WO2017072838A1 - Optical-scanning-type observation device and method for controlling optical-scanning-type observation device - Google Patents

Optical-scanning-type observation device and method for controlling optical-scanning-type observation device Download PDF

Info

Publication number
WO2017072838A1
WO2017072838A1 PCT/JP2015/080147 JP2015080147W WO2017072838A1 WO 2017072838 A1 WO2017072838 A1 WO 2017072838A1 JP 2015080147 W JP2015080147 W JP 2015080147W WO 2017072838 A1 WO2017072838 A1 WO 2017072838A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
multiplication factor
signal
image data
white balance
Prior art date
Application number
PCT/JP2015/080147
Other languages
French (fr)
Japanese (ja)
Inventor
啓一朗 中島
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2015/080147 priority Critical patent/WO2017072838A1/en
Priority to JP2017547216A priority patent/JPWO2017072838A1/en
Publication of WO2017072838A1 publication Critical patent/WO2017072838A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances

Definitions

  • the present invention relates to an optical scanning observation apparatus and a method for controlling the optical scanning observation apparatus.
  • the white balance of the image changes when the APD multiplication factor changes.
  • APD avalanche photodiode
  • the multiplication factor of APD has wavelength dependence, and the relationship between the reverse bias voltage and the multiplication factor varies depending on the wavelength of incident light. Therefore, when the reverse bias voltage changes, a difference in the change amount of the multiplication factor occurs between the R, G, and B signal lights, and the white balance of the image is not maintained before and after the change of the reverse bias voltage.
  • the ratio of the magnitudes of the output signals of R, G, and B is not 120: 100: 78, but another ratio, for example, 125: 100: 75.
  • the present invention has been made in view of the above-described circumstances, and provides an optical scanning observation apparatus and an optical scanning observation apparatus control method capable of adjusting the brightness of an image while suppressing a change in white balance.
  • the purpose is to provide.
  • an optical scanning unit that irradiates a subject while scanning light, and a signal light generated in the subject by the light irradiation are received, and the received signal light is photoelectrically converted into an electron.
  • a photodetection unit that outputs the generated electrons as an electrical signal, the photodetection unit capable of multiplying the electrons generated by the photoelectric conversion and changing the multiplication factor of the electrons;
  • An image forming unit that forms image data based on the electrical signal output from the light detection unit, and setting of a multiplication factor of the light detection unit based on the brightness of the image data formed by the image forming unit
  • a control unit that controls the light detection unit so as to match the multiplication factor with the determined setting value, the control unit based on the multiplication factor of the light detection unit. Adjust the white balance An optical scanning observation apparatus provided with the white balance adjustment unit.
  • the control unit adjusts the brightness of the image data formed next by the image forming unit by changing the multiplication factor of the electric signal by the light detection unit based on the brightness of the image data.
  • the white balance of the image data formed by the image forming unit is controlled by the white balance adjusting unit based on the multiplication factor of the light detecting unit.
  • the change of the white balance of the image data accompanying the change of the multiplication factor of the light detection unit at the time of adjusting the brightness of the image data can be suppressed.
  • the white balance adjustment unit sets white balance based on the image data acquired when the multiplication factor of the light detection unit is equal to or greater than a predetermined threshold, and the image formation The unit may form the image data having a white balance set by the white balance adjustment unit.
  • the wavelength dependence of the multiplication factor of the light detection unit is small in a range where the multiplication factor is relatively large.
  • the white balance adjustment unit may permit the control unit to change the multiplication factor of the light detection unit only within a range of a predetermined threshold value or more.
  • the wavelength dependence of the multiplication factor of the light detection unit is small in a range where the multiplication factor is relatively large.
  • the light detection unit generates a red signal, a green signal, and a blue signal based on intensities of red, green, and blue components included in the signal light, respectively, as the electrical signal, and the red signal
  • a storage unit that stores adjustment coefficients for the green signal and the blue signal, and the image forming unit is based on the red signal, the green signal, and the blue signal adjusted using the adjustment coefficient stored in the storage unit.
  • the image data may be formed. In this way, image data with adjusted white balance can be formed by the image forming unit.
  • the storage unit stores a table in which a set value of a multiplication factor of the light detection unit and the adjustment coefficient are associated with each other, and the white balance adjustment unit includes the control unit in the table.
  • the adjustment coefficient associated with the set value of the multiplication factor determined by the selection is selected, and the image forming unit forms the image data using the adjustment coefficient selected by the white balance adjustment unit. Good. In this way, image data having a predetermined white balance can be formed regardless of the multiplication factor of the light detection unit.
  • a second aspect of the present invention is a light detection unit that photoelectrically converts signal light from a subject to generate electrons, and outputs the generated electrons as an electrical signal, wherein the electrons generated by the photoelectric conversion are
  • An optical scanning type comprising a light detection unit capable of multiplying and capable of changing the multiplication factor of the electrons, and forming image data of the subject based on the magnitude of the electric signal output from the light detection unit
  • a method for controlling an observation apparatus the method for controlling an optical scanning observation apparatus that adjusts a white balance of the image data based on a multiplication factor of the light detection unit.
  • FIG. 1 is an overall configuration diagram of an optical scanning endoscope according to a first embodiment of the present invention. It is a flowchart which shows operation
  • the optical scanning observation apparatus 100 is an endoscope apparatus, and is connected to an elongated insertion part 20 that can be inserted into a body and a proximal end of the insertion part 20 as shown in FIG.
  • the control device main body 30, and a user interface (UI) 40 and a display 50 connected to the control device main body 30 are provided.
  • the optical scanning observation apparatus 100 also includes a light source unit 1 that outputs laser light, an optical scanning unit 2 that spirally scans the laser light on the subject A, and light detection that detects reflected light of the laser light from the subject A.
  • the light source unit 1 includes three laser light sources 8R, 8G, and 8B that respectively generate red (R), green (G), and blue (B) laser light, and the three laser light sources 8R, 8G, and 8B. And a coupler 9 that coaxially combines the output R, G, and B laser beams.
  • the three laser light sources 8R, 8G, and 8B are controlled by the control unit 6 so as to repeatedly output R, G, and B pulsed laser beams in order. As a result, R, G, and B laser beams are sequentially output from the coupler 9, and R, G, and B reflected light are sequentially generated from the subject A.
  • the optical scanning unit 2 includes an illumination optical fiber 10 disposed along the longitudinal direction in the insertion unit 20, and an actuator 11 that vibrates the tip of the optical fiber 10 in a direction intersecting the longitudinal direction of the optical fiber 10. And an actuator driver 12 for driving the actuator 11.
  • the proximal end of the optical fiber 10 is connected to the coupler 9.
  • the laser light incident on the proximal end of the optical fiber 10 from the coupler 9 is guided from the proximal end to the distal end inside the optical fiber 10 and emitted from the distal end of the optical fiber 10 toward the front end of the insertion portion 20. It has become so.
  • the actuator 11 is, for example, a piezoelectric actuator that includes a piezoelectric element, and is attached to the tip of the optical fiber 10.
  • the actuator driver 12 generates a drive signal for spirally vibrating the tip of the optical fiber 10 along a spiral trajectory in a substantially plane that intersects the longitudinal direction of the optical fiber 10 according to a control signal received from the control unit 6. Then, the drive signal is supplied to the actuator 11. Thereby, the tip of the optical fiber 10 spirally vibrates, and the laser light emitted from the tip of the optical fiber 10 is spirally scanned along a spiral scanning locus.
  • the light detection unit 3 is an avalanche photodiode (APD; hereinafter also referred to as “APD3”), and detects reflected light received by the light receiving optical fiber 13.
  • the optical fiber 13 is disposed in the insertion portion 20 along the longitudinal direction.
  • the distal end of the optical fiber 13 is disposed on the distal end surface of the insertion portion 20, and the proximal end of the optical fiber 13 is connected to the APD 3.
  • the reflected light that has entered the tip of the optical fiber 13 from the subject A is guided from the tip to the base end of the optical fiber 13 and enters the APD 3.
  • FIG. 1 only one optical fiber 13 is shown in FIG. 1, a plurality of optical fibers 13 may be provided.
  • the APD 3 photoelectrically converts the reflected light incident on the APD 3 to generate an amount of electric charge corresponding to the incident light amount of the reflected light, and outputs an electric signal having a magnitude corresponding to the generated electric charge amount.
  • the APD 3 has a function of multiplying the electric signal by multiplying the charge generated by the photoelectric conversion by applying a reverse bias voltage. As the reverse bias voltage increases, the multiplication factor of the electric signal also increases.
  • APD3 can change a multiplication factor in steps, for example between 1 time and 100 times. The multiplication factor of the APD 3 is controlled by the control unit 6 as will be described later.
  • An amplifier 15 that amplifies the electrical signal output from the APD 3 and an analog-digital converter (ADC) 16 are provided at the subsequent stage of the APDP 3.
  • the electric signal output from the APD 3 is amplified by the amplifier 15 and then input to the ADC 16.
  • the ADC 16 samples the electrical signal from the amplifier 15 and performs AD conversion to obtain a digital value corresponding to the magnitude of the electrical signal.
  • the obtained digital value is transmitted to the image forming unit 4.
  • the APD 3 since the reflected light of R, G, and B is received by the optical fiber 13 in order, the APD 3 generates and outputs the R signal, the G signal, and the B signal in order.
  • the R signal, G signal, and B signal are electrical signals based on the reflected light of R, G, and B, respectively. Therefore, the R signal value, the G signal value, and the B signal value are sequentially obtained as digital values by the ADC 16.
  • the image forming unit 4 uses a set of R, G, and B signal values arranged in the time axis direction received from the ADC 16 as pixel values of one pixel, and the irradiation position of the laser beam received from the control unit 6 By associating with (described later), raw image data is formed each time the laser beam completes scanning the entire predetermined scanning locus.
  • the image forming unit 4 performs WB adjustment processing on the raw image data. Specifically, the image forming unit 4 acquires adjustment coefficients Cr, Cg, and Cb (described later) from the storage unit 7, and adjusts the R coefficient value, the G signal value, and the B signal value of each pixel of the raw image data. Output image data is generated by multiplying Cr, Cg, and Cb, respectively. The image forming unit 4 may perform arbitrary image processing on the raw image data in addition to the WB adjustment processing. The output image data is transmitted to the display 50 and displayed on the display 50.
  • adjustment coefficients Cr, Cg, and Cb described later
  • the WB setting unit 5 receives raw image data from the image forming unit 4 when receiving a WB setting execution signal (described later) from the control unit 6, and sets white balance based on the received raw image data. WB setting operation is executed. Specifically, the WB setting unit 5 calculates a ratio Vr: Vg: Vb of the R signal value Vr, the G signal value Vg, and the B signal value Vb of the raw image data.
  • the signal values Vr, Vg, and Vb are, for example, average values of the R signal value, the G signal value, and the B signal value of all the pixels of the raw image data or the central pixel.
  • the WB setting unit 5 stores the calculated values of the adjustment coefficients Cr, Cg, and Cb in the storage unit 7 via the control unit 6.
  • the control unit 6 controls the laser light sources 8R, 8G, and 8B so that the laser light sources 8R, 8G, and 8B sequentially output the laser light at regular time intervals.
  • the control unit 6 controls the ADC 16 so that the ADC 16 samples an electrical signal in synchronization with the output of the laser light from the laser light sources 8R, 8G, and 8B.
  • the control unit 6 calculates the irradiation position of the laser light from the control signal, and transmits information on the calculated irradiation position to the image forming unit 4.
  • control unit 6 receives the raw image data from the image forming unit 4 and measures the brightness of the raw image data every time the raw image data is formed by the image forming unit 4.
  • the brightness of the raw image data is, for example, the average value of the pixel values of all the pixels or the central pixel.
  • the maximum value may be calculated instead of the average value.
  • an average value or a maximum value may be calculated using only the G signal value among the R, G, and B signal values.
  • the G signal value is closer to the brightness felt by human eyes. Therefore, the brightness of the raw image data can be more appropriately evaluated by using only the G pixel value.
  • the control unit 6 determines the set value of the multiplication factor of the APD 3 based on the measured brightness. Specifically, when the brightness of the raw image data is within a predetermined appropriate range, the control unit 6 maintains the current setting value of the multiplication factor, and the brightness of the raw image data exceeds the predetermined range. Is set to a value smaller than the current setting value, and when the brightness of the raw image data is smaller than a predetermined range, the setting value of the APD 3 multiplication factor is changed. Change to a value larger than the current setting. The control unit 6 controls the APD 3 so that the multiplication factor is set to the determined setting value.
  • the control unit 6 is connected to the UI 40.
  • the UI 40 has a white balance (WB) setting button (not shown), and transmits a WB setting command signal to the control unit 6 when the WB setting button is pressed.
  • WB white balance
  • the control unit 6 receives a WB setting command signal from the UI 40, the control unit 6 transmits the WB setting execution signal to the WB setting unit 5 to cause the WB setting unit 5 to execute the above-described WB setting operation.
  • control unit 6 includes a white balance (WB) adjustment unit 61 that permits or rejects the WB setting operation by the WB setting unit 5 based on the multiplication factor of the current APD 3 when a WB setting command signal is received from the UI 40. ing.
  • the WB adjustment unit 61 permits the WB setting operation by the WB setting unit 5 only when the multiplication factor of the current APD 3 is equal to or greater than a predetermined threshold T (for example, 10 times), and sends a WB setting execution signal from the control unit 6. Is transmitted to the WB setting unit 5.
  • T for example, 10 times
  • the WB adjustment unit 61 rejects the WB setting operation by the WB setting unit 5 and sends a WB setting execution signal from the control unit 6 to the WB setting unit 5.
  • the control unit 6 outputs a warning signal (for example, sound, light, or display) to the user without transmitting to the user.
  • the storage unit 7 converts the previous adjustment coefficients Cr, Cg, Cb into new adjustment coefficients Cr, Cg, Cb.
  • the adjustment coefficients Cr, Cg, and Cb are updated by the replacement.
  • the above-described functions of the image forming unit 4, the WB setting unit 5, and the control unit 6 are realized by, for example, a general-purpose or dedicated computer.
  • the computer includes a central processing unit (CPU), a main storage device such as a RAM, and an auxiliary storage device such as a hard disk and various memories.
  • the auxiliary storage device includes the above-described units 4, 5, and 6.
  • a program for causing the CPU to execute processing is stored. This program is loaded from the auxiliary storage device to the main storage device and executed, so that the CPU realizes the processing of the respective units 4, 5, and 6.
  • the reflected light of the laser beam reflected on the surface of the subject A is received by the optical fiber 13, photoelectrically converted by the APD 3, and further digitally converted by the ADC 16.
  • R, G, and B signal values indicating the intensity of the reflected light of R, G, and B are obtained in order.
  • the obtained R, G, and B signal values are associated with the laser light irradiation position in the image forming unit 4 to generate raw image data of the subject A (step S1).
  • WB adjustment processing is performed on the raw image data in the image forming unit 4 (step S4), and output image data in which the WB is adjusted is displayed on the display 50.
  • the amount of reflected light received by the optical fiber 13 depends on the reflectance of the surface of the subject A and the distance and angle from the subject A to the tip of the insertion portion 20. Accordingly, the brightness of the raw image data changes as the insertion unit 20 moves in the body.
  • the control unit 6 adjusts the multiplication factor of the APD 3 in obtaining the next raw image data based on the brightness of the raw image data so that the brightness of the raw image data is within a predetermined appropriate range (step S5). .
  • the control unit 6 calculates the brightness of the raw image data every time new raw image data is generated (step S51). If the brightness of the raw image data is within a predetermined appropriate range (YES in step S52), the control unit 6 maintains the current multiplication factor setting value of the APD 3. Thereby, the next raw image data having the same brightness is acquired. On the other hand, when the brightness of the raw image data is darker than the predetermined appropriate range (NO in step S52 and NO in step S53), the control unit 6 increases the set value of the multiplication factor of the APD 3 (step S54). Thereby, the multiplication factor of the electric signal by the APD 3 is increased, and the raw image data whose brightness is increased is acquired next.
  • step S55 the control unit 6 reduces the set value of the multiplication factor of the APD 3 (step S55). As a result, the multiplication factor of the electrical signal by the APD 3 is reduced, and raw image data with reduced brightness is acquired next.
  • the user sets a white subject so as to face the tip of the insertion unit 20, and the output image data of the white subject is displayed on the display 50.
  • Press the WB setting button For example, the white balance setting may be executed only once before the optical scanning observation apparatus 100 is shipped, or may be executed every time before the observation is performed.
  • a WB setting command signal is transmitted from the UI 40 to the control unit 6 (YES in step S2).
  • the WB adjustment unit 61 responds to the WB setting command signal (step S3), and whether or not the current setting value of the multiplication factor of the APD 3 is greater than or equal to a predetermined threshold T. (Steps S31 and S32).
  • the WB adjustment unit 61 transmits a WB setting execution signal from the control unit 6 to the WB setting unit 5, thereby causing the WB setting unit 5 to Then, the adjustment coefficients Cr, Cg, and Cb are calculated based on the raw image data (step S33).
  • the WB adjustment unit 61 outputs a warning signal from the control unit 6 (step S34). Based on the warning signal, the user can recognize that the multiplication factor of the current APD 3 is out of the range appropriate for the white balance setting. That the multiplication factor is less than the threshold value T means that the amount of incident light of the reflected light on the optical fiber 13 is too large and the raw image data is too bright. Therefore, for example, the user moves the distal end of the insertion unit 20 away from the white subject so that the set value of the multiplication factor becomes equal to or greater than the predetermined threshold T.
  • the WB adjustment unit 6 transmits a WB setting execution signal from the control unit 6 to the WB setting unit 5, thereby setting the WB setting.
  • the unit 5 is caused to calculate adjustment coefficients Cr, Cg, and Cb based on the raw image data (step S33).
  • step S33 The new adjustment coefficients Cr, Cg, and Cb calculated in step S33 are replaced with the adjustment coefficients previously stored in the storage unit 7, and a new adjustment is used for the white balance adjustment of the raw image data in the subsequent step S4. Coefficients Cr, Cg, Cb are used.
  • the relationship between the multiplication factor set in the APD 3 and the actual multiplication factor of the R, G, and B signals by the APD 3 will be described.
  • the larger the multiplication factor set in the APD 3 the larger the actual multiplication factors of the R signal, G signal, and B signal.
  • the multiplication factor of the electric signal by the APD 3 has wavelength dependence, and even if the multiplication factor set in the APD 3 is the same, the actual multiplication factor of the R signal, the G signal, and the B signal is different.
  • the change amount of the multiplication factor of the R signal, the change amount of the multiplication factor of the G signal, and the change amount of the multiplication factor of the B signal are different. Therefore, the white balance of the raw image data acquired at different multiplication factors is different from each other.
  • FIG. 5 shows an example of the relative output levels of the R signal and the B signal when the output level of the G signal from the APD 3 is 100%.
  • the WB adjustment unit 61 only when the multiplication factor of the APD 3 is set to a threshold value T or more where the difference in the change amount of the multiplication factor among the R, G, and B signals is small, the WB adjustment unit 61 The WB setting operation by the setting unit 5 is permitted.
  • the difference in white balance between raw image data acquired at different multiplication factors equal to or greater than the threshold T is small. Therefore, using adjustment coefficients Cr, Cg, and Cb determined based on the raw image data acquired at a multiplication factor equal to or higher than the threshold T, the WB of the raw image data acquired at another multiplication factor higher than the threshold T is used.
  • output image data having substantially the same white balance can be generated. Thereby, it is possible to suppress the change in the white balance of the output image data when the multiplication factor of the APD 3 changes for brightness adjustment.
  • optical scanning observation apparatus (Second Embodiment) Next, an optical scanning observation apparatus according to a second embodiment of the present invention will be described with reference to FIGS.
  • the optical scanning observation apparatus according to the present embodiment is different from the first embodiment in the method for determining the set value of the multiplication factor of the APD 3 by the control unit 6. Therefore, in this embodiment, the determination method of the setting value of the multiplication factor by the control part 6 is mainly demonstrated, and the code
  • the storage unit 7 stores a lower limit threshold value that defines the setting range of the multiplication factor of the APD 3. For example, when the APD 3 can change the multiplication factor within the range of 1 to 100 times, the lower limit threshold is set to 10 times.
  • the control unit 6 acquires the lower limit threshold value from the storage unit 7, and determines the setting value of the multiplication factor within a range equal to or higher than the lower limit threshold value. That is, when the brightness of the raw image data is larger than the predetermined range, the WB adjustment unit 61 compares the multiplication factor set value with the lower limit threshold value, and the multiplication factor set value is equal to or greater than the lower limit threshold value. Only, the control unit 6 is allowed to change the APD 3, and the control unit 6 changes the setting value of the multiplication factor of the APD 3 to a value smaller than the current setting value. On the other hand, when the set value of the multiplication factor is already the lower limit threshold, the WB adjustment unit 61 prohibits the change of the APD 3. Therefore, even if the brightness of the raw image data is smaller than the predetermined range, the control unit 6 does not change the setting value of the multiplication factor to a smaller value and continues to set the lower limit threshold value.
  • the operation of the optical scanning observation apparatus differs from the first embodiment in the WB setting routine S3 and the brightness adjustment routine S5, and other steps S1, S2, and S3 are the same as those in the first embodiment. is there. Therefore, the WB setting routine S4 and the brightness adjustment routine S5 will be described.
  • step S56 the WB adjustment unit 61 sets the set value of the multiplication factor of the APD 3 to the control unit 6 as in the first embodiment. Reduce (step S55). As a result, the multiplication factor of the electrical signal by the APD 3 is reduced, and raw image data with reduced brightness is acquired next.
  • step S56 when the current set value of the multiplication factor is equal to the lower limit threshold value (NO in step S56), the WB adjustment unit 61 does not allow the control unit 6 to change the multiplication factor of the APD 3, and therefore the control unit 6 , APD3's current multiplication factor setting value is maintained. Thereby, even if the raw image data is too bright, the multiplication factor is maintained at the lower limit threshold.
  • Other steps S51, S52, S53, and S54 are the same as those in the first embodiment.
  • the WB adjusting unit 61 permits the WB setting operation by the WB setting unit 5 regardless of the current setting value of the multiplication factor of the APD 3, and the WB setting operation from the control unit 6 By transmitting the execution signal to the WB setting unit 5, the WB setting unit 5 is caused to calculate the adjustment coefficients Cr, Cg, and Cb based on the raw image data (step S33).
  • the WB adjustment unit 61 prohibits the use of a multiplication factor that is less than a lower limit threshold that greatly changes the white balance of the raw image data, and a range in which the change of the white balance of the raw image data is less than the lower limit threshold.
  • the change of the multiplication factor is allowed only within.
  • the same white balance setting routine S4 as that in the first embodiment shown in FIG. 4 may be adopted.
  • FIGS. 1-10 an optical scanning observation apparatus according to a third embodiment of the present invention will be described with reference to FIGS.
  • the optical scanning observation apparatus according to the present embodiment differs from the first embodiment in the white balance adjustment method. Therefore, in the present embodiment, the white balance adjustment method will be mainly described, and the same reference numerals will be given to the same components as those in the first embodiment, and description thereof will be omitted.
  • the storage unit 7 stores a table in which the set value of the multiplication factor of the APD 3 and the adjustment coefficients Cr, Cg, and Cb are associated with each other.
  • the adjustment coefficients Cr, Cg, and Cb are obtained based on the obtained raw image data by acquiring the raw image data at each multiplication factor by changing the multiplication factor of the APD 3 while observing the same white subject, for example. Value.
  • the WB adjustment unit 61 selects adjustment coefficients Cr, Cg, and Cb corresponding to the current setting value of the APD 3 from the table, and selects the selected adjustment coefficients Cr, Cg, and Cb from the control unit 6 to the image forming unit 4. To send to.
  • the image forming unit 4 performs WB adjustment processing on the raw image data using the adjustment coefficients Cr, Cg, and Cb received from the control unit 6 to generate output image data.
  • the operation of the optical scanning observation apparatus differs from the first embodiment in the white balance adjustment method.
  • the WB adjustment unit 61 obtains adjustment coefficients Cr, Cg, and Cb corresponding to the current set value of the multiplication factor of the APD 3, as shown in FIG. Obtained from the table in the storage unit 7 (steps S6, S7).
  • WB adjustment processing is performed on the raw image data in the image forming unit 4 using the acquired adjustment coefficients Cr, Cg, and Cb.
  • the brightness adjustment routine S5 is the same as the brightness adjustment routine S5 of the first embodiment shown in FIG.
  • the adjustment coefficients Cr, Cg, and Cb for adjusting the white balance of the raw image data to the same white balance are stored in the table in advance for each set value of the multiplication factor of the APD 3. ing. Accordingly, output image data having the same white balance can be obtained no matter what value the multiplication factor of APD 3 is changed. In particular, even if the multiplication factor of the APD 3 is in a small range, it is possible to obtain high quality output image data without white balance change and pixel value saturation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

