WO2018011935A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2018011935A1
WO2018011935A1 PCT/JP2016/070779 JP2016070779W WO2018011935A1 WO 2018011935 A1 WO2018011935 A1 WO 2018011935A1 JP 2016070779 W JP2016070779 W JP 2016070779W WO 2018011935 A1 WO2018011935 A1 WO 2018011935A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
unit
condenser
clogging
difference
Prior art date
Application number
PCT/JP2016/070779
Other languages
English (en)
French (fr)
Inventor
久登 森田
佐多 裕士
齊藤 信
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/070779 priority Critical patent/WO2018011935A1/ja
Priority to JP2018527328A priority patent/JP6636155B2/ja
Priority to GB1820289.5A priority patent/GB2566846B/en
Publication of WO2018011935A1 publication Critical patent/WO2018011935A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/04Clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/171Speeds of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/172Speeds of the condenser fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser

Definitions

  • the present invention relates to a refrigeration apparatus, and more particularly to clogging determination of a condenser.
  • an air-cooled fin tube type condenser provided in a refrigeration apparatus is likely to be clogged with long-term use because dust, dust, and the like are likely to adhere to the gaps between the fins.
  • the clogging reduces the heat dissipation performance of the condenser, and the heat dissipation performance of the condenser decreases, leading to a decrease in the performance of the refrigeration apparatus.
  • the refrigeration apparatus described in Patent Literature 1 includes a temperature sensor that detects a condensation temperature and a temperature sensor that detects an outside air temperature, and when the difference between the condensation temperature and the outside air temperature is equal to or greater than a threshold for clogging determination. It is determined that the condenser is clogged. If it is determined that the condenser is clogged, the refrigerant circuit is powered off or an alarm is activated. By doing so, it is possible to determine whether the condenser is clogged regardless of summer or winter.
  • the condensation temperature rises in proportion to the outside air temperature, and the threshold value for clogging determination is uniquely determined.
  • the operating frequency and fan output vary greatly depending on the environment and conditions, and the condensing temperature also varies greatly accordingly. For this reason, the difference between the condensation temperature and the outside air temperature is not stable, and it is determined that clogging has occurred despite the fact that the condenser is almost not clogged. Nevertheless, there is a problem that it is determined that no clogging has occurred.
  • a temperature detection unit such as a thermistor or a temperature sensor is used to detect the condensation temperature and the outside air temperature.
  • a temperature detection unit such as a thermistor or a temperature sensor is used to detect the condensation temperature and the outside air temperature.
  • FIG. 7 is a diagram illustrating an example of the influence of the detection error of the temperature detection unit on the rate of clogging that can be detected.
  • the variation in the condensation temperature data by the temperature detector is 1.50K at the maximum and the variation in the outside temperature data is 1.20K at the maximum
  • the maximum variation at 3 ⁇ when the difference between the condensation temperature and the outside temperature is taken is ⁇ 1. .90K.
  • the difference between the condensation temperature and the outside air temperature is + 2.40K with respect to the difference between the condensation temperature and the outside air temperature when the condenser is clogged at 0%
  • the clogging ratio is 48%.
  • the value that can be detected is + 0.50K to + 4.30K
  • the clogging ratio is 13% to 71%.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration apparatus capable of appropriately determining clogging of a condenser.
  • the refrigeration apparatus includes a compressor, a condenser, a heat source side unit including a receiver, a load side unit including an expansion valve and an evaporator, the heat source side unit, and the load side unit.
  • a compressor the condenser, the expansion valve, a refrigerant circuit that sequentially circulates the refrigerant through the evaporator, a control device that determines clogging of the condenser, and a condensation temperature are detected
  • a first temperature detecting unit that detects the outside air temperature
  • a second temperature detecting unit that detects the outside air temperature
  • the control device detects the condensation temperature and the outside air temperature detected by the first temperature detecting unit and the second temperature detecting unit. Based on the calculated temperature difference, the temperature difference is corrected, and the corrected temperature difference and the threshold A are used to determine whether or not the condenser is clogged. .
  • the temperature difference is calculated based on the condensation temperature and the outside air temperature detected by the first temperature detection unit and the second temperature detection unit, and the temperature difference is corrected and corrected. It is determined that the condenser is clogged using the temperature difference and the threshold value A. Therefore, regardless of the detection errors of the first temperature detection unit and the second temperature detection unit, clogging of the condenser can be properly determined without being detected or causing erroneous detection.
  • FIG. 1 is a refrigerant circuit diagram illustrating a refrigeration apparatus according to Embodiment 1 of the present invention.
  • the refrigeration apparatus according to Embodiment 1 includes a heat source side unit 100 and a load side unit 200.
  • the heat source side unit 100 includes a compressor 1, a condenser 2, and a liquid receiver 3, and corresponds to, for example, a condensing unit.
  • the compressor 1 is a specification driven by an inverter.
  • the condenser 2 includes a fan 6 in the vicinity thereof for promoting heat exchange between the refrigerant in the condenser 2 and the outside air.
  • the liquid receiver 3 is provided on the outlet side of the condenser 2 and stores excess refrigerant.
  • the load side unit 200 includes the expansion valve 4 and the evaporator 5, and corresponds to, for example, a showcase or a unit cooler.
  • the heat source side unit 100 and the load side unit 200 are connected by a local liquid extension pipe 20 and a local gas extension pipe 21. And the refrigerant circuit which circulates a refrigerant
  • the heat source side unit 100 includes a pressure detection unit 7 that detects the pressure on the suction side of the compressor 1, a first temperature detection unit 8 that detects the temperature of the refrigerant on the outlet side of the condenser 2, and the fan 6 to the condenser 2. And a second temperature detection unit 9 that detects the temperature of the air before being fed into.
  • the 1st temperature detection part 8 and the 2nd temperature detection part 9 are a thermistor or a temperature sensor, for example.
  • the pressure detection part 7 is a pressure sensor, for example.
  • the generic name of the first temperature detection unit 8 and the second temperature detection unit 9 is referred to as a temperature detection unit.
  • the pressure detected by the pressure detector 7 is converted and used as an evaporation temperature of the evaporator 5 mounted on the load side unit 200 for clogging determination described later. Further, the temperature detected by the first temperature detection unit 8 is used for clogging determination described later as a condensation temperature, and the temperature detected by the second temperature detection unit 9 is used for clogging determination described later as an outside air temperature. Is done.
  • the condensation temperature is detected by the first temperature detection unit 8 provided at the outlet of the condenser 2, but instead of the first temperature detection unit 8, the discharge of the compressor 1 is performed.
  • a pressure detection unit (not shown) for detecting the pressure on the side may be provided, and the pressure on the discharge side of the compressor 1 detected by the pressure detection unit may be converted into a condensation temperature. Even when the pressure on the discharge side of the compressor 1 is used, the value converted from the pressure to the condensing temperature and the value detected by the second temperature detector 9 at the time of energization before the start of operation are compared, and the difference between the values is different. The error may be corrected so as to eliminate the error. Moreover, what is necessary is just to provide a temperature detection part and a pressure detection part suitably according to the specification of the heat source side unit 100 of a freezing apparatus, and to obtain
  • the refrigeration apparatus includes an inverter board 10 for changing the operating frequency of the compressor 1, a display unit 11 that performs clogging notification, control of the operating frequency of the compressor 1, control of the output of the fan 6, and a pressure detection unit. 7, processing of values detected by the first temperature detection unit 8 and the second temperature detection unit 9, correction for detection errors of the temperature detection unit described later, clogging determination, clogging notification instruction to the display unit 11, etc. And a control device 30 for performing the above.
  • the control device 30 is configured by, for example, a microcomputer, and the display unit 11 is configured by, for example, a 7 segment LED.
  • the inverter board 10, the control device 30, and the display unit 11 may be configured integrally with the heat source side unit 100 or may be provided separately from each other, and can communicate with the heat source side unit 100. It only has to be.
  • FIG. 2 is a functional block diagram of the control device 30 of the refrigeration apparatus according to Embodiment 1 of the present invention.
  • the control device 30 includes a determination unit 31 that performs various determinations, a time measurement unit 32 that measures time, a compressor control unit 33 that controls the compressor 1, and a fan that controls the fan 6.
