WO2018011891A1 - データ収集解析システム、データ収集解析方法及びプログラム - Google Patents

データ収集解析システム、データ収集解析方法及びプログラム Download PDF

Info

Publication number
WO2018011891A1
WO2018011891A1 PCT/JP2016/070569 JP2016070569W WO2018011891A1 WO 2018011891 A1 WO2018011891 A1 WO 2018011891A1 JP 2016070569 W JP2016070569 W JP 2016070569W WO 2018011891 A1 WO2018011891 A1 WO 2018011891A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormality
data collection
analysis
detection
analysis system
Prior art date
Application number
PCT/JP2016/070569
Other languages
English (en)
French (fr)
Inventor
青柳和洋
Original Assignee
株式会社Secual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Secual filed Critical 株式会社Secual
Priority to PCT/JP2016/070569 priority Critical patent/WO2018011891A1/ja
Priority to JP2017525436A priority patent/JP6319613B1/ja
Priority to TW106120391A priority patent/TWI670692B/zh
Publication of WO2018011891A1 publication Critical patent/WO2018011891A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/02Mechanical actuation
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems

Definitions

  • the present invention relates to a data collection and analysis system and data collection and analysis method for detecting an event occurring in a measurement target, collecting the detection results, and analyzing the detection result with an analyzer, and a program that causes a computer to function as an analyzer.
  • Japanese Patent Application Laid-Open No. 2010-198451 and Japanese Patent Application Laid-Open No. 2013-125469 disclose that when an abnormal event occurs in a measurement target, the monitoring result is notified.
  • JP-A-2010-198451 when one mobile phone is operated in a danger area for crime prevention and a crime prevention alarm is activated, communication is performed between the one mobile phone and not via the Internet or a server. It is disclosed to transmit crime prevention information of a danger area for crime prevention by short distance wireless communication to other established mobile phones.
  • an opening abnormality detection device installed in the vicinity of the opening of a building detects an intrusion of an intruder etc., and the control device determines the presence or absence of an abnormality in the opening. It is disclosed to issue a signal notifying an abnormality to a monitoring device installed in a security company through a communication network.
  • the term “measurement target” refers to a target to be monitored in a monitoring target area such as a building, land, office, etc. For example, an opening such as a window or a door of a building, or a boundary of land , There is a storage box (cardboard box) of furniture and documents in the office.
  • a vibration or shock which can not be generated usually occurs in the measurement target during monitoring of the monitoring target area, or (2) a vibration or shock which may occur normally.
  • An event does not occur in the measurement target during monitoring.
  • (1) usually impossible vibration or impact may occur in the measurement object due to human action (for example, an intrusion action by an intruder into the opening) or a natural phenomenon such as earthquake or wind.
  • (2) when there is a person (for example, a resident of the building) in the building, vibration or shock of the door accompanying the opening / closing operation of the door by the person May not occur.
  • a magnetic proximity switch is installed on the measurement target in order to detect an abnormality in the measurement target such as the opening or the fixture described above, two driven members constituting the measurement target (for example, two of the sliding windows)
  • the permanent magnet of the proximity switch is disposed on one of the window) or the fixed object and the driven object (for example, the desk and its drawer), and the detection element of the proximity switch is disposed on the other.
  • the detection result alone is a dynamic change due to a natural phenomenon or a dynamic change due to a human action. It can not be determined whether there is. Such a dynamic change seems to be distinguishable if it is in the vicinity of the measurement object or the detection device, but when not aware of the occurrence of the dynamic change, when does an event corresponding to such a dynamic change occur? Can not identify.
  • the present invention has been made in view of the above problems, and based on the detection result of a detection device that detects an event occurring in a measurement target, it is possible to easily and reliably determine the presence or absence of an abnormality in the measurement target. It is an object of the present invention to provide a data collection and analysis system, a data collection and analysis method, and a program.
  • a data acquisition and analysis system includes a detection device, an acquisition device, and an analysis device.
  • the detection device detects an event occurring in a measurement object.
  • the collection device is wirelessly connected to the plurality of detection devices, and collects detection results of the detection devices.
  • the analysis device is connected to the collection device via a wireless communication line, acquires each of the detection results from the collection device, and determines the presence or absence of abnormality of a plurality of the measurement targets based on the acquired each detection result. Do.
  • the data collection and analysis method has first to third steps.
  • the detection device detects an event that occurs in the measurement object.
  • detection results of the detection devices are collected by a collection device connected to the plurality of detection devices via radio.
  • each of the detection results is acquired from the collection device by an analysis device connected to the collection device via a wireless communication line, and a plurality of measurement targets are obtained based on the acquired detection results. Determine if there is an abnormality.
  • the program according to the present invention detects a phenomenon occurring in a measurement target by a detection device, and collects detection results of the detection devices by a collection device connected to a plurality of the detection devices via radio. Acquiring a detection result from the collection device and a computer connected to the collection device via a wireless communication line, and determining the presence or absence of an abnormality of the plurality of measurement objects based on the acquired detection result Function as an analysis device.
  • the detection results of the detection devices for detecting the events of the respective measurement objects are collected by the analysis device via the collection device and the wireless communication line, and the detection devices perform the respective detections.
  • the presence or absence of an abnormality of each of the measurement targets is determined based on the result.
  • the detection results of all the detection devices are collected by the analysis device, and the amount of data collected by the analysis device (the respective detection results) is increased. It can be used to determine the presence or absence of a target abnormality.
  • the analysis device refers to the part by referring to the detection results of other normal detection devices. It can be easily judged that the detection result of the detection device of is the detection result due to the above-mentioned fault.
  • the present invention it is possible to easily and reliably determine the presence or absence of an abnormality of each of the measurement objects based on each of the detection results. Therefore, it is possible to accurately determine the presence or absence of an abnormality. it can.
  • each of the detection devices be equipped with an acceleration sensor that is attached to the measurement target and that detects an acceleration corresponding to the vibration or shock as the event generated on the measurement target.
  • the analysis device acquires the acceleration as each detection result via the wireless communication line and the collection device, and accurately determines the presence or absence of abnormality of each measurement object based on each acceleration. It becomes possible.
  • each of the detection results is an acceleration waveform corresponding to the vibration or impact generated in each of the measurement objects
  • the analysis device determines each of the measurement objects based on the amplitude direction and / or the period of each acceleration waveform. It is preferable to determine the presence or absence of an abnormality of
  • the analysis device can acquire each of the acceleration waveforms in real time via the wireless communication line and the collection device.
  • the amount of data collected by the analysis device dramatically increases, it is possible to more accurately determine the presence or absence of an abnormality of each of the measurement targets based on each of the acceleration waveforms.
  • the analysis device examines the amplitude direction of the acceleration waveform to determine the force from which direction. It can be specified whether it is vibration or impact generated in the measurement object.
  • the analysis device can identify the vibration or impact due to a natural phenomenon such as an earthquake if the acceleration waveform has a relatively long period.
  • a relatively short-period acceleration waveform it can be identified that the vibration or shock is due to the movement of a person.
  • Each of the acceleration sensors is a triaxial acceleration sensor, and each of the detection devices and the collection device are connected via a wireless PAN (Personal Area Network), and the collection device and the analysis device are Connected via a wireless LAN (Local Area Network), the analysis device has a learning function of learning the pattern of the vibration or the shock, and the learned pattern of the vibration or the shock and each acceleration waveform are learned. It is preferable to determine the presence or absence of an abnormality of each of the measurement targets on the basis of the above.
  • the analysis device can more accurately determine the presence or absence of an abnormality in each of the measurement targets using artificial intelligence.
  • the analysis apparatus determines that the abnormality has occurred. It may be determined.
  • the analysis device transmits a notification signal for notifying the occurrence of the abnormality to an external portable device via the wireless communication line, and the portable device is based on the received notification signal.
  • the occurrence of the abnormality may be notified to the outside.
  • the analysis device transmits the notification signal including the information of the measurement target determined to be abnormal and the time when the abnormality occurs to the portable device via the wireless communication line.
  • the portable device notifies the outside of the measurement target determined to be abnormal and the time when the abnormality occurs, so that the person concerned can take a more appropriate response to the measurement target. Can.
  • the analysis device transmits the notification signal to the collection device via the wireless communication line, and the collection device notifies the occurrence of the abnormality to the outside based on the received notification signal.
  • the collection device Preferably, it is possible to warn a person who is performing some operation on the measurement target (for example, an intruder who performs an intrusion operation on an opening of a building) through the notification unit.
  • the analysis apparatus further includes a storage unit that sequentially stores determination results of the presence or absence of an abnormality of each of the measurement objects, and among the determination results stored in the storage unit, the determination result indicating the occurrence of the abnormality It is preferable to transmit history information including the information of the measurement object determined to be abnormal and the time when the abnormality occurred to the portable device via the wireless communication line. Thus, by referring to the history information, it is possible to confirm in which measurement object an event according to the abnormality has occurred and when.
  • the portable device transmits a release request signal for requesting release of notification by the notification unit to the analysis device through the wireless communication line based on an operation by an operator of the portable device, and the analysis device It is preferable that, on the basis of the received release request signal, a release instruction signal instructing release of the notification be transmitted to the collection device via the wireless communication line.
  • FIG. 1 It is a block diagram of a data collection analysis system concerning this embodiment. It is a block diagram of the detection apparatus of FIG. 1, a collection apparatus, an analysis apparatus, and a portable device.
  • 3A is an external perspective view of the detection device of FIGS. 1 and 2
  • FIG. 3B is an external perspective view of the collection device of FIGS. 1 and 2.
  • 10A and 10B are explanatory diagrams showing an example of the display screen of the portable device. It is explanatory drawing which shows an example of the display screen of a portable apparatus. It is explanatory drawing which shows an example of the display screen of a portable apparatus. It is explanatory drawing which shows an example of the display screen of a portable apparatus. It is explanatory drawing which shows an example of the display screen of a portable apparatus.
  • the data collection and analysis system 10 includes, for example, an opening such as a window or a door of a building, a boundary of a land (a fence existing in), an inside of a business site, etc.
  • a measurement target 14 as a monitoring target such as a storage box (cardboard box) of a container or a document
  • monitoring or guarding a person's action for example, an intruder's intrusion action to the measurement target 14
  • the data collection and analysis system 10 is applicable to services such as monitoring or security of the monitoring target area 12 by a service provider such as a security company.
  • the data collection and analysis system 10 includes a plurality of detection devices 16 mounted on a plurality of measurement targets 14 in the monitoring target area 12, a collection device 18 wirelessly connected to each detection device 16, and a collection device 18. And an analyzer 22 connected via the wireless communication line 20.
  • a portable device 24 Connected to the wireless communication line 20 is a portable device 24 possessed by a person concerned (operator) of the monitoring target area 12 such as a resident of a house or a manager of a business place.
  • the monitoring target area 12 is a house and the measurement target 14 is a connecting portion with the outside in a house such as a sliding window or a door will be described.
  • signals can be transmitted and received by wireless communication between the plurality of detection devices 16 and the collection device 18, and the collection device 18 and the analysis device 22 via the wireless communication line 20.
  • the monitoring target area 12 (of the measurement target 14) is monitored in a state in which signals can be transmitted and received by wireless communication.
  • Each detection device 16 is formed in a thin rectangular shape as shown in FIG. 3A.
  • the sliding window is configured by sticking, adhesion or adhesion. It is attached to the corner on the indoor side or the outdoor side of the window glass 26.
  • Each detection device 16 has an acceleration sensor 28, a communication unit 30 and an LED (Light Emitting Diode) 32 as shown in FIG. 2.
  • the acceleration sensor 28 is a three-axis acceleration sensor, and sequentially detects accelerations in three axial directions (three-dimensional directions) corresponding to vibrations or shocks (events) generated on the measurement object 14 (window glass 26).
  • the outdoor side of the origin O is defined as the + Z direction
  • the indoor side is defined as the ⁇ Z direction
  • the upper side of the origin O is defined as the + Y direction
  • the lower side is defined as the ⁇ Y direction.
  • the + X direction on the right side of the origin O and the ⁇ X direction on the left side of the origin O, or the left X direction of the origin O and the right side Define as -X direction.
  • the three-axis acceleration sensor 28 detects an acceleration in the X direction (left and right direction), an acceleration in the Y direction (vertical direction), and an acceleration in the Z direction (longitudinal direction).
  • the acceleration sensor 28 is attached when the detection device 16 is attached from the outdoor side of (the window glass 26 of) the measurement object 14, or the detection device 16 is attached from the indoor side of the measurement object 14
  • the three axial directions of X, Y and Z with respect to the origin O are the directions shown in FIG. 3A.
  • the communication unit 30 in FIG. 2 exchanges signals with the collection device 18 by wireless communication using BLE (Bluetooth Low Energy; Bluetooth is a registered trademark), which is a type of wireless PAN. Therefore, the communication unit 30 transmits the signals of acceleration in the three axial directions sequentially detected by the acceleration sensor 28 to the collection device 18 by wireless communication at predetermined time intervals (for example, about 90 times / s to about 100 times / s). . In this case, the communication unit 30 transmits to the collection device 18 the detection time of the acceleration by the acceleration sensor 28 by means of a clock function (not shown) together with the signals of the acceleration in the three axial directions. The communication unit 30 can also receive signals from the collection device 18 at predetermined time intervals.
  • BLE Bluetooth Low Energy
  • Bluetooth Bluetooth Low Energy
  • the communication unit 30 transmits the signals of acceleration in the three axial directions sequentially detected by the acceleration sensor 28 to the collection device 18 by wireless communication at predetermined time intervals (for example, about 90 times / s to about 100 times / s).
  • the LED 32 is disposed on the front of the detection device 16 and is an indicator that lights up during operation of the detection device 16.
  • the collecting device 18 is formed in a block shape, and a plug 36 which can be inserted into the outlet 34 is provided on the back of the collecting device 18. Further, on the side of the collection device 18, pairing between the collection device 18 and the analysis device 22 via the wireless communication line 20, pairing between the collection device 18 and each detection device 16, or A switch 38 for releasing the pairing is provided.
  • the collecting device 18 further includes a power supply unit 40, a communication unit 42, a control unit 44, and a notification unit 46 as shown in FIG. 2 in addition to the plug 36 and the switch 38 described above.
  • the power supply unit 40 converts AC power supplied from the outlet 34 via the plug 36 into DC power when the plug 36 is inserted into the outlet 34, and supplies DC power to each part in the collection device 18.
  • the communication unit 42 transmits and receives signals to and from the communication unit 30 of the plurality of detection devices 16 using a wireless PAN such as BLE, while a wireless LAN such as Wi-Fi (Wireless Fidelity; Wi-Fi is a registered trademark) Signals are transmitted and received by wireless communication with the analysis device 22 through the wireless communication line 20 of FIG.
  • a wireless PAN such as BLE
  • a wireless LAN such as Wi-Fi (Wireless Fidelity; Wi-Fi is a registered trademark)
  • the wireless communication line 20 is an Internet line
  • the data collection and analysis system 10 is an Internet of Things (IoT) in which each detection device 16 is connected to the Internet line via the collection device 18.
  • IoT Internet of Things
  • the collection device 18 functions as a relay device or a gateway that relays signals between the plurality of detection devices 16 and the analysis device 22. That is, the communication unit 42 receives acceleration signals in three axial directions and acceleration detection times transmitted at predetermined time intervals from the plurality of detection devices 16 in the communication range of BLE as acceleration waveforms in three axial directions (see FIG. Collection) and transmit (transfer) each collected acceleration waveform to the analysis device 22 via the wireless communication line 20. Further, the communication unit 42 outputs the signal received from the analysis device 22 to the control unit 44. The communication unit 42 can also transfer the signal received from the analysis device 22 to the communication unit 30 of the detection device 16.
  • the control unit 44 controls each unit in the collection device 18.
  • the notification unit 46 is a display unit such as an LED or a speaker, and emits light or outputs sound based on control from the control unit 44.