This optical-scanning-type observation device (100) comprises: an optical scanning unit (2) that scans light; an optical detection unit (3) that photoelectrically converts signal light from a subject (A) and that is capable of multiplying electrons having been created; an image forming unit (4) that forms image data on the basis of the radiation position of the light and the magnitude of an electrical signal having been output from the optical detection unit (3); and a control unit (6) that controls the multiplication factor of the optical detection unit (3) on the basis of the magnitude of the electrical signal. The control unit (6) includes a white balance adjustment unit (61) that adjusts the white balance of the image data on the basis of the multiplication factor of the optical detection unit (3).

Description

光走査型観察装置および光走査型観察装置の制御方法Optical scanning observation apparatus and method for controlling optical scanning observation apparatus
 本発明は、光走査型観察装置および光走査型観察装置の制御方法に関するものである。 The present invention relates to an optical scanning observation apparatus and a method for controlling the optical scanning observation apparatus.
 従来、被写体上でレーザ光をスパイラル状の軌跡に沿って走査し、被写体からの信号光を検出する走査型内視鏡装置が知られている(例えば、特許文献1参照。)。
 被写体の反射率や、被写体から内視鏡の先端までの距離に応じて、検出される信号光の強度が変化するため、画像の明るさも変化する。画像の明るさを一定に維持する方法として、画像の明るさに応じて光検出器のゲインを調整するオートゲインコントロールが一般に用いられている。
2. Description of the Related Art Conventionally, there is known a scanning endoscope apparatus that scans a laser beam on a subject along a spiral trajectory and detects signal light from the subject (see, for example, Patent Document 1).
Since the intensity of the detected signal light changes according to the reflectance of the subject and the distance from the subject to the tip of the endoscope, the brightness of the image also changes. As a method for maintaining the brightness of an image constant, an automatic gain control that adjusts the gain of a photodetector according to the brightness of the image is generally used.
特許第5025877号公報Japanese Patent No. 5025877
 しかしながら、光検出器として、逆バイアス電圧の印加によって光電流を増倍するアバランシェフォトダイオード(APD)を使用する場合、APDの増倍率が変化したときに、画像のホワイトバランスが変化してしまうという問題がある。
 すなわち、カラー画像を取得するときには、赤(R)、緑(G)、青(B)の信号光がAPDによって検出される。APDの増倍率は波長依存性を有し、逆バイアス電圧と増倍率との関係は入射光の波長に応じて異なる。したがって、逆バイアス電圧が変化したときに、R、GおよびBの信号光の間で増倍率の変化量に差異が生じ、逆バイアス電圧の変化の前後で画像のホワイトバランスが維持されない。
However, when an avalanche photodiode (APD) that multiplies photocurrent by applying a reverse bias voltage is used as a photodetector, the white balance of the image changes when the APD multiplication factor changes. There's a problem.
That is, when a color image is acquired, red (R), green (G), and blue (B) signal lights are detected by the APD. The multiplication factor of APD has wavelength dependence, and the relationship between the reverse bias voltage and the multiplication factor varies depending on the wavelength of incident light. Therefore, when the reverse bias voltage changes, a difference in the change amount of the multiplication factor occurs between the R, G, and B signal lights, and the white balance of the image is not maintained before and after the change of the reverse bias voltage.
 例えば、APDの増倍率を50に設定して白い被写体を撮影したときのAPDからのR、G、Bの出力信号の大きさの比が、R:G:B=120:100:78であったとする。次に、APDの増倍率を3に変更して同一の白い被写体を撮影したとする。このときのR、G、Bの出力信号の大きさの比は、120:100:78ではなく、別の比、例えば、125:100:75となってしまう。 For example, the ratio of the magnitudes of the R, G, and B output signals from the APD when a white object is shot with the APD multiplication factor set to 50 is R: G: B = 120: 100: 78. Suppose. Next, it is assumed that the same white subject is photographed with the APD multiplication factor changed to 3. At this time, the ratio of the magnitudes of the output signals of R, G, and B is not 120: 100: 78, but another ratio, for example, 125: 100: 75.
 本発明は、上述した事情に鑑みてなされたものであって、ホワイトバランスの変化を抑制しながら画像の明るさを調整することができる光走査型観察装置および光走査型観察装置の制御方法を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and provides an optical scanning observation apparatus and an optical scanning observation apparatus control method capable of adjusting the brightness of an image while suppressing a change in white balance. The purpose is to provide.
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明の第1の態様は、光を走査しながら被写体に照射する光走査部と、前記光の照射によって被写体において生じた信号光を受光し、受光された前記信号光を光電変換して電子を生成し、生成された電子を電気信号として出力する光検出部であって、前記光電変換によって生成された電子を増倍可能であるとともに前記電子の増倍率を変更可能である光検出部と、該光検出部から出力された前記電気信号に基づいて画像データを形成する画像形成部と、該画像形成部によって形成された画像データの明るさに基づいて前記光検出部の増倍率の設定値を決定し、決定された設定値に増倍率を一致させるように前記光検出部を制御する制御部とを備え、該制御部が、前記光検出部の増倍率に基づいて前記画像データのホワイトバランスを調整するホワイトバランス調整部を備える光走査型観察装置である。
In order to achieve the above object, the present invention provides the following means.
According to a first aspect of the present invention, an optical scanning unit that irradiates a subject while scanning light, and a signal light generated in the subject by the light irradiation are received, and the received signal light is photoelectrically converted into an electron. A photodetection unit that outputs the generated electrons as an electrical signal, the photodetection unit capable of multiplying the electrons generated by the photoelectric conversion and changing the multiplication factor of the electrons; An image forming unit that forms image data based on the electrical signal output from the light detection unit, and setting of a multiplication factor of the light detection unit based on the brightness of the image data formed by the image forming unit And a control unit that controls the light detection unit so as to match the multiplication factor with the determined setting value, the control unit based on the multiplication factor of the light detection unit. Adjust the white balance An optical scanning observation apparatus provided with the white balance adjustment unit.
 本発明の第1の態様によれば、光走査部によって被写体に光が照射されることによって信号光が生じると、該信号光が光検出部によって検出されて信号光の強度に基づく電気信号が生成される。そして、画像形成部によって、電気信号が光の照射位置と対応付けられることによって、被写体の画像データが形成される。制御部は、画像データの明るさに基づいて光検出部による電気信号の増倍率を変更させることによって、次に画像形成部によって形成される画像データの明るさが調整される。これにより、明るさが適切に調整された画像データを得ることができる。 According to the first aspect of the present invention, when signal light is generated by irradiating the subject with light by the light scanning unit, the signal light is detected by the light detection unit, and an electric signal based on the intensity of the signal light is generated. Generated. Then, the image data of the subject is formed by the image forming unit associating the electric signal with the light irradiation position. The control unit adjusts the brightness of the image data formed next by the image forming unit by changing the multiplication factor of the electric signal by the light detection unit based on the brightness of the image data. Thereby, it is possible to obtain image data whose brightness is appropriately adjusted.
 この場合に、画像形成部によって形成される画像データのホワイトバランスが、光検出部の増倍率に基づいてホワイトバランス調整部によって制御される。これにより、画像データの明るさの調整の際の光検出部の増倍率の変化に伴う画像データのホワイトバランスの変化を抑制することができる。 In this case, the white balance of the image data formed by the image forming unit is controlled by the white balance adjusting unit based on the multiplication factor of the light detecting unit. Thereby, the change of the white balance of the image data accompanying the change of the multiplication factor of the light detection unit at the time of adjusting the brightness of the image data can be suppressed.
 上記第1の態様においては、前記ホワイトバランス調整部が、前記光検出部の前記増倍率が所定の閾値以上であるときに取得された前記画像データに基づいてホワイトバランスを設定し、前記画像形成部が、前記ホワイトバランス調整部によって設定されたホワイトバランスを有する前記画像データを形成してもよい。
 光検出部の増倍率の波長依存性は、増倍率が比較的大きい範囲においては小さい。増倍率がこのような範囲内であるときに取得された画像データに基づいてホワイトバランスを設定することによって、比較的大きな範囲内での増倍率の変更に伴う画像データのホワイトバランスの変化を効果的に抑制することができる。
In the first aspect, the white balance adjustment unit sets white balance based on the image data acquired when the multiplication factor of the light detection unit is equal to or greater than a predetermined threshold, and the image formation The unit may form the image data having a white balance set by the white balance adjustment unit.
The wavelength dependence of the multiplication factor of the light detection unit is small in a range where the multiplication factor is relatively large. By setting the white balance based on the image data acquired when the multiplication factor is within this range, the change in the white balance of the image data accompanying the change of the multiplication factor within a relatively large range is effective. Can be suppressed.
 上記第1の態様においては、前記ホワイトバランス調整部が、所定の閾値以上の範囲内でのみ、前記制御部による前記光検出部の前記増倍率の変更を許可してもよい。
 光検出部の増倍率の波長依存性は、増倍率が比較的大きい範囲においては小さい。このような範囲内でのみ光検出部の増倍率の変更を許可することによって、光検出部の増倍率の変更に伴う画像データのホワイトバランスの変化を抑制することができる。
In the first aspect, the white balance adjustment unit may permit the control unit to change the multiplication factor of the light detection unit only within a range of a predetermined threshold value or more.
The wavelength dependence of the multiplication factor of the light detection unit is small in a range where the multiplication factor is relatively large. By permitting the change of the multiplication factor of the light detection unit only within such a range, it is possible to suppress the change in the white balance of the image data accompanying the change of the multiplication factor of the light detection unit.
 上記第1の態様においては、前記光検出部が、前記信号光に含まれる赤、緑および青の成分の強度にそれぞれ基づく赤信号、緑信号および青信号を前記電気信号として生成し、前記赤信号、緑信号および青信号に対する調整係数を記憶する記憶部を備え、前記画像形成部が、前記記憶部に記憶されている前記調整係数を用いて調整された前記赤信号、緑信号および青信号に基づいて前記画像データを形成してもよい。
 このようにすることで、画像形成部により、ホワイトバランスが調整された画像データを形成することができる。
In the first aspect, the light detection unit generates a red signal, a green signal, and a blue signal based on intensities of red, green, and blue components included in the signal light, respectively, as the electrical signal, and the red signal A storage unit that stores adjustment coefficients for the green signal and the blue signal, and the image forming unit is based on the red signal, the green signal, and the blue signal adjusted using the adjustment coefficient stored in the storage unit. The image data may be formed.
In this way, image data with adjusted white balance can be formed by the image forming unit.
 上記第1の態様においては、前記記憶部が、前記光検出部の増倍率の設定値と前記調整係数とを対応付けたテーブルを記憶し、前記ホワイトバランス調整部が、前記テーブルにおいて前記制御部によって決定された前記増倍率の設定値と対応付けられている調整係数を選択し、前記画像形成部が、前記ホワイトバランス調整部によって選択された調整係数を用いて前記画像データを形成してもよい。
 このようにすることで、光検出部の増倍率にかかわらず所定のホワイトバランスを有する画像データを形成することができる。
In the first aspect, the storage unit stores a table in which a set value of a multiplication factor of the light detection unit and the adjustment coefficient are associated with each other, and the white balance adjustment unit includes the control unit in the table. The adjustment coefficient associated with the set value of the multiplication factor determined by the selection is selected, and the image forming unit forms the image data using the adjustment coefficient selected by the white balance adjustment unit. Good.