  • the control unit 34 a pressure data acquisition unit 35 that acquires data related to the pressure detected by the pressure detection unit 7 (hereinafter referred to as pressure data), and the evaporation temperature in the evaporator 5 from the pressure data acquired by the pressure data acquisition unit 35 And a calculation unit 36 for determining a clogging determination threshold A determined according to the evaporation temperature, and data relating to temperatures detected by the first temperature detection unit 8 and the second temperature detection unit 9 (hereinafter referred to as temperature data). ), A correction unit 38 for correcting the temperature data acquired by the temperature data acquisition unit 37 using correction data obtained in advance, and the display unit 11. A display section control section 39, and a. In the first embodiment, the correction data is stored in the correction unit 38, but is not limited thereto, and may be stored in, for example, a storage unit (not shown).
  • the refrigerant in the refrigerant circuit is compressed into a high-temperature and high-pressure superheated gas by the compressor 1 mounted on the heat source side unit 100, and then from the refrigerant superheated gas such as air in the condenser 2. It exchanges heat with a medium having a low temperature and is condensed into a medium-temperature and high-pressure liquid refrigerant.
  • the liquid refrigerant is stored in the liquid receiver 3.
  • the liquid refrigerant exiting the liquid receiver 3 passes through the local liquid extension pipe 20 and is converted into a low-temperature and low-pressure gas-liquid two-phase refrigerant by the expansion valve 4 mounted on the load side unit 200. Then, heat is exchanged with ambient air and water in the evaporator 5 to form a low-pressure superheated gas, which passes through the local gas extension pipe 21 and is sucked into the compressor 1 again.
  • the refrigeration cycle of the refrigerant circuit is configured by performing this series of operations.
  • correction for detection errors of the first temperature detection unit 8 and the second temperature detection unit 9 that are performed in advance when the clogging determination of the condenser 2 described later will be described.
  • the correction for the detection error of the first temperature detection unit 8 and the second temperature detection unit 9 does not have to be performed so that the respective temperature detection units coincide with the true value, and the first temperature detection unit 8 and the second temperature detection unit. It is only necessary that the error value for the true value is the same for each of 9.
  • the timing for calculating the correction data used when correcting the temperature data detected by the first temperature detection unit 8 and the second temperature detection unit 9 is the first temperature detection unit 8 and the second temperature detection unit.
  • the condition in which the value detected in 9 is the same, for example, when energizing before the start of operation is good.
  • the temperature is detected by the first temperature detection unit and the second temperature detection unit.
  • the correction unit 38 automatically corrects one of the temperature data so that the difference becomes zero. Correction data is calculated, and the correction data is stored in itself. Note that once this correction data is calculated, it is not necessary to calculate it thereafter.
  • the temperature data acquisition unit 37 of the heat source side unit 100 acquires the condensation temperature data and the outside air temperature data detected by the first temperature detection unit 8 and the second temperature detection unit 9, and the correction unit 38 condenses the condensation data.
  • the display unit control unit 39 instructs the display unit 11 to notify that the condenser 2 is clogged.
  • FIG. 3 is a diagram illustrating a change in the threshold A for determining clogging of the condenser 2 due to a change in the evaporation temperature.
  • the threshold A used for determining the clogging of the condenser 2 is a condition in which the operation of the refrigeration apparatus is relatively stable, the operation frequency of the compressor 1 is maximum (hereinafter also referred to as the maximum operation frequency), and the fan 6 3 is a value set as a function of the evaporation temperature as shown in FIG. 3 with the maximum output (hereinafter also referred to as the maximum fan output) as a fixed condition.
  • FIG. 4 is a control flow for determining and reporting clogging of the condenser 2 by the refrigeration apparatus according to Embodiment 1 of the present invention.
  • control for determining and notifying the clogging of the condenser 2 by the refrigeration apparatus according to Embodiment 1 of the present invention will be described.
  • the time measuring unit 32 measures a time A after the compressor 1 starts a steady operation (step S1). Then, the determination unit 31 determines whether or not the time A has passed the first reference time (step S2).
  • step S2 If the determination unit 31 determines that the time A has not passed the first reference time (No in step S2), the determination unit 31 returns to step S2 again. On the other hand, when the determination unit 31 determines that the time A has passed the first reference time (Yes in step S2), the determination unit 31 is based on the frequency data of the compressor 1 controlled by the compressor control unit 33. Then, it is determined whether or not the operating frequency of the compressor 1 is the maximum (step S3).
  • Step S3 determines that the operating frequency of the compressor 1 is not the maximum (No in Step S3), the determination unit 31 returns to Step S2 again.
  • the determination unit 31 determines whether the fan 31 is based on the output data of the fan 6 controlled by the fan control unit 34. It is determined whether or not the output of 6 is maximum (step S4).
  • the determination unit 31 determines that the output of the fan 6 is not maximum (No in step S4), the determination unit 31 returns to step S2 again.
  • the pressure data acquisition unit 35 detects the pressure data on the suction side of the compressor 1 detected by the pressure detection unit 7. Is acquired (step S5).
  • the calculation unit 36 obtains the evaporation temperature in the evaporator 5 from the pressure data on the suction side of the compressor 1 acquired by the pressure data acquisition unit 35, and sets a clogging determination threshold A according to the evaporation temperature. (Step S6).
  • the temperature data acquisition unit 37 acquires the condensation temperature data and the outside temperature data detected by the first temperature detection unit 8 and the second temperature detection unit 9, and the correction unit 38 converts the condensation temperature data and the outside temperature data into the condensation temperature data and the outside temperature data.
  • correction is performed using the correction data (step S7).
  • the calculation unit 36 calculates the temperature difference ⁇ T based on the corrected condensing temperature data and outside air temperature data (step S8).
  • the determination part 31 determines whether the value of the temperature difference (DELTA) T calculated
  • step S9 If the determination unit 31 determines that the value of the temperature difference ⁇ T is not greater than the threshold A (No in step S9), the determination unit 31 returns to step S2 again. On the other hand, when the determination unit 31 determines that the value of the temperature difference ⁇ T is larger than the threshold A (Yes in step S9), the time measurement unit 32 measures the time B (step S10). Then, the determination unit 31 determines whether or not the time B has passed the second reference time (step S11).
  • the determination unit 31 determines that the time B has not passed the second reference time (in the case of No in step S11). If the determination unit 31 determines that the time B has not passed the second reference time (in the case of No in step S11), the determination unit 31 returns to step S2. On the other hand, when the determination unit 31 determines that the second reference time has elapsed (in the case of Yes in step S11), the determination unit 31 determines that the condenser 2 is clogged.
  • the display unit control unit 39 notifies the display unit 11 that the condenser 2 is clogged (hereinafter, referred to as “clogging”).
  • An instruction is given to call clogging notification (step S12).
  • the clogging notification includes, for example, turning on an LED lamp provided in the display unit 11 or displaying an abnormal code on a 7-segment LED provided in the display unit 11.
  • the setting of the second reference time in step S11 is appropriately changed according to the environmental operating conditions used, such as the specifications of the heat source unit 100 and the specifications of the load unit 200 connected to the heat source unit 100. be able to. Further, the specific value of each parameter for clogging determination may be determined by a test with an actual machine, and the value of the threshold A may be estimated from the test result with the actual machine and defined as a function of the evaporation temperature. .
  • the refrigeration apparatus corrects the condensation temperature data and the outside air temperature data detected by the first temperature detection unit 8 and the second temperature detection unit 9 using the correction data. Then, the temperature difference ⁇ T is obtained based on the corrected condensing temperature data and the outside air temperature data, and when the temperature difference ⁇ T is larger than the threshold value A, the clogging of the condenser 2 is determined, and the display unit 11 shows the Give a clogging notification instruction. Therefore, regardless of the detection error of the temperature detection unit, it is possible to accurately determine the clogging of the condenser 2 and to notify the occurrence of the clogging without being detected or causing erroneous detection.
  • the clogging of the condenser 2 can be determined more accurately without causing erroneous detection due to the operating conditions. .