  • FIG. 3B the case where the alerting
  • the analysis device 22 is a computer connected to the wireless communication line 20, and includes a control unit 48, a communication unit 50, a determination unit 52, and a storage unit 54.
  • the computer functions as the analysis device 22 by reading and executing the software (program) stored in the storage unit 54 which is a non-transitory recording medium, and the computer functions as the control unit 48, the communication unit 50 and the determination unit 52. To realize the function. Note that this software (algorithm) is updated as appropriate.
  • control unit 48 controls each unit in the analysis device 22.
  • the communication unit 50 transmits and receives signals to and from the collection device 18 and the portable device 24 through the wireless communication line 20 under the control of the control unit 48.
  • the communication unit 50 can receive acceleration waveforms in the directions of three axes from the detection devices 16 from the collection device 18 via the wireless communication line 20.
  • the determination unit 52 determines, based on each acceleration waveform received by the communication unit 50, whether or not there is an abnormality in each measurement target 14 to which each detection device 16 is attached. In this case, the determination unit 52 determines the presence or absence of abnormality of each measurement target 14 based on the amplitude direction and / or period of each acceleration waveform. In addition, with abnormality of the measurement object 14, (1) vibration or an impact (event) which can not usually occur during monitoring of the monitoring object area
  • a vibration or an impact that can not usually be generated may occur in the measurement object 14 due to human actions (for example, an intrusion by an intruder into the opening) or natural phenomena such as earthquake or wind. .
  • human actions for example, an intrusion by an intruder into the opening
  • natural phenomena such as earthquake or wind.
  • vibration or shock of the door accompanying the opening / closing operation of the door by the person May not occur.
  • the determination unit 52 is an artificial intelligence having a machine learning function of learning a pattern of vibration or impact generated in the measurement object 14, and the acceleration waveform of the learned pattern of vibration or impact and each acceleration waveform actually collected It is also possible to determine the presence or absence of abnormality of each measurement target 14 based on That is, the determination unit 52 performs machine learning of the pattern of the acceleration waveform by analyzing each of the acceleration waveforms obtained by sensing, and the learned pattern and the acceleration waveforms in the three axial directions collected after learning By comparing, it is possible to determine whether the acceleration waveform is a natural phenomenon or a human action.
  • the determination unit 52 sequentially stores the determination result in the storage unit 54 each time the determination process is performed.
  • the determination unit 52 also stores, in the storage unit 54, history information including the determination result indicating the occurrence of an abnormality.
  • the portable device 24 is various types of portable devices such as smartphones possessed by persons concerned with the monitoring target area 12 and includes a communication unit 56, a control unit 58, a display unit 60, and an operation unit 62.
  • the communication unit 56 transmits and receives signals to and from the analysis device 22 via the wireless communication line 20.
  • the control unit 58 controls each unit of the mobile device 24.
  • the display unit 60 displays various types of information according to the control of the control unit 58.
  • the operation unit 62 is a touch panel or the like operated by a person concerned.
  • the data collection and analysis system 10 is applied to a cloud service, and a cloud computer on the Internet functions as the analysis device 22.
  • the analysis device 22 since the acceleration waveforms in the directions of three axes are sequentially transmitted from the detection devices 16 to the analysis device 22 through the collection device 18 and the wireless communication line 20, the analysis device 22 generates big data with a huge amount of data.
  • the analysis device 22 By analyzing (analyzing) each acceleration waveform which is, it is determined whether or not there is an abnormality in each measurement object 14.
  • the control unit 48 collects a notification signal for notifying the occurrence of the abnormality from the communication unit 50 via the wireless communication line 20.
  • the notification signal includes information on the measurement target 14 determined to be abnormal and the time when the abnormality occurs.
  • the notification unit 46 starts emitting light or starts outputting sound based on the received notification signal.
  • the time at which the abnormality occurs refers to the time at which the acceleration (acceleration waveform) used in the process in which the determination unit 52 has determined to be abnormal is detected.
  • the notification signal is also transmitted from the communication unit 50 to the portable device 24 via the wireless communication line 20.
  • the control unit 58 causes the display unit 60 to display the occurrence of an abnormality in the measurement target 14 based on the notification signal.
  • the storage unit 54 stores history information including a determination result indicating the occurrence of an abnormality, information of the measurement target 14 determined to be an abnormality, and a time when the abnormality has occurred. Therefore, the control unit 48 can transmit history information from the communication unit 50 to the communication unit 56 of the portable device 24 via the wireless communication line 20. When the communication unit 56 receives the history information, the control unit 58 of the portable device 24 causes the display unit 60 to display the history information.
  • the control unit 58 controls the wireless communication line from the communication unit 56.
  • a cancellation request signal for requesting cancellation of the notification is transmitted to the communication unit 50 of the analysis device 22 via S20.
  • the control unit 48 transmits a cancellation instruction signal instructing cancellation of the notification from the communication unit 50 to the collection device 18 via the wireless communication line 20.
  • the control unit 44 of the collection device 18 stops the emission of light or sound by the notification unit 46 based on the release instruction signal.
  • the operation (data collection and analysis method) of the data collection and analysis system 10 according to the present embodiment will be described with reference to FIGS. 4 to 13.
  • the data collection and analysis system 10 is applied to the service of monitoring (guarding) of the monitoring target area 12 and a person performs some operation (for example, a window by an intruder etc.) to the measurement target 14 during monitoring of the monitoring target area 12
  • some operation for example, a window by an intruder etc.
  • the plug 36 of the collecting device 18 is inserted into the outlet 34 in advance in the monitoring target area 12.
  • the power supply unit 40 converts AC power supplied from the outlet 34 via the plug 36 into DC power, and supplies the DC power to each unit in the collection device 18.
  • the communication unit 42 can perform pairing with the analysis device 22 via the wireless communication line 20. Further, the communication unit 42 can perform pairing with the communication units 30 of the plurality of detection devices 16 arranged in the monitoring target area 12.
  • the entire monitoring target area 12 is set as the communication range of the wireless PAN such as BLE by the communication unit 42.
  • the data collection and analysis system 10 reaches a state (warning mode) in which each measurement target 14 in the monitoring target area 12 can be monitored. After the transition to the alert mode, a person concerned in the monitoring target area 12 can move to a location away from the monitoring target area 12, for example.
  • step S1 the acceleration sensor 28 of each detection device 16 detects accelerations in the directions of three axes in the X, Y, and Z directions.
  • Each communication unit 30 transmits the sequentially detected signal of acceleration in the three-dimensional direction and the detection time of the acceleration to the communication unit 42 of the collection device 18 at predetermined time intervals by wireless communication with the wireless PAN such as BLE.
  • step S2 the communication unit 42 of the collection device 18 receives signals of acceleration in three axial directions transmitted at predetermined time intervals from the communication units 30 of all the detection devices 16 within the communication range of the wireless PAN. And the detection time of acceleration is sequentially received, and each received signal and detection time are transferred to the analyzer 22 via the wireless communication line 20 as an acceleration waveform in the direction of three axes.
  • 5 to 9 illustrate examples of acceleration waveforms in three axial directions.
  • FIG. 5 shows acceleration waveforms in three axial directions when vibration or impact is generated in the measurement object 14 due to an earthquake.
  • the object 14 to be measured is a sliding window
  • a person taps the window from the outside, and then the left window of the sliding window as viewed from the outside is 3 shows acceleration waveforms in three axial directions when the window on the right side is slid to the left as viewed from the top.
  • FIG. 7 shows acceleration waveforms in three axial directions when the intruder forcibly pulls out the drawer when the object to be measured 14 is a drawer of a desk.
  • FIGS. 8 and 9 show acceleration waveforms in three axial directions when the intruder forcibly slides the cabinet from the right to the left as viewed from the outside when the measurement object 14 is the cabinet.
  • step S3 the communication unit 50 of the analysis device 22 receives (collects) acceleration waveforms in the directions of three axes of (the acceleration sensors 28 of) all the detection devices 16 via the wireless communication line 20. .
  • the acquired acceleration waveform in the three axial directions is stored in the storage unit 54.
  • the determination unit 52 determines whether or not an abnormal vibration or impact is generated in the measurement target 14 in the monitoring target area 12 based on the collected acceleration waveform in the three axial directions.
  • step S3 NO
  • the determination unit 52 stores the determination result in the storage unit 54, and then performs the process of step S3 on the next acceleration waveform. Execute repeatedly.
  • step S3 when it is determined that an abnormal vibration or impact has occurred (step S3: YES), the determination unit 52 stores the determination result in the storage unit 54, and the measurement determined as an abnormality as a result of the determination.
  • the information on the object 14 and the time at which the abnormality occurred are stored in the storage unit 54 as history information.
  • the determination unit 52 determines, based on the determination result, whether or not notification of occurrence of an abnormality should be notified to the collection device 18 and the portable device 24.
  • step S4 If it is not necessary to notify even if the determination result indicates abnormal vibration or impact (step S4: NO), the determination unit 52 returns to step S3 and repeats the process of step S3 for the next acceleration waveform. Run.
  • step S4 when it is determined that the notification is necessary (step S4: YES), the determination unit 52 notifies the control unit 48 that the notification to the collection device 18 and the portable device 24 is necessary. Thus, the control unit 48 can execute the notification process of step S5.
  • the three-axis acceleration sensor 28 can measure acceleration in the + direction and the ⁇ direction in the three-axis direction (three-dimensional direction). Therefore, if the mounting state of (the acceleration sensor 28 of) the detection device 16 with respect to the measurement object 14 is known in advance, from which direction the vibration or impact is applied to the measurement object 14 from the acceleration waveform in three axial directions It is possible to distinguish easily.
  • the acceleration waveform in the three axial directions into a long cycle waveform and a short cycle waveform based on the magnitude and time of vibration or impact.
  • the acceleration waveform corresponds to the abnormal vibration or impact, it may be a long-period waveform corresponding to the vibration or impact due to a natural phenomenon such as earthquake or wind, or a human action (invasion action by an intruder It can be distinguished whether it is a short period waveform caused by).
  • the determination unit 52 determines whether or not abnormal vibration or impact has occurred (step S3), and can determine whether notification is necessary (step S4). Specifically, the determination unit 52 may perform the following process (first to third processes).
  • the first process relates to the process of step S3.
  • the three-axis acceleration sensor 28 can measure acceleration in the + direction and the ⁇ direction in the X direction, the Y direction, and the Z direction.
  • the detection device 16 is attached to the upper left side (the corner in the + X direction and the + Y direction) of the left window of the two windows (window glass 26).
  • the acceleration waveform in the Z direction corresponding to the impact (vibration) at time points t1 and t2 is a waveform starting from the swing in the downward direction (-Z direction) of FIG.
  • the acceleration sensor 28 detects this vibration as acceleration in the + Z direction. Therefore, the acceleration waveform at this time is a waveform starting from the swing in the upward direction (+ Z direction) of FIG.
  • the determination unit 52 can easily determine whether or not the acceleration waveform indicates an abnormal vibration or an impact caused by an intruder's intruding operation.
  • the second process is also a process related to step S3, as in the first process.
  • the detection device 16 is attached to the upper right corner (corner of the -X direction and the + Y direction) of the right window of the two windows.
  • the intruder or the like opens the right window to the left at time t3 in FIG. 6, an impact in the + X direction is transmitted to the right window, and the right window vibrates in the + X direction.
  • the acceleration sensor 28 detects this vibration as acceleration in the + X direction. Therefore, the acceleration waveform in the X direction corresponding to the shock (vibration) at time t3 is a waveform starting from the swing in the upward direction (+ X direction) of FIG.
  • the acceleration sensor 28 detects this vibration as an acceleration in the -X direction. Therefore, the acceleration waveform in the X direction corresponding to the shock (vibration) is a waveform starting from the swing in the downward direction (-X direction) of FIG.
  • the measurement object 14 such as the sliding window is viewed from the indoor side by specifying the direction in which the vibration of the acceleration waveform in the X direction is started. It is possible to easily determine which of the two is an impact that moves.
  • the second processing has been described based on the case of looking indoors, it goes without saying that the same result can be obtained based on the case of looking it outdoors.
  • Vibration due to natural phenomena or shock, for example, earthquake motion (earthquake) is a long-period vibration that causes an impact on the measurement object 14 while continuing to vibrate the measurement object 14 in each of the three axial directions for a long time.
  • earthquake motion earthquake motion
  • the acceleration waveform becomes a long period waveform according to the long period vibration, as shown in FIG.
  • an instantaneous acceleration waveform according to the vibration or impact can be obtained.
  • an acceleration waveform also becomes a long-period waveform for a relatively long time.
  • the frequency is different between the vibration or shock generated in the measurement object 14 due to the natural phenomenon and the vibration or shock when the person opens the window or door which is the measurement object 14. Further, the frequency is different between the vibration or the impact when a person strikes the window glass 26 which is the measurement object 14 and the vibration or the impact when the window glass 26 is broken.
  • the determination unit 52 focuses on the points at which the frequencies (periods) are different from each other, and the acceleration waveform in the three axial directions is a waveform caused by a natural phenomenon or caused by human vibration or impact. It is possible to determine whether the waveform is
  • determination process based on the acceleration waveform resulting from an impact is possible.
  • step S4 when it is determined that the vibration or impact is abnormal in step S3 (step S3: YES), in step S4, whether the determination result in step S3 is due to a natural phenomenon or a person's Whether it is caused by the operation (intruder's intrusion operation) can be easily determined.
  • step S4 in the case of vibration or impact caused by a natural phenomenon, notification to the detection device 16, the collection device 18 and the portable device 24 is unnecessary (step S4: NO), while at the same time caused by the intruder operation by the intruder. If it is a vibration or an impact, notification to the detection device 16, the collection device 18, and the portable device 24 is necessary (step S4: YES), it can be easily determined.
  • Step S4 determines that notification to the detection device 16, the collection device 18, and the portable device 24 is unnecessary (Step S4: NO)
  • Step S4 determines that notification to the detection device 16, the collection device 18, and the portable device 24 is necessary.
  • the determination unit 52 can determine that an abnormal vibration or impact has occurred from the shake in the acceleration waveform (step S3: YES), for example, by the first or second processing.
  • the determination unit 52 When the object 14 to be measured is a cabinet, as shown in FIGS. 8 and 9, when the intruder performs an intrusion operation to force the cabinet to slide from the right side to the left at time t9 to t13, the intrusion operation is performed. Because the acceleration waveform indicating the vibration or impact is collected, the determination unit 52 generates an abnormal vibration or impact from a shake in the acceleration waveform, for example, by the first or second processing (step S3: YES). It can be determined that
  • step S3 the determination unit 52 functions as an artificial intelligence having a machine learning function of learning a pattern of vibration or impact, and each acceleration waveform collected is used as big data to indicate presence or absence of an abnormality of each measurement target 14 The determination may be performed more accurately.
  • the discrimination unit 52 discriminates each acceleration waveform collected one by one, to thereby obtain an acceleration waveform pattern without human action (for example, an intrusion operation) and an acceleration waveform pattern when an intrusion operation occurs.
  • the occurrence of the intruding motion may be determined by comparing the identified (learned) and learned pattern with the acceleration waveform collected thereafter.
  • the determination unit 52 recognizes (learns) in advance a pattern of an acceleration waveform according to vibration or impact due to a natural phenomenon such as earthquake or wind, and compares the learned pattern with an acceleration waveform collected thereafter. It may be determined whether it is an acceleration waveform due to a natural phenomenon.
  • the discrimination unit 52 discriminates each acceleration waveform collected one by one, and thereby the pattern of the acceleration waveform according to the normal acceleration sensor 28 and the pattern of the acceleration waveform according to the acceleration sensor 28 having a defect such as a failure. And may be determined (learned), and each of the learned patterns may be compared with the acceleration waveform collected thereafter to determine whether the acquired acceleration waveform is a normal waveform.
  • step S3 when it is determined that abnormal vibration or impact has occurred in step S3 (step S3: YES), and it is determined that notification to collecting device 18 and portable device 24 is necessary in step S4 (step S4: YES), in the next step S5, the control unit 48 generates a notification signal for reporting the occurrence of an abnormality such as an intrusion operation by the intruder, and the generated notification signal from the communication unit 50 through the wireless communication line 20. And transmit to the collection device 18 and the portable device 24.