In this way, image data having a predetermined white balance can be formed regardless of the multiplication factor of the light detection unit.
 本発明の第2の態様は、被写体からの信号光を光電変換して電子を生成し、生成された電子を電気信号として出力する光検出部であって、前記光電変換によって生成された電子を増倍可能であるとともに前記電子の増倍率を変更可能である光検出部を備え、該光検出部から出力された前記電気信号の大きさに基づいて前記被写体の画像データを形成する光走査型観察装置の制御方法であって、前記光検出部の増倍率に基づいて前記画像データのホワイトバランスを調整する光走査型観察装置の制御方法である。 A second aspect of the present invention is a light detection unit that photoelectrically converts signal light from a subject to generate electrons, and outputs the generated electrons as an electrical signal, wherein the electrons generated by the photoelectric conversion are An optical scanning type comprising a light detection unit capable of multiplying and capable of changing the multiplication factor of the electrons, and forming image data of the subject based on the magnitude of the electric signal output from the light detection unit A method for controlling an observation apparatus, the method for controlling an optical scanning observation apparatus that adjusts a white balance of the image data based on a multiplication factor of the light detection unit.
 本発明によれば、ホワイトバランスの変化を抑制しながら画像の明るさを調整することができるという効果を奏する。 According to the present invention, it is possible to adjust the brightness of an image while suppressing a change in white balance.
本発明の第1の実施形態に係る光走査内視鏡の全体構成図である。1 is an overall configuration diagram of an optical scanning endoscope according to a first embodiment of the present invention. 本発明の第1の実施形態に係る光走査内視鏡の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the optical scanning endoscope which concerns on the 1st Embodiment of this invention. 図2のフローチャートにおけるホワイトバランス設定ルーチンを示すフローチャートである。It is a flowchart which shows the white balance setting routine in the flowchart of FIG. 図2のフローチャートにおける明るさ調整ルーチンを示すフローチャートである。It is a flowchart which shows the brightness adjustment routine in the flowchart of FIG. APDの増倍率の設定値と、R信号、G信号およびB信号の実際の増倍率との関係を示すグラフである。It is a graph which shows the relationship between the setting value of the multiplication factor of APD, and the actual multiplication factor of R signal, G signal, and B signal. 本発明の第2の実施形態に係る光走査型観察装置の動作における明るさ調整ルーチンを示すフローチャートである。It is a flowchart which shows the brightness adjustment routine in operation | movement of the optical scanning observation apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る光走査型観察装置の動作におけるホワイトバランス設定ルーチンを示すフローチャートである。It is a flowchart which shows the white balance setting routine in operation | movement of the optical scanning observation apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る光走査型観察装置において、記憶部に記憶されているテーブルを示す図である。It is a figure which shows the table memorize | stored in the memory | storage part in the optical scanning observation apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る光走査型観察装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the optical scanning type observation apparatus which concerns on the 3rd Embodiment of this invention.
(第1の実施形態)
 以下に、本発明の第1の実施形態に係る光走査型観察装置100について図1から図5を参照して説明する。
 本実施形態に係る光走査型観察装置100は、内視鏡装置であって、図1に示されるように、体内に挿入可能な細長い挿入部20と、該挿入部20の基端に接続された制御装置本体30と、該制御装置本体30に接続されたユーザインタフェース(UI)40およびディスプレイ50とを備えている。
(First embodiment)
The optical scanning observation apparatus 100 according to the first embodiment of the present invention will be described below with reference to FIGS.
The optical scanning observation apparatus 100 according to the present embodiment is an endoscope apparatus, and is connected to an elongated insertion part 20 that can be inserted into a body and a proximal end of the insertion part 20 as shown in FIG. The control device main body 30, and a user interface (UI) 40 and a display 50 connected to the control device main body 30 are provided.
 また、光走査型観察装置100は、レーザ光を出力する光源部1と、レーザ光を被写体A上でスパイラル走査する光走査部2と、被写体Aからのレーザ光の反射光を検出する光検出部3と、反射光(信号光)およびレーザ光の照射位置に基づいて被写体Aの画像データを形成する画像形成部4と、画像データのホワイトバランスを設定するホワイトバランス(WB)設定部5と、光源部1、光走査部2、光検出部3、画像形成部4およびWB設定部5を制御する制御部6と、記憶部7とを備えている。 The optical scanning observation apparatus 100 also includes a light source unit 1 that outputs laser light, an optical scanning unit 2 that spirally scans the laser light on the subject A, and light detection that detects reflected light of the laser light from the subject A. A unit 3; an image forming unit 4 that forms image data of the subject A based on an irradiation position of reflected light (signal light) and laser light; a white balance (WB) setting unit 5 that sets a white balance of the image data; , A light source unit 1, a light scanning unit 2, a light detection unit 3, an image forming unit 4, and a control unit 6 that controls the WB setting unit 5, and a storage unit 7.
 光源部1は、赤(R)、緑(G)、青(B)のレーザ光をそれぞれ発生する3個のレーザ光源8R,8G,8Bと、該3個のレーザ光源8R,8G,8Bから出力されたR、G、Bのレーザ光を同軸に合成する結合器9とを備えている。
 3個のレーザ光源8R,8G,8Bは、R、G、Bのパルス状のレーザ光を順番に繰り返し出力するように、制御部6によって制御される。これにより、結合器9からはR、G、Bのレーザ光が順番に出力され、被写体AにおいてはR、G、Bの反射光が順番に発生する。
The light source unit 1 includes three laser light sources 8R, 8G, and 8B that respectively generate red (R), green (G), and blue (B) laser light, and the three laser light sources 8R, 8G, and 8B. And a coupler 9 that coaxially combines the output R, G, and B laser beams.
The three laser light sources 8R, 8G, and 8B are controlled by the control unit 6 so as to repeatedly output R, G, and B pulsed laser beams in order. As a result, R, G, and B laser beams are sequentially output from the coupler 9, and R, G, and B reflected light are sequentially generated from the subject A.
 光走査部2は、挿入部20内に長手方向に沿って配置された照明用の光ファイバ10と、該光ファイバ10の先端を該光ファイバ10の長手方向に交差する方向に振動させるアクチュエータ11と、該アクチュエータ11を駆動するアクチュエータドライバ12とを備えている。
 光ファイバ10の基端は、結合器9に接続されている。結合器9から光ファイバ10の基端に入射されたレーザ光は、光ファイバ10の内部を基端から先端まで導光し、光ファイバ10の先端から挿入部20の先端前方へ向かって射出されるようになっている。
The optical scanning unit 2 includes an illumination optical fiber 10 disposed along the longitudinal direction in the insertion unit 20, and an actuator 11 that vibrates the tip of the optical fiber 10 in a direction intersecting the longitudinal direction of the optical fiber 10. And an actuator driver 12 for driving the actuator 11.
The proximal end of the optical fiber 10 is connected to the coupler 9. The laser light incident on the proximal end of the optical fiber 10 from the coupler 9 is guided from the proximal end to the distal end inside the optical fiber 10 and emitted from the distal end of the optical fiber 10 toward the front end of the insertion portion 20. It has become so.
 アクチュエータ11は、例えば、圧電素子を備える圧電アクチュエータであり、光ファイバ10の先端部に取り付けられている。
 アクチュエータドライバ12は、光ファイバ10の先端を該光ファイバ10の長手方向に交差する略平面内においてスパイラル状の軌跡に沿ってスパイラル振動させるための駆動信号を制御部6から受信する制御信号に従って生成し、該駆動信号をアクチュエータ11に供給する。これにより、光ファイバ10の先端がスパイラル振動し、該光ファイバ10の先端から射出されるレーザ光がスパイラル状の走査軌跡に沿ってスパイラル走査されるようになっている。
The actuator 11 is, for example, a piezoelectric actuator that includes a piezoelectric element, and is attached to the tip of the optical fiber 10.
The actuator driver 12 generates a drive signal for spirally vibrating the tip of the optical fiber 10 along a spiral trajectory in a substantially plane that intersects the longitudinal direction of the optical fiber 10 according to a control signal received from the control unit 6. Then, the drive signal is supplied to the actuator 11. Thereby, the tip of the optical fiber 10 spirally vibrates, and the laser light emitted from the tip of the optical fiber 10 is spirally scanned along a spiral scanning locus.
 光検出部3は、アバランシェフォトダイオード(APD。以下、「APD3」ともいう。)であり、受光用の光ファイバ13によって受光された反射光を検出する。
 光ファイバ13は、挿入部20内に長手方向に沿って配置されている。光ファイバ13の先端は挿入部20の先端面に配置され、光ファイバ13の基端はAPD3に接続されている。被写体Aから光ファイバ13の先端に入射した反射光は、該光ファイバ13の内部を先端から基端まで導光し、APD3に入射する。図1には、光ファイバ13が1本のみ図示されているが、複数本の光ファイバ13が設けられていてもよい。
The light detection unit 3 is an avalanche photodiode (APD; hereinafter also referred to as “APD3”), and detects reflected light received by the light receiving optical fiber 13.
The optical fiber 13 is disposed in the insertion portion 20 along the longitudinal direction. The distal end of the optical fiber 13 is disposed on the distal end surface of the insertion portion 20, and the proximal end of the optical fiber 13 is connected to the APD 3. The reflected light that has entered the tip of the optical fiber 13 from the subject A is guided from the tip to the base end of the optical fiber 13 and enters the APD 3. Although only one optical fiber 13 is shown in FIG. 1, a plurality of optical fibers 13 may be provided.
 APD3は、該APD3に入射した反射光を光電変換することによって反射光の入射光量に応じた量の電荷を生成し、生成された電荷量に応じた大きさの電気信号を出力する。ここで、APD3は、光電変換によって生成された電荷を逆バイアス電圧の印加によって増倍することにより、電気信号を増倍する機能を有する。逆バイアス電圧が大きくなる程、電気信号の増倍率も大きくなる。APD3は、例えば、1倍から100倍の間で段階的に増倍率を変更することができる。APD3の増倍率は、後述するように制御部6によって制御される。 The APD 3 photoelectrically converts the reflected light incident on the APD 3 to generate an amount of electric charge corresponding to the incident light amount of the reflected light, and outputs an electric signal having a magnitude corresponding to the generated electric charge amount. Here, the APD 3 has a function of multiplying the electric signal by multiplying the charge generated by the photoelectric conversion by applying a reverse bias voltage. As the reverse bias voltage increases, the multiplication factor of the electric signal also increases. APD3 can change a multiplication factor in steps, for example between 1 time and 100 times. The multiplication factor of the APD 3 is controlled by the control unit 6 as will be described later.
 APDP3の後段には、該APD3から出力された電気信号を増幅する増幅器15と、アナログデジタル変換器(ADC)16とが設けられている。
 APD3から出力された電気信号は、増幅器15によって増幅された後に、ADC16に入力される。
 ADC16は、増幅器15からの電気信号をサンプリングしてAD変換することによって、電気信号の大きさに相当するデジタル値を得る。得られたデジタル値は、画像形成部4に送信される。
An amplifier 15 that amplifies the electrical signal output from the APD 3 and an analog-digital converter (ADC) 16 are provided at the subsequent stage of the APDP 3.
The electric signal output from the APD 3 is amplified by the amplifier 15 and then input to the ADC 16.
The ADC 16 samples the electrical signal from the amplifier 15 and performs AD conversion to obtain a digital value corresponding to the magnitude of the electrical signal. The obtained digital value is transmitted to the image forming unit 4.
 ここで、R、G、Bの反射光が順番に光ファイバ13によって受光されるので、APD3は、R信号、G信号およびB信号を順番に生成して出力する。R信号、G信号、B信号はそれぞれ、R、G、Bの反射光に基づく電気信号である。したがって、ADC16により、R信号値、G信号値およびB信号値が順番にデジタル値として得られる。 Here, since the reflected light of R, G, and B is received by the optical fiber 13 in order, the APD 3 generates and outputs the R signal, the G signal, and the B signal in order. The R signal, G signal, and B signal are electrical signals based on the reflected light of R, G, and B, respectively. Therefore, the R signal value, the G signal value, and the B signal value are sequentially obtained as digital values by the ADC 16.