  • the clogging of the condenser 2 can be determined for any application such as refrigeration and refrigeration.
  • the correction data is used to correct the condensation temperature data and the outside air temperature data detected by the first temperature detection unit 8 and the second temperature detection unit 9 (step S7 in FIG. 4).
  • the correction data is used to correct the condensation temperature data and the outside air temperature data detected by the first temperature detection unit 8 and the second temperature detection unit 9 (step S7 in FIG. 4).
  • Embodiment 2 of the present invention will be described, but the description overlapping with Embodiment 1 will be omitted, and the same reference numerals will be given to the same or corresponding parts as those in Embodiment 1.
  • Embodiment 1 it is determined that the condenser 2 is clogged when the value of the temperature difference ⁇ T is greater than the threshold value A and the second reference time has elapsed.
  • the clogging determination method of the first embodiment it is necessary to calculate in advance correction data used when correcting the temperature data detected by the temperature detection unit before performing the clogging determination.
  • the clogging determination method of the second embodiment the temperature difference ⁇ T and the temperature difference during initial operation where the clogging of the condenser 2 has not yet occurred (hereinafter referred to as initial temperature difference) ⁇ To The difference is used.
  • the temperature difference ⁇ T can be obtained without using the correction data used when correcting the temperature data detected by the temperature detection unit. Can be corrected using the initial temperature difference ⁇ To. For this reason, the influence of detection errors of the first temperature detection unit 8 and the second temperature detection unit 9 is ignored without calculating in advance correction data used when correcting the temperature data detected by the temperature detection unit. can do.
  • the temperature difference ⁇ T is the difference between the condensation temperature detected by the first temperature detection unit 8 and the outside air temperature detected by the second temperature detection unit 9, and the difference in detection error of each temperature detection unit is If it is large, it greatly affects the rate of clogging that can be detected.
  • the influence of the error can be ignored, and the clogging of the condenser 2 can be determined by an index indicating how much the temperature difference ⁇ T has increased with respect to the initial temperature difference ⁇ To.
  • FIG. 5 is a functional block diagram of the control device 30a of the refrigeration apparatus according to Embodiment 2 of the present invention.
  • the control device 30a according to the second embodiment includes a storage unit 40 that stores a value of the initial temperature difference ⁇ To in which the clogging of the condenser 2 such as a trial operation is 0%. In storing the value of the initial temperature difference ⁇ To in the storage unit 40, it is necessary to match the operating conditions with the conditions for determining clogging.
  • the calculation unit 36 calculates the value of the initial temperature difference ⁇ To from the condensation temperature data and the outside air temperature data acquired by the temperature data acquisition unit 37, and the storage unit 40 stores the value of the initial temperature difference ⁇ To.
  • the process for calculating the value of the initial temperature difference ⁇ To does not need to be performed after it is performed once.
  • FIG. 6 is a control flow for determining and reporting clogging of the condenser 2 by the refrigeration apparatus according to Embodiment 2 of the present invention.
  • Steps S1 to S8 are the same as those in the first embodiment, and thus the description thereof is omitted.
  • the determination unit 31 determines whether the difference between the value of the temperature difference ⁇ T obtained in step S8 and the value of the initial temperature difference ⁇ To acquired in advance and stored in the storage unit 40 is greater than the threshold value A obtained in step S6. Is determined (step S13).
  • step S13 If the determination unit 31 determines that the difference between the value of the temperature difference ⁇ T and the value of the initial temperature difference ⁇ To is not greater than the threshold value A (No in step S13), the determination unit 31 returns to step S2. On the other hand, when the determination unit 31 determines that the difference between the value of the temperature difference ⁇ T and the value of the initial temperature difference ⁇ To is greater than the threshold A (Yes in step S13), the time measurement unit 32 measures the time B. (Step S10). Then, the determination unit 31 determines whether or not the time B has passed the second reference time (step S11).
  • the determination unit 31 determines that the time B has not passed the second reference time (in the case of No in step S11). If the determination unit 31 determines that the time B has not passed the second reference time (in the case of No in step S11), the determination unit 31 returns to step S2. On the other hand, when the determination unit 31 determines that the second reference time has elapsed (in the case of Yes in step S11), the determination unit 31 determines that the condenser 2 is clogged.
  • Step S12 When the determination unit 31 determines that the condenser 2 is clogged, the display unit control unit 39 instructs the display unit 11 to notify that the condenser 2 is clogged. (Step S12).
  • the value of the threshold A is different from that of the first embodiment, but the value of the threshold A is estimated from the test result in the actual machine as in the first embodiment, and is determined as a function of the evaporation temperature. Just do it.
  • the refrigeration apparatus uses the initial temperature difference ⁇ To acquired in advance and clogs the condenser 2 when the difference between the temperature difference ⁇ T and the initial temperature difference ⁇ To is larger than the threshold A.
  • the determination is made and an instruction to notify the clogging of the condenser 2 is given to the display unit 11. For this reason, as in the first embodiment, the clogging of the condenser 2 is accurately determined regardless of the detection error of the temperature detection unit, or the detection of the clogging is informed, without being detected or causing erroneous detection. The effect that it can be obtained.
  • the first temperature detection unit 8 and the second temperature detection unit can be used without calculating in advance correction data used when correcting the temperature data detected by the temperature detection unit. The influence of 9 detection errors can be ignored.
  • the clogging of the condenser 2 can be determined more accurately without causing erroneous detection due to the operating conditions. .
  • the clogging of the condenser 2 can be determined regardless of the usage of the refrigeration apparatus such as refrigeration and refrigeration.
  • Embodiment 3 FIG.
  • Embodiment 3 of the present invention will be described, but the description overlapping with Embodiments 1 and 2 will be omitted, and the same or corresponding parts as those in Embodiments 1 and 2 will be denoted by the same reference numerals. .
  • the threshold A used for the clogging determination described in the first and second embodiments will be described.
  • a process for eliminating the influence of detection errors of the first temperature detection unit 8 and the second temperature detection unit 9 is performed in advance.
  • the threshold value A is set on the premise that the prior processing is performed. For this reason, in the refrigeration apparatus according to Embodiments 1 and 2, there is a possibility that false detection or non-detection may occur when the prior processing is not performed. Therefore, in the refrigeration apparatus according to the third embodiment, a threshold A corresponding to the case where the prior process has not been performed is set.
  • Threshold value A is determined based on two factors: (1) a clogging rate that does not cause abnormal operation, for example, a temperature difference ⁇ T at 30%, and (2) a value that does not cause false detection due to a detection error of the temperature detection unit.
  • a clogging rate that does not cause abnormal operation for example, a temperature difference ⁇ T at 30% may be obtained by an actual machine test.
  • (2) it is necessary to set a value that does not determine that clogging has occurred due to the detection error of the temperature detection unit in the initial state where clogging of the condenser 2 has not occurred, and the maximum detection error + ⁇ (For example, 0.5K).
  • the maximum value of the detection error is a value obtained from the specification value of the temperature detection unit to be used.
  • is preferably a value that causes at least 10% clogging, and may be obtained by an actual machine test in the same manner as in (1).
  • the threshold A must be at least the value of (2). Therefore, the larger one of the values (1) and (2) may be selected as the threshold A used in the control flow for determining clogging of the condenser 2.
  • the process of changing the threshold value A to the value of (1) depending on the presence or absence of the above-described prior process may be automatically performed during the control flow for determining clogging of the condenser 2 or condensation. You may make it carry out manually before performing the control flow which determines the clogging of the device 2.
  • the refrigeration apparatus sets the threshold value A corresponding to the case where the prior process is not performed, so that the detection error of the temperature detection unit in the first and second embodiments can be reduced in advance. Even when the process for eliminating the influence is not performed, it is possible to determine clogging without causing erroneous detection. In addition, by determining the presence / absence of a prior process, it is possible to perform the same clogging determination as in the first and second embodiments when the prior process has been performed. As a result, it is possible to perform the clogging determination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

