the projection lenses 25 a and 25 b constitute an optical system that irradiates the light emitted from the illumination optical fiber 11 toward the object 100. In addition, the detection lens captures light, such as light reflected or scattered or refracted by the object 100 or fluorescence, as signal light by the laser light collected on the object 100, and is disposed after the detection lens. It arrange | positions so that it may condense and couple | bond with the optical fiber 12 for detection. The projection lenses 25a and 25b are not limited to the two-lens configuration, and may be configured by one lens or a plurality of other lenses.
 図4(a)は、光走査型内視鏡装置10のアクチュエータ21の振動駆動機構および照明用光ファイバ11の揺動部11bを示す図であり、図4(b)は図4(a)のA-A断面図である。照明用光ファイバ11は角柱状の形状を有するファイバ保持部材29の中央を貫通し、これによってファイバ保持部材29によって固定され保持される。ファイバ保持部材29の4つの側面は、それぞれ+Y方向および+X方向並びにこれらの反対方向に向いている。そして、ファイバ保持部材29の+Y方向および-Y方向にはY方向駆動用の一対の圧電素子28a、28cが固定され+X方向および-X方向にはX方向駆動用の一対の圧電素子28b、28dが固定される。 4A is a diagram showing a vibration driving mechanism of the actuator 21 and the swinging portion 11b of the illumination optical fiber 11 of the optical scanning endoscope apparatus 10, and FIG. 4B is a diagram illustrating FIG. FIG. The illumination optical fiber 11 passes through the center of the fiber holding member 29 having a prismatic shape, and is thereby fixed and held by the fiber holding member 29. The four side surfaces of the fiber holding member 29 face the + Y direction and the + X direction and the opposite directions, respectively. The pair of piezoelectric elements 28a and 28c for driving in the Y direction are fixed in the + Y direction and the −Y direction of the fiber holding member 29, and the pair of piezoelectric elements 28b and 28d for driving in the X direction in the + X direction and −X direction. Is fixed.
 各圧電素子28a~28dは、制御装置本体30のアクチュエータドライバ38からの配線ケーブル13が接続される。 The wiring cable 13 from the actuator driver 38 of the control device main body 30 is connected to each of the piezoelectric elements 28a to 28d.
 ファイバ保持部材29を挟んで対向配置された圧電素子28b、28dが、互いに一方が伸びるとき他方が縮むことによって、ファイバ保持部材29に撓みを生じさせ、これを繰り返すことによりX方向の振動を生ぜしめることができる。Y方向の振動についても同様である。例えば、X方向の圧電素子28bおよび28dとして、印加する電圧の極性に対して伸縮方向の同じ圧電素子を用い、常に正負が反対で大きさの等しい電圧を印加する。同様に、Y方向の圧電素子28aと28cとの間にも、印加する電圧の極性に対して伸縮方向の同じ圧電素子を用い、常に反対方向で大きさの等しい電圧を印加する。 When the piezoelectric elements 28b and 28d arranged opposite to each other with the fiber holding member 29 interposed therebetween contract one another, the other contracts, causing the fiber holding member 29 to bend, and repeating this generates vibration in the X direction. It can be tightened. The same applies to the vibration in the Y direction. For example, as the piezoelectric elements 28b and 28d in the X direction, piezoelectric elements having the same expansion / contraction direction with respect to the polarity of the voltage to be applied are used, and voltages having the same magnitude but opposite polarity are always applied. Similarly, between the piezoelectric elements 28a and 28c in the Y direction, piezoelectric elements having the same expansion / contraction direction with respect to the polarity of the applied voltage are used, and voltages having the same magnitude in the opposite direction are always applied.
 アクチュエータドライバ38は、照明用光ファイバ11の先端部11cが螺旋状の軌道を描くように、圧電素子28a~28dを制御する。具体的には、X方向駆動用の圧電素子28b、28dとY方向駆動用の圧電素子28a、28cとに、振幅が0から最大値まで時間的に変化する交流電圧を印加する。この交流電圧は、互いに位相が90°異なり、周波数は同一の共振周波数の近傍に設定される。これによって、先端部11cから出射されるレーザ光は対象物100の表面を、螺旋状の軌跡を描くように順次走査する。 The actuator driver 38 controls the piezoelectric elements 28a to 28d so that the distal end portion 11c of the illumination optical fiber 11 has a spiral trajectory. Specifically, an AC voltage whose amplitude changes from 0 to the maximum value is applied to the X-direction driving piezoelectric elements 28b and 28d and the Y-direction driving piezoelectric elements 28a and 28c. The AC voltages are 90 ° out of phase with each other, and the frequency is set in the vicinity of the same resonance frequency. Thus, the laser light emitted from the tip portion 11c sequentially scans the surface of the object 100 so as to draw a spiral locus.