  • the control unit 44 controls the notification unit 46 based on the received notification signal to monitor the occurrence of an abnormality by light emission or sound output of the LED. Inform within 12.
  • the notification unit 46 warns the intruder who tries to perform the intruding operation on the measurement target 14, a crime prevention effect can be obtained that delays the intruder's intrusion or prevents the intrusion by the intruder in advance. .
  • control unit 58 causes the display unit 60 to generate an abnormality of the measurement object 14 or that the notification unit 46 is in a warning operation based on the notification signal. Display on.
  • FIG. 10A to 13 show an example of the display screen 70 of the portable device 24.
  • FIG. 10A to 13 illustrate the case where the mobile device 24 is a smartphone and the display screen 70 is a display screen of the smartphone and has the functions of the display unit 60 and the operation unit 62.
  • FIG. 10A shows a display example of the display screen 70 when the data collection and analysis system 10 is monitoring the monitoring target area 12 (warning mode).
  • a person concerned with the monitoring target area 12 can switch the display screen 70 to the screen display of FIGS. 11 to 13 by sliding the display screen 70 to the right with a finger.
  • FIG. 10B shows a display example of the display screen 70 when the monitoring (warning mode) on the monitoring target area 12 is canceled.
  • FIG. 11 shows a display example of the display screen 70 when the smartphone receives the notification signal.
  • the background of the display screen 70 is displayed in red in order to notify the concerned person of the measurement target 14 determined to be abnormal.
  • (1) information of "gateway buzzer ringing" indicating that the notification unit 46 of the collection device 18 is in the informing operation
  • (2) Information of “detection sensor undressing place” indicating that the measurement target 14 determined to be abnormal is a window of the undressing place is displayed.
  • the concerned person can recognize that the intruder performs an intruding operation to the dismantling place and the informing operation by each informing unit 46 is being performed.
  • step S6 a person who visually recognizes the display content of the display screen 70 maintains the notification operation (step S6: NO), for example, by tapping one of the four icons 73 to 76. , Notification of occurrence of abnormality, fact confirmation, etc. can be notified to a predetermined contact (step S7).
  • a telephone contact can be made to a contact specified in advance or a contact registered in advance, for example, another related person (family) in the monitoring target area 12.
  • a related party operates the icon 74
  • members of a group registered in advance a contract (for example, a contract) registered in advance, such as the designated contact described above, a resident around the monitoring target area 12, or another related person
  • the concerned person can notify the members of the group all at once by e-mail or the like that the abnormality has occurred.
  • the related party operates the icon 76, it can contact the service provider (for example, a security company) to request a visit to the monitoring target area 12 or the like.
  • step S7 the portable device 24 returns to step S6.
  • step S6: NO the related person can continue the screen display of FIG. 11 as it is without performing the process of step S7.
  • step S6 determines that the cancellation of the notification state is necessary (step S6: YES), In S8, the person concerned requests cancellation of the notification state by tapping the bell mark icon 77 on the display screen 70.
  • the control unit 58 transmits a release request signal for requesting release of the notification state from the communication unit 56 to the communication unit 50 of the analysis device 22 via the wireless communication line 20 based on the tap operation of the icon 77.
  • the control unit 48 of the analysis device 22 When the communication unit 50 receives the cancellation request signal, the control unit 48 of the analysis device 22 generates a cancellation instruction signal for instructing cancellation of the notification state based on the cancellation request signal, and the generated cancellation instruction signal is transmitted to the communication unit. 50 to the communication unit 42 of the collection device 18 via the wireless communication line 20.
  • the control unit 44 of the collection device 18 stops the notification operation of the notification unit 46 based on the release instruction signal.
  • the display screen 70 is switched to the display contents of FIG. 11 to FIG.
  • the background of the display screen 70 is displayed in a color other than red (for example, white)
  • the display field 72 indicates (1) “gateway indicating that the notification unit 46 of the collection device 18 has stopped the notification operation.
  • Information of "Stopping the buzzer” and (2) Information of "Detection sensor undressing room” indicating that the measurement target 14 targeted for release processing is a window of the undressing place is displayed.
  • the display screen 70 may be the screen display of FIG. FIG. 13 illustrates the case where the history information stored in the storage unit 54 is displayed on the display screen 70.
  • the history of the operation results of the monitoring operation of the data collection and analysis system 10 for the monitoring target area 12 and the release process of step S8 are displayed as display fields 80a to 80e for each operation and each release process. It shows.
  • FIG. 13 two operation results and three release processes in the monitoring target area 12 are displayed in the display fields 80a to 80e. That is, in the display fields 80b and 80d, for example, the name and the installation place (undressing place) of the measurement target 14 determined to be abnormal and the time when the abnormality occurs are displayed as the operation results. In addition, in the display fields 80a, 80c, and 80e, for example, the time at which the notification operation by the notification unit 46 is stopped is displayed as the release processing.
  • the control unit 58 may cause the display screen 70 to display information on the occurrence of an abnormality each time an abnormality occurs in each of the measurement targets 14. In this case, for example, the control unit 58 may display only the display fields 80 b and 80 d on the display screen 70 in time series.
  • the release operation is performed, whereby the monitoring operation (warning mode) on the measurement target 14 is once completed, and the operation result for one operation is obtained. After completion of the release process, the next monitoring operation is started. Therefore, in the display fields 80a to 80e, the time when the abnormality occurs, the time of the release process, and the like are displayed.
  • step S8 the control unit 58 requests the communication unit 50 of the analysis apparatus 22 to transmit history information and the like from the communication unit 56 via the wireless communication line 20 due to the operation of the display screen 70 by a person concerned.
  • the control unit 48 of the analysis device 22 transmits the history information stored in the storage unit 54 from the communication unit 50 to the communication unit 56 of the portable device 24 via the wireless communication line 20.
  • the control unit 58 causes the display unit 60 to perform the screen display of FIG. 13 based on the received history information.
  • the person concerned may start other application software by operating the display screen 70.
  • the activated application software can provide a service utilizing the big data to the parties concerned.
  • the determination unit 52 of the analysis device 22 can sequentially perform the processes of steps S3 and S4 on each acceleration waveform. Therefore, the control unit 58 of the portable device 24 requests transmission of history information to the analysis device 22 each time a notification signal is notified from the analysis device 22, and is newly determined to be abnormal each time history information is received. The information on the measured object 14 may be popped up on the display screen 70.
  • the detection results from each detection device 16 for detecting an event of each measurement object 14 are the collection device 18 and wireless communication
  • the signal is collected by the analysis device 22 via the line 20, and the analysis device 22 determines the presence or absence of abnormality of each measurement object 14 based on each detection result.
  • the detection results of all the detection devices 16 are collected by the analysis device 22, and the amount of data (each detection result) collected by the analysis device 22 increases. It can be used to determine the presence or absence of 14 abnormalities.
  • the analysis device 22 refers to the detection results of other normal detection devices 16 by referring to the detection results. It can be easily determined that the detection results of some of the detection devices 16 are the detection results due to a failure.
  • each detection device 16 is equipped with an acceleration sensor 28 mounted on the measurement object 14 and detecting an acceleration or vibration corresponding to an event occurring in the measurement object 14.
  • the analysis device 22 acquires the acceleration as each detection result through the wireless communication line 20 and the collection device 18, and accurately determines the presence or absence of abnormality of each measurement target 14 based on each acceleration. it can.
  • each detection result is an acceleration waveform according to the vibration or impact generated in each measurement target 14, and the analysis device 22 determines presence or absence of abnormality of each measurement target 14 based on the amplitude direction and / or period of each acceleration waveform.
  • the analysis device 22 can acquire each acceleration waveform in real time via the wireless communication line 20 and the collection device 18. As a result, since the amount of data collected by the analysis device 22 dramatically increases, it is possible to more accurately determine the presence or absence of an abnormality of each measurement target 14 based on each acceleration waveform.
  • the analysis device 22 measures the force from which direction by examining the amplitude direction of the acceleration waveform. It can be identified whether it is a vibration or an impact generated in the subject 14.
  • the analysis device 22 can identify the vibration or impact due to a natural phenomenon such as an earthquake if the acceleration waveform has a relatively long period.
  • the vibration or impact is due to the motion of a person.
  • each acceleration sensor 28 is a three-axis acceleration sensor
  • each detection device 16 and the collection device 18 are connected via a wireless PAN (BLE)
  • the collection device 18 and the analysis device 22 are wireless LAN (wireless communication) It is connected via the line 20).
  • the determination unit 52 of the analysis device 22 has a machine learning function to learn the pattern of vibration or impact, and the presence or absence of abnormality of each measurement object 14 based on the learned pattern of vibration or impact and each acceleration waveform.
  • the determination unit 52 can more accurately determine the presence or absence of an abnormality of each measurement target 14 using artificial intelligence. That is, the determination unit 52 learns various patterns of acceleration waveforms by analyzing each acceleration waveform obtained by sensing, and the learned patterns and acceleration waveforms in three axial directions collected after learning By comparing, it is possible to determine whether the acceleration waveform is a natural phenomenon or a human action.
  • the detection device 16 can be attached to the measurement target 14 by adhesion or the like, and wireless communication is performed with the collection device 18, so wiring work is unnecessary. As a result, the detection device 16 and the collection device 18 can be easily installed in the monitoring target area 12.
  • the analysis device 22 transmits a notification signal for notifying the occurrence of an abnormality to the portable device 24 via the wireless communication line 20, and the portable device 24 displays the occurrence of the abnormality based on the received notification signal.
  • the occurrence of an abnormality is notified to the outside.
  • the person concerned can be promptly notified of the occurrence of an abnormality.
  • it becomes possible for a person concerned to take an appropriate response to the measurement object 14 such as contact with a provider (for example, a security company) of a service to which the present embodiment is applied.
  • a provider for example, a security company
  • the analysis device 22 transmits a notification signal including the information of the measurement target 14 determined to be abnormal and the time when the abnormality occurs to the portable device 24 via the wireless communication line 20.
  • the portable device 24 causes the display screen 70 to display the measurement target 14 determined to be abnormal and the time when the abnormality occurs. Thereby, the person in charge can take a more appropriate response to the measurement object 14.
  • the analysis device 22 transmits a notification signal to the collection device 18 via the wireless communication line 20, and the notification unit 46 of the collection device 18 notifies the occurrence of an abnormality to the outside based on the received notification signal.
  • a warning for example, an intruder who performs an intrusion operation on the opening
  • some operation on the measurement target 14 such as the opening or the fixture
  • the notification unit 46 since the presence or absence of the occurrence of an abnormality is accurately determined by the determination unit 52 of the analysis device 22, the occurrence of an erroneous notification can be prevented.
  • the analysis device 22 is provided with a storage unit 54 that sequentially stores the determination result of the presence or absence of an abnormality of each measurement object 14, and among the determination results stored in the storage unit 54, the determination result of occurrence of abnormality and
  • the history information including the information of the measurement target 14 determined to be abnormal and the time when the abnormality occurs is transmitted to the portable device 24 through the wireless communication line 20.
  • the concerned person can confirm which measurement target 14 has generated an event according to an abnormality and when.
  • the security company or the police can analyze the history information and easily and quickly specify the time when the event occurred. As a result, the security company or the police can take an appropriate response to the event.
  • the portable device 24 transmits a release request signal for requesting release of the notification by the notification unit 46 to the analysis device 22 through the wireless communication line 20 based on the operation by the operator of the portable device 24, and the analysis device 22 transmits a release instruction signal instructing release of the notification to the collection device 18 via the wireless communication line 20 based on the received release request signal.
  • the analysis device 22 collects acceleration waveforms in the directions of three axes from all the detection devices 16 and stores them as big data in the storage unit 54, providing various services using the big data. Is possible.
  • a computer sequentially collects data detected by a plurality of sensors, and the collected side (computer) uses the collected data as big data.
  • the side detected as data (a user as a contractor) can not use the big data, or can not use the big data without browsing the big data.
  • the presence / absence of abnormality of the measuring object 14 is determined using the acceleration waveform in the direction of three axes as the big data, and the determination result etc.
  • the portable device 24 is notified. That is, in the present embodiment, information (determination result) using the big data (acceleration waveform) is actively provided to the user (person concerned).
  • the stored history information can be positively provided to the user by storing the determination result indicating the occurrence of the abnormality in the storage unit 54 as the history information. Thereby, in the present embodiment, it is possible to enhance the convenience of the user.
  • the specific example of the utilization form is demonstrated below.
  • the detection device 16 that has detected the different acceleration waveform is displayed on the display unit 60 of the portable device 24 to display the information. It becomes possible to urge persons concerned in the monitoring target area 12 that 16 maintenance and parts replacement are necessary.
  • the data collection and analysis system 10 can be applied to perform safety confirmation (watching function) of the resident.
  • safety confirmation watching function
  • the data collection and analysis system 10 can be applied to perform safety confirmation (watching function) of the resident.
  • a predetermined period for example, 24 hours from the start of watching
  • the display unit 60 of the portable device 24 may perform the display as shown in FIG. S4: YES, step S5).
  • the data collection and analysis system 10 since the monitoring of the measurement object 14 can be performed in real time, when there is a resident in the house which is the monitoring object area 12, a predetermined time has elapsed since the vibration of the door which is the measurement object 14 is detected. When it does, it is possible to guess the movement range of the said resident from elapsed time. In this case, by displaying on the display unit 60 of the mobile device 24 that there is a possibility that the resident is moving within the estimated movement range, the data collection and analysis system 10 is notified to the contractor of the service to which the system is applied. can do.
  • the detection device 16 is attached to the storage box, and the detection device 16 has an acceleration waveform according to the vibration or impact of the storage box. If it is detected (step S3 in FIG. 4: YES), a message may be displayed on the display unit 60 of the portable device 24 that an abnormality has occurred in the storage box (step S5 in FIG. 4). This facilitates management of the room storing the storage box (entry and exit management).
  • each detection device 16 is connected to the collection device 18 wirelessly, a notification unit having the same function as the notification unit 46 may be incorporated in each detection device 16.
  • the communication unit 42 of the collection device 18 receives the notification signal
  • the communication unit 42 transfers the received notification signal to the communication unit 30 of the detection device 16
  • the notification unit of the detection device 16 transfers the notification signal.
  • the occurrence of abnormality of the measurement object 14 can be notified by light emission of the LED 32 or the like or output of sound by a speaker or the like.
  • the communication unit 42 of the collection device 18 receives the release instruction signal
  • the communication unit 42 transfers the received release instruction signal to the communication unit 30 of the detection device 16, and the notification unit of the detection device 16
  • the light emission can be stopped or the output of sound can be stopped based on the release instruction signal.
  • any object may be the measurement object 14 as long as the object 14 is a monitoring object in the monitoring object area 12 such as a building, a land, a business place or the like. That is, a door inside a building, a fence at the boundary of land, and the like can also be the measurement object 14.
  • the movement of the person causing the abnormality of the measurement object 14 is not limited to the entrance movement to a specific place by the intruder or resident, but may be a specific one such as only the opening or closing of a window or door by the intruder or resident. Even if it does not enter the place, it can be the target of operation.
  • the acceleration sensor 28 incorporated in the detection device 16 detects the acceleration corresponding to the vibration or impact generated in the measurement object 14.
  • the detection device 16 can incorporate any sensor.
  • the analysis device 22 acquires the detection result of the sensor incorporated in each detection device 16 via the collection device 18 and the wireless communication line 20, and the abnormality of each measurement target 14 based on the acquired detection result. It is possible to determine the presence or absence of