冷凍装置は、圧縮機、凝縮器、および、受液器を備えた熱源側ユニットと、膨張弁および蒸発器を備えた負荷側ユニットと、熱源側ユニットと負荷側ユニットとが配管で接続され、圧縮機、凝縮器、膨張弁、および、蒸発器に順次冷媒を循環させる冷媒回路と、凝縮器の目詰まり判定を行う制御装置と、凝縮温度を検知する第1温度検知部と、外気温度を検知する第2温度検知部と、を備え、制御装置は、第1温度検知部および第2温度検知部が検知した凝縮温度および外気温度に基づいてそれらの温度差を算出し、該温度差を補正し、補正された温度差と、閾値Aとを用いて凝縮器に目詰まりが発生しているか否かを判定するものである。

Description

冷凍装置
 本発明は、冷凍装置に関し、特に凝縮器の目詰まり判定に関するものである。
 従来、冷凍装置に具備される空冷式フィンチューブタイプの凝縮器は、フィン間の隙間に埃および塵などが付着しやすく、長期間の使用に伴い目詰まりが発生することがある。そして、この目詰まりにより凝縮器の放熱性能が低下し、凝縮器の放熱性能の低下により冷凍装置の性能低下を招き、場合によっては高圧カットによる異常停止を招く問題があった。
 従来、説明書などにより、目視での凝縮器の汚れの確認および定期的なフィンの清掃が促されることが多く、凝縮器の目詰まりの判断はユーザーに委ねられている。例えば、目詰まりが発生していたとしても、エンドユーザーがフィンの汚れを認識していない場合、夏場では圧力の上昇に伴う異常停止によって目詰まりが判明することもある。しかし、冬場の外気温度が低い場合においては、目詰まりが発生していたとしても異常停止に至るほど圧力が上昇せず、電力を必要以上に消費しながら運転を続けることがある。
 そこで、凝縮器に目詰まりが発生した場合、凝縮器の冷却不足によって凝縮温度が外気温度に比べて上昇することを利用して、凝縮器の目詰まりを判定している冷凍装置が提案されている(例えば、特許文献1参照)。
 特許文献1に記載の冷凍装置は、凝縮温度を検知する温度センサと外気温度を検知する温度センサとを備え、凝縮温度と外気温度との差が目詰まり判定用の閾値以上になった場合に、凝縮器に目詰まりが発生していると判定している。そして、凝縮器に目詰まりが発生していると判定した場合、冷媒回路の電源を遮断する、または、警報を作動させる。このようにすることで、夏場、冬場に関係なく、凝縮器の目詰まり判定を行うことができる。
実開平4-20972号公報
 特許文献1に記載されているような従来の冷凍装置では、外気温度に比例して凝縮温度が上昇するとしており、目詰まり判定用の閾値を一意的に定めている。しかし、インバータを備えた冷凍装置の場合、環境および条件によって運転周波数およびファン出力が大きく変動し、これに伴い凝縮温度も大きく変動する。そのため、凝縮温度と外気温度との差が安定せず、凝縮器がほとんど目詰まりしていないにも関わらず目詰まりが発生していると判定したり、逆に目詰まりが発生しているにも関わらず目詰まりが発生していないと判定したりしてしまうという課題があった。
 また、凝縮温度および外気温度を検知するためにサーミスタまたは温度センサなどの温度検知部を用いるが、それら温度検知部には検知誤差があるため、この誤差により目詰まりの発生を検知できる割合が大きく変化する。
 図7は、温度検知部の検知誤差が検知できる目詰まりの割合に及ぼす影響の一例を示す図である。
 例えば、温度検知部による凝縮温度データのバラツキが最大1.50K、外気温度データのバラツキが最大1.20Kとすると、凝縮温度と外気温度の差を取った場合の3σでの最大バラツキは±1.90Kとなる。図7に示すように、凝縮器の目詰まりが0%の時の凝縮温度と外気温度との差に対して、凝縮温度と外気温度との差が+2.40K、目詰まり割合にして48%となったとすると、温度検知部のバラツキを考慮した場合、検知する可能性のある値は、+0.50K~+4.30K、目詰まり割合にして13%~71%となる。
 つまり、温度検知部の検知誤差によっては、目詰まりが発生していないにも関わらず凝縮温度と外気温度との差が目詰まり判定用の閾値より大きくなって目詰まりが発生していると判定したり、逆に目詰まりが発生しているにも関わらず凝縮温度と外気温度との差が目詰まり判定用の閾値よりも大きくならずに目詰まりが発生していないと判定したりしてしまうという課題があった。
 本発明は、以上のような課題を解決するためになされたもので、適正に凝縮器の目詰まりを判定することができる冷凍装置を提供することを目的としている。
 本発明に係る冷凍装置は、圧縮機、凝縮器、および、受液器を備えた熱源側ユニットと、膨張弁および蒸発器を備えた負荷側ユニットと、前記熱源側ユニットと前記負荷側ユニットとが配管で接続され、前記圧縮機、前記凝縮器、前記膨張弁、および、前記蒸発器に順次冷媒を循環させる冷媒回路と、前記凝縮器の目詰まり判定を行う制御装置と、凝縮温度を検知する第1温度検知部と、外気温度を検知する第2温度検知部と、を備え、前記制御装置は、前記第1温度検知部および前記第2温度検知部が検知した凝縮温度および外気温度に基づいてそれらの温度差を算出し、該温度差を補正し、補正された該温度差と、閾値Aとを用いて前記凝縮器に目詰まりが発生しているか否かを判定するものである。
 本発明に係る冷凍装置によれば、第1温度検知部および第2温度検知部が検知した凝縮温度および外気温度に基づいてそれらの温度差を算出し、該温度差を補正し、補正された該温度差と、閾値Aとを用いて凝縮器に目詰まりが発生していると判定する。そのため、第1温度検知部および第2温度検知部の検知誤差に関わらず、検知できない、あるいは誤検知を起こすといったことなく、適正に凝縮器の目詰まりを判定することができる。
本発明の実施の形態1に係る冷凍装置を示す冷媒回路図である。 本発明の実施の形態1に係る冷凍装置の制御装置の機能ブロック図である。 蒸発温度の変化に伴う凝縮器の目詰まりを判定する閾値の変化を示す図である。 本発明の実施の形態1に係る冷凍装置による凝縮器の目詰まりを判定し報知する制御フローである。 本発明の実施の形態2に係る冷凍装置の制御装置の機能ブロック図である。 本発明の実施の形態2に係る冷凍装置による凝縮器の目詰まりを判定し報知する制御フローである。 温度検知部の検知誤差が検知できる目詰まりの割合に及ぼす影響の一例を示す図である。
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍装置を示す冷媒回路図である。
 図1に示すように、本実施の形態1に係る冷凍装置は、熱源側ユニット100と負荷側ユニット200とを備えている。
 熱源側ユニット100は、圧縮機1、凝縮器2、および、受液器3を備えており、例えば、コンデンシングユニットが該当する。なお、圧縮機1は、インバータ駆動する仕様である。また、凝縮器2は、凝縮器2内の冷媒と外気との間における熱交換を促進するためのファン6をその近傍に備えている。また、受液器3は凝縮器2の出口側に設けられており、余剰冷媒を溜めておくものである。
 負荷側ユニット200は、膨張弁4および蒸発器5を備えており、例えば、ショーケース、ユニットクーラーが該当する。
 熱源側ユニット100と負荷側ユニット200とは、現地液延長配管20および現地ガス延長配管21により接続されている。そして、圧縮機1、凝縮器2、受液器3、膨張弁4、および、蒸発器5に順次冷媒を循環させる冷媒回路が構成されている。
 熱源側ユニット100は、圧縮機1の吸入側の圧力を検知する圧力検知部7と、凝縮器2の出口側の冷媒の温度を検知する第1温度検知部8と、ファン6から凝縮器2へ送り込まれる前の空気の温度を検知する第2温度検知部9とを備えている。なお、第1温度検知部8および第2温度検知部9は、例えばサーミスタまたは温度センサである。また、圧力検知部7は、例えば圧力センサである。また、以下において、第1温度検知部8および第2温度検知部9の総称を温度検知部とする。
 圧力検知部7により検知された圧力は、換算されて、負荷側ユニット200に搭載されている蒸発器5の蒸発温度として、後述する目詰まり判定に使用される。また、第1温度検知部8により検知された温度は、凝縮温度として後述する目詰まり判定に使用され、第2温度検知部9により検知された温度は、外気温度として後述する目詰まり判定に使用される。
 なお、本実施の形態1では、凝縮温度を凝縮器2の出口に設けられた第1温度検知部8にて検知すると説明したが、第1温度検知部8の代わりに、圧縮機1の吐出側の圧力を検知する圧力検知部(図示せず)を設け、その圧力検知部により検知された圧縮機1の吐出側の圧力を凝縮温度に換算して求めてもよい。圧縮機1の吐出側の圧力を用いる場合でも、運転開始前の通電時などにおいて圧力から凝縮温度に換算した値と第2温度検知部9で検知した値とを比較し、それぞれの値に差がなくなるよう誤差の補正を行えばよい。また、冷凍装置の熱源側ユニット100の仕様に応じて温度検知部および圧力検知部を適宜設け、その設けられた温度検知部および圧力検知部に応じて凝縮温度を求めるようにすればよい。
 冷凍装置は、圧縮機1の運転周波数を変更するためのインバータ基板10と、目詰まり報知などを行う表示部11と、圧縮機1の運転周波数の制御、ファン6の出力の制御、圧力検知部7と第1温度検知部8と第2温度検知部9とで検知した値の処理、後述する温度検知部の検知誤差に対する補正、目詰まり判定、および、表示部11に対する目詰まり報知の指示などを行う制御装置30と、を備えている。