 画像形成部4は、ADC16から受信した時間軸方向に並ぶ1組のR、G、Bの信号値を1つの画素の画素値とし、該画素値を制御部6から受信したレーザ光の照射位置(後述)と対応付けることによって、レーザ光が所定の走査軌跡全体の走査を完了する毎に生画像データを形成する。 The image forming unit 4 uses a set of R, G, and B signal values arranged in the time axis direction received from the ADC 16 as pixel values of one pixel, and the irradiation position of the laser beam received from the control unit 6 By associating with (described later), raw image data is formed each time the laser beam completes scanning the entire predetermined scanning locus.
 次に、画像形成部4は、生画像データに対してWB調整処理を実行する。具体的には、画像形成部4は、記憶部7から調整係数Cr,Cg,Cb(後述)を取得し、生画像データの各画素のR信号値、G信号値、B信号値に調整係数Cr,Cg,Cbをそれぞれ乗算することによって、出力画像データを生成する。画像形成部4は、WB調整処理に加えて、任意の画像処理を生画像データに施してもよい。
 出力画像データは、ディスプレイ50に送信され、該ディスプレイ50に表示される。
Next, the image forming unit 4 performs WB adjustment processing on the raw image data. Specifically, the image forming unit 4 acquires adjustment coefficients Cr, Cg, and Cb (described later) from the storage unit 7, and adjusts the R coefficient value, the G signal value, and the B signal value of each pixel of the raw image data. Output image data is generated by multiplying Cr, Cg, and Cb, respectively. The image forming unit 4 may perform arbitrary image processing on the raw image data in addition to the WB adjustment processing.
The output image data is transmitted to the display 50 and displayed on the display 50.
 WB設定部5は、制御部6からWB設定実行信号(後述)を受信したときに、画像形成部4から生画像データを受信し、受信した生画像データに基づいてホワイトバランスを設定するためのWB設定動作を実行する。具体的には、WB設定部5は、生画像データのR信号値Vr、G信号値VgおよびB信号値Vbの比Vr:Vg:Vbを算出する。信号値Vr,Vg,Vbはそれぞれ、例えば、生画像データの全画素または中心部の画素のR信号値、G信号値、B信号値の平均値である。生画像データの中心部においては明るさの変化が小さいため、中心部の画素の信号値を用いることにより、より安定した信号値Vr,Vg,Vbを得ることができる。
 次に、WB設定部5は、Vr×Cr:Vg×Cg:Vb×Cb=1:1:1を満たすような調整係数Cr,Cg,Cbを算出する。WB設定部5は、算出された調整係数Cr,Cg,Cbの値を制御部6を介して記憶部7に記憶させる。
The WB setting unit 5 receives raw image data from the image forming unit 4 when receiving a WB setting execution signal (described later) from the control unit 6, and sets white balance based on the received raw image data. WB setting operation is executed. Specifically, the WB setting unit 5 calculates a ratio Vr: Vg: Vb of the R signal value Vr, the G signal value Vg, and the B signal value Vb of the raw image data. The signal values Vr, Vg, and Vb are, for example, average values of the R signal value, the G signal value, and the B signal value of all the pixels of the raw image data or the central pixel. Since the change in brightness is small in the central portion of the raw image data, more stable signal values Vr, Vg, and Vb can be obtained by using the signal value of the pixel in the central portion.
Next, the WB setting unit 5 calculates adjustment coefficients Cr, Cg, and Cb that satisfy Vr × Cr: Vg × Cg: Vb × Cb = 1: 1: 1. The WB setting unit 5 stores the calculated values of the adjustment coefficients Cr, Cg, and Cb in the storage unit 7 via the control unit 6.
 制御部6は、レーザ光源8R,8G,8Bが一定の時間間隔をあけて順番にレーザ光を出力するように、レーザ光源8R,8G,8Bを制御する。また、制御部6は、ADC16がレーザ光源8R,8G,8Bからのレーザ光の出力と同期して電気信号をサンプリングするように、ADC16を制御する。また、制御部6は、レーザ光の照射位置を制御信号から演算し、算出された照射位置の情報を画像形成部4に送信する。 The control unit 6 controls the laser light sources 8R, 8G, and 8B so that the laser light sources 8R, 8G, and 8B sequentially output the laser light at regular time intervals. In addition, the control unit 6 controls the ADC 16 so that the ADC 16 samples an electrical signal in synchronization with the output of the laser light from the laser light sources 8R, 8G, and 8B. Further, the control unit 6 calculates the irradiation position of the laser light from the control signal, and transmits information on the calculated irradiation position to the image forming unit 4.
 さらに、制御部6は、画像形成部4によって生画像データが形成される度に、生画像データを画像形成部4から受信し、生画像データの明るさを測定する。生画像データの明るさは、例えば、全ての画素または中心部の画素の画素値の平均値である。平均値に代えて最大値を算出してもよい。さらに、R、GおよびB信号値の内、G信号値のみを用いて平均値または最大値を算出してもよい。G信号値は、人間の目が感じる明るさにより近い。したがって、G画素値のみを用いることによって、生画像データの明るさをより適切に評価することができる。 Further, the control unit 6 receives the raw image data from the image forming unit 4 and measures the brightness of the raw image data every time the raw image data is formed by the image forming unit 4. The brightness of the raw image data is, for example, the average value of the pixel values of all the pixels or the central pixel. The maximum value may be calculated instead of the average value. Further, an average value or a maximum value may be calculated using only the G signal value among the R, G, and B signal values. The G signal value is closer to the brightness felt by human eyes. Therefore, the brightness of the raw image data can be more appropriately evaluated by using only the G pixel value.
 次に、制御部6は、測定された明るさに基づいてAPD3の増倍率の設定値を決定する。具体的には、制御部6は、生画像データの明るさが所定の適正範囲内である場合には、現在の増倍率の設定値を維持し、生画像データの明るさが所定の範囲よりも大きい場合には、APD3の増倍率の設定値を現在の設定値よりも小さな値に変更し、生画像データの明るさが所定の範囲よりも小さい場合には、APD3の増倍率の設定値を現在の設定値よりも大きな値に変更する。制御部6は、決定された設定値に増倍率を設定させるようにAPD3を制御する。 Next, the control unit 6 determines the set value of the multiplication factor of the APD 3 based on the measured brightness. Specifically, when the brightness of the raw image data is within a predetermined appropriate range, the control unit 6 maintains the current setting value of the multiplication factor, and the brightness of the raw image data exceeds the predetermined range. Is set to a value smaller than the current setting value, and when the brightness of the raw image data is smaller than a predetermined range, the setting value of the APD 3 multiplication factor is changed. Change to a value larger than the current setting. The control unit 6 controls the APD 3 so that the multiplication factor is set to the determined setting value.
 制御部6は、UI40と接続されている。UI40は、ホワイトバランス(WB)設定ボタン(図示略)を有し、WB設定ボタンが押下されたときにWB設定指令信号を制御部6に送信する。制御部6は、WB設定指令信号をUI40から受信したときに、WB設定実行信号をWB設定部5に送信することによって、WB設定部5に上述したWB設定動作を実行させる。 The control unit 6 is connected to the UI 40. The UI 40 has a white balance (WB) setting button (not shown), and transmits a WB setting command signal to the control unit 6 when the WB setting button is pressed. When the control unit 6 receives a WB setting command signal from the UI 40, the control unit 6 transmits the WB setting execution signal to the WB setting unit 5 to cause the WB setting unit 5 to execute the above-described WB setting operation.
 さらに、制御部6は、WB設定指令信号をUI40から受信したときに現在のAPD3の増倍率に基づいてWB設定部5によるWB設定動作を許可または拒否するホワイトバランス(WB)調整部61を備えている。WB調整部61は、現在のAPD3の増倍率が所定の閾値T(例えば、10倍)以上である場合にのみ、WB設定部5によるWB設定動作を許可し、制御部6からWB設定実行信号をWB設定部5に送信させる。WB調整部61はは、現在のAPD3の増倍率が所定の閾値T未満である場合には、WB設定部5によるWB設定動作を拒否し、制御部6からWB設定実行信号をWB設定部5に送信させず、制御部6からユーザに対して警告信号(例えば、音、光または表示)を出力させる。 Further, the control unit 6 includes a white balance (WB) adjustment unit 61 that permits or rejects the WB setting operation by the WB setting unit 5 based on the multiplication factor of the current APD 3 when a WB setting command signal is received from the UI 40. ing. The WB adjustment unit 61 permits the WB setting operation by the WB setting unit 5 only when the multiplication factor of the current APD 3 is equal to or greater than a predetermined threshold T (for example, 10 times), and sends a WB setting execution signal from the control unit 6. Is transmitted to the WB setting unit 5. When the multiplication factor of the current APD 3 is less than the predetermined threshold T, the WB adjustment unit 61 rejects the WB setting operation by the WB setting unit 5 and sends a WB setting execution signal from the control unit 6 to the WB setting unit 5. The control unit 6 outputs a warning signal (for example, sound, light, or display) to the user without transmitting to the user.
 記憶部7は、最初のWB設定動作が実行される前の初期状態において、任意の調整係数Cr,Cg,Cb(例えば、Cr=Cg=Cb=1)を記憶している。記憶部7は、制御部6を介してWB設定部5から新しい調整係数Cr,Cg,Cbを受信したときに、それまでの調整係数Cr,Cg,Cbを新しい調整係数Cr,Cg,Cbに置換することによって、調整係数Cr,Cg,Cbを更新する。 The storage unit 7 stores arbitrary adjustment coefficients Cr, Cg, and Cb (for example, Cr = Cg = Cb = 1) in an initial state before the first WB setting operation is executed. When the storage unit 7 receives new adjustment coefficients Cr, Cg, Cb from the WB setting unit 5 via the control unit 6, the storage unit 7 converts the previous adjustment coefficients Cr, Cg, Cb into new adjustment coefficients Cr, Cg, Cb. The adjustment coefficients Cr, Cg, and Cb are updated by the replacement.
 本実施形態において、画像形成部4、WB設定部5および制御部6の上述の機能は、例えば、汎用または専用のコンピュータによって実現される。コンピュータは、中央演算処理装置(CPU)と、RAMのような主記憶装置と、ハードディスクや各種メモリのような補助記憶装置とを備え、該補助記憶装置に、上述した各部4,5,6の処理をCPUに実行させるためのプログラムが記憶されている。このプログラムが補助記憶装置から主記憶装置にロードされて実行されることによって、CPUが各部4,5,6の処理を実現するようになっている。 In the present embodiment, the above-described functions of the image forming unit 4, the WB setting unit 5, and the control unit 6 are realized by, for example, a general-purpose or dedicated computer. The computer includes a central processing unit (CPU), a main storage device such as a RAM, and an auxiliary storage device such as a hard disk and various memories. The auxiliary storage device includes the above-described units 4, 5, and 6. A program for causing the CPU to execute processing is stored. This program is loaded from the auxiliary storage device to the main storage device and executed, so that the CPU realizes the processing of the respective units 4, 5, and 6.
 次に、このように構成された光走査型観察装置100の作用について、図2から図4を参照して説明する。
 アクチュエータドライバ12からアクチュエータ11への駆動信号の供給およびレーザ光源8R,8G,8Bからからのレーザ光の出力が開始されると、R、G、Bのレーザ光が、スパイラル振動する光ファイバ10の先端から順番に射出される。これにより、挿入部20の先端面に対向する被写体Aの表面において、スパイラル状の走査軌跡に沿ってR、G、Bのレーザ光が順番に照射される。
Next, the operation of the optical scanning observation apparatus 100 configured as described above will be described with reference to FIGS.
When supply of a drive signal from the actuator driver 12 to the actuator 11 and output of laser light from the laser light sources 8R, 8G, and 8B are started, the R, G, and B laser lights of the optical fiber 10 that spirally vibrates. Injected in order from the tip. Thus, R, G, and B laser beams are sequentially irradiated along the spiral scanning locus on the surface of the subject A that faces the distal end surface of the insertion unit 20.
 被写体Aの表面において反射されたレーザ光の反射光は、光ファイバ13によって受光され、APD3によって光電変換され、さらにADC16によってデジタル変換される。これにより、R、G、Bの反射光の強度を示すR、G、Bの信号値が順番に得られる。得られたR、G、Bの信号値は、画像形成部4においてレーザ光の照射位置と対応付けられることによって、被写体Aの生画像データが生成される(ステップS1)。次に、画像形成部4において生画像データに対してWB調整処理が施され(ステップS4)、WBが調整された出力画像データがディスプレイ50に表示される。 The reflected light of the laser beam reflected on the surface of the subject A is received by the optical fiber 13, photoelectrically converted by the APD 3, and further digitally converted by the ADC 16. As a result, R, G, and B signal values indicating the intensity of the reflected light of R, G, and B are obtained in order. The obtained R, G, and B signal values are associated with the laser light irradiation position in the image forming unit 4 to generate raw image data of the subject A (step S1). Next, WB adjustment processing is performed on the raw image data in the image forming unit 4 (step S4), and output image data in which the WB is adjusted is displayed on the display 50.