 次に、本実施の形態における、各色のレーザ33R,33G,33Bの発光タイミングについて説明する。図5は、対象物100上の色ごとの照射スポットの分布を示す図である。この図は、右下の頂点を螺旋走査の走査中心Oとし、この走査中心から90°の範囲の照射スポットを示している。実際には、走査中心Oの周り360°に渡り、レーザ33R,33G,33Bからの照明光が走査される。図5において、黒塗りの円は赤色の照明光の照射スポット50R、白抜きの円は緑色の照明光の照射スポット50G、網掛けした円は青色の照明光の照射スポット50Bを示している。また、実線で示した扇形の弧は走査の経路(発光しているか否かに関わらず、照明用光ファイバから光が射出された場合の結像位置の中心の軌跡)を示している。 Next, the light emission timings of the lasers 33R, 33G, and 33B of the respective colors in the present embodiment will be described. FIG. 5 is a diagram showing the distribution of irradiation spots for each color on the object 100. This figure shows the irradiation spot in the range of 90 ° from the scanning center with the lower right vertex as the scanning center O of the spiral scanning. Actually, the illumination light from the lasers 33R, 33G, and 33B is scanned over 360 ° around the scanning center O. In FIG. 5, black circles indicate red illumination light irradiation spots 50R, white circles indicate green illumination light irradiation spots 50G, and shaded circles indicate blue illumination light irradiation spots 50B. A fan-shaped arc indicated by a solid line indicates a scanning path (the locus of the center of the imaging position when light is emitted from the illumination optical fiber regardless of whether light is emitted).
 対象物100上の照明光の照射領域は、走査中心Oを含む円形の中央領域51と、中央領域51の周りの外周領域52(図5では、それぞれ走査中心から90°の方向の1/4の部分のみを示す)とに区分される。発光タイミング制御部32の制御により、レーザ33R,レーザ33Gおよびレーザ33Bから射出される照明光による、赤色、緑色および青色の各照射スポット50R,50Gおよび50Bは、外周領域52を照射中は、走査中心Oから見た周回ごとの単位角度当たりの照射密度が、走査中心Oからの距離に関わらず略一定となっている。特に、図5においては、照射スポット50R,50G,50Bが放射方向に直線的に整列している。一方、中央領域51の照射中は、螺旋走査の周回ごとの照射スポット50R,50G,50Bの単位角度当たりの照射密度が、外周領域52の照射密度より小さくなっている。さらに、中央領域51の内部では、各色の照射スポット50R,50G,50Bの単位角度当たりの照射密度は、走査中心Oから外側に向かって増加している。好ましくは、中央領域51の半径は、対象物100上の照明光の照射領域の半径を1とするとき、0.1~0.5程度とする。 The irradiation region of the illumination light on the object 100 includes a circular central region 51 including the scanning center O and an outer peripheral region 52 around the central region 51 (in FIG. 5, each 1/4 of the direction 90 ° from the scanning center). (Only the part of is shown). Under the control of the light emission timing control unit 32, the irradiation spots 50R, 50G, and 50B of red, green, and blue by the illumination light emitted from the laser 33R, laser 33G, and laser 33B are scanned while irradiating the outer peripheral region 52. Irradiation density per unit angle per rotation viewed from the center O is substantially constant regardless of the distance from the scanning center O. In particular, in FIG. 5, the irradiation spots 50R, 50G, and 50B are linearly aligned in the radial direction. On the other hand, during irradiation of the central region 51, the irradiation density per unit angle of the irradiation spots 50R, 50G, and 50B for each round of the spiral scanning is smaller than the irradiation density of the outer peripheral region 52. Further, inside the central region 51, the irradiation density per unit angle of the irradiation spots 50R, 50G, and 50B of the respective colors increases from the scanning center O toward the outside. Preferably, the radius of the central region 51 is about 0.1 to 0.5 when the radius of the irradiation region of the illumination light on the object 100 is 1.