 制御装置30は、例えばマイコンなどから構成されており、表示部11は、例えば7セグメントLEDなどにより構成される。なお、インバータ基板10、制御装置30、および、表示部11は、熱源側ユニット100と一体に構成されていても、別体として設けられていてもよく、熱源側ユニット100と通信可能な状態になっていればよい。
 図2は、本発明の実施の形態1に係る冷凍装置の制御装置30の機能ブロック図である。
 図2に示すように、制御装置30は、各種判定を行う判定部31と、時間を計測する時間計測部32と、圧縮機1を制御する圧縮機制御部33と、ファン6を制御するファン制御部34と、圧力検知部7が検知した圧力に関するデータ(以下、圧力データと称する)を取得する圧力データ取得部35と、圧力データ取得部35が取得した圧力データから蒸発器5における蒸発温度を求め、その蒸発温度に応じて決まる目詰まり判定用の閾値Aを求める算出部36と、第1温度検知部8および第2温度検知部9が検知した温度に関するデータ(以下、温度データと称する)を取得する温度データ取得部37と、温度データ取得部37が取得した温度データに対してあらかじめ求めた補正データを用いて補正を行う補正部38と、表示部11を制御する表示部制御部39と、を備えている。なお、本実施の形態1では、上記の補正データは補正部38に記憶されるものとするが、それに限定されず、例えば記憶部(図示せず)に記憶されるようにしてもよい。
 次に、本実施の形態1に係る冷凍装置の動作について説明する。
 図1に示すように、冷媒回路内の冷媒は、熱源側ユニット100に搭載された圧縮機1にて高温高圧の過熱ガスに圧縮された後、凝縮器2にて空気などの冷媒過熱ガスより温度が低い媒体と熱交換を行い、中温高圧の液冷媒に凝縮される。その液冷媒は、受液器3に溜められる。受液器3を出た液冷媒は、現地液延長配管20を通り、負荷側ユニット200に搭載された膨張弁4により低温低圧の気液二相冷媒とされる。そして、蒸発器5内で周囲の空気および水と熱交換され、低圧の過熱ガスの状態にされ、現地ガス延長配管21を通り、再度圧縮機1に吸入される。この一連の動作を行い冷媒回路の冷凍サイクルが構成されている。
 次に、後述する凝縮器2の目詰まり判定を行うにあたり、事前に行われる第1温度検知部8および第2温度検知部9の検知誤差に対する補正について説明する。
 第1温度検知部8および第2温度検知部9の検知誤差に対する補正は、それぞれの温度検知部を真値と一致するように行う必要はなく、第1温度検知部8および第2温度検知部9のそれぞれで真値に対する誤差の値が同一となればよい。
 そのため、第1温度検知部8および第2温度検知部9が検知した温度データに対して補正を行う際に用いられる補正データを算出するタイミングは、第1温度検知部8および第2温度検知部9で検知する値が同様となる条件、例えば運転開始前の通電時などがよい。運転開始前の通電時において、第1温度検知部および第2温度検知部で温度を検知する。そして、補正部38は、第1温度検知部8と第2温度検知部9とで検知した値に差があれば、その差が0となるようにどちらか一方の温度データを自動補正するための補正データを算出し、その補正データを自身に記憶する。なお、この補正データは、一度算出すればそれ以降は算出する必要がない。
 次に、本実施の形態1に係る冷凍装置が、凝縮器2の目詰まりが発生しているか否かを判定し、目詰まりの発生を報知する制御について説明する。
 具体的には、熱源側ユニット100の温度データ取得部37が、第1温度検知部8および第2温度検知部9が検知した凝縮温度データおよび外気温度データを取得し、補正部38は、凝縮温度データおよび外気温度データに対して、あらかじめ算出した補正データにより補正を行い、判定部31は、温度差ΔT(=凝縮温度-外気温度)が、ある所定の値に設定された閾値Aより大きくなった場合に凝縮器2に目詰まりが発生していると判定する。そして、凝縮器2に目詰まりが発生していると判定した場合、表示部制御部39は、表示部11に凝縮器2が目詰まりしたことを報知するよう指示を出す。
 図3は、蒸発温度の変化に伴う凝縮器2の目詰まりを判定する閾値Aの変化を示す図である。
 凝縮器2の目詰まり判定用に用いられる閾値Aは、冷凍装置の運転が比較的安定する条件である、圧縮機1の運転周波数が最大(以下、最大運転周波数とも称する)、かつ、ファン6の出力が最大(以下、最大ファン出力とも称する)、を固定条件として、図3に示すような蒸発温度の関数として設定された値である。
 図4は、本発明の実施の形態1に係る冷凍装置による凝縮器2の目詰まりを判定し報知する制御フローである。
 以下、本発明の実施の形態1に係る冷凍装置による凝縮器2の目詰まりを判定し報知する制御について説明する。
 時間計測部32は、圧縮機1が定常運転を開始してからの時間Aを計測する(ステップS1)。そして、判定部31は、時間Aが第1基準時間経過しているか否かを判定する(ステップS2)。
 判定部31は、時間Aが第1基準時間経過していないと判定した場合は(ステップS2のNo)、再度ステップS2に戻る。
 一方、判定部31は、時間Aが第1基準時間経過したと判定した場合は(ステップS2のYes)、判定部31は、圧縮機制御部33が制御する圧縮機1の周波数データに基づいて、圧縮機1の運転周波数が最大であるか否かを判定する(ステップS3)。
 判定部31は、圧縮機1の運転周波数が最大でないと判定した場合は(ステップS3のNo)、再度ステップS2に戻る。
 一方、判定部31は、圧縮機1の運転周波数が最大であると判定した場合は(ステップS3のYes)、ファン制御部34が制御するファン6の出力データに基づいて判定部31は、ファン6の出力が最大であるか否かを判定する(ステップS4)。
 判定部31は、ファン6の出力が最大でないと判定した場合は(ステップS4のNo)、再度ステップS2に戻る。
 一方、判定部31は、ファン6の出力が最大であると判定した場合は(ステップS4のYes)、圧力データ取得部35は、圧力検知部7が検知した圧縮機1の吸入側の圧力データを取得する(ステップS5)。そして、算出部36は、圧力データ取得部35が取得した圧縮機1の吸入側の圧力データから蒸発器5における蒸発温度を求め、その蒸発温度に応じて目詰まり判定用の閾値Aを設定する(ステップS6)。
 その後、温度データ取得部37は、第1温度検知部8および第2温度検知部9が検知した凝縮温度データおよび外気温度データを取得し、補正部38は、それら凝縮温度データおよび外気温度データに対して補正データを用いて補正を行う(ステップS7)。そして、算出部36は、補正後の凝縮温度データおよび外気温度データに基づいて温度差ΔTを算出する(ステップS8)。
 そして、判定部31は、ステップS8で求めた温度差ΔTの値が、ステップS6で求めた閾値Aより大きいか否かを判定する(ステップS9)。
 判定部31は、温度差ΔTの値が閾値Aより大きくないと判定した場合は(ステップS9のNo)、再度ステップS2に戻る。
 一方、判定部31は、温度差ΔTの値が閾値Aより大きいと判定した場合は(ステップS9のYes)、時間計測部32は、時間Bを計測する(ステップS10)。そして、判定部31は、時間Bが第2基準時間経過しているか否かを判定する(ステップS11)。
 判定部31は、時間Bが第2基準時間経過していないと判定した場合は(ステップS11のNoの場合)、再度ステップS2に戻る。
 一方、判定部31は、時間Bが第2基準時間経過したと判定した場合は(ステップS11のYesの場合)、凝縮器2に目詰まりが発生していると判定する。
 そして、判定部31が凝縮器2に目詰まりが発生していると判定した場合、表示部制御部39は表示部11に、凝縮器2に目詰まりが発生していることを報知(以下、目詰まり報知と称する)するよう指示を出す(ステップS12)。目詰まり報知は、例えば、表示部11に設けられたLEDランプを点灯させる、あるいは表示部11に設けられた7セグメントLEDに異常コードを表示させる、などがある。
 なお、ステップS11の第2基準時間は、熱源側ユニット100の仕様、熱源側ユニット100と接続されている負荷側ユニット200の仕様など、使用される環境運転条件などに応じて設定を適宜変更することができる。また、目詰まり判定用の各パラメータの具体的な値は、実機での試験により決定すればよく、閾値Aの値は、実機での試験結果より推定し、蒸発温度の関数として定めればよい。
 以上より、本実施の形態1に係る冷凍装置は、第1温度検知部8および第2温度検知部9が検知した凝縮温度データおよび外気温度データに対して、補正データを用いて補正を行う。そして、補正後の凝縮温度データおよび外気温度データに基づいて温度差ΔTを求め、温度差ΔTが閾値Aより大きい場合に凝縮器2の目詰まりを判定し、表示部11に凝縮器2の目詰まりの報知の指示を出す。そのため、温度検知部の検知誤差に関わらず、検知できない、あるいは誤検知を起こすといったことなく、正確に凝縮器2の目詰まりを判定し、目詰まりの発生を報知できるという効果が得られる。
 また、運転が比較的安定する最大運転周波数かつ最大ファン出力時にのみ目詰まり判定を行うことにより、運転条件による誤検知を起こすことなく、より正確に凝縮器2の目詰まりを判定することができる。
 また、蒸発温度に応じて目詰まりを判定する閾値Aを変更することにより、冷凍装置が冷蔵用途および冷凍用途など、どのような用途でも凝縮器2の目詰まり判定が可能となる。
 なお、本実施の形態1では、第1温度検知部8および第2温度検知部9が検知した凝縮温度データおよび外気温度データに対して補正データを用いて補正を行う(図4のステップS7)態様としたが、それに限定されず、第1温度検知部8および第2温度検知部9に対して事前に補正するようにしてもよい。そうすることで第1温度検知部8および第2温度検知部9自体の誤差がなくなるため、以降の補正は不要となり、その場合はステップS7の処理が不要となる。