 光ファイバ13によって受光される反射光の光量は、被写体Aの表面の反射率および被写体Aから挿入部20の先端までの距離や角度に依存する。したがって、体内での挿入部20の移動に伴って生画像データの明るさが変化する。制御部6は、生画像データの明るさが所定の適正範囲内となるように、生画像データの明るさに基づいて次の生画像データの取得におけるAPD3の増倍率を調整する(ステップS5)。 The amount of reflected light received by the optical fiber 13 depends on the reflectance of the surface of the subject A and the distance and angle from the subject A to the tip of the insertion portion 20. Accordingly, the brightness of the raw image data changes as the insertion unit 20 moves in the body. The control unit 6 adjusts the multiplication factor of the APD 3 in obtaining the next raw image data based on the brightness of the raw image data so that the brightness of the raw image data is within a predetermined appropriate range (step S5). .
 具体的には、図3に示されるように、制御部6は、新しい生画像データが生成される度に、生画像データの明るさを算出する(ステップS51)。制御部6は、生画像データの明るさが所定の適正範囲内である場合(ステップS52のYES)、APD3の現在の増倍率の設定値を維持する。これにより、同程度の明るさの生画像データが次も取得される。一方、生画像データの明るさが所定の適正範囲よりも暗い場合(ステップS52のNOかつステップS53のNO)、制御部6は、APD3の増倍率の設定値を増大させる(ステップS54)。これにより、APD3による電気信号の増倍率が増大され、明るさが増大された生画像データが次に取得される。一方、生画像データの明るさが所定の適正範囲よりも明るい場合(ステップS52のNOかつステップS53のYES)、制御部6は、APD3の増倍率の設定値を低減させる(ステップS55)。これにより、APD3による電気信号の増倍率が低減され、明るさが低減された生画像データが次に取得される。 Specifically, as shown in FIG. 3, the control unit 6 calculates the brightness of the raw image data every time new raw image data is generated (step S51). If the brightness of the raw image data is within a predetermined appropriate range (YES in step S52), the control unit 6 maintains the current multiplication factor setting value of the APD 3. Thereby, the next raw image data having the same brightness is acquired. On the other hand, when the brightness of the raw image data is darker than the predetermined appropriate range (NO in step S52 and NO in step S53), the control unit 6 increases the set value of the multiplication factor of the APD 3 (step S54). Thereby, the multiplication factor of the electric signal by the APD 3 is increased, and the raw image data whose brightness is increased is acquired next. On the other hand, when the brightness of the raw image data is brighter than the predetermined appropriate range (NO in step S52 and YES in step S53), the control unit 6 reduces the set value of the multiplication factor of the APD 3 (step S55). As a result, the multiplication factor of the electrical signal by the APD 3 is reduced, and raw image data with reduced brightness is acquired next.
 ここで、ユーザは、適切なホワイトバランスを設定するために、白い被写体を挿入部20の先端と対向するように設置し、白い被写体の出力画像データがディスプレイ50に表示されている状態でUI40のWB設定ボタンを押下する。ホワイトバランスの設定は、例えば、光走査型観察装置100の出荷前に一度だけ実行されてもよく、観察を行う前に毎回実行されてもよい。WB設定ボタンが押下されると、UI40から制御部6にWB設定指令信号が送信される(ステップS2のYES)。 Here, in order to set an appropriate white balance, the user sets a white subject so as to face the tip of the insertion unit 20, and the output image data of the white subject is displayed on the display 50. Press the WB setting button. For example, the white balance setting may be executed only once before the optical scanning observation apparatus 100 is shipped, or may be executed every time before the observation is performed. When the WB setting button is pressed, a WB setting command signal is transmitted from the UI 40 to the control unit 6 (YES in step S2).
 制御部6において、WB調整部61は、図4に示されるように、WB設定指令信号に応答し(ステップS3)、現在のAPD3の増倍率の設定値が所定の閾値T以上であるか否かを確認する(ステップS31,S32)。増倍率の設定値が所定の閾値T以上である場合(ステップS32のYES)、WB調整部61は、制御部6からWB設定実行信号をWB設定部5に送信させることによって、WB設定部5に生画像データに基づいて調整係数Cr,Cg,Cbの算出を実行させる(ステップS33)。 In the control unit 6, as shown in FIG. 4, the WB adjustment unit 61 responds to the WB setting command signal (step S3), and whether or not the current setting value of the multiplication factor of the APD 3 is greater than or equal to a predetermined threshold T. (Steps S31 and S32). When the set value of the multiplication factor is equal to or greater than the predetermined threshold T (YES in step S32), the WB adjustment unit 61 transmits a WB setting execution signal from the control unit 6 to the WB setting unit 5, thereby causing the WB setting unit 5 to Then, the adjustment coefficients Cr, Cg, and Cb are calculated based on the raw image data (step S33).
 一方、増倍率の設定値が所定の閾値T未満である場合(ステップS32のNO)、WB調整部61は、制御部6から警告信号を出力させる(ステップS34)。警告信号に基づいて、ユーザは、現在のAPD3の増倍率がホワイトバランスの設定に適切な範囲から外れていることを認識することができる。増倍率が閾値T未満であるということは、光ファイバ13への反射光の入射光量が多過ぎて生画像データが明る過ぎるということを意味する。したがって、ユーザは、増倍率の設定値が所定の閾値T以上となるように、例えば、挿入部20の先端を白い被写体から遠ざける。これにより、増倍率の設定値が所定の閾値T以上になると(ステップS32のYES)、WB調整部6が、制御部6からWB設定実行信号をWB設定部5に送信させることによって、WB設定部5に生画像データに基づいて調整係数Cr,Cg,Cbの算出を実行させる(ステップS33)。 On the other hand, when the set value of the multiplication factor is less than the predetermined threshold T (NO in step S32), the WB adjustment unit 61 outputs a warning signal from the control unit 6 (step S34). Based on the warning signal, the user can recognize that the multiplication factor of the current APD 3 is out of the range appropriate for the white balance setting. That the multiplication factor is less than the threshold value T means that the amount of incident light of the reflected light on the optical fiber 13 is too large and the raw image data is too bright. Therefore, for example, the user moves the distal end of the insertion unit 20 away from the white subject so that the set value of the multiplication factor becomes equal to or greater than the predetermined threshold T. Thereby, when the set value of the multiplication factor becomes equal to or greater than the predetermined threshold T (YES in step S32), the WB adjustment unit 6 transmits a WB setting execution signal from the control unit 6 to the WB setting unit 5, thereby setting the WB setting. The unit 5 is caused to calculate adjustment coefficients Cr, Cg, and Cb based on the raw image data (step S33).
 ステップS33において算出された新しい調整係数Cr,Cg,Cbは、それまで記憶部7に記憶されていた調整係数と置き換えられ、その後のステップS4の生画像データのホワイトバランスの調整には、新しい調整係数Cr,Cg,Cbが使用される。 The new adjustment coefficients Cr, Cg, and Cb calculated in step S33 are replaced with the adjustment coefficients previously stored in the storage unit 7, and a new adjustment is used for the white balance adjustment of the raw image data in the subsequent step S4. Coefficients Cr, Cg, Cb are used.
 ここで、APD3に設定されている増倍率と、APD3によるR、G、B信号の実際の増倍率との関係について説明する。
 図5に示されるように、APD3に設定されている増倍率が大きい程、R信号、G信号、B信号の実際の増倍率も大きくなる。ただし、APD3による電気信号の増倍率は波長依存性を有し、APD3に設定されている増倍率が同一であったとしても、R信号、G信号、B信号の実際の増倍率はそれぞれ異なる。さらに、APD3の増倍率が変化したときに、R信号の増倍率の変化量と、G信号の増倍率の変化量と、B信号の増倍率の変化量は、それぞれ異なる。したがって、異なる増倍率で取得された生画像データのホワイトバランスは、互いに異なる。
Here, the relationship between the multiplication factor set in the APD 3 and the actual multiplication factor of the R, G, and B signals by the APD 3 will be described.
As shown in FIG. 5, the larger the multiplication factor set in the APD 3, the larger the actual multiplication factors of the R signal, G signal, and B signal. However, the multiplication factor of the electric signal by the APD 3 has wavelength dependence, and even if the multiplication factor set in the APD 3 is the same, the actual multiplication factor of the R signal, the G signal, and the B signal is different. Further, when the multiplication factor of the APD 3 is changed, the change amount of the multiplication factor of the R signal, the change amount of the multiplication factor of the G signal, and the change amount of the multiplication factor of the B signal are different. Therefore, the white balance of the raw image data acquired at different multiplication factors is different from each other.
 このようなR、G、B信号間の増倍率の変化量の違いは、増倍率が小さい範囲(具体的には、10倍未満)において特に大きく、増倍率が大きい範囲(具体的には、10倍以上)においては小さい。なお、図5には、G信号のAPD3からの出力レベルを100%としたときの、R信号およびB信号の相対的な出力レベルの一例を示している。 The difference in the change amount of the multiplication factor between the R, G, and B signals is particularly large in the range where the multiplication factor is small (specifically, less than 10 times), and the range where the multiplication factor is large (specifically, 10 times or more) is small. FIG. 5 shows an example of the relative output levels of the R signal and the B signal when the output level of the G signal from the APD 3 is 100%.
 本実施形態によれば、APD3の増倍率が、R、G、B信号間の増倍率の変化量の違いが小さくなる閾値T以上に設定されているときにのみ、WB調整部61が、WB設定部5によるWB設定動作を許可する。閾値T以上の異なる増倍率で取得された生画像データのホワイトバランスの差は小さい。したがって、閾値T以上の増倍率で取得された生画像データに基づいて決定された調整係数Cr,Cg,Cbを用いて、閾値T以上の他の増倍率で取得された生画像データのWBを調整したときに、略同一のホワイトバランスを有する出力画像データを生成することができる。これにより、明るさ調整のためにAPD3の増倍率が変化したときの出力画像データのホワイトバランスの変化を抑制することができる。 According to the present embodiment, only when the multiplication factor of the APD 3 is set to a threshold value T or more where the difference in the change amount of the multiplication factor among the R, G, and B signals is small, the WB adjustment unit 61 The WB setting operation by the setting unit 5 is permitted. The difference in white balance between raw image data acquired at different multiplication factors equal to or greater than the threshold T is small. Therefore, using adjustment coefficients Cr, Cg, and Cb determined based on the raw image data acquired at a multiplication factor equal to or higher than the threshold T, the WB of the raw image data acquired at another multiplication factor higher than the threshold T is used. When adjusted, output image data having substantially the same white balance can be generated. Thereby, it is possible to suppress the change in the white balance of the output image data when the multiplication factor of the APD 3 changes for brightness adjustment.
(第2の実施形態)
 次に、本発明の第2の実施形態に係る光走査型観察装置について図6および図7を参照して説明する。
 本実施形態に係る光走査型観察装置は、制御部6によるAPD3の増倍率の設定値の決定方法において、第1の実施形態と異なっている。したがって、本実施形態においては、制御部6による増倍率の設定値の決定方法について主に説明し、第1の実施形態と共通する構成については同一の符号を付して説明を省略する。
(Second Embodiment)
Next, an optical scanning observation apparatus according to a second embodiment of the present invention will be described with reference to FIGS.
The optical scanning observation apparatus according to the present embodiment is different from the first embodiment in the method for determining the set value of the multiplication factor of the APD 3 by the control unit 6. Therefore, in this embodiment, the determination method of the setting value of the multiplication factor by the control part 6 is mainly demonstrated, and the code | symbol same about the structure which is common in 1st Embodiment is attached | subjected and description is abbreviate | omitted.
 本実施形態において、記憶部7には、APD3の増倍率の設定範囲を規定する下限閾値が記憶されている。例えば、APD3が、1倍以上100倍以下の範囲内で増倍率を変更可能である場合、下限閾値は10倍に設定される。 In the present embodiment, the storage unit 7 stores a lower limit threshold value that defines the setting range of the multiplication factor of the APD 3. For example, when the APD 3 can change the multiplication factor within the range of 1 to 100 times, the lower limit threshold is set to 10 times.