 また、照射スポット50R,50G,50Bのうち、緑色の照射スポット50Gは、赤色および青色の照射スポット50R,50Bに比べて、約2倍の密度で分布している。すなわち、緑色の光を射出するレーザ33Gは、赤色及び青色の光を射出するレーザ33R,33Bの約2倍の発光回数比率となっている。ここで、緑色のレーザ33Gの照射比率を多くしているのは、緑色は赤色および青色に比べ、輝度情報への寄与が大きいからである。各色のレーザ33R,33G,33Bの発光順序は、青色(B)→緑色(G)→赤色(R)→緑色(G)の繰り返しとなっており、外周領域52における対象物100上での照射スポット50R,50G,50Bは、図5に示すように緑色の照明光の照射スポット50Gは放射方向に連続的に配置され、赤色の照明光の照射スポット50Rと青色の照明光の照射スポット50Bとは、周回ごとに交互に入れ替わるように、発光タイミングテーブル32aに設定される。 Of the irradiation spots 50R, 50G, and 50B, the green irradiation spots 50G are distributed at a density that is approximately twice that of the red and blue irradiation spots 50R and 50B. That is, the laser 33G that emits green light has a light emission frequency ratio that is approximately twice that of the lasers 33R and 33B that emit red and blue light. Here, the reason why the irradiation ratio of the green laser 33G is increased is that green contributes more to luminance information than red and blue. The emission order of the lasers 33R, 33G, and 33B of each color is repeated from blue (B) → green (G) → red (R) → green (G), and irradiation on the object 100 in the outer peripheral region 52 is performed. As shown in FIG. 5, the spots 50R, 50G, and 50B are arranged such that the irradiation spot 50G for green illumination light is continuously arranged in the radial direction, and the irradiation spot 50R for red illumination light and the irradiation spot 50B for blue illumination light Are set in the light emission timing table 32a so as to be alternately switched every round.
 よく知られているように、人間の眼は青色や赤色と比べて緑色の感度が高いので、画質への関与が高い。したがって、赤色、青色、緑色の照射スポットを均等に配置した場合に比べて、緑色の照射スポットの照射密度を2倍とすることによって、対象物100の観察画像の解像度をより高くすることができる。 As is well known, human eyes are more involved in image quality because they are more sensitive to green compared to blue and red. Therefore, the resolution of the observation image of the object 100 can be further increased by doubling the irradiation density of the green irradiation spot compared to the case where the irradiation spots of red, blue, and green are evenly arranged. .
 以上のように、発光タイミング制御部32が、発光タイミングテーブル32aに設定された発光順序および発光タイミングで、レーザ33R,33G,33Bを制御することによって、対象物100の中央領域51では照明光の照射スポット50R,50G,50Bの単位角度当たりの照射密度を小さくしたので、走査中心Oの近傍で照射スポットが50R,50G,50Bが集中して、無駄なレーザ照射が行われることなく、レーザ33R,33G,33Bの発光回数を少なくすることができる。さらに、画質への関与が高い緑色の照明光の照射比率を、赤色および青色の照明光の照射比率よりも高め、すなわち、緑色のレーザ33Gの発光回数比率を赤色および青色のレーザ33R,33Bの発光回数比率よりも高めたので、3つのレーザ33R,33G,33Bを均等の比率で発光させる場合と比較して、同じ解像度を得るためのレーザ33R,33G,33Bの照射回数を少なくすることができる。したがって、レーザ33R,33G,33Bの発光による消費電力を低減することが可能になる。 As described above, the light emission timing control unit 32 controls the lasers 33R, 33G, and 33B according to the light emission order and the light emission timing set in the light emission timing table 32a, so that the illumination light is emitted from the central region 51 of the object 100. Since the irradiation density per unit angle of the irradiation spots 50R, 50G, and 50B is reduced, the irradiation spots 50R, 50G, and 50B are concentrated in the vicinity of the scanning center O, and the laser 33R is not performed without unnecessary laser irradiation. , 33G, 33B can be reduced in the number of times of light emission. Further, the irradiation ratio of the green illumination light that is highly involved in the image quality is made higher than the irradiation ratio of the red and blue illumination light, that is, the emission frequency ratio of the green laser 33G is increased between the red and blue lasers 33R and 33B. Since the ratio is higher than the number of times of light emission, the number of times of irradiation of the lasers 33R, 33G, and 33B for obtaining the same resolution may be reduced as compared with the case where the three lasers 33R, 33G, and 33B emit light at an equal ratio. it can. Therefore, it is possible to reduce power consumption due to light emission of the lasers 33R, 33G, and 33B.