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Alarm Systems (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

データ収集解析システム(10)は、測定対象(14)に発生する事象を検出する検出装置(16)と、複数の検出装置(16)と無線を介して接続され、各検出装置(16)の検出結果を収集する収集装置(18)と、収集装置(18)と無線通信回線(20)を介して接続され、収集装置(18)から各検出結果を取得し、取得した各検出結果に基づいて各測定対象(14)の異常の有無を判別する解析装置(22)とを有する。

Description

データ収集解析システム、データ収集解析方法及びプログラム
 本発明は、測定対象に発生する事象を検出し、その検出結果を収集して解析装置で解析するデータ収集解析システム及びデータ収集解析方法、並びに、コンピュータを解析装置として機能させるプログラムに関する。
 測定対象に異常な事象が発生した場合に、その監視結果を通知することが、例えば、特開2010-198451号公報及び特開2013-125469号公報に開示されている。
 特開2010-198451号公報には、1台の携帯電話機が防犯上危険地区で操作され、防犯アラームが作動した場合、インターネットやサーバ等を介さず、当該1台の携帯電話機との間で通信確立がされている他の携帯電話機に対して、近距離無線通信により防犯上危険地区の防犯情報を送信することが開示されている。
 また、特開2013-125469号公報には、建物の開口部付近に設置された開口部異常検知機器が侵入者の侵入工作等を検知し、制御装置が開口部の異常の発生の有無を判断し、通信ネットワークを介して、警備会社に設置された監視装置に異常を知らせる信号を発報することが開示されている。
[本発明が解決しようとする課題]
 ところで、測定対象の事象を検出する検出装置の検出結果に基づいて、測定対象の異常の有無を判別する際、判別が困難となる場合がある。なお、測定対象とは、建物、土地、事業所等の監視対象領域内において、監視対象となるものをいい、例えば、建物の窓や扉等の開口部、土地の境界(に存在する垣根)、事業所内の什器や書類の保管箱(段ボール箱)がある。また、測定対象の異常とは、(1)監視対象領域の監視中、通常有り得ない振動又は衝撃(事象)が測定対象に発生すること、あるいは、(2)通常時に発生し得る振動又は衝撃(事象)が監視中に測定対象に発生しないことをいう。(1)の事例としては、人の動作(例えば、侵入者による開口部への侵入動作)又は地震や風等の自然現象によって、通常有り得ない振動又は衝撃が測定対象に発生する場合がある。一方、(2)の事例としては、建物内に人(例えば、建物の住人)が居るときに、監視中、所定時間経過しても、人によるドアの開閉動作に伴う該ドアの振動又は衝撃が発生しない場合がある。
 ここで、異常の有無の判別が困難になる場合を具体的に説明する。上述した開口部又は什器等の測定対象の異常を検知するため、磁気式の近接スイッチを測定対象に設置する場合、測定対象を構成する2つの被動体(例えば、引き違い窓を構成する2つの窓)、又は、固定物及び被動体(例えば、机とその引き出し)のうち、一方に近接スイッチの永久磁石が配置され、他方に近接スイッチの検出素子が配置される。
 しかしながら、永久磁石と検出素子とが離れて配置されている場合、又は、永久磁石と検出素子との位置ずれが発生している場合には、近接スイッチの検出結果に基づいて、測定対象の異常の有無を判別することが困難となる。
 また、測定対象に所定値以上の衝撃等の動的変化があった場合、その検出結果だけでは、自然現象に起因した動的変化であるか、又は、人の動作に起因した動的変化であるのかを判別することができない。測定対象又は検出装置の近傍に居れば、このような動的変化を判別可能と思われるが、動的変化の発生に気付かなければ、そのような動的変化に応じた事象がいつ発生したのかを特定することができない。
 本発明は、上記の課題に鑑みてなされたものであり、測定対象に発生する事象を検出する検出装置の検出結果に基づいて、測定対象の異常の有無を容易且つ確実に判別することが可能となるデータ収集解析システム、データ収集解析方法及びプログラムを提供することを目的とする。
[課題を解決するための手段及び効果]
 上記の目的を達成するため、本発明に係るデータ収集解析システムは、検出装置、収集装置及び解析装置を有する。前記検出装置は、測定対象に発生する事象を検出する。前記収集装置は、複数の前記検出装置と無線を介して接続され、前記各検出装置の検出結果を収集する。前記解析装置は、前記収集装置と無線通信回線を介して接続され、前記収集装置から前記各検出結果を取得し、取得した前記各検出結果に基づいて複数の前記測定対象の異常の有無を判別する。
 また、本発明に係るデータ収集解析方法は、第1~第3ステップを有する。前記第1ステップでは、測定対象に発生する事象を検出装置により検出する。前記第2ステップでは、複数の前記検出装置と無線を介して接続される収集装置により、前記各検出装置の検出結果を収集する。前記第3ステップでは、前記収集装置と無線通信回線を介して接続される解析装置により、前記収集装置から前記各検出結果を取得し、取得した前記各検出結果に基づいて複数の前記測定対象の異常の有無を判別する。
 さらに、本発明に係るプログラムは、測定対象に発生する事象を検出装置により検出し、複数の前記検出装置と無線を介して接続される収集装置により前記各検出装置の検出結果を収集する場合に、前記収集装置と無線通信回線を介して接続されるコンピュータを、前記収集装置から前記各検出結果を取得し、取得した前記各検出結果に基づいて複数の前記測定対象の異常の有無を判別する解析装置として機能させる。
 これらの発明によれば、前記各測定対象の事象を検出する前記各検出装置の検出結果が、前記収集装置及び前記無線通信回線を介して前記解析装置に収集され、該解析装置で前記各検出結果に基づく前記各測定対象の異常の有無が判別される。これにより、全ての検出装置の検出結果が前記解析装置に収集され、該解析装置に収集されるデータ量(前記各検出結果)が増大するので、前記各検出結果をビッグデータとして、前記各測定対象の異常の有無の判別に利用することができる。
 例えば、一部の検出装置に故障等の不具合があり、通常有り得ない検出結果が収集された場合でも、正常な他の検出装置の検出結果を参照することにより、前記解析装置は、該一部の検出装置の検出結果が前記不具合に起因した検出結果であることを容易に判断することができる。
 従って、本発明によれば、前記各検出結果に基づいて、前記各測定対象の異常の有無を容易に且つ確実に判別することが可能となるため、異常の有無の判別を精度良く行うことができる。
 ここで、前記各検出装置は、それぞれ、前記測定対象に装着されると共に、該測定対象に発生する前記事象としての振動又は衝撃に応じた加速度を検出する加速度センサを備えることが好ましい。これにより、前記解析装置は、前記無線通信回線及び前記収集装置を介して、前記各検出結果としての加速度を取得し、該各加速度に基づいて前記各測定対象の異常の有無を精度良く判別することが可能となる。
 この場合、前記各検出結果は、前記各測定対象に発生する振動又は衝撃に応じた加速度波形であり、前記解析装置は、前記各加速度波形の振幅方向及び/又は周期に基づいて前記各測定対象の異常の有無を判別することが好ましい。
 これにより、前記解析装置は、前記無線通信回線及び前記収集装置を介して、前記各加速度波形をリアルタイムで取得することができる。この結果、前記解析装置で収集されるデータ量が飛躍的に増大するので、前記各加速度波形に基づいて前記各測定対象の異常の有無を一層精度良く判別することができる。
 また、前記各測定対象に対する前記各検出装置(の前記各加速度センサ)の設置状態が予め分かっていれば、前記解析装置は、前記加速度波形の振幅方向を調べることにより、どの方向からの力によって前記測定対象に発生した振動又は衝撃であるのかを特定することができる。
 さらに、前記解析装置は、前記加速度波形の周期を調べることにより、比較的長周期の加速度波形である場合には、地震等の自然現象に起因する振動又は衝撃であることを特定することができ、一方で、比較的短周期の加速度波形である場合には、人の動作に起因する振動又は衝撃であることを特定することができる。
 また、前記各加速度センサは、三軸の加速度センサであり、前記各検出装置と前記収集装置とは、無線PAN(Personal Area Network)を介して接続され、前記収集装置と前記解析装置とは、無線LAN(Local Area Network)を介して接続され、前記解析装置は、前記振動又は前記衝撃のパターンを学習する学習機能を有し、学習した前記振動又は前記衝撃のパターンと前記各加速度波形とに基づいて、前記各測定対象の異常の有無を判別することが好ましい。
 これにより、前記解析装置で収集される前記各検出結果の単位時間当たりのデータ量が飛躍的に増大する。そこで、前記解析装置に学習機能を持たせることにより、該解析装置は、人工知能を利用して前記各測定対象の異常の有無の判別をより精度良く行うことが可能となる。
 この場合、前記解析装置は、通常有り得ない振動又は衝撃が測定対象に発生した場合、又は、通常時に発生し得る振動又は衝撃が測定対象に発生しなかった場合には、前記異常が発生したと判別すればよい。
 そして、本発明において、前記解析装置は、前記無線通信回線を介して外部の携帯機器に、前記異常の発生を通知する通知信号を送信し、前記携帯機器は、受信した前記通知信号に基づいて、前記異常の発生を外部に報知してもよい。これにより、前記各測定対象を含む監視対象領域の関係者が前記携帯機器を所持している場合、該関係者に前記異常の発生を速やかに通知することができる。この結果、前記関係者は、本発明が適用されるサービスの提供者(例えば、警備会社)への連絡等の当該測定対象に対する適切な対応を取ることが可能となる。
 この場合、前記解析装置は、異常と判別された測定対象の情報と、前記異常が発生した時刻とを含む前記通知信号を、前記無線通信回線を介して前記携帯機器に送信することが好ましい。これにより、前記携帯機器は、異常と判別された測定対象と、該異常が発生した時刻とを外部に報知するので、前記関係者は、前記測定対象に対して、より適切な対応を取ることができる。
 また、前記解析装置は、前記無線通信回線を介して前記収集装置に前記通知信号を送信し、前記収集装置は、受信した前記通知信号に基づいて、前記異常の発生を外部に報知する報知部を備えることが好ましい。これにより、前記測定対象に対して何らかの動作を行っている人(例えば、建物の開口部に対して侵入動作を行う侵入者)に、前記報知部を通じて警告することができる。
 さらに、前記解析装置は、前記各測定対象の異常の有無の判別結果を逐次記憶する記憶部を備え、前記記憶部に記憶された前記各判別結果のうち、前記異常の発生を示す判別結果と、前記異常と判別された測定対象の情報と、前記異常が発生した時刻とを含む履歴情報を、前記無線通信回線を介して前記携帯機器に送信することが好ましい。これにより、前記履歴情報を参照することで、前記異常に応じた事象がどの測定対象にいつ発生したのかを確認することができる。
 また、前記携帯機器は、該携帯機器の操作者による操作に基づき、前記無線通信回線を介して前記解析装置に、前記報知部による報知の解除を要請する解除要請信号を送信し、前記解析装置は、受信した前記解除要請信号に基づいて、前記報知の解除を指示する解除指示信号を、前記無線通信回線を介して前記収集装置に送信することが好ましい。これにより、前記測定対象の異常が解消され、前記報知が不要となった場合に、前記操作者(前記監視対象領域の関係者)が前記携帯機器を操作するだけで、前記報知部による報知動作を速やかに解除させることができる。
本実施形態に係るデータ収集解析システムのブロック図である。 図1の検出装置、収集装置、解析装置及び携帯機器のブロック図である。 図3Aは、図1及び図2の検出装置の外観斜視図であり、図3Bは、図1及び図2の収集装置の外観斜視図である。 図1のデータ収集解析システムの動作を示すフローチャートである。 地震発生時の加速度波形の一例を示すタイミングチャートである。 引き違い窓に発生する振動又は衝撃に応じた加速度波形の一例を示すタイミングチャートである。 引き出しに発生する振動又は衝撃に応じた加速度波形の一例を示すタイミングチャートである。 キャビネットに発生する振動又は衝撃に応じた加速度波形の一例を示すタイミングチャートである。 キャビネットに発生する振動又は衝撃に応じた加速度波形の一例を示すタイミングチャートである。 図10A及び図10Bは、携帯機器の表示画面の一例を示す説明図である。 携帯機器の表示画面の一例を示す説明図である。 携帯機器の表示画面の一例を示す説明図である。 携帯機器の表示画面の一例を示す説明図である。
 本発明について、好適な実施形態を掲げ、添付の図面を参照しながら、以下詳細に説明する。
[本実施形態の構成]
 本実施形態に係るデータ収集解析システム10の構成について、図1~図3Bを参照しながら説明する。
 データ収集解析システム10は、住宅等の建物、土地、事業所等の監視対象領域12内に、例えば、建物の窓や扉等の開口部、土地の境界(に存在する垣根)、事業所内の什器や書類の保管箱(段ボール箱)のような監視対象としての測定対象14がある場合に、測定対象14に対する人の動作(例えば、測定対象14に対する侵入者の侵入動作)の監視や警備等のサービスに適用される。すなわち、データ収集解析システム10は、警備会社等のサービスの提供者による監視対象領域12の監視又は警備等のサービスに適用可能である。
 データ収集解析システム10は、監視対象領域12内の複数の測定対象14にそれぞれ装着された複数の検出装置16と、各検出装置16と無線を介して接続される収集装置18と、収集装置18と無線通信回線20を介して接続される解析装置22とを有する。無線通信回線20には、住宅の住人や事業所の管理者等の監視対象領域12の関係者(操作者)が所持する携帯機器24が接続されている。なお、データ収集解析システム10が警備会社による監視対象領域12の監視又は警備に適用される場合、上記の関係者は、当該監視又は警備のサービスを受ける契約者であることが望ましい。
 ここでは、一例として、監視対象領域12が住宅であり、測定対象14が引き違い窓やドア等の住宅における外部との接続部分である場合について説明する。また、データ収集解析システム10では、複数の検出装置16と収集装置18との間で無線通信による信号の送受信が可能であり、且つ、無線通信回線20を介して収集装置18と解析装置22との間で無線通信による信号の送受信が可能な状態で、監視対象領域12(の測定対象14)に対する監視が行われる。