 制御部6は、記憶部7から下限閾値を取得し、下限閾値以上の範囲内で増倍率の設定値を決定するようになっている。すなわち、生画像データの明るさが所定の範囲よりも大きい場合には、WB調整部61が、増倍率の設定値と下限閾値とを比較し、増倍率の設定値が下限閾値以上であるときにのみ、制御部6によるAPD3の変更を許可し、これにより制御部6がAPD3の増倍率の設定値を現在の設定値よりも小さな値に変更する。一方、既に増倍率の設定値が下限閾値である場合には、WB調整部61は、APD3の変更を禁止する。したがって、制御部6は、生画像データの明るさが所定の範囲よりも小さくても、増倍率の設定値をそれ以上小さな値には変更せず、下限閾値に設定し続ける。 The control unit 6 acquires the lower limit threshold value from the storage unit 7, and determines the setting value of the multiplication factor within a range equal to or higher than the lower limit threshold value. That is, when the brightness of the raw image data is larger than the predetermined range, the WB adjustment unit 61 compares the multiplication factor set value with the lower limit threshold value, and the multiplication factor set value is equal to or greater than the lower limit threshold value. Only, the control unit 6 is allowed to change the APD 3, and the control unit 6 changes the setting value of the multiplication factor of the APD 3 to a value smaller than the current setting value. On the other hand, when the set value of the multiplication factor is already the lower limit threshold, the WB adjustment unit 61 prohibits the change of the APD 3. Therefore, even if the brightness of the raw image data is smaller than the predetermined range, the control unit 6 does not change the setting value of the multiplication factor to a smaller value and continues to set the lower limit threshold value.
 次に、このように構成された光走査型観察装置の作用について説明する。
 本実施形態に係る光走査型観察装置の動作は、WB設定ルーチンS3および明るさ調整ルーチンS5において第1の実施形態と異なり、他のステップS1,S2,S3は第1の実施形態と同一である。したがって、WB設定ルーチンS4および明るさ調整ルーチンS5について説明する。
Next, the operation of the optical scanning observation apparatus configured as described above will be described.
The operation of the optical scanning observation apparatus according to the present embodiment differs from the first embodiment in the WB setting routine S3 and the brightness adjustment routine S5, and other steps S1, S2, and S3 are the same as those in the first embodiment. is there. Therefore, the WB setting routine S4 and the brightness adjustment routine S5 will be described.
 明るさ調整ルーチンS5において、図6に示されるように、生画像データの明るさが所定の適正範囲よりも明るい場合(ステップS52のNOかつステップS53のYES)、WB調整部61は、現在のAPD3の増倍率の設定値が下限閾値よりも大きいか否かを判断する(ステップS56)。現在の増倍率の設定値が下限閾値よりも大きい場合には(ステップS56のYES)、第1の実施形態と同様に、WB調整部61は、制御部6にAPD3の増倍率の設定値を低減させる(ステップS55)。これにより、APD3による電気信号の増倍率が低減され、明るさが低減された生画像データが次に取得される。一方、現在の増倍率の設定値が下限閾値と等しい場合には(ステップS56のNO)、WB調整部61は、制御部6によるAPD3の増倍率の変更を許可せず、したがって制御部6は、APD3の現在の増倍率の設定値を維持する。これにより、生画像データが明る過ぎたとしても、増倍率は下限閾値に維持される。
 他のステップS51,S52,S53,S54は、第1の実施形態と同一である。
In the brightness adjustment routine S5, as shown in FIG. 6, when the brightness of the raw image data is brighter than a predetermined appropriate range (NO in step S52 and YES in step S53), the WB adjustment unit 61 It is determined whether or not the set value of the multiplication factor of APD 3 is larger than the lower limit threshold (step S56). When the current set value of the multiplication factor is larger than the lower limit threshold value (YES in step S56), the WB adjustment unit 61 sets the set value of the multiplication factor of the APD 3 to the control unit 6 as in the first embodiment. Reduce (step S55). As a result, the multiplication factor of the electrical signal by the APD 3 is reduced, and raw image data with reduced brightness is acquired next. On the other hand, when the current set value of the multiplication factor is equal to the lower limit threshold value (NO in step S56), the WB adjustment unit 61 does not allow the control unit 6 to change the multiplication factor of the APD 3, and therefore the control unit 6 , APD3's current multiplication factor setting value is maintained. Thereby, even if the raw image data is too bright, the multiplication factor is maintained at the lower limit threshold.
Other steps S51, S52, S53, and S54 are the same as those in the first embodiment.
 WB設定ルーチンS3において、WB調整部61は、図7に示されるように、現在のAPD3の増倍率の設定値にかかわらずWB設定部5によるWB設定動作を許可し、制御部6からWB設定実行信号をWB設定部5に送信させることによって、WB設定部5に生画像データに基づいて調整係数Cr,Cg,Cbの算出を実行させる(ステップS33)。 In the WB setting routine S3, as shown in FIG. 7, the WB adjusting unit 61 permits the WB setting operation by the WB setting unit 5 regardless of the current setting value of the multiplication factor of the APD 3, and the WB setting operation from the control unit 6 By transmitting the execution signal to the WB setting unit 5, the WB setting unit 5 is caused to calculate the adjustment coefficients Cr, Cg, and Cb based on the raw image data (step S33).
 上述したように、特に増倍率が小さい範囲(具体的には、10倍未満の範囲)において、増倍率の変化に伴う生画像データのホワイトバランスの変化、すなわち生画像データ内の被写体Aの像の色の変化が顕著となる。本実施形態によれば、WB調整部61によって、生画像データのホワイトバランスが大きく変化する下限閾値未満の増倍率の使用が禁止され、生画像データのホワイトバランスの変化が小さい下限閾値以上の範囲内でのみ増倍率の変更が許可される。これにより、明るさ調整のためにAPD3の増倍率が変化したときに、生画像データのホワイトバランスの変化を抑制し、被写体Aの像の色の変化の小さい出力画像データをユーザに提供することができる。 As described above, especially in a range where the multiplication factor is small (specifically, a range less than 10 times), a change in white balance of the raw image data accompanying a change in multiplication factor, that is, an image of the subject A in the raw image data. The change in color becomes noticeable. According to the present embodiment, the WB adjustment unit 61 prohibits the use of a multiplication factor that is less than a lower limit threshold that greatly changes the white balance of the raw image data, and a range in which the change of the white balance of the raw image data is less than the lower limit threshold. The change of the multiplication factor is allowed only within. Thus, when the multiplication factor of the APD 3 is changed for brightness adjustment, the change in the white balance of the raw image data is suppressed, and the output image data with a small change in the color of the image of the subject A is provided to the user. Can do.
 なお、本実施形態においては、図7に示されるホワイトバランス設定ルーチンS4に代えて、図4に示される第1の実施形態と同一のホワイトバランス設定ルーチンS4を採用してもよい。 In the present embodiment, instead of the white balance setting routine S4 shown in FIG. 7, the same white balance setting routine S4 as that in the first embodiment shown in FIG. 4 may be adopted.
(第3の実施形態)
 次に、本発明の第3の実施形態に係る光走査型観察装置について図8および図9を参照して説明する。
 本実施形態に係る光走査型観察装置は、ホワイトバランスの調整方法において、第1の実施形態と異なっている。したがって、本実施形態においては、ホワイトバランスの調整方法について主に説明し、第1の実施形態と共通する構成については同一の符号を付して説明を省略する。
(Third embodiment)
Next, an optical scanning observation apparatus according to a third embodiment of the present invention will be described with reference to FIGS.
The optical scanning observation apparatus according to the present embodiment differs from the first embodiment in the white balance adjustment method. Therefore, in the present embodiment, the white balance adjustment method will be mainly described, and the same reference numerals will be given to the same components as those in the first embodiment, and description thereof will be omitted.
 本実施形態において、記憶部7には、図8に示されるように、APD3の増倍率の設定値と調整係数Cr,Cg,Cbとを対応付けたテーブルが記憶されている。調整係数Cr,Cg,Cbは、例えば、同一の白い被写体を観察しながらAPD3の増倍率を変更することによって各増倍率で生画像データを取得し、取得された各生画像データに基づいて算出された値である。 In the present embodiment, as shown in FIG. 8, the storage unit 7 stores a table in which the set value of the multiplication factor of the APD 3 and the adjustment coefficients Cr, Cg, and Cb are associated with each other. The adjustment coefficients Cr, Cg, and Cb are obtained based on the obtained raw image data by acquiring the raw image data at each multiplication factor by changing the multiplication factor of the APD 3 while observing the same white subject, for example. Value.
 WB調整部61は、APD3の現在の増倍率の設定値と対応する調整係数Cr,Cg,Cbをテーブルから選択し、選択された調整係数Cr,Cg,Cbを制御部6から画像形成部4に送信させる。
 画像形成部4は、制御部6から受信した調整係数Cr,Cg,Cbを使用して生画像データに対してWB調整処理を実行して出力画像データを生成する。
The WB adjustment unit 61 selects adjustment coefficients Cr, Cg, and Cb corresponding to the current setting value of the APD 3 from the table, and selects the selected adjustment coefficients Cr, Cg, and Cb from the control unit 6 to the image forming unit 4. To send to.
The image forming unit 4 performs WB adjustment processing on the raw image data using the adjustment coefficients Cr, Cg, and Cb received from the control unit 6 to generate output image data.
 次に、このように構成された光走査型観察装置の作用について説明する。
 本実施形態に係る光走査型観察装置の動作は、ホワイトバランスの調整方法において第1の実施形態と異なる。
 被写体Aの生画像データが生成されると(ステップS1)、WB調整部61は、図9に示されるように、現在のAPD3の増倍率の設定値と対応する調整係数Cr,Cg,Cbを記憶部7内のテーブルから取得する(ステップS6,S7)。次のステップS4においては、取得された調整係数Cr,Cg,Cbを使用して画像形成部4において生画像データに対してWB調整処理が施される。
 明るさ調整ルーチンS5は、図3に示される第1の実施形態の明るさ調整ルーチンS5と同一である。
Next, the operation of the optical scanning observation apparatus configured as described above will be described.
The operation of the optical scanning observation apparatus according to the present embodiment differs from the first embodiment in the white balance adjustment method.
When the raw image data of the subject A is generated (step S1), the WB adjustment unit 61 obtains adjustment coefficients Cr, Cg, and Cb corresponding to the current set value of the multiplication factor of the APD 3, as shown in FIG. Obtained from the table in the storage unit 7 (steps S6, S7). In the next step S4, WB adjustment processing is performed on the raw image data in the image forming unit 4 using the acquired adjustment coefficients Cr, Cg, and Cb.
The brightness adjustment routine S5 is the same as the brightness adjustment routine S5 of the first embodiment shown in FIG.
 このように、本実施形態によれば、APD3の増倍率の設定値毎に、生画像データのホワイトバランスを同一のホワイトバランスに調整するための調整係数Cr,Cg,Cbが予めテーブルに記憶されている。したがって、APD3の増倍率をどのような値に変更したとしても、同一のホワイトバランスを有する出力画像データを得ることができる。特に、APD3の増倍率が小さい範囲であっても、ホワイトバランスの変化および画素値の飽和の無い、良質な出力画像データを得ることができる。 As described above, according to the present embodiment, the adjustment coefficients Cr, Cg, and Cb for adjusting the white balance of the raw image data to the same white balance are stored in the table in advance for each set value of the multiplication factor of the APD 3. ing. Accordingly, output image data having the same white balance can be obtained no matter what value the multiplication factor of APD 3 is changed. In particular, even if the multiplication factor of the APD 3 is in a small range, it is possible to obtain high quality output image data without white balance change and pixel value saturation.
1 光源部
2 光走査部
3 光検出部、アバランシェフォトダイオード
4 画像形成部
5 ホワイトバランス設定部
6 制御部
61 ホワイトバランス調整部
7 記憶部
8R,8G,8B レーザ光源
9 結合器
10,13 光ファイバ
11 アクチュエータ
12 アクチュエータドライバ
15 増幅器
16 アナログデジタル変換器
20 挿入部
30 制御装置本体
40 ユーザインタフェース
50 ディスプレイ
100 光走査型観察装置
A 被写体
DESCRIPTION OF SYMBOLS 1 Light source part 2 Optical scanning part 3 Light detection part, avalanche photodiode 4 Image formation part 5 White balance setting part 6 Control part 61 White balance adjustment part 7 Memory | storage part 8R, 8G, 8B Laser light source 9 Coupler 10, 13 Optical fiber DESCRIPTION OF SYMBOLS 11 Actuator 12 Actuator driver 15 Amplifier 16 Analog-digital converter 20 Insertion part 30 Control apparatus main body 40 User interface 50 Display 100 Optical scanning type observation apparatus A Subject