 さらに、外周領域52では、螺旋走査の周回ごとの照明光の単位角度当たりの照射密度を一定としたので、照射スポット50R,50G,50Bを、図5に示すように放射方向に規則正しく配置させることが可能になる。したがって、信号処理部37で生成される画像の各画素位置での欠けている色成分の補間処理等の演算が容易となる。
 また図5ではどの周回も決められた角度で発光する構成になっているが、ファイバの走査と発光タイミングとを同期せずに周回ごとに異なる角度で発光しても構わない。
Further, since the irradiation density per unit angle of the illumination light for each round of the spiral scanning is made constant in the outer peripheral region 52, the irradiation spots 50R, 50G, and 50B are regularly arranged in the radiation direction as shown in FIG. Is possible. Therefore, operations such as interpolation processing of missing color components at each pixel position of the image generated by the signal processing unit 37 are facilitated.
Further, in FIG. 5, the light is emitted at a predetermined angle for every turn, but the light may be emitted at a different angle for each turn without synchronizing the scanning of the fiber and the light emission timing.
(第2実施の形態)
 図6は、第2実施の形態に係る対象物100上の色ごとの照射スポットの分布を示す図である。第2実施の形態では、第1実施の形態とは異なる照射スポット50R,50G,50Bのパターンで、対象物100を照射するように発光タイミングテーブル32aを設定する。本実施の形態では、発光タイミングテーブル32aに設定されるデータが異なることを除き、図1から図4を用いて説明した第1実施の形態に係る光走査型内視鏡装置10と同様に構成されるので、同一構成要素には同一参照符号を付すものとして、説明を省略する。
(Second Embodiment)
FIG. 6 is a diagram showing a distribution of irradiation spots for each color on the object 100 according to the second embodiment. In the second embodiment, the light emission timing table 32a is set so as to irradiate the object 100 with a pattern of irradiation spots 50R, 50G, and 50B different from the first embodiment. The present embodiment has the same configuration as that of the optical scanning endoscope apparatus 10 according to the first embodiment described with reference to FIGS. 1 to 4 except that data set in the light emission timing table 32a is different. Therefore, the same components are denoted by the same reference numerals, and the description thereof is omitted.
 図6に示す照射スポット50R,50G,50Bのパターンによれば、周回ごとに螺旋状の走査軌跡に沿って、緑色と赤色の繰り返しと、緑色と青色の繰り返しとが、交互に配列される。なお、螺旋軌道のいずれかの図示しない所定の角度位置で、緑色と赤色の繰り返しと、緑色と青色との繰り返しが切り替わる。また、図5とは異なり、外周領域52において周回ごとに発光回数比率の最も高い色の照射スポット50Gの位置が、走査軌跡の周方向にずれている。すなわち、図5では緑色の照射スポット50Gは、外周領域52において放射方向に直線的に整列していたが、図6では螺旋走査の周回ごとに緑色の照射スポット50Gの位置が、周方向にずれているので、放射方向には緑色の照射スポット50Gと、青または赤色の照射スポット50R,50Bとが、交互に照射されている。 According to the pattern of irradiation spots 50R, 50G, and 50B shown in FIG. 6, green and red repeats and green and blue repeats are alternately arranged along a spiral scanning locus for each turn. In addition, the repetition of green and red and the repetition of green and blue are switched at a predetermined angular position (not shown) of any one of the spiral trajectories. Further, unlike FIG. 5, the position of the irradiation spot 50G of the color having the highest light emission frequency ratio for each round in the outer peripheral region 52 is shifted in the circumferential direction of the scanning locus. That is, in FIG. 5, the green irradiation spot 50G is linearly aligned in the radial direction in the outer peripheral region 52, but in FIG. 6, the position of the green irradiation spot 50G is shifted in the circumferential direction for each round of spiral scanning. Therefore, the green irradiation spot 50G and the blue or red irradiation spots 50R and 50B are alternately irradiated in the radiation direction.