 実施の形態2.
 以下、本発明の実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 実施の形態1では、温度差ΔTの値が閾値Aより大きくなって第2基準時間経過した場合に凝縮器2に目詰まりが発生していると判定している。この実施の形態1の目詰まり判定方法では、温度検知部が検知した温度データに対して補正を行う際に用いられる補正データを、目詰まり判定を行う前にあらかじめ算出する必要がある。これに対し、本実施の形態2の目詰まり判定方法では、温度差ΔTと、まだ凝縮器2の目詰まりが発生していない初期運転時の温度差(以下、初期温度差と称する)ΔToとの差を用いる。
 この本実施の形態2の目詰まり判定方法では、実施の形態1のように、温度検知部が検知した温度データに対して補正を行う際に用いられる補正データを用いなくても、温度差ΔTに対して初期温度差ΔToを用いて補正を行うことができる。そのため、温度検知部が検知した温度データに対して補正を行う際に用いられる補正データをあらかじめ算出することなしに、第1温度検知部8および第2温度検知部9の検知誤差の影響を無視することができる。
 温度差ΔTは、第1温度検知部8にて検知される凝縮温度と第2温度検知部9にて検知される外気温度との差であり、それぞれの温度検知部がもつ検知誤差の差が大きければ、検知できる目詰まりの割合に大きな影響を与える。これに対し、目詰まり判定を判定時の温度差ΔTと目詰まり割合が0%である初期温度差ΔTo(=初期運転時の凝縮温度-初期運転時の外気温度)との差を用いて行うようにすれば、温度差ΔT、初期温度差ΔToそれぞれにおける誤差は同一となる。そのため、誤差の影響を無視でき、初期温度差ΔToに対して温度差ΔTがどれだけ増加したかという指標で凝縮器2の目詰まりを判定することが可能となる。ただし、初期温度差ΔToを、目詰まり判定を行う前にあらかじめ取得しておく必要がある。
 図5は、本発明の実施の形態2に係る冷凍装置の制御装置30aの機能ブロック図である。
 本実施の形態2に係る制御装置30aは、例えば試運転などの凝縮器2の目詰まりが0%の状態である初期温度差ΔToの値を記憶する記憶部40を備えている。初期温度差ΔToの値を記憶部40に記憶させるにあたっては、運転条件を目詰まり判定時の条件に合せる必要がる。つまり、試運転などで初期温度差ΔToの値を記憶する場合に、一時的に最大運転周波数かつ最大ファン出力として運転させ、温度データ取得部37が、この時の凝縮温度データおよび外気温度データを取得し、算出部36が、温度データ取得部37が取得した凝縮温度データと外気温度データとから初期温度差ΔToの値を算出し、記憶部40が、初期温度差ΔToの値を記憶する。なお、初期温度差ΔToの値を算出する処理は、一度行えばそれ以降は行う必要がない。
 図6は、本発明の実施の形態2に係る冷凍装置による凝縮器2の目詰まりを判定し報知する制御フローである。
 以下、本発明の実施の形態2に係る冷凍装置による凝縮器2の目詰まりを判定し報知する制御について説明する。
 なお、ステップS1~S8については実施の形態1と同様であるため説明を省略する。
 判定部31は、ステップS8で求めた温度差ΔTの値と、あらかじめ取得され記憶部40に記憶された初期温度差ΔToの値との差が、ステップS6で求めた閾値Aより大きいか否かを判定する(ステップS13)。
 判定部31は、温度差ΔTの値と初期温度差ΔToの値との差が閾値Aより大きくないと判定した場合は(ステップS13のNo)、再度ステップS2に戻る。
 一方、判定部31は、温度差ΔTの値と初期温度差ΔToの値との差が閾値Aより大きいと判定した場合は(ステップS13のYes)、時間計測部32は、時間Bを計測する(ステップS10)。そして、判定部31は、時間Bが第2基準時間経過しているか否かを判定する(ステップS11)。
 判定部31は、時間Bが第2基準時間経過していないと判定した場合は(ステップS11のNoの場合)、再度ステップS2に戻る。
 一方、判定部31は、時間Bが第2基準時間経過したと判定した場合は(ステップS11のYesの場合)、凝縮器2に目詰まりが発生していると判定する。
 そして、判定部31が凝縮器2に目詰まりが発生していると判定した場合、表示部制御部39は表示部11に、凝縮器2に目詰まりが発生していることを報知するよう指示を出す(ステップS12)。
 なお、本実施の形態2では、閾値Aの値が実施の形態1とは異なるが、閾値Aの値は実施の形態1と同様に実機での試験結果より推定し、蒸発温度の関数として定めればよい。
 以上より、本実施の形態2に係る冷凍装置は、あらかじめ取得した初期温度差ΔToを用いて、温度差ΔTと初期温度差ΔToとの差が閾値Aより大きい場合に凝縮器2の目詰まりを判定し、表示部11に凝縮器2の目詰まりの報知の指示を出す。そのため、実施の形態1と同様に、温度検知部の検知誤差に関わらず、検知できない、あるいは誤検知を起こすといったことなく、正確に凝縮器2の目詰まりを判定し、目詰まりの発生を報知できるという効果が得られる。
 また、実施の形態1のように、温度検知部が検知した温度データに対して補正を行う際に用いられる補正データをあらかじめ算出することなしに、第1温度検知部8および第2温度検知部9の検知誤差の影響を無視することができる。
 また、運転が比較的安定する最大運転周波数かつ最大ファン出力時にのみ目詰まり判定を行うことにより、運転条件による誤検知を起こすことなく、より正確に凝縮器2の目詰まりを判定することができる。
 また、蒸発温度に応じて目詰まり判定用の閾値Aを変更することにより、冷凍装置が冷蔵用途および冷凍用途などのどのような用途でも、凝縮器2の目詰まり判定が可能となる。
 実施の形態3.
 以下、本発明の実施の形態3について説明するが、実施の形態1および2と重複するものについては説明を省略し、実施の形態1および2と同じ部分または相当する部分には同じ符号を付す。
 本実施の形態3では、実施の形態1および2で説明した目詰まり判定用に用いられる閾値Aについて説明する。実施の形態1および2に係る冷凍装置では、目詰まり判定を行う前に、事前に第1温度検知部8および第2温度検知部9の検知誤差の影響を無くすための処理を行っており、閾値Aはその事前の処理が行われる前提で設定されている。そのため、実施の形態1および2に係る冷凍装置では、事前の処理が行われなかった場合に、誤検知または不検知を起こす可能性がある。そこで、本実施の形態3に係る冷凍装置では、事前の処理が行われなかった場合に対応した閾値Aを設定する。
 閾値Aは、(1)運転異常とならない目詰まり率、例えば30%での温度差ΔT、および(2)温度検知部の検知誤差によって誤検知を起こさない値、の2つより決定される。(1)については、運転異常とならない目詰まり率、例えば30%での温度差ΔTを実機試験により取得すればよい。(2)については、凝縮器2の目詰まりが発生していない初期状態に温度検知部の検知誤差によって目詰まりが発生していると判定しない値にする必要があり、検知誤差の最大値+α(例えば0.5K)に設定される。そうすることで、仮に検知誤差が最大である温度検知部を使用していたとしても、α(例えば0.5K)分は目詰まりしない限り、凝縮器2の目詰まりが発生したと判定されないこととなるため、初期状態において誤検知を起こすことはない。
 なお、検知誤差の最大値は使用する温度検知部の仕様値から得られる値である。αは少なくとも10%目詰まりする値であることが望ましく、(1)同様に実機試験により取得すればよい。
 上記より、誤検知が起きる可能性を考慮すると、閾値Aは少なくとも(2)の値以上とする必要がある。したがって、凝縮器2の目詰まりを判定する制御フローに用いる閾値Aとしては、(1)、(2)の値のいずれか大きい方を選択すればよい。
 また、凝縮器2の目詰まりを判定する制御フローの前に、事前に温度検知部の検知誤差をなくすための処理が行われていたかどうかを判定し、その処理が行われていた場合は検知誤差による誤検知が起きることがない。そのため、閾値Aを(1)の値に固定することで、事前の処理の有無に対応した目詰まり判定を行うことができる。
 上記の事前の処理の有無により、閾値Aを(1)の値への固定に変更する処理は、凝縮器2の目詰まりを判定する制御フロー中に自動で行うようにしてもよいし、凝縮器2の目詰まりを判定する制御フローを行う前に手動で行うようにしてもよい。
 以上より、本実施の形態3に係る冷凍装置は、事前の処理が行われなかった場合に対応した閾値Aを設定することにより、実施の形態1および2において事前に温度検知部の検知誤差の影響を無くす処理が行われていなかった場合においても、誤検知を起こすことなく目詰まりの判定が可能となる。また、事前の処理の有無を判定することにより、事前の処理が行われていた場合に、実施の形態1および2と同様の目詰まり判定を行うことができるため、事前の操作の有無に対応して目詰まり判定を行うことができるという効果が得られる。
 1 圧縮機、2 凝縮器、3 受液器、4 膨張弁、5 蒸発器、6 ファン、7 圧力検知部、8 第1温度検知部、9 第2温度検知部、10 インバータ基板、11 表示部、20 現地液延長配管、21 現地ガス延長配管、30 制御装置、30a 制御装置、31 判定部、32 時間計測部、33 圧縮機制御部、34 ファン制御部、35 圧力データ取得部、36 算出部、37 温度データ取得部、38 補正部、39 表示部制御部、40 記憶部、100 熱源側ユニット、200 負荷側ユニット。