 各検出装置16は、図3Aに示すように、薄型の矩形状に形成されており、例えば、測定対象14が引き違い窓である場合、貼着、粘着又は接着により、引き違い窓を構成する窓ガラス26の屋内側又は屋外側の隅部に装着される。各検出装置16は、図2に示すように、加速度センサ28、通信部30及びLED(Light Emitting Diode)32を有する。
 加速度センサ28は、三軸の加速度センサであり、測定対象14(の窓ガラス26)に発生する振動又は衝撃(事象)に応じた三軸方向(三次元方向)の加速度を逐次検出する。
 図3Aに示すように、加速度センサ28の位置を原点Oとした場合、原点Oよりも屋外側を+Z方向、屋内側を-Z方向と定義する。また、原点Oよりも上側を+Y方向、下側を-Y方向と定義する。さらに、屋外から検出装置16を見た場合、原点Oよりも右側を+X方向且つ左側を-X方向、あるいは、屋内から検出装置16を見た場合、原点Oよりも左側を+X方向且つ右側を-X方向、と定義する。
 従って、三軸の加速度センサ28は、X方向(左右方向)の加速度、Y方向(上下方向)の加速度、及び、Z方向(前後方向)の加速度をそれぞれ検出する。
 なお、以下の説明において、加速度センサ28は、測定対象14(の窓ガラス26)の屋外側から検出装置16が装着される場合、又は、測定対象14の屋内側から検出装置16が装着される場合、いずれの場合であっても、原点Oに対するX方向、Y方向及びZ方向の三軸方向は、図3Aに示す向きであることに留意する。
 図2の通信部30は、収集装置18との間で、無線PANの一種であるBLE(Bluetooth Low Energy;Bluetoothは登録商標)を用いた無線通信による信号の送受信を行う。従って、通信部30は、加速度センサ28が逐次検出した三軸方向の加速度の信号を、所定時間間隔(例えば、90回/s~100回/s程度)で無線通信により収集装置18に送信する。この場合、通信部30は、三軸方向の加速度の信号と共に、図示しない時計機能により、加速度センサ28による加速度の検出時刻を収集装置18に送信する。なお、通信部30は、所定時間間隔で収集装置18から信号を受信することも可能である。
 LED32は、検出装置16の前面に配置され、検出装置16の動作中に点灯するインジケータである。
 収集装置18は、図3Bに示すように、ブロック状に形成されており、その背面には、コンセント34に差し込み可能なプラグ36が設けられている。また、収集装置18の側面には、収集装置18と解析装置22との間での無線通信回線20を介したペアリングや、収集装置18と各検出装置16との間のペアリング、又は、ペアリングの解除を行わせるためのスイッチ38が設けられている。
 収集装置18は、前述のプラグ36及びスイッチ38に加え、図2に示すように、電源部40、通信部42、制御部44及び報知部46をさらに備える。
 電源部40は、プラグ36がコンセント34に差し込まれたときに、コンセント34からプラグ36を介して供給される交流電力を直流電力に変換し、収集装置18内の各部に直流電力を供給する。
 通信部42は、複数の検出装置16の通信部30との間でBLE等の無線PANにより信号の送受信を行う一方で、Wi-Fi(Wireless Fidelity;Wi-Fiは登録商標)等の無線LANの無線通信回線20を介して、解析装置22との間で、無線通信による信号の送受信を行う。
 従って、無線通信回線20は、インターネット回線であり、データ収集解析システム10は、インターネット回線に収集装置18を介して各検出装置16が接続されるIoT(Internet of Things)である。
 また、収集装置18は、複数の検出装置16と解析装置22との間で信号の中継を行う中継装置又はゲートウェイとして機能する。すなわち、通信部42は、BLEの通信範囲内の複数の検出装置16から所定時間間隔で送信される三軸方向の加速度の信号及び加速度の検出時刻を、三軸方向の加速度波形としてそれぞれ受信(収集)し、収集した各加速度波形を、無線通信回線20を介して解析装置22に送信(転送)する。また、通信部42は、解析装置22から受信した信号を制御部44に出力する。なお、通信部42は、解析装置22から受信した信号を検出装置16の通信部30に転送することも可能である。
 制御部44は、収集装置18内の各部を制御する。報知部46は、LED等の表示部又はスピーカであり、制御部44からの制御に基づいて発光し又は音を出力する。なお、図3Bでは、報知部46がLEDである場合を図示している。
 解析装置22は、無線通信回線20に接続されたコンピュータであり、制御部48、通信部50、判別部52及び記憶部54を有する。コンピュータは、非一過性の記録媒体である記憶部54に記憶されたソフトウェア(プログラム)を読み出して実行することにより、解析装置22として機能し、制御部48、通信部50及び判別部52の機能を実現する。なお、このソフトウェア(によるアルゴリズム)は、必要に応じて、適宜アップデートされる。
 ここで、解析装置22の各部について詳しく説明する。制御部48は、解析装置22内の各部を制御する。
 通信部50は、制御部48からの制御に従い、無線通信回線20を介して、収集装置18及び携帯機器24との間で、信号の送受信を行う。これにより、通信部50は、収集装置18から無線通信回線20を介して、各検出装置16からの三軸方向の加速度波形を受信することができる。
 判別部52は、通信部50で受信された各加速度波形に基づいて、各検出装置16が装着されている各測定対象14の異常の有無を判別する。この場合、判別部52は、各加速度波形の振幅方向及び/又は周期に基づいて各測定対象14の異常の有無を判別する。なお、測定対象14の異常とは、(1)監視対象領域12の監視中、通常有り得ない振動又は衝撃(事象)が測定対象14に発生すること、あるいは、(2)通常時に発生し得る振動又は衝撃(事象)が監視中に測定対象14に全く発生しないことをいう。(1)の事例としては、人の動作(例えば、侵入者による開口部への侵入動作)又は地震や風等の自然現象によって、通常有り得ない振動又は衝撃が測定対象14に発生する場合がある。一方、(2)の事例としては、建物内に人(例えば、建物の住人)が居るときに、監視中、所定時間経過しても、人によるドアの開閉動作に伴う該ドアの振動又は衝撃が発生しない場合がある。
 また、判別部52は、測定対象14に発生する振動又は衝撃のパターンを学習する機械学習機能を有する人工知能であり、学習した振動又は衝撃のパターンの加速度波形と、実際に収集した各加速度波形とに基づいて、各測定対象14の異常の有無を判別することも可能である。すなわち、判別部52は、センシングして得られた各加速度波形を解析することにより、加速度波形のパターンの機械学習を行い、学習したパターンと、学習後に収集される三軸方向の加速度波形とを比較することにより、該加速度波形が自然現象によるものか、又は、人の動作によるものかを判別することができる。
 さらに、判別部52は、判別処理を行う毎に、その判別結果を記憶部54に逐次記憶する。この場合、判別部52は、異常の発生を示す判別結果を含む履歴情報も記憶部54に記憶する。
 携帯機器24は、監視対象領域12の関係者が所持するスマートフォン等の各種の携帯機器であり、通信部56、制御部58、表示部60及び操作部62を有する。通信部56は、無線通信回線20を介して、解析装置22との間で信号の送受信を行う。制御部58は、携帯機器24の各部を制御する。表示部60は、制御部58の制御に従って、各種の情報を表示する。操作部62は、関係者が操作するタッチパネル等である。
 そして、本実施形態に係るデータ収集解析システム10は、クラウドサービスに適用され、インターネット上のクラウドコンピュータが解析装置22として機能する。前述のように、各検出装置16から収集装置18及び無線通信回線20を介して解析装置22に三軸方向の加速度波形が逐次送信されるので、解析装置22は、膨大なデータ量のビッグデータである各加速度波形を分析(解析)することにより、各測定対象14の異常の有無を判別する。
 また、制御部48は、測定対象14に異常が発生したことを判別部52が判別した場合、異常の発生を通知するための通知信号を、通信部50から無線通信回線20を介して収集装置18に送信する。通知信号には、異常と判別された測定対象14の情報と、異常が発生した時刻とが含まれている。収集装置18の通信部42が通知信号を受信すると、報知部46は、受信した通知信号に基づいて発光を開始し、又は、音の出力を開始する。ここで、異常が発生した時刻とは、判別部52が異常と判別した処理に用いた加速度(加速度波形)が検出された時刻をいう。
 また、この通知信号は、通信部50から無線通信回線20を介して携帯機器24にも送信される。携帯機器24の通信部56が通知信号を受信すると、制御部58は、通知信号に基づいて、測定対象14に異常が発生したことを表示部60に表示させる。
 さらに、記憶部54には、異常の発生を示す判別結果と、異常と判別された測定対象14の情報と、異常が発生した時刻とを含む履歴情報が記憶されている。そこで、制御部48は、通信部50から無線通信回線20を介して携帯機器24の通信部56に、履歴情報を送信可能である。携帯機器24の制御部58は、通信部56が履歴情報を受信すると、該履歴情報を表示部60に表示させる。
 さらにまた、携帯機器24の表示部60の表示内容を視認した関係者が操作部62を操作し、報知部46による報知の解除を要請した場合、制御部58は、通信部56から無線通信回線20を介して解析装置22の通信部50に、報知の解除を要請する解除要請信号を送信する。通信部50が解除要請信号を受信した場合、制御部48は、報知の解除を指示する解除指示信号を、通信部50から無線通信回線20を介して収集装置18に送信する。通信部42が解除指示信号を受信した場合、収集装置18の制御部44は、解除指示信号に基づいて、報知部46による発光又は音の出力を停止させる。
[本実施形態の動作]
 次に、本実施形態に係るデータ収集解析システム10の動作(データ収集解析方法)について、図4~図13を参照しながら説明する。この動作説明では、必要に応じて、図1~図3Bも参照しながら説明する。ここでは、データ収集解析システム10が監視対象領域12の監視(警備)のサービスに適用され、監視対象領域12の監視中に測定対象14に対して人が何らかの動作(例えば、侵入者による窓等の開口部への開閉動作)を行う場合について説明する。
 この場合、監視対象領域12内では、予め、収集装置18のプラグ36がコンセント34に差し込まれる。これにより、電源部40は、コンセント34からプラグ36を介して供給される交流電力を直流電力に変換し、収集装置18内の各部に供給する。また、監視対象領域12の関係者がスイッチ38を押すことで、通信部42は、無線通信回線20を介して解析装置22との間でペアリングを行うことが可能となる。また、通信部42は、監視対象領域12に配置された複数の検出装置16の通信部30との間でペアリングを行うことができる。
 この場合、監視対象領域12全体が通信部42によるBLE等の無線PANの通信範囲として設定される。これにより、データ収集解析システム10は、監視対象領域12の各測定対象14を監視可能な状態(警戒モード)に至る。警戒モードへの移行後、監視対象領域12の関係者は、例えば、監視対象領域12から離れた場所に移動可能である。
 図4のステップS1(第1ステップ)において、各検出装置16の加速度センサ28は、X方向、Y方向及びZ方向の三軸方向の加速度をそれぞれ検出する。各通信部30は、逐次検出された三次元方向の加速度の信号及び加速度の検出時刻を、BLE等の無線PANによる無線通信により、所定時間間隔で収集装置18の通信部42にそれぞれ送信する。
 ステップS2(第2ステップ)において、収集装置18の通信部42は、無線PANの通信範囲内の全ての検出装置16の通信部30から、所定時間間隔で送信される三軸方向の加速度の信号及び加速度の検出時刻を逐次受信し、受信した各信号及び検出時刻を三軸方向の加速度波形として、無線通信回線20を介して解析装置22に転送する。
 図5~図9は、三軸方向の加速度波形の一例を図示したものである。
 図5は、地震によって測定対象14に振動又は衝撃が発生したときの三軸方向の加速度波形を示す。
 図6は、測定対象14が引き違い窓である場合に、人(例えば、侵入者)が屋外から窓を叩き、その後、引き違い窓のうち、屋外から見て左側の窓を右方向(屋内から見て右側の窓を左方向)にスライドさせたときの三軸方向の加速度波形を示す。
 図7は、測定対象14が机の引き出しである場合に、侵入者が引き出しを無理矢理引き出したときの三軸方向の加速度波形を示す。
 図8及び図9は、測定対象14がキャビネットである場合に、侵入者がキャビネットを外側から見て右から左へ無理矢理スライドさせたときの三軸方向の加速度波形を示す。
 ステップS3(第3ステップ)において、解析装置22の通信部50は、無線通信回線20を介して、全ての検出装置16(の加速度センサ28)の三軸方向の加速度波形を受信(収集)する。収集された三軸方向の加速度波形は、記憶部54に記憶される。
 判別部52は、収集された三軸方向の加速度波形に基づいて、監視対象領域12内の測定対象14に異常な振動又は衝撃が発生しているか否かを判定する。
 異常な振動又は衝撃が発生していないと判別した場合(ステップS3:NO)、判別部52は、その判別結果を記憶部54に記憶した後、次の加速度波形に対してステップS3の処理を繰り返し実行する。
 一方、異常な振動又は衝撃が発生していると判別した場合(ステップS3:YES)、判別部52は、その判別結果を記憶部54に記憶すると共に、該判別結果、異常と判別された測定対象14の情報、及び、異常が発生した時刻を履歴情報として記憶部54に記憶する。そして、次のステップS4において、判別部52は、収集装置18及び携帯機器24に対して、この判別結果に基づき、異常が発生したことを報知すべきか否か判別する。
 異常な振動又は衝撃を示す判別結果であっても、報知する必要がない場合(ステップS4:NO)、判別部52は、ステップS3に戻り、次の加速度波形に対してステップS3の処理を繰り返し実行する。
 一方、報知する必要があると判別した場合(ステップS4:YES)、判別部52は、収集装置18及び携帯機器24に対する報知が必要であることを制御部48に通知する。これにより、制御部48は、ステップS5の報知処理を実行することができる。
 ここで、判別部52におけるステップS3、S4の処理内容について詳しく説明する。
 三軸の加速度センサ28は、三軸方向(三次元方向)について、+方向及び-方向に加速度を測定することができる。そのため、測定対象14に対する検出装置16(の加速度センサ28)の装着状態が予め分かっていれば、三軸方向の加速度波形より、どの方向からの振動又は衝撃が測定対象14に加わったのかどうかを簡便に見分けることが可能である。
 また、振動又は衝撃の大きさ及び時間から、三軸方向の加速度波形を長周期波形と短周期波形とに大別することが可能である。これにより、異常な振動又は衝撃に応じた加速度波形であっても、地震又は風等の自然現象による振動又は衝撃に応じた長周期波形であるか、あるいは、人の動作(侵入者による侵入動作)に起因した短周期波形であるか、を見分けることが可能である。