 上記のように、対象物100上での照射スポット50R,50G,50Bを、図6のようなパターンで配置することによって、緑色の照射スポットが図5の場合よりも、より照明光の照射領域内で均等に配置される。これにより、赤色や青色の照射スポット50R,50Bの位置における緑色成分の画素信号を補間処理する場合において、隣接する4つの緑色の照射スポット50Gから得られる信号を用いることができる。したがって、図5の第1実施の形態の場合と比較して補間の精度が高まり、解像度をより高めることができる。また、同じ解像度でより照明光の照射密度を下げることが可能になるので、消費電力を低減することが可能になる。
 なお、図6も、図5と同様にどの周回も決められた角度で発光する構成になっているが、ファイバの走査と発光タイミングとを同期せずに周回ごとに異なる角度で発光しても構わない。
As described above, by arranging the irradiation spots 50R, 50G, and 50B on the object 100 in a pattern as shown in FIG. 6, the green irradiation spot is more irradiated with illumination light than in the case of FIG. Evenly arranged within. As a result, when interpolating the green component pixel signals at the positions of the red and blue irradiation spots 50R and 50B, signals obtained from the four adjacent green irradiation spots 50G can be used. Therefore, compared with the case of the first embodiment of FIG. 5, the accuracy of interpolation is increased, and the resolution can be further increased. In addition, the illumination density of the illumination light can be further reduced with the same resolution, so that power consumption can be reduced.
6 also has a configuration in which light is emitted at a predetermined angle in the same manner as in FIG. 5, but light is emitted at different angles for each turn without synchronizing the fiber scanning and the light emission timing. I do not care.
(第3実施の形態)
 図7は、第3実施の形態に係る対象物上の色ごとの照射スポットの分布を示す図である。
第3実施の形態では、第2実施の形態の照射スポット50R,50G,50Bの照射パターンにおいて、指定領域53における照射密度を増加させ、当該指定領域53における観察画像の解像度をより高くするものである。本実施の形態では、発光タイミングテーブル32aに設定されるデータの、指定領域53内での各色の発光に対応する発光タイミングの間隔が短く設定される。このような指定領域53は、光走査型内視鏡装置10の使用者が、ディスプレイ40に表示される観察画像を見ながら、図示しない入力装置を用いて制御部31に対して設定できるようにすることができる。
(Third embodiment)
FIG. 7 is a diagram showing the distribution of irradiation spots for each color on the object according to the third embodiment.
In the third embodiment, in the irradiation pattern of the irradiation spots 50R, 50G, and 50B of the second embodiment, the irradiation density in the designated area 53 is increased, and the resolution of the observation image in the designated area 53 is further increased. is there. In the present embodiment, the interval of the light emission timing corresponding to the light emission of each color in the designated area 53 of the data set in the light emission timing table 32a is set short. Such a designated region 53 can be set for the control unit 31 by using a non-illustrated input device while the user of the optical scanning endoscope apparatus 10 is viewing an observation image displayed on the display 40. can do.
 制御部31は、使用者から指定領域53の入力を受けると、更新用の発光タイミングテーブル32aのデータを算出して、これを発光タイミング制御部32に送り、観察中の発光タイミングテーブル32aと置き換える。これによって、指定領域53について照射スポット50R,50G,50Bの照射密度を増加させ、高解像度の観察が可能になる。なお、発光タイミングテーブル32aは、その都度演算により求めるのではなく、いくつかのパターンを制御部31内に予め用意しておき、それらの中から選択するようにしても良い。その他の構成は、図1から図4を用いて説明した第1実施の形態に係る光走査型観察装置と同様なので、同一構成要素には同一参照符号を付すものとして、説明を省略する。 When receiving the input of the designated area 53 from the user, the control unit 31 calculates the data of the light emission timing table 32a for update, sends it to the light emission timing control unit 32, and replaces it with the light emission timing table 32a being observed. . This increases the irradiation density of the irradiation spots 50R, 50G, and 50B for the designated region 53, and enables high-resolution observation. Note that the light emission timing table 32a is not obtained by calculation each time, but some patterns may be prepared in the control unit 31 in advance and selected from them. Since other configurations are the same as those of the optical scanning observation apparatus according to the first embodiment described with reference to FIGS. 1 to 4, the same components are denoted by the same reference numerals, and the description thereof is omitted.