Claims (10)

  1.  圧縮機、凝縮器、および、受液器を備えた熱源側ユニットと、
     膨張弁および蒸発器を備えた負荷側ユニットと、
     前記熱源側ユニットと前記負荷側ユニットとが配管で接続され、前記圧縮機、前記凝縮器、前記膨張弁、および、前記蒸発器に順次冷媒を循環させる冷媒回路と、
     前記凝縮器の目詰まり判定を行う制御装置と、
     凝縮温度を検知する第1温度検知部と、
     外気温度を検知する第2温度検知部と、を備え、
     前記制御装置は、
     前記第1温度検知部および前記第2温度検知部が検知した凝縮温度および外気温度に基づいてそれらの温度差を算出し、該温度差を補正し、補正された該温度差と、閾値Aとを用いて前記凝縮器に目詰まりが発生しているか否かを判定するものである
     冷凍装置。
  2.  前記制御装置は、
     前記第1温度検知部および前記第2温度検知部が検知した凝縮温度および外気温度に関するデータを取得する温度データ取得部と、
     前記温度データ取得部が取得した凝縮温度および外気温度に関するデータに対してあらかじめ求めた補正データを用いて補正を行う補正部と、
     前記補正部により補正された、凝縮温度と、外気温度と、の差である温度差を算出する算出部と、
     該温度差が閾値Aより大きい場合に前記凝縮器に目詰まりが発生していると判定する判定部と、を備えた
     請求項1に記載の冷凍装置。
  3.  前記制御装置は、
     前記第1温度検知部および前記第2温度検知部が検知した凝縮温度および外気温度に関するデータを取得する温度データ取得部と、
     前記温度データ取得部が取得した、凝縮温度と、外気温度と、の差である温度差を算出する算出部と、
     前記凝縮器の目詰まりが発生していない時に、前記第1温度検知部が検知した凝縮温度と、前記第2温度検知部が検知した外気温度と、の差である初期温度差を記憶する記憶部と、
     該温度差と初期温度差との差が閾値Aより大きい場合に前記凝縮器に目詰まりが発生していると判定する判定部と、を備えた
     請求項1に記載の冷凍装置。
  4.  前記凝縮器の目詰まりの報知を行う表示部を備え、
     前記制御装置は、
     前記判定部が前記凝縮器に目詰まりが発生していると判定した場合、前記表示部に前記凝縮器の目詰まりの報知の指示を出す表示部制御部を備えた
     請求項2または3に記載の冷凍装置。
  5.  前記圧縮機の吸入側の圧力を検知する圧力検知部を備え、
     前記制御装置は、
     前記圧力検知部が検知した前記圧縮機の吸入側の圧力データを取得する圧力データ取得部を備え、
     前記算出部は、前記圧縮機の吸入側の圧力から蒸発温度を求め、該蒸発温度に応じて前記閾値Aを設定するものである
     請求項2~4のいずれか一項に記載の冷凍装置。
  6.  前記凝縮器はファンを備え、
     前記閾値Aは、
     前記第1温度検知部および前記第2温度検知部の検知誤差の最大値より大きい値、および、運転異常とならない目詰まり率での前記凝縮温度と前記外気温度との差のうち、いずれか大きい方の値が設定される
     請求項1~5のいずれか一項に記載の冷凍装置。
  7.  前記算出部は、前記目詰まり率が30%での前記凝縮温度と前記外気温度との差は、前記蒸発温度に応じて前記閾値Aを設定する
     請求項5に従属する請求項6に記載の冷凍装置。
  8.  前記判定部は、
     前記圧縮機の運転周波数が最大である場合に前記目詰まり判定を行うものである
     請求項2~7のいずれか一項に記載の冷凍装置。
  9.  前記判定部は、
     前記ファンの出力が最大である場合に前記目詰まり判定を行うものである
     請求項6に従属する請求項2~7のいずれか一項に記載の冷凍装置。
  10.  前記判定部は、
     前記圧縮機の運転周波数が最大であり、かつ、前記ファンの出力が最大である場合に、前記目詰まり判定を行うものである
     請求項6に従属する請求項2~7のいずれか一項に記載の冷凍装置。
PCT/JP2016/070779 2016-07-14 2016-07-14 冷凍装置 WO2018011935A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/070779 WO2018011935A1 (ja) 2016-07-14 2016-07-14 冷凍装置
JP2018527328A JP6636155B2 (ja) 2016-07-14 2016-07-14 冷凍装置
GB1820289.5A GB2566846B (en) 2016-07-14 2016-07-14 Refrigeration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070779 WO2018011935A1 (ja) 2016-07-14 2016-07-14 冷凍装置