Claims (6)

  1.  光を走査しながら被写体に照射する光走査部と、
     前記光の照射によって被写体において生じた信号光を受光し、受光された前記信号光を光電変換して電子を生成し、生成された電子を電気信号として出力する光検出部であって、前記光電変換によって生成された電子を増倍可能であるとともに前記電子の増倍率を変更可能である光検出部と、
     該光検出部から出力された前記電気信号の大きさおよび前記光走査部による前記光の照射位置に基づいて前記被写体の画像データを形成する画像形成部と、
     前記電気信号の大きさに基づいて前記光検出部の増倍率の設定値を決定し、決定された設定値に増倍率を一致させるように前記光検出部を制御する制御部とを備え、
     該制御部が、前記光検出部の増倍率に基づいて前記画像データのホワイトバランスを調整するホワイトバランス調整部を備える光走査型観察装置。
    An optical scanning unit that irradiates a subject while scanning light;
    A photodetection unit that receives signal light generated in the subject by the light irradiation, photoelectrically converts the received signal light to generate electrons, and outputs the generated electrons as an electrical signal, A photodetection unit capable of multiplying the electrons generated by the conversion and changing the multiplication factor of the electrons;
    An image forming unit that forms image data of the subject based on a magnitude of the electrical signal output from the light detection unit and an irradiation position of the light by the light scanning unit;
    Determining a setting value of the multiplication factor of the light detection unit based on the magnitude of the electrical signal, and a control unit for controlling the light detection unit to match the multiplication factor to the determined setting value,
    An optical scanning observation apparatus, wherein the control unit includes a white balance adjustment unit that adjusts a white balance of the image data based on a multiplication factor of the light detection unit.
  2.  前記ホワイトバランス調整部が、前記光検出部の前記増倍率が所定の閾値以上であるときに取得された前記画像データに基づいてホワイトバランスを設定し、
     前記画像形成部が、前記ホワイトバランス調整部によって設定されたホワイトバランスを有する前記画像データを形成する請求項1に記載の光走査型観察装置。
    The white balance adjustment unit sets a white balance based on the image data acquired when the multiplication factor of the light detection unit is equal to or greater than a predetermined threshold;
    The optical scanning observation apparatus according to claim 1, wherein the image forming unit forms the image data having white balance set by the white balance adjusting unit.
  3.  前記ホワイトバランス調整部が、所定の閾値以上の範囲内でのみ、前記制御部による前記光検出部の前記増倍率の変更を許可する請求項1または請求項2に記載の光走査型観察装置。 The optical scanning observation apparatus according to claim 1 or 2, wherein the white balance adjustment unit permits the control unit to change the multiplication factor of the light detection unit only within a range equal to or greater than a predetermined threshold.
  4.  前記光検出部が、前記信号光に含まれる赤、緑および青の成分の強度にそれぞれ基づく赤信号、緑信号および青信号を前記電気信号として生成し、
     前記赤信号、緑信号および青信号に対する調整係数を記憶する記憶部を備え、
     前記画像形成部が、前記記憶部に記憶されている前記調整係数を用いて調整された前記赤信号、緑信号および青信号に基づいて前記画像データを形成する請求項1に記載の光走査型観察装置。
    The light detection unit generates a red signal, a green signal, and a blue signal based on the intensities of red, green, and blue components included in the signal light, respectively, as the electrical signal;
    A storage unit that stores adjustment coefficients for the red signal, the green signal, and the blue signal;
    The optical scanning observation according to claim 1, wherein the image forming unit forms the image data based on the red signal, the green signal, and the blue signal adjusted using the adjustment coefficient stored in the storage unit. apparatus.
  5.  前記記憶部が、前記光検出部の増倍率の設定値と前記調整係数とを対応付けたテーブルを記憶し、
     前記ホワイトバランス調整部が、前記テーブルにおいて前記制御部によって決定された前記増倍率の設定値と対応付けられている調整係数を選択し、
     前記画像形成部が、前記ホワイトバランス調整部によって選択された調整係数を用いて前記画像データを形成する請求項4に記載の光走査型観察装置。
    The storage unit stores a table in which a set value of a multiplication factor of the light detection unit is associated with the adjustment coefficient;
    The white balance adjustment unit selects an adjustment coefficient associated with the set value of the multiplication factor determined by the control unit in the table;
    The optical scanning observation apparatus according to claim 4, wherein the image forming unit forms the image data using an adjustment coefficient selected by the white balance adjustment unit.
  6.  被写体からの信号光を光電変換して電子を生成し、生成された電子を電気信号として出力する光検出部であって、前記光電変換によって生成された電子を増倍可能であるとともに前記電子の増倍率を変更可能である光検出部を備え、該光検出部から出力された前記電気信号の大きさに基づいて前記被写体の画像データを形成する光走査型観察装置の制御方法であって、
     前記光検出部の増倍率に基づいて前記画像データのホワイトバランスを調整する光走査型観察装置の制御方法。
    A photodetection unit that photoelectrically converts signal light from a subject to generate electrons, and outputs the generated electrons as an electrical signal, wherein the electrons generated by the photoelectric conversion can be multiplied and A control method for an optical scanning observation apparatus comprising a light detection unit capable of changing a multiplication factor, and forming image data of the subject based on the magnitude of the electrical signal output from the light detection unit,
    A control method of an optical scanning observation apparatus that adjusts a white balance of the image data based on a multiplication factor of the light detection unit.
PCT/JP2015/080147 2015-10-26 2015-10-26 Optical-scanning-type observation device and method for controlling optical-scanning-type observation device WO2017072838A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/080147 WO2017072838A1 (en) 2015-10-26 2015-10-26 Optical-scanning-type observation device and method for controlling optical-scanning-type observation device
JP2017547216A JPWO2017072838A1 (en) 2015-10-26 2015-10-26 Optical scanning observation apparatus and method for controlling optical scanning observation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/080147 WO2017072838A1 (en) 2015-10-26 2015-10-26 Optical-scanning-type observation device and method for controlling optical-scanning-type observation device

Publications (1)

Publication Number Publication Date
WO2017072838A1 true WO2017072838A1 (en) 2017-05-04

Family

ID=58631363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080147 WO2017072838A1 (en) 2015-10-26 2015-10-26 Optical-scanning-type observation device and method for controlling optical-scanning-type observation device

Country Status (2)

Country Link
JP (1) JPWO2017072838A1 (en)
WO (1) WO2017072838A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033282A (en) * 2003-07-07 2005-02-03 Olympus Corp Imaging device
JP2011125404A (en) * 2009-12-15 2011-06-30 Olympus Corp Light control device, control device, optical scope, and optical scan type optical device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6975898B2 (en) * 2000-06-19 2005-12-13 University Of Washington Medical imaging, diagnosis, and therapy using a scanning single optical fiber system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033282A (en) * 2003-07-07 2005-02-03 Olympus Corp Imaging device
JP2011125404A (en) * 2009-12-15 2011-06-30 Olympus Corp Light control device, control device, optical scope, and optical scan type optical device

Also Published As

Publication number Publication date
JPWO2017072838A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
JP5371921B2 (en) Endoscope device
JP5467756B2 (en) Endoscope device
US9636005B2 (en) Endoscope system having light intensity adjustment with movable optical system
US9877634B2 (en) Image processing system and image processing apparatus
JP5659315B2 (en) Endoscope device
JP5974206B2 (en) Light source device
JP6373577B2 (en) Imaging control device
EP3446618A1 (en) Endoscope system, processor device, and endoscope system operation method
WO2017072837A1 (en) Optical-scanning-type endoscope device and method for controlling optical-scanning-type endoscope device
WO2017072838A1 (en) Optical-scanning-type observation device and method for controlling optical-scanning-type observation device
US7297921B2 (en) Photodetection circuit and confocal microscope that has it
JP2002102147A (en) Fluorescent image acquisition device
JP2015152372A (en) Position measurement instrument and position measurement method
JP2011024901A (en) Electronic endoscope system and light control signal correcting method
US20200268234A1 (en) Optical-scanning observation device and optical-scanning-observation-device operation method
JP4493453B2 (en) Photodetection circuit and scanning confocal microscope provided with the photodetection circuit
US11426060B2 (en) Optical scanning endoscope device
US20220075062A1 (en) Optical measurement device and optical measurement method
WO2018235227A1 (en) Optical scanning-type observation device and method for adjusting white balance in optical scanning-type observation device
WO2016129010A1 (en) Scanning endoscope device and method for controlling same
US20230041803A1 (en) Processor for endoscope and endoscopic system
WO2018011986A1 (en) Scanning endoscope
JPWO2018087852A1 (en) Optical scanning endoscope apparatus
JP2011019827A (en) Electronic endoscope system and light control gain automatic setting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907202

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547216

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907202

Country of ref document: EP

Kind code of ref document: A1