 このようにすることによって、光走査型内視鏡装置10の操作中に指定領域53の解像度を高めることができるので、特に観察したい部分の詳細を確認したり、保存したりすることが可能になる。また、信号処理部37により指定領域53を部分的に拡大表示させるようにしても良い。また、常に全画面の解像度を高くする必要が無く、必要に応じて必要な領域のみ照明光の照射密度を高くするので、常に高解像度の観察を行う場合に比べて、消費電力を抑制することができる。 By doing so, it is possible to increase the resolution of the designated area 53 during operation of the optical scanning endoscope apparatus 10, so that it is possible to confirm or save the details of the part that is particularly desired to be observed. Become. Further, the designated region 53 may be partially enlarged and displayed by the signal processing unit 37. In addition, it is not necessary to always increase the resolution of the entire screen, and the illumination density of the illumination light is increased only in necessary areas as necessary, so that power consumption is suppressed compared to the case of always performing high-resolution observation. Can do.
 なお、本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形または変更が可能である。たとえば、上記各実施の形態では、対象物の外周領域においては照明光の照射スポットの単位角度当たりの照射密度を略一定としたが、外周領域における照射スポットの単位角度当たりの照射密度を照射方向の位置に応じて変えることもできる。 It should be noted that the present invention is not limited to the above embodiment, and many variations or modifications are possible. For example, in each of the above embodiments, the irradiation density per unit angle of the irradiation spot of the illumination light is substantially constant in the outer peripheral area of the object, but the irradiation density per unit angle of the irradiation spot in the outer peripheral area is set as the irradiation direction. It can also be changed according to the position of.
 また、発光タイミングテーブルのデータは種々に設定することが可能である。例えば、発光回数比率が高いのは、緑色のレーザ33Gに限られず、赤色による画像への関与が高い場合は、赤色の照明光の照射密度が高くなるように、赤色のレーザ33Rの発光回数比率を高くするなど、他の特定の光源の発光回数比率を高くし、あるいは、特定の色の光源の発光回数比率を減少させることも可能である。さらに、光源としては赤色、緑色、青色の3色に限られず、他の複数の色の組み合わせが可能である。 In addition, the light emission timing table data can be set in various ways. For example, the light emission frequency ratio is not limited to the green laser 33G. If the red image is highly involved in the image, the red laser 33R emission frequency ratio is set so that the irradiation density of the red illumination light is increased. It is also possible to increase the ratio of the number of times of light emission of other specific light sources, such as by increasing the ratio of the number of times of light emission of the light source of a specific color. Furthermore, the light source is not limited to the three colors of red, green, and blue, and other combinations of a plurality of colors are possible.
 また、本発明は光走査型内視鏡装置のみならず、光走査型顕微鏡装置などにも適用することが可能である。また、螺旋状の走査をする駆動部としては、圧電素子を用いたアクチュエータに限られず、例えば、永久磁石と電磁コイルを備え電磁力により駆動力を発生させるアクチュエータを用いることも可能である。 Further, the present invention can be applied not only to an optical scanning endoscope apparatus but also to an optical scanning microscope apparatus. In addition, the drive unit that performs spiral scanning is not limited to an actuator that uses a piezoelectric element. For example, an actuator that includes a permanent magnet and an electromagnetic coil and generates a driving force by an electromagnetic force may be used.
 10  光走査型内視鏡装置
 11  照明用光ファイバ
 11a  固定端
 11b  揺動部
 11c  先端部
 12  検出用光ファイバ
 13  配線ケーブル
 20  スコープ
 21  アクチュエータ
 22  操作部
 23  挿入部
 24  先端部
 25a、25b  投影用レンズ
 26  取付環
 27  アクチュエータ管
 28a~28d  圧電素子
 29  ファイバ保持部材
 30  制御装置本体
 31  制御部
 32  発光タイミング制御部
 32a  発光テーブル
 33R、33G、33B  レーザ
 34  結合器
 35  光検出器
 36  ADC
 37  信号処理部
 38  アクチュエータドライバ
 40  ディスプレイ
 51  中央領域
 52  外周領域
 53  指定領域
DESCRIPTION OF SYMBOLS 10 Optical scanning endoscope apparatus 11 Illumination optical fiber 11a Fixed end 11b Oscillating part 11c Tip part 12 Detection optical fiber 13 Wiring cable 20 Scope 21 Actuator 22 Operation part 23 Insertion part 24 Tip part 25a, 25b Projection lens 26 Mounting ring 27 Actuator tube 28a to 28d Piezoelectric element 29 Fiber holding member 30 Control device main body 31 Controller 32 Light emission timing controller 32a Light emission table 33R, 33G, 33B Laser 34 Coupler 35 Photo detector 36 ADC
37 Signal processor 38 Actuator driver 40 Display 51 Central area 52 Outer peripheral area 53 Specified area

Claims (5)

  1.  複数の異なる色の光を選択的に射出する光源と、