 そこで、判別部52は、上記の判断基準に基づき、異常な振動又は衝撃の発生の有無を判別し(ステップS3)、報知が必要か否かを判別することができる(ステップS4)。具体的に、判別部52は、下記のような処理(第1~第3の処理)を行えばよい。
 (1)第1の処理
 第1の処理は、ステップS3の処理に関するものである。
 前述のように、三軸の加速度センサ28は、X方向、Y方向及びZ方向について、+方向及び-方向に加速度を測定することができる。例えば、引違い窓を屋内側から見て、2つの窓(窓ガラス26)のうち、左側の窓の左側上部(+X方向及び+Y方向の隅部)に検出装置16を貼り付ける。
 ここで、図6の時点t1、t2で侵入者が屋外から左側の窓を叩いた場合、引き違い窓には-Z方向の衝撃が伝わる。これにより、引き違い窓は-Z方向に振動し、加速度センサ28は、この振動を-Z方向の加速度として検出する。従って、時点t1、t2での衝撃(振動)に応じたZ方向の加速度波形は、図6の下方向(-Z方向)への振れから始まる波形となる。
 なお、屋内から左側の窓を叩いた場合、引き違い窓には+Z方向の衝撃が伝わり、引き違い窓は+Z方向に振動する。そのため、加速度センサ28は、この振動を+Z方向の加速度として検出する。従って、このときの加速度波形は、図6の上方向(+Z方向)への振れから始まる波形となる。
 従って、第1の処理では、Z方向の加速度波形について、どの方向への振れが開始されたのかを特定することにより、引き違い窓等の測定対象14について、外部(屋外)又は内部(屋内)のどちらの方向からの衝撃であるのかを簡便に判別することが可能である。これにより、判別部52は、侵入者による侵入動作に起因した異常な振動又は衝撃を示す加速度波形であるか否かを容易に判別することができる。
 (2)第2の処理
 第2の処理も、第1の処理と同様に、ステップS3に関する処理である。
 例えば、引違い窓を屋内側から見て、2つの窓のうち、右側の窓の右側上部(-X方向及び+Y方向の隅部)に検出装置16を貼り付ける。この場合、図6の時点t3で、侵入者等により右側の窓が左側に開かれると、右側の窓には+X方向の衝撃が伝わり、右側の窓は+X方向に振動する。加速度センサ28は、この振動を+X方向の加速度として検出する。従って、時点t3での衝撃(振動)に応じたX方向の加速度波形は、図6の上方向(+X方向)への振れから始まる波形となる。
 一方、第1の処理での引き違い窓について、侵入者等により、屋内側から見て左側の窓が右側に開かれると、左側の窓には-X方向の衝撃が伝わり、左側の窓は-X方向に振動する。加速度センサ28は、この振動を-X方向の加速度として検出する。従って、この衝撃(振動)に応じたX方向の加速度波形は、図6の下方向(-X方向)への振れから始まる波形となる。
 このように、第2の処理では、X方向の加速度波形について、どの方向への振れが開始されたのかを特定することにより、引き違い窓等の測定対象14が屋内側から見て右側又は左側のどちらに動く衝撃であるのかを簡便に判別することが可能である。なお、第2の処理の説明では、屋内から見た場合を基準に説明したが、屋外から見た場合を基準にしても、同様の結果になることは勿論である。
 (3)第3の処理
 第3の処理は、ステップS4の処理に関するものである。
 自然現象による振動又は衝撃、例えば、地震動(地震)は、測定対象14を三軸方向のそれぞれに長時間振動させ続けながら、該測定対象14に衝撃をもたらす長周期振動である。このような長周期振動に応じた三軸方向の加速度を加速度センサ28で検出すると、図5に示すように、加速度波形は、該長周期振動に応じた長周期波形となる。
 また、直下型地震による測定対象14の振動又は衝撃を加速度センサ28で測定すると、当該振動又は衝撃に応じた瞬時的な加速度波形が得られる。しかしながら、このような加速度波形についても、比較的長時間の長周期波形となる。
 これに対して、侵入者による侵入動作等の人的な振動又は衝撃の場合、測定対象14に対して瞬時的に振動又は衝撃が発生しても、図6に示すように、当該振動又は衝撃に応じた加速度波形は、短周期波形として測定される。
 すなわち、自然現象に起因して測定対象14に発生する振動又は衝撃と、人が測定対象14である窓やドアを開けるときの振動又は衝撃とでは、周波数が互いに異なる。また、人が測定対象14である窓ガラス26を叩くときの振動又は衝撃と、窓ガラス26を割るときの振動又は衝撃とでも、周波数が互いに異なる。
 このことから、判別部52は、周波数(周期)が互いに異なる点に着目して、三軸方向の加速度波形が、自然現象に起因する波形であるか、又は、人的な振動若しくは衝撃に起因する波形であるのか、を判別することが可能である。
 同様に、風に起因する不定期な振動又は衝撃や周期性が一定でない振動又は衝撃についても、一瞬で振動又は衝撃をもたらす短周期波形とは明確に異なるため、判別部52は、これらの振動又は衝撃に起因した加速度波形に基づく判別処理が可能である。
 すなわち、第3の処理では、ステップS3で異常な振動又は衝撃と判別された場合(ステップS3:YES)、ステップS4において、ステップS3の判別結果が自然現象に起因するものか、又は、人の動作(侵入者による侵入動作)に起因するものかを容易に判別することができる。この結果、自然現象に起因する振動又は衝撃であれば、検出装置16、収集装置18及び携帯機器24への報知が不要であり(ステップS4:NO)、一方で、侵入者による侵入動作に起因する振動又は衝撃であれば、検出装置16、収集装置18及び携帯機器24への報知が必要である(ステップS4:YES)と、容易に判別することができる。
 つまり、異常な振動又は衝撃であっても、自然現象に起因する振動又は衝撃である場合、判別部52は、検出装置16、収集装置18及び携帯機器24への報知が不要と判定し(ステップS4:NO)、ステップS3の処理に戻り、次の加速度波形に対してステップS3の処理を繰り返し実行する。一方、異常な振動又は衝撃が人的な振動又は衝撃(侵入者による侵入動作)に起因する場合、判別部52は、検出装置16、収集装置18及び携帯機器24への報知が必要と判定する(ステップS4:YES)。
 なお、上記の説明では、図5及び図6の加速度波形を参照しながら説明したが、図7~図9の加速度波形に第1~第3の処理を適用することも可能である。
 測定対象14が引き出しである場合、図7に示すように、時点t7、t8で侵入者が引き出しを無理矢理引き出す侵入動作を行ったとき、該侵入動作に応じた振動又は衝撃を示す加速度波形が収集されるため、判別部52は、例えば、第1又は第2の処理によって、加速度波形中の振れから異常な振動又は衝撃が発生した(ステップS3:YES)と判別することができる。
 また、測定対象14がキャビネットである場合、図8及び図9に示すように、時点t9~t13で侵入者がキャビネットを無理矢理右側から左側にスライドさせる侵入動作を行ったとき、該侵入動作に応じた振動又は衝撃を示す加速度波形が収集されるため、判別部52は、例えば、第1又は第2の処理によって、加速度波形中の振れから異常な振動又は衝撃が発生した(ステップS3:YES)と判別することができる。
 さらに、ステップS2で全ての検出装置16における三軸方向の加速度波形が収集されるので、解析装置22で収集される三軸方向の加速度波形の単位時間当たりのデータ量は飛躍的に増大する。そのため、ステップS3において、判別部52は、振動又は衝撃のパターンを学習する機械学習機能を有する人工知能として機能し、収集された各加速度波形をビッグデータとして、各測定対象14の異常の有無の判別をより精度良く行ってもよい。
 例えば、判別部52は、逐次収集される各加速度波形を判別することにより、人による動作(例えば、侵入動作)のない加速度波形のパターンと、侵入動作が発生したときの加速度波形のパターンとを特定(学習)し、学習したパターンと、その後収集される加速度波形とを比較することにより、侵入動作の発生の有無を判別してもよい。
 また、判別部52は、地震や風等の自然現象による振動又は衝撃に応じた加速度波形のパターンを予め認識(学習)し、学習したパターンと、その後収集される加速度波形とを比較することにより、自然現象による加速度波形であるかどうかを判別してもよい。
 さらに、判別部52は、逐次収集される各加速度波形を判別することにより、正常な加速度センサ28に応じた加速度波形のパターンと、故障等の不具合のある加速度センサ28に応じた加速度波形のパターンとを特定(学習)し、学習した各パターンと、その後収集される加速度波形とを比較することにより、収集された加速度波形が正常な波形かどうかを判別してもよい。
 このようにステップS3で異常な振動又は衝撃が発生したと判定され(ステップS3:YES)、且つ、ステップS4で収集装置18及び携帯機器24への報知が必要と判定された場合(ステップS4:YES)、次のステップS5において、制御部48は、侵入者による侵入動作等の異常の発生を報知するための通知信号を生成し、生成した通知信号を通信部50から無線通信回線20を介して、収集装置18及び携帯機器24に送信する。
 収集装置18の通信部42が通知信号を受信すると、制御部44は、受信した通知信号に基づいて、報知部46を制御し、LEDの発光又は音の出力により、異常の発生を監視対象領域12内に報知する。これにより、報知部46は、測定対象14に対して侵入動作を行おうとする侵入者に警告を行うので、侵入者の侵入を遅らせ、又は、侵入者による侵入を未然に防ぐ防犯効果が得られる。
 また、携帯機器24の通信部56が通知信号を受信すると、制御部58は、通知信号に基づいて、測定対象14の異常の発生や、報知部46が警告動作中であることを表示部60に表示させる。
 図10A~図13は、携帯機器24の表示画面70の一例を示す。図10A~図13では、携帯機器24がスマートフォンであり、表示画面70がスマートフォンの表示画面であって、表示部60及び操作部62の機能を有する場合を図示している。
 図10Aは、データ収集解析システム10が監視対象領域12を監視中(警戒モード)であるときの表示画面70の表示例を示す。この場合、監視対象領域12の関係者は、指で表示画面70を右側にスライドすることにより、表示画面70を図11~図13の画面表示に切り替えることができる。一方、図10Bは、監視対象領域12に対する監視(警戒モード)が解除されているときの表示画面70の表示例を示す。
 図11は、スマートフォンが通知信号を受信したときの表示画面70の表示例を示す。この場合、異常と判別された測定対象14を関係者に報知するため、表示画面70の背景は、赤色表示とされている。また、表示画面70の表示欄72には、(1)収集装置18の報知部46が報知動作中であることを示す「ゲートウェイブザー 鳴動中」の情報、(2)監視対象領域12の住宅において、異常と判別された測定対象14が脱衣場の窓であることを示す「検知センサ 脱衣場」の情報が表示されている。
 関係者は、表示欄72の表示内容を視認することにより、脱衣場に対して侵入者による侵入動作が行われ、各報知部46による報知動作が行われていることを認識することができる。
 そして、次のステップS6において、表示画面70の表示内容を視認した関係者は、報知動作を維持しつつ(ステップS6:NO)、例えば、4つのアイコン73~76のいずれかをタップすることにより、異常の発生の連絡や事実確認等を所定の連絡先に連絡することができる(ステップS7)。
 例えば、関係者がアイコン73を操作すると、予め指定された連絡先や、予め登録した連絡先、例えば、監視対象領域12の他の関係者(家族)に電話連絡を行うことができる。また、関係者がアイコン74を操作すると、前述の指定された連絡先、又は、監視対象領域12周辺の住人や監視対象領域12の他の関係者等、事前に登録したグループの構成員(契約者である関係者が事前に指定した他のユーザ)にメールによる連絡を行うことができる。さらに、関係者がアイコン75を操作すると、関係者は、グループの構成員に対して、異常が発生した事実をメール等により一斉に通知することができる。さらにまた、関係者がアイコン76を操作すると、サービスの提供者(例えば、警備会社)と連絡を取り、監視対象領域12への訪問等を要請することができる。
 ステップS7後、携帯機器24は、ステップS6に戻る。また、ステップS6で関係者が報知動作の維持を決定した場合(ステップS6:NO)、関係者は、ステップS7の処理を行わず、図11の画面表示をそのまま継続させることも可能である。
 一方、例えば、報知部46の報知動作又は関係者による連絡に起因して、異常の発生が解消された場合、関係者は、報知状態の解除が必要と判断し(ステップS6:YES)、ステップS8において、関係者は、表示画面70のベルマークのアイコン77をタップすることで、報知状態の解除を要請する。
 制御部58は、アイコン77のタップ操作に基づいて、報知状態の解除を要請する解除要請信号を通信部56から無線通信回線20を介して解析装置22の通信部50に送信する。通信部50が解除要請信号を受信すると、解析装置22の制御部48は、解除要請信号に基づいて、報知状態の解除を指示する解除指示信号を生成し、生成した解除指示信号を、通信部50から無線通信回線20を介して収集装置18の通信部42に送信する。通信部42が解除指示信号を受信すると、収集装置18の制御部44は、解除指示信号に基づいて報知部46の報知動作を停止させる。
 この結果、表示画面70は、図11から図12の表示内容に切り替わる。この場合、表示画面70の背景は、赤色以外の色(例えば、白色)で表示され、表示欄72には、(1)収集装置18の報知部46が報知動作を停止したことを示す「ゲートウェイブザー 停止済」の情報、(2)解除処理の対象となった測定対象14が脱衣場の窓であることを示す「検知センサ 脱衣場」の情報が表示されている。
 ステップS8の解除処理後、表示画面70が図13の画面表示となってもよい。図13は、記憶部54に記憶された履歴情報を表示画面70に表示させる場合を図示したものである。この場合、監視対象領域12に対するデータ収集解析システム10の監視動作の稼働実績とステップS8の解除処理との履歴が、稼働毎及び解除処理毎に、表示欄80a~80eとして表示される場合を図示している。
 図13では、監視対象領域12における2回の稼働実績と3回の解除処理とが表示欄80a~80eに表示されている。すなわち、表示欄80b、80dには、稼働実績として、例えば、異常と判別された測定対象14の名称及び設置場所(脱衣場)、異常が発生した時刻が表示される。また、表示欄80a、80c、80eには、解除処理として、例えば、報知部46による報知動作が停止した時刻が表示される。
 なお、制御部58は、各測定対象14の異常が発生する毎に、表示画面70に異常の発生に関する情報を表示させてもよい。この場合、制御部58は、例えば、表示欄80b、80dのみを表示画面70に時系列で表示させればよい。
 また、データ収集解析システム10においては、解除処理が行われることにより、測定対象14に対する監視動作(警戒モード)が一旦完了し、1回分の稼働実績となる。解除処理の完了後に次回の監視動作が開始される。そのため、表示欄80a~80eには、異常が発生した時刻、解除処理の時刻等が表示される。
 そして、図13の画面表示は、下記のようにして行われる。ステップS8後、関係者による表示画面70の操作に起因して、制御部58が通信部56から無線通信回線20を介して解析装置22の通信部50に履歴情報等の送信を要求する。通信部50が送信要求を受信すると、解析装置22の制御部48は、記憶部54に記憶された履歴情報を、通信部50から無線通信回線20を介して携帯機器24の通信部56に送信する。制御部58は、受信された履歴情報に基づいて、図13の画面表示を表示部60に行わせる。
 なお、上記のステップS7において、関係者は、表示画面70を操作することにより、他のアプリケーションソフトウェアを起動させてもよい。前述のように、解析装置22に収集される三軸方向の加速度波形がビッグデータであるため、起動されたアプリケーションソフトウェアは、ビッグデータを活用したサービスを関係者に提供することが可能である。
 また、解析装置22の判別部52では、各加速度波形に対してステップS3、S4の処理を逐次行うことが可能である。そこで、携帯機器24の制御部58は、解析装置22から通知信号が通知される毎に解析装置22に対して履歴情報の送信を要求し、履歴情報を受信する毎に新たに異常と判別された測定対象14の情報を表示画面70にポップアップ表示させてもよい。
[本実施形態の効果]
 以上説明したように、本実施形態に係るデータ収集解析システム10及びデータ収集解析方法によれば、各測定対象14の事象を検出する各検出装置16からの検出結果が、収集装置18及び無線通信回線20を介して解析装置22に収集され、該解析装置22で各検出結果に基づく各測定対象14の異常の有無が判別される。これにより、全ての検出装置16の検出結果が解析装置22に収集され、該解析装置22に収集されるデータ量(各検出結果)が増大するので、各検出結果をビッグデータとして、各測定対象14の異常の有無の判別に利用することができる。
 例えば、一部の検出装置16に故障等の不具合があり、通常有り得ない検出結果が収集された場合でも、正常な他の検出装置16の検出結果を参照することにより、解析装置22は、該一部の検出装置16の検出結果が不具合に起因した検出結果であることを容易に判断することができる。
 従って、本実施形態によれば、各検出結果に基づいて、各測定対象14の異常の有無を容易に且つ確実に判別することが可能となるため、異常の有無の判別を精度良く行うことができる。
 この場合、各検出装置16は、それぞれ、測定対象14に装着されると共に、該測定対象14に発生する事象としての振動又は衝撃に応じた加速度を検出する加速度センサ28を備える。これにより、解析装置22は、無線通信回線20及び収集装置18を介して、各検出結果としての加速度を取得し、各加速度に基づいて各測定対象14の異常の有無を精度良く判別することができる。
 また、各検出結果が各測定対象14に発生する振動又は衝撃に応じた加速度波形であり、解析装置22は、各加速度波形の振幅方向及び/又は周期に基づいて各測定対象14の異常の有無を判別する。これにより、解析装置22は、無線通信回線20及び収集装置18を介して、各加速度波形をリアルタイムで取得することができる。この結果、解析装置22で収集されるデータ量が飛躍的に増大するので、各加速度波形に基づいて各測定対象14の異常の有無を一層精度良く判別することができる。
 また、各測定対象14に対する各検出装置16(の各加速度センサ28)の設置状態が予め分かっていれば、解析装置22は、加速度波形の振幅方向を調べることにより、どの方向からの力によって測定対象14に発生した振動又は衝撃であるのかを特定することができる。
 さらに、解析装置22は、加速度波形の周期を調べることにより、比較的長周期の加速度波形である場合には、地震等の自然現象に起因する振動又は衝撃であることを特定することができ、一方で、比較的短周期の加速度波形である場合には、人の動作に起因する振動又は衝撃であることを特定することができる。
 また、各加速度センサ28が三軸の加速度センサであり、各検出装置16と収集装置18とは無線PAN(BLE)を介して接続され、収集装置18と解析装置22とは無線LAN(無線通信回線20)を介して接続されている。しかも、解析装置22の判別部52は、振動又は衝撃のパターンを学習する機械学習機能を有し、学習した振動又は衝撃のパターンと各加速度波形とに基づいて、各測定対象14の異常の有無を判別する。
 これにより、解析装置22で収集される各検出結果の単位時間当たりのデータ量が飛躍的に増大する。そこで、判別部52に機械学習機能を持たせることにより、判別部52は、人工知能を利用して各測定対象14の異常の有無の判別をより精度良く行うことが可能となる。すなわち、判別部52は、センシングして得られた各加速度波形を解析することにより、様々な加速度波形のパターンを学習し、学習したパターンと、学習後に収集される三軸方向の加速度波形とを比較することにより、該加速度波形が自然現象によるものか、又は、人の動作によるものかを判別することができる。
 また、解析装置22の記憶部54に記憶されているソフトウェアを必要に応じて適宜アップデートすることにより、データ収集解析システム10のハードウェア構成を変更することなく、三軸方向の加速度波形に対する判別処理の精度を容易に向上できると共に、新たな機能を搭載させることが可能となる。この結果、データ収集解析システム10のユーザである関係者のコスト負担を抑えつつ、ユーザビリティを向上させると共に、データ収集解析システム10を進化させることができる。
 なお、検出装置16は、貼着等により測定対象14に装着できると共に、収集装置18との間でワイヤレス通信を行うので、配線作業が不要である。この結果、監視対象領域12に検出装置16及び収集装置18を容易に設置することができる。
 そして、解析装置22は、無線通信回線20を介して携帯機器24に、異常の発生を通知する通知信号を送信し、携帯機器24は、受信した通知信号に基づいて、異常の発生を表示部60(表示画面70)に表示させることにより、外部に異常の発生を報知する。これにより、各測定対象14を含む監視対象領域12の関係者が携帯機器24を所持している場合、該関係者に異常の発生を速やかに通知することができる。この結果、関係者は、本実施形態が適用されるサービスの提供者(例えば、警備会社)への連絡等の当該測定対象14に対する適切な対応を取ることが可能となる。また、判別部52により異常の発生の有無が精度良く判別されるので、表示画面70の誤報知の発生を防止することができる。
 この場合、解析装置22は、異常と判別された測定対象14の情報と、異常が発生した時刻とを含む通知信号を、無線通信回線20を介して携帯機器24に送信する。これにより、携帯機器24は、異常と判別された測定対象14と、該異常が発生した時刻とを表示画面70に表示させる。これにより、関係者は、測定対象14に対して、より適切な対応を取ることができる。
 また、解析装置22は、無線通信回線20を介して収集装置18に通知信号を送信し、収集装置18の報知部46は、受信した通知信号に基づいて、異常の発生を外部に報知する。これにより、開口部や什器等の測定対象14に対して何らかの動作を行っている人(例えば、開口部に対して侵入動作を行う侵入者)に、報知部46を通じて警告することができる。また、解析装置22の判別部52により、異常の発生の有無が精度良く判別されるので、誤報知の発生を防止することができる。
 さらに、解析装置22は、各測定対象14の異常の有無の判別結果を逐次記憶する記憶部54を備えており、記憶部54に記憶された各判別結果のうち、異常の発生の判別結果と、異常と判別された測定対象14の情報と、異常が発生した時刻とを含む履歴情報が、無線通信回線20を介して携帯機器24に送信される。これにより、関係者は、表示部60に表示される履歴情報を参照することで、異常に応じた事象がどの測定対象14にいつ発生したのかを確認することができる。
 また、記憶部54に記憶された履歴情報を警備会社や警察に提供することにより、警備会社又は警察は、履歴情報を解析して事象が発生した時刻を容易且つ速やかに特定することができる。この結果、警備会社又は警察は、当該事象に対する適切な対応を採ることができる。
 また、携帯機器24は、該携帯機器24の操作者による操作に基づき、無線通信回線20を介して解析装置22に、報知部46による報知の解除を要請する解除要請信号を送信し、解析装置22は、受信した解除要請信号に基づいて、報知の解除を指示する解除指示信号を、無線通信回線20を介して収集装置18に送信する。これにより、測定対象14の異常が解消され、報知が不要となった場合に、関係者が携帯機器24を操作するだけで、報知部46による報知動作を速やかに解除させることができる。
[本実施形態の変形例]
 なお、本実施形態では、上記の説明に限定されるものではなく、下記の構成及び動作も可能である。
 本実施形態では、解析装置22が全ての検出装置16から三軸方向の加速度波形を収集してビッグデータとして記憶部54に蓄積するため、このビッグデータを利用して種々のサービスを提供することが可能である。
 すなわち、従来は、複数のセンサが検出したデータをコンピュータが逐次収集し、逐次収集したデータをビッグデータとして収集側(コンピュータ)が利用していた。この場合、データとして検出される側(契約者としてのユーザ)は、ビッグデータを利用できないか、又は、そのビッグデータを閲覧する行為をしなければ利用することができなかった。
 これに対して、本実施形態では、ビッグデータとしての三軸方向の加速度波形を用いて測定対象14の異常の有無を判別し、その判別結果等をユーザである監視対象領域12の関係者の携帯機器24に通知している。つまり、本実施形態では、ビッグデータ(加速度波形)を利用した情報(判別結果)を積極的にユーザ(関係者)に提供する。しかも、本実施形態では、異常の発生を示す判別結果を履歴情報として記憶部54に記憶することにより、記憶された履歴情報をユーザに積極的に提供することができる。これにより、本実施形態では、ユーザの利便性を高めることが可能となる。その利用形態の具体例について、以下に説明する。
 例えば、正常時の加速度波形とは明らかに異なる加速度波形が取得された場合、該異なる加速度波形を検出した検出装置16の情報を、携帯機器24の表示部60に表示させることにより、該検出装置16のメンテナンスや部品交換が必要であることを、監視対象領域12の関係者に促すことが可能となる。
 また、各種の機械を測定対象14とし、該機械に発生する振動の周波数を検知することで、通常有り得ない周波数が検知された場合には、当該機械のメンテナンスや構成部品(消耗部品)の交換等を促すことも可能である。
 さらに、監視対象領域12である住宅に住人(関係者の家族)がいる場合に、データ収集解析システム10を適用して、該住人の安否確認(見守り機能)を行うことも可能である。この場合、監視対象領域12の監視中、所定期間(例えば、見守りの開始から24時間)経過しても全ての検出装置16の加速度波形に振動又は衝撃を示す時間変化がない場合(図4のステップS3:YES)、例えば、測定対象14であるトイレの扉や冷蔵庫の扉の開閉がない場合、携帯機器24の表示部60に図11のような表示を行わせればよい(図4のステップS4:YES、ステップS5)。
 これにより、測定対象14に振動又は衝撃が所定時間発生しなかったことを関係者(例えば、データ収集解析システム10が適用されるサービスの契約者)に報知することができる。この結果、表示内容を確認した関係者は、アイコン73又はアイコン76をタップして、指定の連絡先に電話連絡したり、あるいは、サービスの提供者と連絡を取って、監視対象領域12への訪問等を要請することができる。
 また、データ収集解析システム10では、測定対象14の監視をリアルタイムで行えるので、監視対象領域12である住宅に住人がいる場合に、測定対象14であるドアの振動を検出してから所定時間経過したときには、経過時間から当該住人の移動範囲を類推することが可能である。この場合、類推した移動範囲内に住人が移動している可能性があることを、携帯機器24の表示部60に表示させることにより、データ収集解析システム10が適用されるサービスの契約者に報知することができる。
 さらに、測定対象14が事業所内の書類の保管箱(段ボールケース)である場合には、該保管箱に検出装置16を装着し、検出装置16が保管箱の振動又は衝撃に応じた加速度波形を検出した場合には(図4のステップS3:YES)、保管箱に異常が発生した旨を携帯機器24の表示部60に表示させてもよい(図4のステップS5)。これにより、保管箱を保存している部屋の管理(入退室管理)が容易になる。
 さらにまた、各検出装置16が無線を介して収集装置18と接続されているため、報知部46と同様の機能を有する報知部を各検出装置16に内蔵させてもよい。これにより、収集装置18の通信部42が通知信号を受信した場合、通信部42は、受信した通知信号を検出装置16の通信部30に転送し、検出装置16の報知部は、転送された通知信号に基づいて、LED32等の発光により、又は、スピーカ等による音の出力により、測定対象14の異常の発生を報知することができる。また、収集装置18の通信部42が解除指示信号を受信した場合、通信部42は、受信した解除指示信号を検出装置16の通信部30に転送し、検出装置16の報知部は、転送された解除指示信号に基づき、発光を停止し、又は、音の出力を停止することができる。
 また、本実施形態において、測定対象14は、建物、土地、事業所等の監視対象領域12内で監視対象となるものであれば、どのような物も測定対象14となり得る。すなわち、建物内部のドア、土地の境界の垣根等も測定対象14となり得る。さらに、測定対象14の異常の原因となる人の動作についても、侵入者又は住人による特定の場所への入場動作に限らず、侵入者又は住人による窓やドアの開閉だけのように、特定の場所に入らない場合も動作の対象となり得る。
 さらにまた、本実施形態では、一例として、測定対象14に発生する振動又は衝撃に応じた加速度を、検出装置16に内蔵された加速度センサ28で検出する場合について説明した。本実施形態では、測定対象14に発生する事象を検出できるセンサであれば、検出装置16は、どのようなセンサでも内蔵可能である。この場合、解析装置22は、各検出装置16に内蔵されるセンサの検出結果を、収集装置18及び無線通信回線20を介して取得し、取得した各検出結果に基づいて各測定対象14の異常の有無を判別することが可能である。
 なお、本発明は、上述の実施形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることは勿論である。