Publications (1)

Publication Number Publication Date
WO2018011935A1 true WO2018011935A1 (ja) 2018-01-18

Family

ID=60952852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070779 WO2018011935A1 (ja) 2016-07-14 2016-07-14 冷凍装置

Country Status (3)

Country Link
JP (1) JP6636155B2 (ja)
GB (1) GB2566846B (ja)
WO (1) WO2018011935A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115111791A (zh) * 2022-06-24 2022-09-27 深圳市酷凌时代科技有限公司 冷水机、冷凝器的积灰检测方法、装置及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269068A (ja) * 1985-09-20 1987-03-30 株式会社東芝 熱源装置
JPH02263074A (ja) * 1989-03-31 1990-10-25 Mitsubishi Electric Corp 冷凍・空調機の運転状態監視装置
JPH0420972A (ja) * 1990-05-16 1992-01-24 Mitsui Toatsu Chem Inc 電子写真用感光体
JP2008202911A (ja) * 2007-02-22 2008-09-04 Mitsubishi Heavy Ind Ltd 冷凍装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420972U (ja) * 1990-06-12 1992-02-21
JP3399663B2 (ja) * 1994-10-24 2003-04-21 東京瓦斯株式会社 吸収式冷凍機を用いた空調装置
JPH11248300A (ja) * 1998-03-04 1999-09-14 Sanyo Electric Co Ltd 空気調和装置
JP2002267310A (ja) * 2001-03-08 2002-09-18 Matsushita Refrig Co Ltd 冷蔵庫の制御装置
JP2009030839A (ja) * 2007-07-25 2009-02-12 Daikin Ind Ltd 空気調和機
JP2013238354A (ja) * 2012-05-15 2013-11-28 Mitsubishi Electric Corp フィンチューブ型熱交換器及びこの熱交換器を用いた冷凍空調装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269068A (ja) * 1985-09-20 1987-03-30 株式会社東芝 熱源装置
JPH02263074A (ja) * 1989-03-31 1990-10-25 Mitsubishi Electric Corp 冷凍・空調機の運転状態監視装置
JPH0420972A (ja) * 1990-05-16 1992-01-24 Mitsui Toatsu Chem Inc 電子写真用感光体
JP2008202911A (ja) * 2007-02-22 2008-09-04 Mitsubishi Heavy Ind Ltd 冷凍装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115111791A (zh) * 2022-06-24 2022-09-27 深圳市酷凌时代科技有限公司 冷水机、冷凝器的积灰检测方法、装置及可读存储介质
CN115111791B (zh) * 2022-06-24 2024-02-09 深圳市酷凌时代科技有限公司 冷水机、冷凝器的积灰检测方法、装置及可读存储介质

Also Published As

Publication number Publication date
JPWO2018011935A1 (ja) 2019-02-14
GB2566846B (en) 2021-05-12
GB201820289D0 (en) 2019-01-30
GB2566846A (en) 2019-03-27
JP6636155B2 (ja) 2020-01-29

Similar Documents

Publication Publication Date Title
US11131490B2 (en) Refrigeration device having condenser unit connected to compressor unit with on-site pipe interposed therebetween and remote from the compressor unit
CN204787070U (zh) 制冷空调装置
US10139815B2 (en) Chiller control device, chiller, and chiller diagnostic method
JP6444577B1 (ja) 空気調和機
CN107208953B (zh) 制冷装置
CN110375466B (zh) 用于空气源热泵系统的制冷剂泄露的检测装置和方法
JP2007255818A (ja) 冷凍サイクル装置の診断装置並びにその診断装置を有する熱源側ユニット、利用側ユニット及び冷凍サイクル装置
JP6628833B2 (ja) 冷凍サイクル装置
JP2016084969A (ja) 空調システムの制御装置、空調システム、及び空調システムの異常判定方法
JP2012159251A (ja) 冷凍サイクル装置、流量算定方法及びプログラム
JP2005257219A (ja) 空気調和機
JP2014089007A (ja) 空気調和装置
CN110836519B (zh) 一种空调器冷媒泄漏检测方法及检测系统
GB2577445A (en) Air conditioning device
WO2018155513A1 (ja) 組成異常検知装置及び組成異常検知方法
WO2018011935A1 (ja) 冷凍装置
CN203687479U (zh) 空调器冷媒异常节流的监控装置及空调器
CN106403169B (zh) 一种缺氟保护方法、装置和空调
JP2009145006A (ja) 空気調和機
CN113175737B (zh) 计算空调器能力能效的方法、空调器和存储介质
JPH07208838A (ja) 空気調和機のガスロー検知装置
JP4026583B2 (ja) 空気調和機
KR100779537B1 (ko) 공기조화기의 냉매 부족 검출방법
JP2020125885A (ja) 冷凍サイクル装置
JP6289727B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527328

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201820289

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160714

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908837

Country of ref document: EP

Kind code of ref document: A1