     前記光源から射出される光の色ごとに、前記光源の発光タイミングを制御する発光タイミング制御部と、
     前記光源からの光を導光して揺動可能に支持された先端部から対象物に射出するファイバと、
     前記ファイバの前記先端部を螺旋状に振動駆動する駆動部と、
     前記ファイバから射出された光を対象物に向けて照射するための光学系と、
     前記光の照射により前記対象物から得られた光を検出して電気信号に変換する光検出部と、
     前記光検出部からの電気信号に基づいて画像信号を生成する信号処理部と
    を備え、
     前記発光タイミング制御部は、前記対象物上の螺旋状の軌跡の中心を含む中央領域における、単位角度当たりの前記ファイバから射出される光の照射密度が、前記中央領域の周りの外周領域における単位角度当たりの照射密度よりも小さく、且つ、前記複数の異なる色のうち少なくとも1色の光の照射密度は他の色の光の照射密度と異なるように、前記光源の発光タイミングを制御することを特徴とする光走査型観察装置。
    A light source that selectively emits light of different colors;
    A light emission timing control unit for controlling the light emission timing of the light source for each color of light emitted from the light source;
    A fiber that guides light from the light source and emits the light from a tip portion that is swingably supported;
    A drive unit that vibrates and drives the tip of the fiber in a spiral manner;
    An optical system for irradiating the light emitted from the fiber toward the object;
    A light detection unit that detects light obtained from the object by the light irradiation and converts the light into an electrical signal;
    A signal processing unit that generates an image signal based on an electrical signal from the light detection unit,
    The light emission timing control unit is configured such that an irradiation density of light emitted from the fiber per unit angle in a central region including a center of a spiral locus on the object is a unit in an outer peripheral region around the central region. The light emission timing of the light source is controlled so that the irradiation density of light of at least one of the plurality of different colors is different from the irradiation density of light of other colors, which is smaller than the irradiation density per angle. An optical scanning type observation device.
  2.  前記発光タイミング制御部は、前記中央領域を照射中は、前記単位角度当たりの前記ファイバから射出される光の照射密度を、前記螺旋状の軌跡の中心から外側に向かって増加させ、前記外周領域を照射中は、前記単位角度当たりの前記ファイバから射出される光の照射密度を略一定とするように、前記光源の発光タイミングを制御することを特徴とする請求項1に記載の光走査型観察装置。 The light emission timing control unit increases the irradiation density of light emitted from the fiber per unit angle toward the outside from the center of the spiral trajectory while irradiating the central region. 2. The optical scanning type according to claim 1, wherein the light emission timing of the light source is controlled so that an irradiation density of light emitted from the fiber per unit angle is substantially constant during irradiation of the light source. Observation device.
  3.  前記発光タイミング制御部は、前記複数の異なる色のうち画質への関与が高い色の光の発光回数比率を、他の色の発光回数比率よりも高くするように、前記光源を制御することを特徴とする請求項1または2に記載の光走査型観察装置。 The light emission timing control unit controls the light source so that a light emission number ratio of light having a high contribution to image quality among the plurality of different colors is higher than a light emission number ratio of other colors. The optical scanning observation apparatus according to claim 1, wherein the optical scanning observation apparatus is characterized.
  4.  前記発光タイミング制御部は、前記発光回数比率の高い色の光の前記対象物上の照射位置を、周回ごとに前記螺旋状の走査の周方向にずらすように、前記光源の発光タイミングを制御することを特徴とする請求項1から3の何れか一項に記載の光走査型観察装置。 The light emission timing control unit controls the light emission timing of the light source so as to shift the irradiation position on the object of light having a color with a high light emission frequency ratio in the circumferential direction of the spiral scan for each turn. The optical scanning observation apparatus according to any one of claims 1 to 3, wherein
  5.  前記発光タイミング制御部は、前記中央領域および/または前記外周領域上に設定された所定の領域に対して、前記光源からの光を前記中央領域および前記外周領域の照射密度より高い照射密度で照射するように、前記光源の発光タイミングを制御する、請求項1~4の何れか一項に記載の光走査型観察装置。 
     
    The light emission timing control unit irradiates light from the light source at a higher irradiation density than the irradiation density of the central region and the outer peripheral region with respect to the predetermined region set on the central region and / or the outer peripheral region. The optical scanning observation apparatus according to any one of claims 1 to 4, wherein the light emission timing of the light source is controlled as described above.