Claims (12)

  1.  測定対象(14)に発生する事象を検出する検出装置(16)と、
     複数の前記検出装置(16)と無線を介して接続され、前記各検出装置(16)の検出結果を収集する収集装置(18)と、
     前記収集装置(18)と無線通信回線(20)を介して接続され、前記収集装置(18)から前記各検出結果を取得し、取得した前記各検出結果に基づいて複数の前記測定対象(14)の異常の有無を判別する解析装置(22)と、
     を有することを特徴とするデータ収集解析システム(10)。
  2.  請求項1記載のデータ収集解析システム(10)において、
     前記各検出装置(16)は、それぞれ、前記測定対象(14)に装着されると共に、該測定対象(14)に発生する前記事象としての振動又は衝撃に応じた加速度を検出する加速度センサ(28)を備えることを特徴とするデータ収集解析システム(10)。
  3.  請求項2記載のデータ収集解析システム(10)において、
     前記各検出結果は、前記各測定対象(14)に発生する振動又は衝撃に応じた加速度波形であり、
     前記解析装置(22)は、前記各加速度波形の振幅方向及び/又は周期に基づいて前記各測定対象(14)の異常の有無を判別することを特徴とするデータ収集解析システム(10)。
  4.  請求項3記載のデータ収集解析システム(10)において、
     前記各加速度センサ(28)は、三軸の加速度センサであり、
     前記各検出装置(16)と前記収集装置(18)とは、無線PANを介して接続され、
     前記収集装置(18)と前記解析装置(22)とは、無線LAN(20)を介して接続され、
     前記解析装置(22)は、前記振動又は前記衝撃のパターンを学習する学習機能を有し、学習した前記振動又は前記衝撃のパターンと前記各加速度波形とに基づいて、前記各測定対象(14)の異常の有無を判別することを特徴とするデータ収集解析システム(10)。
  5.  請求項1~4のいずれか1項に記載のデータ収集解析システム(10)において、
     前記解析装置(22)は、通常有り得ない振動又は衝撃が測定対象(14)に発生した場合、又は、通常時に発生し得る振動又は衝撃が測定対象(14)に発生しなかった場合、前記異常が発生したと判別することを特徴とするデータ収集解析システム(10)。
  6.  請求項1~5のいずれか1項に記載のデータ収集解析システム(10)において、
     前記解析装置(22)は、前記無線通信回線(20)を介して外部の携帯機器(24)に、前記異常の発生を通知する通知信号を送信し、
     前記携帯機器(24)は、受信した前記通知信号に基づいて、前記異常の発生を外部に報知することを特徴とするデータ収集解析システム(10)。
  7.  請求項6記載のデータ収集解析システム(10)において、
     前記解析装置(22)は、異常と判別された測定対象(14)の情報と、前記異常が発生した時刻とを含む前記通知信号を、前記無線通信回線(20)を介して前記携帯機器(24)に送信することを特徴とするデータ収集解析システム(10)。
  8.  請求項6又は7記載のデータ収集解析システム(10)において、
     前記解析装置(22)は、前記無線通信回線(20)を介して前記収集装置(18)に前記通知信号を送信し、
     前記収集装置(18)は、受信した前記通知信号に基づいて、前記異常の発生を外部に報知する報知部(46)を備えることを特徴とするデータ収集解析システム(10)。
  9.  請求項8記載のデータ収集解析システム(10)において、
     前記解析装置(22)は、前記各測定対象(14)の異常の有無の判別結果を逐次記憶する記憶部(54)を備え、前記記憶部(54)に記憶された前記各判別結果のうち、前記異常の発生を示す判別結果と、前記異常と判別された測定対象(14)の情報と、前記異常が発生した時刻とを含む履歴情報を、前記無線通信回線(20)を介して前記携帯機器(24)に送信することを特徴とするデータ収集解析システム(10)。
  10.  請求項8又は9記載のデータ収集解析システム(10)において、
     前記携帯機器(24)は、該携帯機器(24)の操作者による操作に基づき、前記無線通信回線(20)を介して前記解析装置(22)に、前記報知部(46)による報知の解除を要請する解除要請信号を送信し、
     前記解析装置(22)は、受信した前記解除要請信号に基づいて、前記報知の解除を指示する解除指示信号を、前記無線通信回線(20)を介して前記収集装置(18)に送信することを特徴とするデータ収集解析システム(10)。
  11.  測定対象(14)に発生する事象を検出装置(16)により検出する第1ステップと、
     複数の前記検出装置(16)と無線を介して接続される収集装置(18)により、前記各検出装置(16)の検出結果を収集する第2ステップと、
     前記収集装置(18)と無線通信回線(20)を介して接続される解析装置(22)により、前記収集装置(18)から前記各検出結果を取得し、取得した前記各検出結果に基づいて複数の前記測定対象(14)の異常の有無を判別する第3ステップと、
     を有することを特徴とするデータ収集解析方法。
  12.  測定対象(14)に発生する事象を検出装置(16)により検出し、複数の前記検出装置(16)と無線を介して接続される収集装置(18)により前記各検出装置(16)の検出結果を収集する場合に、
     前記収集装置(18)と無線通信回線(20)を介して接続されるコンピュータ(22)を、前記収集装置(18)から前記各検出結果を取得し、取得した前記各検出結果に基づいて複数の前記測定対象(14)の異常の有無を判別する解析装置(22)として機能させることを特徴とするプログラム。
PCT/JP2016/070569 2016-07-12 2016-07-12 データ収集解析システム、データ収集解析方法及びプログラム WO2018011891A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/070569 WO2018011891A1 (ja) 2016-07-12 2016-07-12 データ収集解析システム、データ収集解析方法及びプログラム
JP2017525436A JP6319613B1 (ja) 2016-07-12 2016-07-12 データ収集解析システム、データ収集解析方法及びプログラム
TW106120391A TWI670692B (zh) 2016-07-12 2017-06-19 資料收集解析系統、資料收集解析方法及程式

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070569 WO2018011891A1 (ja) 2016-07-12 2016-07-12 データ収集解析システム、データ収集解析方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2018011891A1 true WO2018011891A1 (ja) 2018-01-18

Family

ID=60952468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070569 WO2018011891A1 (ja) 2016-07-12 2016-07-12 データ収集解析システム、データ収集解析方法及びプログラム

Country Status (3)

Country Link
JP (1) JP6319613B1 (ja)
TW (1) TWI670692B (ja)
WO (1) WO2018011891A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102528212B1 (ko) * 2018-09-13 2023-05-02 삼성중공업 주식회사 해양 구조물 설계 장치
JP7418257B2 (ja) * 2020-03-24 2024-01-19 株式会社Lixil 施解錠装置、建具、及び、地震状況算出装置
US20240220684A1 (en) * 2022-12-22 2024-07-04 Samsung Electronics Co., Ltd Apparatus and method for performing collision analysis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099095A (ja) * 2006-10-13 2008-04-24 Hitachi Kokusai Electric Inc 監視システム
JP2009180648A (ja) * 2008-01-31 2009-08-13 Hitachi-Ge Nuclear Energy Ltd センサノード、センサネットワークシステム及び振動測定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3996428B2 (ja) * 2001-12-25 2007-10-24 松下電器産業株式会社 異常検知装置及び異常検知システム
WO2009060420A1 (en) * 2007-11-09 2009-05-14 Koninklijke Philips Electronics, N.V. Alert device and method
TW201229965A (en) * 2011-01-07 2012-07-16 Oriental Inst Technology Electornic peephole viewer, image processing unit thereof, and the security method using the same
TWI476735B (zh) * 2012-12-21 2015-03-11 Taiwan Secom Co Ltd 攝影機異常種類辨識方法及可偵測攝影異常的監視主機
TW201507467A (zh) * 2013-08-07 2015-02-16 Hon Hai Prec Ind Co Ltd 網路攝影機校正系統及方法
NZ630770A (en) * 2013-10-09 2016-03-31 Resmed Sensor Technologies Ltd Fatigue monitoring and management system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099095A (ja) * 2006-10-13 2008-04-24 Hitachi Kokusai Electric Inc 監視システム
JP2009180648A (ja) * 2008-01-31 2009-08-13 Hitachi-Ge Nuclear Energy Ltd センサノード、センサネットワークシステム及び振動測定方法

Also Published As

Publication number Publication date
TWI670692B (zh) 2019-09-01
TW201804443A (zh) 2018-02-01
JP6319613B1 (ja) 2018-05-09
JPWO2018011891A1 (ja) 2018-07-12

Similar Documents

Publication Publication Date Title
KR102586752B1 (ko) 스마트 배리어 경보 장치
EP2533220A1 (en) Building security system
WO2016109062A9 (en) Premises management system with prevention measures
WO2018011891A1 (ja) データ収集解析システム、データ収集解析方法及びプログラム
KR102419406B1 (ko) 모니터링을 위한 센서 및 시스템
CN112399147A (zh) 监控方法、装置、设备及存储介质
JP2009236534A (ja) 地震警報システム、および地震警報機能を有した集合住宅用インターホンシステム
JP2004258937A (ja) セキュリティシステム
JP6641176B2 (ja) 警備業務支援システムおよび警備装置
JP2008197879A (ja) 監視システム、制御方法、およびそのプログラム
EP3035602A1 (en) Equipment and network health monitoring using security systems
US11869340B2 (en) System and method for distributed security
JP5170749B2 (ja) 住宅監視システム
KR20050102515A (ko) 이동통신 단말기를 이용한 냄새 식별 장치
JPWO2004079687A1 (ja) セキュリティシステム、端末装置、情報処理装置および方法、プログラム、車両用セキュリティシステム、ネットワークシステム、並びに設定方法
JP2007241933A (ja) 監視システム、制御方法、およびそのプログラム
JP2017117141A (ja) 警備業務支援システムおよび警備装置
JP6574694B2 (ja) 警備装置および警備業務支援システム
KR20160021355A (ko) 호출벨을 이용한 방범 시스템
JP5189548B2 (ja) 集合住宅インターホンシステム
JP2017054393A (ja) 監視システム、及びこれに用いられる移動検知装置、監視装置
JP2017085349A (ja) 携帯端末装置、プログラム、業務支援システム、及び遠隔装置
JP2010176457A (ja) 警備端末
JP2022131208A (ja) 通知システム、及び、通知方法
JP2007304956A (ja) 位置特定システム及びセキュリティシステム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017525436

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.04.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16908795

Country of ref document: EP

Kind code of ref document: A1