PCT/JP2015/006359 2015-12-21 2015-12-21 Light scanning observation device WO2017109814A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/006359 WO2017109814A1 (en) 2015-12-21 2015-12-21 Light scanning observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/006359 WO2017109814A1 (en) 2015-12-21 2015-12-21 Light scanning observation device

Publications (1)

Publication Number Publication Date
WO2017109814A1 true WO2017109814A1 (en) 2017-06-29

Family

ID=59089235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006359 WO2017109814A1 (en) 2015-12-21 2015-12-21 Light scanning observation device

Country Status (1)

Country Link
WO (1) WO2017109814A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112051580A (en) * 2019-06-07 2020-12-08 莱卡地球系统公开股份有限公司 Scanning surveying device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050664A (en) * 2009-09-04 2011-03-17 Hoya Corp Optical scan type endoscope apparatus
WO2012132754A1 (en) * 2011-03-31 2012-10-04 オリンパスメディカルシステムズ株式会社 Scanning endoscope
JP2014061227A (en) * 2012-09-24 2014-04-10 Hoya Corp Scanning type confocal endoscope system
JP2014061226A (en) * 2012-09-24 2014-04-10 Hoya Corp Scanning type confocal endoscope system
JP2015119930A (en) * 2013-12-25 2015-07-02 オリンパス株式会社 Optical scanning observation device
JP2015136580A (en) * 2014-01-24 2015-07-30 オリンパス株式会社 Optical scanning endoscope apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050664A (en) * 2009-09-04 2011-03-17 Hoya Corp Optical scan type endoscope apparatus
WO2012132754A1 (en) * 2011-03-31 2012-10-04 オリンパスメディカルシステムズ株式会社 Scanning endoscope
JP2014061227A (en) * 2012-09-24 2014-04-10 Hoya Corp Scanning type confocal endoscope system
JP2014061226A (en) * 2012-09-24 2014-04-10 Hoya Corp Scanning type confocal endoscope system
JP2015119930A (en) * 2013-12-25 2015-07-02 オリンパス株式会社 Optical scanning observation device
JP2015136580A (en) * 2014-01-24 2015-07-30 オリンパス株式会社 Optical scanning endoscope apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112051580A (en) * 2019-06-07 2020-12-08 莱卡地球系统公开股份有限公司 Scanning surveying device

Similar Documents

Publication Publication Date Title
JP6270830B2 (en) Optical scanning unit, optical scanning observation device, and optical fiber scanning device
US10151914B2 (en) Optical scanning observation apparatus
JP6203109B2 (en) Optical scanning image forming apparatus and optical scanning image forming method
JP6284433B2 (en) Optical scanning observation apparatus and optical scanning observation method
WO2015182137A1 (en) Optical scanning-type endoscope device
JP6071591B2 (en) Optical scanning endoscope
WO2015111412A1 (en) Optical scanning-type observing device
US20170318181A1 (en) Optical scanning method and optical scanning apparatus
JP6416277B2 (en) Optical scanning endoscope device
JP6218546B2 (en) Optical scanning method, optical scanning device, and optical scanning observation device
JP6180335B2 (en) Optical scanning endoscope device
JP6382004B2 (en) Optical scanning observation device
WO2017109814A1 (en) Light scanning observation device
US10025087B2 (en) Optical scanning observation apparatus
US20170322413A1 (en) Optical scanning method and optical scanning apparatus
JP6218596B2 (en) Scanning observation device
WO2016116968A1 (en) Optical scanning device
JP6234217B2 (en) Method of operating optical scanning device
WO2017029691A1 (en) Optical scanning method, optical scanning device, and optical scanning observation device
WO2017109815A1 (en) Optical-scanning-type observation device and irradiation parameter adjustment method for pulsed laser light
JP6424035B2 (en) Optical scanning observation apparatus and pulsed laser beam irradiation parameter adjustment method
JP2015123086A (en) Scanning type illumination device and scanning type observation device
WO2018189836A1 (en) Scanning observation apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP