WO2018011843A1 - 電力系統安定化システムおよび安定化方法 - Google Patents

電力系統安定化システムおよび安定化方法 Download PDF

Info

Publication number
WO2018011843A1
WO2018011843A1 PCT/JP2016/070380 JP2016070380W WO2018011843A1 WO 2018011843 A1 WO2018011843 A1 WO 2018011843A1 JP 2016070380 W JP2016070380 W JP 2016070380W WO 2018011843 A1 WO2018011843 A1 WO 2018011843A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
state estimation
circuit breaker
output
power
Prior art date
Application number
PCT/JP2016/070380
Other languages
English (en)
French (fr)
Inventor
智道 伊藤
輝 菊池
渡辺 雅浩
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2018527046A priority Critical patent/JP6594544B2/ja
Priority to EP16908747.5A priority patent/EP3484000B1/en
Priority to PCT/JP2016/070380 priority patent/WO2018011843A1/ja
Priority to US16/307,395 priority patent/US10756571B2/en
Publication of WO2018011843A1 publication Critical patent/WO2018011843A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0092Details of emergency protective circuit arrangements concerning the data processing means, e.g. expert systems, neural networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/28Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for meshed systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00036Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/242Arrangements for preventing or reducing oscillations of power in networks using phasor measuring units [PMU]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/18Systems supporting electrical power generation, transmission or distribution using switches, relays or circuit breakers, e.g. intelligent electronic devices [IED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission

Definitions

  • the present invention relates to a system stabilization control system and a stabilization method for system stabilization in the event of a system failure, and in particular, reduces the number of generators restricted when the reliability of power state estimation calculation is high, thereby reducing the range of power failure.
  • the present invention relates to a system stabilization system and a stabilization method to be narrowed.
  • a power system includes a plurality of rotary generators, transmission / distribution lines, loads, voltage / current sensors that detect voltage and power flow in the transmission / distribution network, protection relays, and switching and operation of generators and transmission lines. It consists of a circuit breaker that is turned on / off in the power transmission / distribution network in operation, and a system stabilization system that controls the circuit breaker using voltage / current sensors and protection relay operation signals as inputs.
  • the protection relay is activated by the excessive current detected by the current sensor, and the circuit breaker opening operation for removing the accident is performed.
  • the rotor angular frequency will rise significantly, and even after the grid fault is removed, the angular frequency drop due to the active power output will not be in time, The machine may step out.
  • the generator stability (transient stability) after an accident depends on the generator terminal voltage and the accident duration, so the power system stabilization system opens the circuit breaker assuming the location and form of the system fault.
  • a table (hereinafter referred to as a control table) is prepared in advance, and the generator output and power flow status immediately before the system fault are ascertained.
  • the operation information of the protection relay is input, and the corresponding circuit breaker is quickly opened according to the above table. To prevent wide area power outages.
  • Patent Document 1 discloses a control method for opening a circuit breaker by evaluating the transient stability of a generator using both offline information and online information. Further, Non-Patent Document 1 discloses a method for performing state estimation calculation for estimating the state of the power system from limited sensor information by calculation, and controlling the generator open train using this calculation result.
  • Patent Document 1 In the methods described in Patent Document 1 and Non-Patent Document 1, it is assumed that both can accurately grasp the system state. However, there is a time delay due to communication congestion in the power flow information acquired by the voltage / current sensor, and the delay time also varies. In addition, the state quantity detected due to a sensor failure may be incorrect.
  • PMU Phase Measuring Unit
  • GPS Global Positioning System
  • the state estimation calculation does not converge or the reliability May drop significantly.
  • a control table that can provide sufficient margin for the transient stability of the generator must be used when a system fault occurs. By using a control table with a margin, a large number of generators are opened when a system fault occurs, and the power failure range is wide.
  • the present invention reduces the number of generators to be opened when it is judged that the reliability of the state estimation calculation is high by changing the control table that is referred to in the event of a system fault according to the calculation reliability of the state estimation calculation. And a system stabilization system and a stabilization method for narrowing the blackout area.
  • a power system stabilization system applied to a power system configured to include a plurality of feeders including a circuit breaker, a plurality of nodes, a plurality of generators, and a plurality of loads.
  • a plurality of circuit breakers includes information on the voltage and power flow in the vicinity thereof, a first interface unit for inputting information on a protection relay that determines the opening operation, and information on a measurement time measured in the power system
  • a second interface unit for inputting information on voltage and power flow, state estimation calculation means for performing power flow power state estimation calculation using voltage and power flow measurement information from the first interface unit, Accident determination means for determining a system fault from information on the protection relay from the interface unit, and a circuit breaker open command calculation method for calculating and outputting a circuit breaker open command using information in the control table
  • reliability determination means for comparing the tidal current measurement information from the second interface unit with the tidal current estimation information from the state estimation calculation means to determine the reliability of
  • the present invention is also a power system stabilization method applied to an electric power system configured to include a plurality of feeders including a circuit breaker, a plurality of nodes, a plurality of generators, and a plurality of loads.
  • the first step for obtaining information on the voltage and power flow in the vicinity of the circuit breaker and information on the protection relay that determines the opening operation, and information on voltage and power flow including information on the measurement time measured by the power system
  • a second step to obtain, a third step for performing a power flow state estimation calculation using the voltage and power flow measurement information of the first step, and a system fault from the information of the protection relay of the first step
  • the fourth step for determining, the sixth step for calculating and outputting the circuit breaker opening command using the information for the fifth step, the tidal current measurement information for the second step, and the tidal current estimation information for the third step.
  • the present invention is also a power system stabilization method applied to a power system configured to include a plurality of feeders including a circuit breaker, a plurality of nodes, a plurality of generators, and a plurality of loads.
  • the device is controlled to open by detecting an accident by a protection relay using a first sensor output installed in the vicinity thereof, and is controlled to open by a power system stabilization output, and is obtained using the first sensor output.
  • the state estimate value of the power system is compared with the state detection value of the power system that includes information on the measurement time measured by the power system to determine the reliability of the state estimate.
  • Reliability of state estimates Cutoff command for the circuit breaker to be newly blocked which is selected according to the result, characterized in that there is a power system stabilizing the output.
  • the present invention when it is judged that the reliability of the state estimation calculation of the system stabilization system is high, it is possible to narrow the power failure range at the time of a system failure.
  • FIG. 1 The figure which shows the structural example of the system
  • FIG. The figure which shows the model example of the electric power grid
  • FIG. 1 The figure which shows the calculation content of 10 C of state estimation calculators.
  • FIG. 6 shows a schematic diagram of a power system to which the system stabilization system of the present invention is applied.
  • a typical power system shown in FIG. 6 includes a plurality of rotating machine type generators G (G1, G2, G3), a photovoltaic power generation facility G4, a transformer Tr (Tr1, Tr2, Tr3, Tr5), and a sensor.
  • Circuit breaker CB CB1, CB11, CB2, CB21, CBB3, CB5, CB51, CB6 and a plurality of nodes N (N1, N2, N3, N5, N11, N21, N31, N41, N51, N61), It is constructed by a power transmission network L (L1, L2, L3, L4, L5, L6, L7, L14, L15, L53, L52, L36, L26) connecting each node N.
  • a load is connected to the nodes N41, N5, and N61, and the electric power transmitted from the generator groups G1, G2, and G3 and the solar power generation equipment G4 is sent to the load and consumed.
  • a means for detecting a sending current and voltage, and a protection relay In the vicinity of the circuit breaker with sensor CB, there are provided a means for detecting a sending current and voltage, and a protection relay, and when the protection relay detects an accident in the power system based on the information on the current and voltage, The circuit breaker CB with the sensor is disconnected (opened).
  • FIG. 6 it is assumed that an accident F of the power system has occurred in the vicinity of the photovoltaic power generation equipment G4, and usually the disconnection control is performed by the circuit breaker CB11 disposed at the position closest to the accident point. It will be.
  • the voltage / power flow (active power and reactive power) detected in the vicinity of the breaker CB with sensor and the operation information of the protection relay provided in the breaker CB are obtained by the first network (not shown) according to the first embodiment of the present invention.
  • 1 is transmitted to the basic system protection system unit 1000 of the system stabilization system 1 of FIG.
  • PMU 4 and PMU 41 are installed as PMUs (Phase Measuring Units) between the node N41 and the photovoltaic power generation equipment G4 and between the node N41 and the load.
  • the detected values are transmitted via a second network (not shown). Is transmitted to the PMU correction calculation unit 2000 of the system stabilization system 1 of FIG.
  • FIG. 1 is a diagram illustrating a configuration example of a system stabilization system according to Embodiment 1 of the present invention.
  • the system stabilization system 1 of FIG. 1 is mainly configured by a basic system protection system unit 1000 and a PMU correction calculation unit 2000.
  • the basic system protection system unit 1000 includes the voltage / current (active power and reactive power) detected in the vicinity of the circuit breaker with sensor CB from the first network via the first interface unit IF1, and the above The operation information of the protection relay provided in the circuit breaker CB is given.
  • the PMU correction calculation unit 2000 is given detection values of the PMU 4 and the PMU 41 from the second network via the second interface unit IF2.
  • the basic system protection system unit 1000 estimates the state of the system from the current and voltage information in the vicinity of the circuit breaker with sensor CB input via the interface unit IF1, and the protection relay of the circuit breaker with sensor CB Determine the accident from the information, perform the generator control calculation using the control table selected from the accident determination result and the state estimation result, and output the generator control calculation result to each circuit breaker CB via the interface unit IF3 To do.
  • the PMU correction calculation unit 2000 evaluates the reliability of the state estimation calculation based on the information of the PMU, and performs a PMU correction calculation that switches a control table referred to by the generator control calculation based on the result.
  • the system stabilization system 1 includes a display device 80, and displays the calculation result and reliability evaluation result of the basic system protection system unit 1000 on the screen of the display device 80.
  • the display unit 80 allows the operator to visually check the state estimation result and the state estimation calculation reliability determination result.
  • the basic system protection system unit 1000 will be described in detail below.
  • the voltage / power / protection relay operation information is acquired from the interface unit IF1. Among these, the voltage / power flow information is given to the state estimation calculator 10C.
  • the state estimation calculation in the state estimation calculator 10C the voltage and current at each node N and the phase angle of the generator G are calculated by performing the calculation shown in FIG. Thereby, tidal current information of each node (bus) and feeder (transmission line L) is obtained.
  • FIG. 2 is a flowchart showing the calculation contents of the state estimation calculator 10C.
  • the configuration of FIG. 2 will be described.
  • each power transmission network L (L1, L2, L3, L4, L5, L6, L7, L14, L15, L53, L52, L36, L26 previously input to the basic system protection system unit 1000 is shown.
  • the system constants such as the impedance of the rotary generator G (G1, G2, G3) are taken in for state estimation calculation.
  • voltage / power flow information is input as a state quantity from the interface IF1.
  • the voltage / power flow and the generator phase angle of each node are estimated using the state quantities obtained in the processing step S22.
  • the state estimation calculation is an iterative calculation on the assumption that normal distribution noise is superimposed on the sensor.
  • processing step S24 it is determined whether or not the estimation error included in the estimated value of the voltage / current and generator phase angle for each node is within the first predetermined range. If it is within the first predetermined range, the result calculated in process step S23 in process step S27 is set as a correct state quantity and output to the accident determination device 20C.
  • the process proceeds to processing step S25, and it is determined whether the number of iterations is equal to or less than the first predetermined number. If the number of iterations is less than or equal to the first predetermined number, the process returns to step S23 and the state estimation calculation is performed again. If the estimation error for the estimated value obtained by the state estimation calculation again falls within the first predetermined range, the value at that time is output from the processing step S27 to the accident determiner 20C as a correct state quantity.
  • the processing step S26 regards the convergence as a failure, and sets the previous output value of the state estimation calculation unit 10C as the current output value as the accident determination unit 20C. Output to.
  • the output of the state estimation calculator 10C is output to the display unit 80 and a state estimation calculation reliability determination unit 40C in the PMU correction calculation unit 2000 described later. As described above, in the state estimation calculation of FIG. 2, the state estimation calculation result is output by distinguishing between the case where the estimation calculation converges and the case where the estimation calculation does not converge.
  • the remaining protection relay operation information is given to the accident determination device 20C.
  • the protection relay operation information input from the interface unit IF1 is input, and the type, location, and extent of the accident that occurred are estimated, and the result is output to the switch control calculator 70C as accident information.
  • the accident type is the type of accident phase, short circuit, or ground fault
  • the location of the accident is the point where the accident occurred (transmission line distinction).
  • the degree means, for example, the amount of voltage drop or the amount of overcurrent. Yes.
  • the switch control arithmetic unit 70C calculates a circuit breaker opening command with reference to the accident information calculated by the accident determination unit 20C and a control table to be described later, and issues an opening command to the corresponding circuit breaker CB via the interface IF3. introduce.
  • circuit breaker in the power system is controlled to open by voltage and current sensors and protective relays provided in the vicinity of the circuit breaker, and release control is performed based on judgment from information in the vicinity of each circuit breaker.
  • the circuit breaker opening command given by the switch control arithmetic unit 70C can be referred to as a second opening command determined from the viewpoint of ensuring the stability of the entire power system.
  • FIG. 3 is a flowchart showing a process for ensuring the simultaneity of data detected by the PMU 4 and the PMU 41. This calculation is executed for storing data in the database DB of FIG.
  • the calculation in FIG. 3 is realized by a periodic task.
  • the process for ensuring the simultaneity of information obtained from the PMU 4 and the PMU 41 can be updated in a certain time.
  • the task is described as a periodic task.
  • the scheduled update of the simultaneity ensuring process is not necessarily required to realize the reliability evaluation of the state estimation calculation using the PMU. For this reason, event-driven calculation using a communication interrupt as an interrupt signal may be used.
  • a description will be given on the assumption of a periodic task.
  • a timer that manages the period of the fixed-cycle task is initialized.
  • process step S32 a communication interrupt from the PMU input to the interface IF2 via a communication network (not shown) is accepted.
  • the interruption from the PMU is determined. If there is an interruption, the process proceeds to the processing step S34, and if there is no interruption, the process proceeds to the processing step S36.
  • the PMU installation location information, voltage, power flow information, and time information at which they are detected are received from the PMU in processing step S34.
  • the information received in processing step S34 is stored in the PMU memory area of the database DB in processing step S35.
  • processing step S36 it is determined whether or not a time management timer that performs time management of the periodic task is interrupted. If there is no interrupt, it is determined that the processing time of the periodic task has not elapsed, and the processing returns to processing step S32 and starts from a new PMU. Wait for an interrupt.
  • the information of each PMU stored in the PMU memory area is sorted by the measurement time, and the result is stored in the sort data memory area in the database DB. .
  • the PMU data can be organized for each data sampled at the same time.
  • the state estimation calculation reliability determination unit 40C in the PMU correction calculation unit 2000 receives the output from the state estimation calculation unit 10C of the basic system protection system unit 1000 and the output of the database DB as inputs, and calculates the state estimation calculation. “0” is output when the reliability is determined to be high, and “1” is output when the reliability is determined to be low, and is output to the changeover switch SW.
  • the change-over switch SW is opened at the time of a system failure, and a control table TB1 that realizes an open operation with a sufficient margin with respect to the transient stability of the generator that remains in the system at the time of a system failure.
  • the control table TB2 with a small number of generators and the output of the reliability determiner 40C are input.
  • the output of the reliability determiner 40C is “1”
  • the control table TB1 is output
  • the output of the reliability determiner 40C is “0”. ",
  • the control table TB is output to the switch control arithmetic unit 70C.
  • the square value of the difference between the state estimation result of the main node and the state quantity of the node detected by the PMU is calculated, and the maximum value of the square value is equal to or less than a predetermined value. If so, it is determined that the reliability is high, and if the maximum value of the square value is larger than a predetermined value, it is determined that the reliability is low.
  • the calculation of the reliability determination unit 40C is an event-driven calculation that is executed when the state estimation calculation ends.
  • the node N41 in the vicinity where the PMU is installed is a main node, and the tidal current measurement value given by the PMU and the tidal current estimation value given by the state estimation computing unit 10 are compared for the node N41.
  • the tidal current measurement value given by the PMU is considered to be a true value, and the tidal current estimation value of the state estimation computing unit 10 obtained from the sensor output having a problem in error or time synchronization is evaluated.
  • the node counter is initialized, and in the first processing step S42 after initialization, for example, the estimated power flow at the node N41 and the node by the PMU 4 as the PMU installation node of the state estimation computing unit 10C.
  • the buffer ERR_MAX for calculating the maximum value of the square of the tide deviation that is the difference between the measured tide values at N41 is initialized.
  • the estimated current value of the node N41 calculated by the state estimation calculation is a current flowing from the node N11 to the node N41 via the circuit breaker CB11, and the measured value of the PMU4 is applied to the load from the node N41 by the PMU41.
  • the tidal power transmitted from the photovoltaic power generation equipment G4 is subtracted from the flowing load power flow.
  • the calculation result of the state estimation calculator 10C and the PMU data corresponding to the calculation time of the state estimated value are extracted from the database DB, and using these values, the difference between the estimated value and the measured value by the PMU is calculated.
  • a square value ERR (i) is calculated.
  • processing step S44 the square value ERR (i) and the tidal current deviation square value maximum value calculation buffer ERR_MAX are compared, and if ERR (i) is larger than the buffer ERR_MAX, ERR_MAX is updated. In order to update ERR_MAX for all the number N of nodes in which the PMU is installed, determination and increment of the number of nodes are performed in processing steps S46 and S47.
  • the number of target nodes N is 1 because the node where the PMU is installed is only N41.
  • processing step S46 When the evaluation with respect to the total number of PMU installation nodes is completed, the determination result in processing step S46 is No, and the process proceeds to processing step S48.
  • ERR_MAX is compared with ERR_JUDGE, which is a predetermined determination value. If ERR_MAX is larger than the determination value, it is determined that the deviation is large and the reliability of the state estimation is low, and the output Out is set to “1” (processing). In step S49), when ERR_MAX is smaller than a predetermined determination value ERR_JUDGE, it is determined that the reliability of state estimation is high because the deviation is small, and “0” is set to the output Out (processing step S40).
  • the determination value ERR_JUDGE is set smaller than the rated output of the generator groups G1, G2, and G3 linked to the system.
  • FIG. 5 shows a calculation result example of the state estimation calculation reliability determination unit 40C in the first embodiment of the present invention.
  • FIG. 5 shows the time change of the power flow to the node N41 by the state estimation calculation (state estimated output: indicated by ⁇ ) and the power flow to the node N41 calculated by the measurement by the PMU4 (PMU4 output: expressed by ⁇ ).
  • the graph shows the time variation of the output of the state estimation calculation reliability determination unit 40C in the lower graph.
  • the PMU4 output expressed as “x” is a true value
  • the level of reliability is determined based on the vacancy rate of the state estimation output expressed as “ ⁇ ”, which is the value evaluated with respect to the true value. Deciding.
  • the deviation between the state estimation result ( ⁇ ) and the PMU4 output ( ⁇ ) is not more than a predetermined value, and the output of the reliability determination unit 40C is “0” (high reliability) ) Is maintained.
  • the deviation between the state estimation output ( ⁇ ) and the PMU4 output ( ⁇ ) becomes excessive due to a decrease in tidal current caused by the rapid increase in solar radiation of the solar power generation G4, and the output of the state estimation calculation reliability determination unit 40C starts from “0”. It is changed to “1”. Since the output of the photovoltaic power generation G4 increases rapidly, there is no load sufficient to ensure the stability of the rotating generators G1, G2, and G3. By adopting it, it is possible to prevent a large number of generators from dropping out in the event of a grid fault.
  • stability can be secured by another control such as lowering the mechanical input of the generator G1, so even if the control table TB2 can be changed to reduce the number of generator dropouts at time t6. It is possible to prevent a large number of generators from falling out during a grid fault.
  • the system stabilization system 1 includes a display device 80.
  • the display unit 80 outputs the state quantity of each node, which is the output of the state estimation computing unit 10C, the output of the system fault judgment unit 20C, and the output of the state estimation computation reliability judgment unit 40C to the operator of the system stabilization system. It is possible to display. In particular, by providing a means for displaying the state estimation calculation reliability determination result, which is a feature of the present invention, it is possible that a failure may occur in the sensor used for the state estimation calculation and the communication means for transmitting the sensor information. can do.
  • the system stabilization system of the first embodiment includes two control tables TB, but may include three or more control tables.
  • a plurality of determination values ERR_JUDGE for determining the difference between the power flow value of the PMU connection node estimated by the state estimation computing unit 10C and the power flow calculated from the PMU are provided, and the control table is selected according to the determination result. Good.
  • the circuit breaker opening command given by the switch control arithmetic unit 70C is stored in the control tables TB1 and TB2 when the accident determination unit 20C confirms the occurrence of the accident. It will be done to the circuit breaker.
  • the stored contents of the control tables TB1 and TB2 reflect the output of the state estimation calculation reliability determination unit 40C before the accident occurs.
  • the reliability of the state estimation calculation is high, the storage content of the control table TB2 is reflected, and when it is determined that the reliability is low, the storage content of the control table TB1 is reflected.
  • control table TB for example, regarding the power system illustrated in FIG. 6, for each of a plurality of preset accident points, the fluctuations in the power flow at the time when the accident occurred and the internal phase angle of the generator are considered.
  • the circuit breaker open / close state determined so as to be in the relationship between the appropriate mechanical input and electrical output determined in this way is stored.
  • the circuit breaker CB11 is opened as a circuit breaker at both ends including the accident point in this example.
  • the remaining power that has lost the load connected to the power supply G4 and the transmission lines L4 and L7 is further opened by the circuit breaker CB11.
  • the circuit breaker CB1 or the opening of the CB1 and CB2 is designated.
  • the switch control computing unit 70C refers to any of the designated contents of the control tables TB1 and 2 including the information on the accident point, the type of accident, and the information on the power flow, and the interruption that should be controlled to open. Identify the vessel.
  • the stored contents in the control table TB2 used when the reliability is high are selected from the viewpoint of reducing the number of generators opened in the event of a system fault, and used when the reliability is low.
  • the stored content in the control table TB1 is a circuit breaker from the viewpoint of realizing an open operation with a margin for the transient stability of the generator remaining in the system although the number of generators opened in the event of a system failure is large. Selected.
  • the first embodiment of the present invention when it is determined that the reliability of the state estimation calculation of the grid stabilization system 1 is high, it is possible to narrow the power failure range at the time of a grid fault. .
  • the operator of the system stabilization system by outputting the status estimation calculation reliability determination result to the display unit, it is possible for the operator of the system stabilization system to detect a problem in the communication network connecting the sensor group used for state estimation or the sensor group and the stabilization system. It can be suggested, and it is possible to further contribute to the system stabilization operation.
  • a system stabilization system according to Embodiment 2 of the present invention will be described with reference to FIGS.
  • the difference between the second embodiment and the first embodiment is that in the state estimation calculation reliability determination unit 40C, the state estimation calculation is performed even when the output of the state estimation calculation unit 10C is equal to the previous value and the PMU output is different from the previous value. Is provided with means for determining that the reliability is low and outputting “1” to the changeover switch SW.
  • FIG. 7 shows a configuration example of the system stabilization system according to the second embodiment of the present invention.
  • the difference from the first embodiment is that a database DB1 for storing the previous output value of the state estimation calculator 10C is provided.
  • the state estimation calculation reliability determination unit 40C receives, in addition to the output of the state estimation calculation unit 10C and the PMU output extracted from the database DB, the previous output value of the state estimation calculation unit 10C extracted from the database DB1.
  • FIG. 8 is a flowchart showing the processing contents of the state estimation calculation reliability determination unit 40C according to the second embodiment.
  • FIG. 8 shows processing corresponding to FIG. 4 of the first embodiment.
  • Example 1 in FIG. 4 The difference from Example 1 in FIG. 4 is that the output of the state estimation calculation is compared with the previous value, and the number of nodes where the output of the state estimation calculation is equal to the previous value and the PMU estimated value is different from the previous value is greater than or equal to the predetermined value. In this case, it is determined that the reliability of the state estimation calculation is low and a process of setting the output of 40C to “1” is added.
  • processing steps S81 to S88 are added. Further, the processing step S1 in FIG. 4 is changed to the processing step S1A in FIG. 8, but the processing step S1A is basically to initialize the counter and initialize the counter variable k having the same number of nodes as the previous value. Is just added.
  • processing step S81 the difference between the current state estimated value input from the state estimation computing unit 10C and the previous state estimated value received from the database DB1 is calculated.
  • processing step S82 it is determined whether the difference is zero. If zero, it is determined in processing step S83 whether the PMU output is different from the previous value. If the output of the PMU is different from the previous value, the counter k is incremented in processing step S84.
  • the deviation from the previous value is determined as zero.
  • the deviation determination in the processing step S82 is a relatively small predetermined value such as 5% or less of the normal power flow. You may determine using a value.
  • processing step S85 the counter k is compared with a predetermined value K_JUDGE. If k is larger than K_JUDGE, "1" is substituted for Out2 which is an intermediate output in processing step S85. Otherwise, Out2 is processed in processing step S86. Substitute “0” for.
  • the predetermined value K_JUDGE is an integer equal to or less than the number of PMU connection nodes.
  • the processing step S88 the logical sum of the variable Out which is the state estimation calculation reliability determination result described in the first embodiment and the intermediate variable Out2 calculated in the processing steps S81 to S87 added in the second embodiment is calculated.
  • the result Out is output as a state estimation calculation reliability determination result.
  • the state estimation calculation reliability determination calculation of the second embodiment when the output of the state estimation calculation unit 10C is equal to the previous value and the PMU output is different from the previous value, it is determined that the reliability of the state estimation calculation is low, It becomes possible to output 1 to the changeover switch 50SW.
  • FIG. 9 shows an example of calculation results of the state estimation calculation reliability determination unit 40C in the second embodiment.
  • the time change of the power flow to the node N41 (state estimation output: indicated by ⁇ ) by the state estimation calculation and the power flow to the node N41 (PMU4 output: expressed by ⁇ ) calculated by the measurement by the PMU 4 is shown in the upper part.
  • the graph shows the time variation of the output of the state estimation calculation reliability determination unit 40C in the lower graph.
  • the state estimation output ( ⁇ ) and the PMU output ( ⁇ ) are respectively compared with the previous values. By doing so, it is possible to determine that the state estimation calculation has not converged even if the deviation between the current value of the state estimation output ( ⁇ ) and the PMU output ( ⁇ ) is smaller than the determination value.
  • the system stabilization system includes two control tables, but may include three or more control tables.
  • a plurality of determination values ERR_JUDGE for determining the difference between the power flow value of the PMU connection node estimated by the state estimation computing unit 10C and the power flow calculated from the PMU are provided, and the control table is selected according to the determination result. Good.
  • the second embodiment when it is determined that the reliability of the state estimation calculation of the system stabilization system is high, it is possible to narrow the power failure range at the time of a system fault.
  • the operator of the system stabilization system by outputting the status estimation calculation reliability determination result to the display unit, it is possible for the operator of the system stabilization system to detect a problem in the communication network connecting the sensor group used for state estimation or the sensor group and the stabilization system. It can be suggested, and it is possible to further contribute to the system stabilization operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

状態推定演算の信頼性が高いと判断される場合には開列する発電機数を低減し、停電領域を狭小化する系統安定化システムおよび安定化方法を提供する。遮断器を含む複数のフィーダと、複数のノードと、複数の発電機と、複数の負荷を含んで構成された電力系統に適用される電力系統安定化方法であって、遮断器は、その近傍に設置された第1のセンサ出力を用いる保護リレーにより事故を検知して開放制御されるとともに、電力系統安定化出力により開放制御され、第1のセンサ出力を用いて得た電力系統の状態推定値と、電力系統で計測した計測時刻の情報を含む電力系統の状態検出値とを比較して状態推定値の信頼性を判定し、電力系統の仮想事故点における事故発生後の電力系統安定度の観点から新たに遮断すべき遮断器を記憶しているとともに、状態推定値の信頼性判定結果毎に新たに遮断すべき遮断器を記憶し、電力系統の事故発生時に、状態推定値の信頼性判定結果に応じて選択された新たに遮断すべき遮断器に対する遮断指令が、電力系統安定化出力とされている。

Description

電力系統安定化システムおよび安定化方法
 本発明は、系統事故時の系統安定化を図る系統安定化制御システムおよび安定化方法に係り、特に電力状態推定演算の信頼性が高い場合に制限される発電機数を低減して停電範囲を狭小化する系統安定化システムおよび安定化方法に関する。
 電力系統は一般に、複数の回転型発電機と、送配電線と、負荷と、送配電網の電圧や潮流を検出する電圧・電流センサと、保護リレーと、開閉動作により発電機や送電線を運用中の送配電網に投入・開列させる遮断器と、電圧・電流センサや保護リレー動作信号を入力として遮断器を制御する系統安定化システムと、により構成されている。これにより、負荷もしくは送配電線で地絡事故や線間短絡事故が発生すると、電流センサにより検出された過大電流により保護リレーが作動し、事故除去のための遮断器開放動作がなされる。
 系統事故により系統電圧が低下すると、発電機より負荷へ供給できる有効電力が低下する。送電する有効電力が低下すると、発電機回転子を減速させる負荷トルクが低下する。これに対し、発電機の機械的入力の調整には遅れが伴うため、機械的入力が負荷トルクを上回り、結果として系統事故除去までの時間は回転型発電機の回転子角周波数が上昇することになる。
 他方、遮断器の開放動作により系統事故が除去されると、送配電線の電圧が復帰するため、送配電線に供給される有効電力が復帰し、負荷トルクが復帰する。負荷トルクの復帰により回転子の角周波数が低下して商用周波数に相当する角周波数に落ち着くことになる。
 しかし、系統事故時の電圧低下が著しい場合、もしくは系統事故除去までの時間が長い場合、回転子角周波数の上昇が著しくなり、系統事故除去後も有効電力出力による角周波数低下が間に合わなくなり、発電機が脱調することがある。
 系統事故後の発電機回転子角周波数安定化には、十分な電気的負荷が必要である。このため、大規模停電回避を目的とし、いくつかの発電機を系統から開列させることにより系統への連系状態が維持された発電機群の電気的負荷を増加し、安定度を保つ手法が採用されている。
 上述のように、事故後の発電機安定度(過渡安定度)は発電機端子電圧や事故継続時間に依存するため、電力系統安定化システムでは系統事故の発生箇所や形態を想定した遮断器開放テーブル(以降、制御テーブル)をあらかじめ備え、系統事故直前の発電機出力や潮流状態を把握したうえで、系統事故発生時には保護リレーの作動情報を入力とし、上記テーブルに従い速やかに該当遮断器を開放することで広域停電を防ぐようにされている。
 遮断器開放を、オフライン情報とオンライン情報双方を用いて発電機過渡安定度を評価し、発電機を開列する制御手法が特許文献1で開示されている。また、電力系統の状態を、限られたセンサ情報から演算により推定する状態推定演算を行い、本演算結果を用いて発電機開列を制御する手法が非特許文献1で開示されている。
特開2005-94831号公報
「電力供給安定化と広域連系を可能にする電力系統技術への取り組み」、日立評論 Vol.94、No.11、2012
 特許文献1および非特許文献1に記載の手法では、双方とも系統状態を正確に把握できることを前提としている。しかし、電圧・電流センサにより取得された潮流情報には通信混雑による時間遅れが存在し、その遅れ時間も変動する。また、センサの故障により検出された状態量が正しくない場合がある。
 また電圧・潮流情報は通信により制御システムに収集されるため、時間遅れがあり、また同時性も担保されない。近年、GPS(Global Positioning System)の活用による同時刻状態サンプリングを実現するPMU(Phase Measuring Unit)の導入により、検出情報のサンプル時間が確認できるようになっているが、必ずしも系統全体の状態把握をするに十分な数のPMUが設置されているわけではない。なおPMUは位相、電圧、電流などの電力系統における計測情報に、GPSから得られる絶対時刻を付加し、時系列の計測情報としてリアルタイムで計測する装置である。
 また、変動する時間遅れを伴い、さらに故障などにより誤った信号を含む電圧・潮流情報を入力とし、不足分の計測情報を補う状態推定演算を実施すると、状態推定演算が収束しない、もしくは信頼度が大幅に低下する場合がある。状態推定演算の信頼性が低い条件では、系統事故時の大規模停電を回避するため、系統事故発生時には発電機の過渡安定度に十分な余裕を持たせられる制御テーブルを用いざるを得ない。余裕を持った制御テーブルを用いることで、系統事故発生時には多数の発電機が開列することとなり、停電範囲が広域となる。
 そこで、本発明は状態推定演算の演算信頼性に応じて系統事故時に参照する制御テーブルを変更することにより、状態推定演算の信頼性が高いと判断される場合には開列する発電機数を低減し、停電領域を狭小化する系統安定化システムおよび安定化方法を提供する。
 以上のことから本発明においては、遮断器を含む複数のフィーダと、複数のノードと、複数の発電機と、複数の負荷を含んで構成された電力系統に適用される電力系統安定化システムであって、複数の遮断器ごとに、その近傍の電圧、潮流の情報と、その開放動作を定める保護リレーの情報を入力する第1のインターフェース部と、電力系統で計測した計測時刻の情報を含む電圧、潮流の情報を入力する第2のインターフェース部と、第1のインターフェース部からの電圧、潮流の計測情報を用いて電力系統の潮流状態推定演算を実施する状態推定演算手段と、第1のインターフェース部からの保護リレーの情報から系統事故を判定する事故判定手段と、制御テーブルの情報を用いて遮断器開放指令を算出し出力する遮断器開放指令算出手段と、第2のインターフェース部からの潮流計測情報と状態推定演算手段からの潮流推定情報を比較して状態推定演算手段における状態推定演算の信頼性を判定する信頼性判定手段と、信頼性判定手段の判定結果毎に構成された制御テーブルであって、電力系統における事故発生後の電力系統安定度確保の観点から新たに開放操作すべき遮断器を定めている制御テーブルを含み、遮断器開放指令算出手段は信頼性判定手段の判定結果に応じて選定された制御テーブルの情報を用いて遮断器の遮断開放指令を与えることを特徴とする。
 また本発明は、遮断器を含む複数のフィーダと、複数のノードと、複数の発電機と、複数の負荷を含んで構成された電力系統に適用される電力系統安定化方法であって、複数の遮断器ごとに、その近傍の電圧、潮流の情報と、その開放動作を定める保護リレーの情報を得る第1のステップと、電力系統で計測した計測時刻の情報を含む電圧、潮流の情報を得る第2のステップと、第1のステップの電圧、潮流の計測情報を用いて電力系統の潮流状態推定演算を実施する第3のステップと、第1のステップの保護リレーの情報から系統事故を判定する第4のステップと、第5のステップの情報を用いて遮断器開放指令を算出し出力する第6のステップと、第2のステップの潮流計測情報と第3のステップの潮流推定情報を比較して第3のステップにおける状態推定演算の信頼性を判定する第7のステップと、第7のステップの判定結果毎に構成された第5のステップであって、電力系統における事故発生後の電力系統安定度確保の観点から新たに開放操作すべき遮断器を定めている第5のステップとを含み、第6のステップは第7のステップの判定結果に応じて選定された第5のステップの情報を用いて遮断器の遮断開放指令を与えることを特徴とする。
 また本発明は、遮断器を含む複数のフィーダと、複数のノードと、複数の発電機と、複数の負荷を含んで構成された電力系統に適用される電力系統安定化方法であって、遮断器は、その近傍に設置された第1のセンサ出力を用いる保護リレーにより事故を検知して開放制御されるとともに、電力系統安定化出力により開放制御され、第1のセンサ出力を用いて得た電力系統の状態推定値と、電力系統で計測した計測時刻の情報を含む電力系統の状態検出値とを比較して状態推定値の信頼性を判定し、電力系統の仮想事故点における事故発生後の電力系統安定度の観点から新たに遮断すべき遮断器を記憶しているとともに、状態推定値の信頼性判定結果毎に新たに遮断すべき遮断器を記憶し、電力系統の事故発生時に、状態推定値の信頼性判定結果に応じて選択された新たに遮断すべき遮断器に対する遮断指令が、電力系統安定化出力とされていることを特徴とする。
 本発明によれば、系統安定化システムの状態推定演算の信頼性が高いと判断される場合には、系統事故時の停電範囲を狭小化することが可能となる。
本発明の実施例1に係る系統安定化システムの構成例を示す図。 状態推定演算器10Cの演算内容を示すフローチャート。 PMU4、PMU41で検出したデータの同時性確保処理を示すフローチャート。 状態推定演算信頼性判定器40Cの演算内容を示すフローチャート。 実施例1の状態推定演算信頼性判定器40Cの演算結果例を示す図。 本発明の系統安定化システムが適用される電力系統の模式例を示す図。 本発明の実施例2に係る系統安定化システムの構成例を示す図。 実施例2の状態推定演算信頼性判定器40Cの処理内容を示すフローチャート。 実施例2の状態推定演算信頼性判定器40Cの演算結果例を示す図。
 以下、本発明の実施例について図面を用いて詳細に説明する。
 本発明の系統安定化システムが適用される電力系統の模式図を図6に示す。
 図6に示した典型的な電力系統は、複数の回転機型発電機G(G1、G2、G3)と、太陽光発電設備G4、変圧器Tr(Tr1、Tr2、Tr3、Tr5)と、センサ付遮断器CB(CB1、CB11、CB2、CB21、CBB3、CB5、CB51、CB6)と、複数のノードN(N1、N2、N3、N5、N11、N21、N31、N41、N51、N61)と、各ノードNを接続する送電網L(L1、L2、L3、L4、L5、L6、L7、L14、L15、L53、L52、L36、L26)により構築されている。この系統では、ノードN41、N5、N61には負荷が接続され、上記発電機群G1、G2、G3と太陽光発電設備G4から送電された電力が負荷に送られ消費されている。
 上記センサ付遮断器CBの近傍には、送り出し電流と電圧の検出手段、並びに保護リレーが備えられており、電流、電圧の情報を元に電力系統の事故を保護リレーが検出したことをもって、当該のンサ付遮断器CBを解列(開放)制御する。図6の場合、太陽光発電設備G4の近傍で電力系統の事故Fが発生したことを想定しており、通常は事故点に最も近い位置に配置された遮断器CB11による解列制御が行われることになる。
 センサ付遮断器CBの近傍で検出された電圧・潮流(有効電力と無効電力)、および上記遮断器CBが備える保護リレーの作動情報は、図示しない第1のネットワークにより、本発明の実施例1に係る図1の系統安定化システム1の基本系統保護システム部1000に送信される。またノードN41と太陽光発電設備G4の間、およびノードN41と負荷の間にはPMU(Phase Measuring Unit)としてPMU4、PMU41が設置されており、この検出値は、図示しない第2のネットワークを介して図1の系統安定化システム1のPMU補正演算部2000に送信される。
 図1は、本発明の実施例1に係る系統安定化システムの構成例を示す図である。図1の系統安定化システム1は、大きく分けて基本系統保護システム部1000とPMU補正演算部2000とにより構成されている。基本系統保護システム部1000には、上記の第一のネットワークから第1のインターフェース部IF1を介して、センサ付遮断器CBの近傍で検出された電圧・潮流(有効電力と無効電力)、および上記遮断器CBが備える保護リレーの作動情報が与えられている。またPMU補正演算部2000には、上記の第2のネットワークから第2のインターフェース部IF2を介して、PMU4、PMU41の検出値が与えられている。
 詳細を後述するが、基本系統保護システム部1000は、インターフェース部IF1を介して入力した、センサ付遮断器CB近傍における電流、電圧情報から系統の状態を推定し、センサ付遮断器CBの保護リレー情報から事故を判定し、事故判定結果と状態推定結果から選定される制御テーブルを用いた発電機制御演算を行って、発電機制御演算結果を、インターフェース部IF3を介して各遮断器CBに出力する。PMU補正演算部2000は、PMUの情報より上記状態推定演算の信頼性を評価し、その結果によって発電機制御演算の参照する制御テーブルを切り替えるPMU補正演算を実施する。
 なお系統安定化システム1は、表示器80を備え、基本系統保護システム部1000の演算結果および信頼性評価結果を表示器80の画面上に表示する。表示器80により、状態推定結果および状態推定演算信頼性判定結果が操作者により目視可能となる。
 基本系統保護システム部1000について、以下詳細に説明する。
 インターフェース部IF1からは、電圧・潮流・保護リレー作動情報が取得される。このうち電圧・潮流情報は、状態推定演算器10Cに与えられる。状態推定演算器10Cにおける状態推定演算では、図2に示される演算を実施することにより、各ノードNの電圧・電流、および発電機Gの位相角を算出する。これにより、各ノード(母線)、フィーダ(送電線L)の潮流情報を求める。
 図2は状態推定演算器10Cの演算内容を示すフローチャートを示している。図2の構成を説明する。図2の最初の処理ステップS21では、あらかじめ基本系統保護システム部1000に入力した各送電網L(L1、L2、L3、L4、L5、L6、L7、L14、L15、L53、L52、L36、L26)のインピーダンスや、回転機型発電機G(G1、G2、G3)のインピーダンスといった系統定数を状態推定演算のために取り込む。次の処理ステップS22では、インターフェースIF1から状態量として電圧・潮流情報を入力する。
 処理ステップS23では、処理ステップS22で得た状態量を用いて、各ノードの電圧・潮流、および発電機位相角の推定を行う。ここで、状態推定演算はセンサに正規分布のノイズが重畳することを前提とした反復演算を実施するものである。
 処理ステップS24では、各ノードについての電圧・潮流、および発電機位相角の推定値に含まれる推定誤差が第一の所定範囲内か、否かを判断する。第一の所定範囲内であれば、処理ステップS27において処理ステップS23で算出した結果を正しい状態量とし、事故判定器20Cに出力する。
 上記推定誤差が第一の所定範囲内を逸脱している場合は、処理ステップS25に進み、反復演算回数が第一の所定回数以下であるか判定する。反復演算回数が第一の所定回数以下である場合は処理ステップS23に戻り、再び状態推定演算を実施する。再度の状態推定演算により求めた推定値についての推定誤差が第一の所定範囲内に収まれば、その時の値が処理ステップS27から正しい状態量として事故判定器20Cに出力される。
 これに対し、再度の状態推定演算の反復回数が第一の所定回数を超過する場合、処理ステップS26は収束失敗とみなして状態推定演算器10Cの前回出力値を今回出力値として事故判定器20Cに出力する。
 なお状態推定は、リアルタイムでの演算が必要であるため、反復回数は状態推定演算を数分で終了できるように設定することが望ましい。また状態推定演算器10Cの出力は、表示器80、および後述するPMU補正演算部2000内の状態推定演算信頼性判定器40Cに出力される。このように図2の状態推定演算では、推定演算が収束した場合と収束しない場合を区別して状態推定演算結果を出力する。
 基本系統保護システム部1000のインターフェース部IF1から得られた電圧・潮流・保護リレー作動情報のうち、残る保護リレー作動情報は、事故判定器20Cに与えられる。事故判定器20Cでは、インターフェース部IF1から入力した保護リレー作動情報を入力とし、発生した事故種別、箇所、程度を推定し、その結果を事故情報として開閉器制御演算器70Cに出力する。なお事故種別とは事故相や短絡、地絡の種別であり、事故箇所は事故の発生地点(送電線の区別)であり、程度は例えば電圧の低下量、過電流の量などを意味している。
 開閉器制御演算器70Cは、事故判定器20Cにより算出された事故情報と、後述する制御テーブルを参照して遮断器開指令を算出し、インターフェースIF3を介して該当する遮断器CBに開放指令を伝達する。
 なお電力系統における遮断器は、その近傍に設けられた電圧、電流のセンサ、保護リレーにより開放動作が制御されており、個々の遮断器近傍における情報からの判断により解放制御が行われている。これに対し、開閉器制御演算器70Cが与える遮断器の開放指令は、電力系統全体の安定度確保の観点で定められた第2の開放指令ということができる。
 次に、本発明の主要な点であるPMU補正演算部2000について、図3から5を用いて説明する。
 まず図3は、PMU4、PMU41で検出したデータの同時性確保処理を示すフローチャートである。本演算は、図1のデータベースDBにデータ収納する際に実行されて記憶するための演算である。
 図3の演算は、定周期タスクにより実現されるものである。定周期タスクとすることにより、PMU4、PMU41から得た情報の同時性確保処理を一定時間で更新することができる。なお実施例1では定周期タスクとして記載しているが、上記同時性確保処理の定時更新はPMUを用いた状態推定演算の信頼性評価を実現するにあたり必ずしも必要ではない。このため、通信割り込みを割り込み信号としたイベントドリブン演算であっても良いが、以下における本発明の実施例1の説明では、定周期タスクを前提にして説明する。
 図3の最初の処理ステップS31では、定周期タスクの周期を管理するタイマの初期化を行う。処理ステップS32では、図示しない通信網を介してインターフェースIF2に入力されるPMUからの通信割り込みを受け付ける。処理ステップS33では、PMUからの割り込み判定を行い、割り込みがあれば処理ステップS34に進み、割り込みが無ければ処理ステップS36に進む。
 PMUによる割り込みがある場合、処理ステップS34においてPMUからPMU設置場所情報、電圧、潮流情報およびそれらを検出した時刻情報を受信する。処理ステップS34で受信した情報は、処理ステップS35においてデータベースDBの当該PMUメモリエリア内に保存される。
 処理ステップS36では、定周期タスクの時間管理を行う時間管理タイマの割り込み有無を判定し、割込みが無い場合は定周期タスクの処理時間が未経過と判断し、処理ステップS32に戻り新たなPMUからの割込みを待つ。
 処理ステップS36において、時間管理タイマの割込みが確認された場合は、PMUメモリエリアに保管した各PMUの情報を、計測時間でソートし、その結果をデータベースDB内のソートデータ用メモリエリアに保管する。この処理により、PMUデータを同じ時刻にサンプルされたデータごとに整理することができる。
 図1に戻り、PMU補正演算部2000内の状態推定演算信頼性判定器40Cは、基本系統保護システム部1000の状態推定演算器10Cからの出力と、データベースDBの出力を入力とし、状態推定演算の信頼性が高いと判断される場合は「0」、信頼性が低いと判断される場合は「1」を出力して、切り替えスイッチSWに出力する。
 切り替えスイッチSWは、系統事故時に開列される発電機数が多いが系統に残された発電機の過渡安定度に対して余裕のある開列動作を実現する制御テーブルTB1と、系統事故時に開列される発電機数の少ない制御テーブルTB2と、信頼性判定器40Cの出力を入力とし、信頼性判定器40Cの出力が「1」の場合は制御テーブルTB1を、信頼性判定器40Cの出力が「0」の場合は制御テーブルTBを開閉器制御演算器70Cに出力する。
 状態推定演算信頼性判定器40Cの演算内容を示すフローチャートについて、図4を用いて説明する。
 本発明の実施例1に係る系統安定化システム1では、主要ノードの状態推定結果とPMUで検出されるノードの状態量の差の二乗値を算出し、その二乗値の最大値が所定値以下であれば信頼性が高いと判断し、上記二乗値の最大値が所定値より大きければ信頼性が低いと判断する。信頼性判定器40Cの演算は、状態推定演算が終了した時点で実行される、イベントドリブンの演算である。
 このようにここでは、PMUが設置されている近傍のノードN41を主要ノードとし、ノードN41についてPMUが与える潮流計測値と状態推定演算器10が与える潮流推定値を比較する。本発明では、PMUが与える潮流計測値が真値であると考え、誤差や時刻同期に課題のあるセンサ出力から求めた状態推定演算器10の潮流推定値を評価している。
 図4の最初の処理ステップS41では、ノードカウンタを初期化し、初期化後の最初の処理ステップS42において、状態推定演算器10CのPMU設置ノードとしてたとえばノードN41での潮流推定値と、PMU4によるノードN41での潮流計測値の差である潮流偏差二乗値の最大値算出用バッファERR_MAXの初期化を行う。
 本実施例においては、状態推定演算で算出するノードN41の潮流推定値は、ノードN11から遮断器CB11を介してノードN41に流れる潮流であり、PMU4の計測値は、PMU41でノードN41から負荷に流出する負荷潮流から太陽光発電設備G4より送電される潮流を引いたものである。
 処理ステップS43では、状態推定演算器10Cの算出結果と、当該状態推定値の算出時刻に相当するPMUデータをデータベースDBから抽出し、これらの値を用いて推定値とPMUによる計測値の差の二乗値ERR(i)を算出する。
 処理ステップS44では、上記二乗値ERR(i)と潮流偏差二乗値の最大値算出用バッファERR_MAXとの大小比較を実施し、ERR(i)がバッファERR_MAXより大きければERR_MAXを更新する。ERR_MAXの更新を、PMUの設置されているすべてのノード数Nに対して実施するため、処理ステップS46、S47ではノード数の判定およびインクリメントを実施する。
 本実施例ではPMUの設置されているノードがN41のみであるため、対象ノード数Nは1となる。
 PMU設置ノード全数に対する評価が終わった場合、処理ステップS46の判定結果はNoとなるため、処理ステップS48に進む。
 処理ステップS48では、ERR_MAXが所定の判定値であるERR_JUDGEと比較され、判定値よりERR_MAXが大きければ偏差が大きく状態推定の信頼性が低いと判定して出力Outに「1」を設定し(処理ステップS49)、ERR_MAXが所定の判定値ERR_JUDGEより小さいときは偏差が小さいため状態推定の信頼性が高いと判断して出力Outに「0」を設定する(処理ステップS40)。
 本判定は、発電機の安定度確保を目的とするため、判定値ERR_JUDGEは当該系統に連系する発電機群G1、G2、G3の定格出力よりも小さく設定されることが望ましい。
 本発明の実施例1における状態推定演算信頼性判定器40Cの演算結果例を図5に示す。図5には、状態推定演算によるノードN41への潮流(状態推定出力:○で表記)と、PMU4による計測により算出されるノードN41への潮流(PMU4出力:×で表記)の時間変化を上段のグラフに比較表示し、状態推定演算信頼性判定器40Cの出力の時間変化を下段のグラフに示している。
 ここでは、×で表記したPMU4出力を真値と想定しており、真値に対して評価される側の値である○で表記した状態推定出力の空き利の程度から、信頼性の高低を判断している。この比較結果によれば、時刻t1~t4までは状態推定結果(○)とPMU4出力(×)の偏差が所定値以下であり、信頼性判定器40Cの出力は「0」(信頼性が高い)に維持されている。
 時刻t5において、太陽光発電G4の日射急増による潮流低下などにより状態推定の出力(○)とPMU4出力(×)の偏差が過大となり、状態推定演算信頼性判定器40Cの出力が「0」から「1」に変更される。太陽光発電G4の出力が急増することにより、回転機型発電機G1、G2、G3の安定度を確保するだけの負荷が存在しない状況となるため、安定度に対して余裕のある制御テーブルを採用することにより系統事故時の発電機大量脱落を防止できる。
 太陽光発電による出力の増加が認識できれば、発電機G1の機械的入力を下げるなどの別制御により安定度を確保できるため、時刻t6において発電機脱落数を低減できる制御テーブルTB2に変更しても系統事故時の発電機大量脱落を防止できる。
 また、本発明の実施例1に係る系統安定化システム1は、表示器80を備えている。表示器80には、状態推定演算器10Cの出力である各ノードの状態量、系統事故判定器20Cの出力、そして状態推定演算信頼性判定器40Cの出力を、当該系統安定化システムのオペレータに表示することが可能となる。特に、本発明の特徴である、状態推定演算信頼性判定結果を表示する手段を備えることにより、状態推定演算に用いるセンサや、該センサ情報を伝達する通信手段での不具合発生の可能性を示唆することができる。
 実施例1の系統安定化システムは、制御テーブルTBを2つ備えるが、3つ以上の制御テーブルを備えてもよい。この場合は、状態推定演算器10Cが推定するPMU接続ノードの潮流値とPMUより算出される潮流の差を判定する判定値ERR_JUDGEを複数設け、その判定結果に応じて制御テーブルを選択するのがよい。
 図1の構成の系統安定化システム1によれば、開閉器制御演算器70Cが与える遮断器の開放指令は、事故判定器20Cにより事故発生が確認された時に、制御テーブルTB1、TB2に記憶されている遮断器に対して行うことになる。この場合に、制御テーブルTB1、TB2の記憶内容は事故発生前における状態推定演算信頼性判定器40Cの出力を反映したものになっている。状態推定演算の信頼性が高い場合は制御テーブルTB2の記憶内容が反映され、信頼性が低いと判断される場合は制御テーブルTB1の記憶内容が反映される。
 制御テーブルTB内には、例えば図6に例示した電力系統について、予め設定した複数の想定事故点のそれぞれについて、当該事故が発生したときの各部潮流の変動及び発電機の内部位相角などを考慮して定めた適正な機械入力と電気出力の関係になるように定められた遮断器の開閉状態が記憶されている。
 例えば、図6のF1点で想定事故が発生した場合に、事故点を含む両端の遮断器としてこの例では遮断器CB11が開放される。ここまでは既存の電力系統の保護システムが実行する責務範囲であるが、本発明ではさらに遮断器CB11が開放されて、電源G4と送電線L4、L7に接続された負荷を喪失した残余の電力系統についての事故発生後の電力安定度を考慮している。残余の電力系統の電力安定度の観点からは、さらに発電機を解列する必要があり、それは発電機G1のみである場合もあれば、さらに発電機G2までを解列しないと間に合わない場合もあり得る。前者であれば制御テーブルTB1、2からは遮断器CB1、あるいはCB1とCB2の開放が指定されることになる。
 このため、開閉器制御演算器70Cは事故点や事故種別の情報、さらには潮流の情報を含めて制御テーブルTB1、2のうち、指定されたいずれかの内容を参照し、開放制御すべき遮断器を特定する。またこのときに、信頼性が高い時に使用する制御テーブルTB2内の記憶内容は、系統事故時に開列される発電機数を少なくするという観点から遮断器が選定されており、信頼性が低い時に使用する制御テーブルTB1内の記憶内容は、系統事故時に開列される発電機数が多いが系統に残された発電機の過渡安定度に対して余裕のある開列動作を実現するという観点から遮断器が選定されている。
 以上により、本発明の実施例1によれば、系統安定化システム1の状態推定演算の信頼性が高いと判断される場合には、系統事故時の停電範囲を狭小化することが可能となる。
 また、状態推定演算信頼性判定結果を表示器に出力することにより、系統安定化システムのオペレータに状態推定に用いるセンサ群もしくはセンサ群と安定化システムをつなぐ通信網での不具合発生の可能性を示唆することができ、系統安定化運用へさらに貢献することが可能となる。
 本発明の実施例2に係る系統安定化システムを、図7から図9を用いて説明する。実施例2と実施例1の相違点は、状態推定演算信頼性判定器40Cにおいて、状態推定演算器10Cの出力が前回値と等しく、なおかつPMU出力が前回値と異なる場合にも、状態推定演算の信頼性が低いと判断し、切り替えスイッチSWに「1」を出力する手段を備える点にある。
 実施例2では、実施例1に記載の同一の構成要素に対しては同じ記号を用い、重複説明を省くものとする。
 図7は、本発明の実施例2に係る系統安定化システムの構成例を示している。実施例1との差は、状態推定演算器10Cの出力前回値を保存するデータベースDB1を備える点にある。状態推定演算信頼性判定器40Cは、状態推定演算器10Cの出力と、データベースDBから抽出するPMU出力に加え、データベースDB1から取り出す状態推定演算器10Cの出力前回値を入力とする。
 図8は、実施例2の状態推定演算信頼性判定器40Cの処理内容を示すフローチャートである。図8は、実施例1の図4に対応した処理である。
 図4の実施例1との相違は、状態推定演算の出力を前回値と比較し、状態推定演算の出力が前回値と等しく、なおかつPMU推定値が前回値と異なるノード数が所定値以上ある場合は、状態推定演算の信頼性が低いと判断して40Cの出力を「1」にする処理が追加されている点である。
 具体的には、処理ステップS81からS88が追加となっている。さらに図4の処理ステップS1が図8では処理ステップS1Aに変更されているが、処理ステップS1Aは要するにカウンタの初期化を行うものであって、前回値と等しいノード数のカウンタ変数kの初期化が追加されているにすぎない。
 このことから処理ステップS1AからS45までの説明を割愛し、処理ステップS81以降について、説明する。
 処理ステップS81では、状態推定演算器10Cから入力する今回の状態推定値と、データベースDB1から受け取る前回の状態推定値との差を算出する。
 処理ステップS82では、該差がゼロであるか判定する。ゼロである場合は処理ステップS83においてPMU出力が前回値と異なるかを判定する。PMUの出力が前回値と異なる場合、処理ステップS84においてカウンタkをインクリメントする。
 実施例2においては、前回値との偏差をゼロで判定しているが、離散化やノイズの影響を考慮し、処理ステップS82における偏差判定を通常の潮流の5%以下など、比較的小さい所定値を用いて判定しても良い。
 処理ステップS85において、カウンタkと所定値K_JUDGEの大小比較を行い、kがK_JUDGEより大きい場合は、処理ステップS85において中間出力であるOut2に「1」を代入し、それ以外は処理ステップS86においてOut2に「0」を代入する。
 上記演算をPMUの接続する全ノードに対して実施する。所定値K_JUDGEはPMU接続ノード数以下の整数である。実施例2ではPMUの接続されているノードがN41だけであるため、N=K_JUDGE=1とする。PMUの接続するノード数が複数ある場合、全てのノードに対して状態推定による潮流情報が更新されていなくても、大部分の推定潮流値が固定でPMUの出力が変動していれば、収束失敗と判定することも可能である。たとえば所定値K_JUDGEをノードNの8割程度に設定することにより、大部分の潮流推定値が固定である場合の制御テーブル変更が可能となる。
 処理ステップS88において、実施例1で説明した状態推定演算信頼性判定結果である変数Outと、実施例2で追加されている処理ステップS81からS87で算出される中間変数Out2の論理和を算出し、その結果であるOutを状態推定演算信頼性判定結果として出力する。
 実施例2の状態推定演算信頼性判定演算により、状態推定演算器10Cの出力が前回値と等しく、なおかつPMU出力が前回値と異なる場合にも、状態推定演算の信頼性が低いと判断し、切り替えスイッチ50SWに1を出力することが可能となる。
 実施例2における状態推定演算信頼性判定器40Cの演算結果例を図9に示す。図9には、状態推定演算によるノードN41への潮流(状態推定出力:○で表記)と、PMU4による計測により算出されるノードN41への潮流(PMU4出力:×で表記)の時間変化を上段のグラフに比較表示し、状態推定演算信頼性判定器40Cの出力の時間変化を下段のグラフに示している。
 状態推定出力(○)とPMU出力(×)の偏差が所定値より小さい場合、状態推定演算が収束しなくても実施例1の系統安定化システムでは制御テーブルの切り替えができなかった。
 これに対し実施例2の系統安定化システムでは、状態推定出力(○)とPMU出力(×)をそれぞれ前回値と比較する。このようにすることで、状態推定出力(○)とPMU出力(×)の今回値の偏差が判定値より小さくても、状態推定演算が収束していないことが判定可能となる。
 状態推定が収束失敗している場合、系統の潮流を正しく把握できていないことを意味する。この状況で過渡安定度に対して余裕の少ない制御テーブルを用いると、系統事故後に想定した発電機安定化が実現できず、広域の停電を招く可能性がある。実施例2では、安全性の高い制御テーブルに切り替えることにより、系統事故が発生した場合に発電機の過渡安定度に対して余裕のある制御を実施でき、広域の停電を回避できる。
 実施例2の系統安定化システムは、制御テーブルを2つ備えるが、3つ以上の制御テーブルを備えてもよい。この場合は、状態推定演算器10Cが推定するPMU接続ノードの潮流値とPMUより算出される潮流の差を判定する判定値ERR_JUDGEを複数設け、その判定結果に応じて制御テーブルを選択するのがよい。
 以上により、実施例2によれば、系統安定化システムの状態推定演算の信頼性が高いと判断される場合には、系統事故時の停電範囲を狭小化することが可能となる。
 また、状態推定演算信頼性判定結果を表示器に出力することにより、系統安定化システムのオペレータに状態推定に用いるセンサ群もしくはセンサ群と安定化システムをつなぐ通信網での不具合発生の可能性を示唆することができ、系統安定化運用へさらに貢献することが可能となる。
 さらに、実施例2によれば、状態推定演算が収束失敗したことを検出できるため、あらかじめ安定度の高い制御テーブルを選択でき、広域の停電を回避することができる。
1:系統安定化システム,1000:基本系統保護システム部,2000:PMU補正演算部,10C:状態推定演算器,20C:事故判定器,70C:開閉器制御演算器,80:表示器,DB、DB1:データベース,40C:状態推定演算信頼性判定器,SW:切り替えスイッチ,TB1、TB2:制御テーブル,IF1、IF2、IF3:インターフェース部,G(G1、G2、G3):回転機型発電機,G4:太陽光発電設備,Tr(Tr1、Tr2、Tr3、Tr5):変圧器,N(N1、N2、N3、N5、N11、N21、N31、N41、N51、N61):ノード,CB(CB1、CB11、CB2、CB21、CBB3、CB5、CB51、CB6):センサ付遮断器,L(L1、L2、L3、L4、L5、L6、L14、L15、L53、L52、L36、L26):送電網,PMU4、PMU41:PMU

Claims (11)

  1.  遮断器を含む複数のフィーダと、複数のノードと、複数の発電機と、複数の負荷を含んで構成された電力系統に適用される電力系統安定化システムであって、
     複数の前記遮断器ごとに、その近傍の電圧、潮流の情報と、その開放動作を定める保護リレーの情報を入力する第1のインターフェース部と、電力系統で計測した計測時刻の情報を含む電圧、潮流の情報を入力する第2のインターフェース部と、前記第1のインターフェース部からの電圧、潮流の計測情報を用いて電力系統の潮流状態推定演算を実施する状態推定演算手段と、前記第1のインターフェース部からの保護リレーの情報から系統事故を判定する事故判定手段と、制御テーブルの情報を用いて遮断器開放指令を算出し出力する遮断器開放指令算出手段と、前記第2のインターフェース部からの潮流計測情報と前記状態推定演算手段からの潮流推定情報を比較して前記状態推定演算手段における状態推定演算の信頼性を判定する信頼性判定手段と、該信頼性判定手段の判定結果毎に構成された前記の制御テーブルであって、前記電力系統における事故発生後の電力系統安定度確保の観点から新たに開放操作すべき遮断器を定めている制御テーブルとを含み、前記遮断器開放指令算出手段は前記信頼性判定手段の判定結果に応じて選定された前記制御テーブルの情報を用いて遮断器の遮断開放指令を与えることを特徴とする系統安定化制御システム。
  2.  請求項1に記載の系統安定化制御システムであって、
     前記第2のインターフェース部からの計測時刻の情報を含む電圧、潮流の情報について、電圧、潮流を計測時刻ごとに保存する第一のデータベースを備え、前記信頼性判定手段は前記状態推定演算手段の出力と、前記第1のデータベースの出力を比較して前記状態推定演算手段における状態推定演算の信頼性を判定することを特徴とする系統安定化システム。
  3.  請求項1または請求項2に記載の系統安定化制御システムであって、
     前記信頼性判定手段により前記潮流計測情報と前記潮流推定情報の差を算出し、当該差が所定の値以上であるとき、発電機の安定度に対して余裕の大きい遮断器を出力する制御テーブルを選択することを特徴とする系統安定化制御システム。
  4.  請求項1から請求項3のいずれか1項に記載の系統安定化制御システムであって、
     前記状態推定演算手段の前回算出値を保存する第二のデータベースを備え、
     前記信頼性判定手段は、前記状態推定演算手段における状態推定演算の出力を前回算出値と比較し、状態推定演算の出力が前回値と等しく、なおかつ状態推定値が前回算出値と異なるノード数が所定値以上ある場合は、発電機の安定度に対して余裕の大きい遮断器を出力する制御テーブルを選択することを特徴とする系統安定化システム。
  5.  請求項1から請求項4のいずれか1項に記載の系統安定化システムであって、
     電力系統に設置されたPMUが、GPSを用いた時刻同期型センサであるフェーズ・メジャリング・ユニットであることを特徴とする系統安定化システム。
  6.  請求項1から請求項5のいずれか1項に記載の系統安定化システムであって、
     前記信頼性判定手段の出力を表示する表示手段を備えることを特徴とする系統安定化システム。
  7.  遮断器を含む複数のフィーダと、複数のノードと、複数の発電機と、複数の負荷を含んで構成された電力系統に適用される電力系統安定化方法であって、
     複数の前記遮断器ごとに、その近傍の電圧、潮流の情報と、その開放動作を定める保護リレーの情報を得る第1のステップと、電力系統で計測した計測時刻の情報を含む電圧、潮流の情報を得る第2のステップと、前記第1のステップの電圧、潮流の計測情報を用いて電力系統の潮流状態推定演算を実施する第3のステップと、前記第1のステップの保護リレーの情報から系統事故を判定する第4のステップと、第5のステップの情報を用いて遮断器開放指令を算出し出力する第6のステップと、前記第2のステップの潮流計測情報と前記第3のステップの潮流推定情報を比較して前記第3のステップにおける状態推定演算の信頼性を判定する第7のステップと、該第7のステップの判定結果毎に構成された前記の第5のステップであって、前記電力系統における事故発生後の電力系統安定度確保の観点から新たに開放操作すべき遮断器を定めている第5のステップとを含み、前記第6のステップは前記第7のステップの判定結果に応じて選定された前記第5のステップの情報を用いて遮断器の遮断開放指令を与えることを特徴とする系統安定化方法。
  8.  請求項7に記載の系統安定化制御方法であって、
     前記第2のステップからの計測時刻の情報を含む電圧、潮流の情報について、電圧、潮流を計測時刻ごとに保存する第8のステップを備え、前記第7のステップは前記第3のステップの出力と、前記第8のステップの出力を比較して前記状態推定演算手段における状態推定演算の信頼性を判定することを特徴とする系統安定化方法。
  9.  請求項7または請求項8に記載の系統安定化制御方法であって、
     第7のステップにより前記潮流計測情報と前記潮流推定情報の差を算出し、当該差が所定の値以上であるとき、発電機の安定度に対して余裕の大きい遮断器を出力する第5のステップを選択することを特徴とする系統安定化制御方法。
  10.  請求項7から請求項9のいずれか1項に記載の系統安定化制御方法であって、
     前記第3のステップの前回算出値を保存する第9のステップを備え、
     前記第7のステップは、第3のステップにおける状態推定演算の出力を前回算出値と比較し、状態推定演算の出力が前回値と等しく、なおかつ状態推定値が前回算出値と異なるノード数が所定値以上ある場合は、発電機の安定度に対して余裕の大きい遮断器を出力する第5のステップを選択することを特徴とする系統安定化方法。
  11.  遮断器を含む複数のフィーダと、複数のノードと、複数の発電機と、複数の負荷を含んで構成された電力系統に適用される電力系統安定化方法であって、
     前記遮断器は、その近傍に設置された第1のセンサ出力を用いる保護リレーにより事故を検知して開放制御されるとともに、電力系統安定化出力により開放制御され、
     前記第1のセンサ出力を用いて得た電力系統の状態推定値と、電力系統で計測した計測時刻の情報を含む電力系統の状態検出値とを比較して前記状態推定値の信頼性を判定し、
     電力系統の仮想事故点における事故発生後の電力系統安定度の観点から新たに遮断すべき遮断器を記憶しているとともに、前記状態推定値の信頼性判定結果毎に新たに遮断すべき遮断器を記憶し、
     電力系統の事故発生時に、前記状態推定値の信頼性判定結果に応じて選択された新たに遮断すべき遮断器に対する遮断指令が、前記電力系統安定化出力とされていることを特徴とする系統安定化方法。
PCT/JP2016/070380 2016-07-11 2016-07-11 電力系統安定化システムおよび安定化方法 WO2018011843A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018527046A JP6594544B2 (ja) 2016-07-11 2016-07-11 電力系統安定化システムおよび安定化方法
EP16908747.5A EP3484000B1 (en) 2016-07-11 2016-07-11 Power grid stabilization system and stabilization method
PCT/JP2016/070380 WO2018011843A1 (ja) 2016-07-11 2016-07-11 電力系統安定化システムおよび安定化方法
US16/307,395 US10756571B2 (en) 2016-07-11 2016-07-11 System and method for stabilizing power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070380 WO2018011843A1 (ja) 2016-07-11 2016-07-11 電力系統安定化システムおよび安定化方法

Publications (1)

Publication Number Publication Date
WO2018011843A1 true WO2018011843A1 (ja) 2018-01-18

Family

ID=60952964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070380 WO2018011843A1 (ja) 2016-07-11 2016-07-11 電力系統安定化システムおよび安定化方法

Country Status (4)

Country Link
US (1) US10756571B2 (ja)
EP (1) EP3484000B1 (ja)
JP (1) JP6594544B2 (ja)
WO (1) WO2018011843A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556923A (zh) * 2019-09-29 2019-12-10 上海电机学院 一种配电变压器数据监控终端、监控系统及监控方法
US11852660B2 (en) 2018-07-06 2023-12-26 Schneider Electric USA, Inc. Systems and methods for analyzing effects of electrical perturbations on equipment in an electrical system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087292A1 (ja) * 2017-10-31 2019-05-09 株式会社日立製作所 電力系統の安定性解析装置、安定化装置および方法
CN110909795A (zh) * 2019-11-22 2020-03-24 国网湖南省电力有限公司 电网暂态电压稳定性的判定方法
CN110955967A (zh) * 2019-11-26 2020-04-03 广东电网有限责任公司 一种母联备自投在bpa的建模方法及系统
CN111146779B (zh) * 2019-12-25 2024-02-23 国家电网公司西北分部 一种电力设备相继故障的大电网柔性安全控制方法及系统
US11500407B2 (en) * 2020-02-13 2022-11-15 Schweitzer Engineering Laboratories, Inc. Boundary separation scheme for faults in power systems
CN111610439B (zh) * 2020-04-23 2023-04-18 国网安徽省电力有限公司电力科学研究院 高压断路器短路开断能力评估及选相开断控制方法
CN112467806B (zh) * 2020-12-07 2022-02-15 中国电力科学研究院有限公司 一种基于dmn电网调控规则确定电网运行状态的方法及系统
CN112636469B (zh) * 2020-12-11 2022-08-23 国网安徽省电力有限公司黄山供电公司 一种电网输电线路运行负荷数据可信度的判断方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001333549A (ja) * 2000-03-15 2001-11-30 Mitsubishi Electric Corp 電力系統保護制御システム及びシステム構築方法
JP2003319559A (ja) * 2002-04-19 2003-11-07 Mitsubishi Electric Corp 電力系統安定化制御システム
JP2011115003A (ja) * 2009-11-30 2011-06-09 Toshiba Corp 系統安定化装置
JP2012239307A (ja) * 2011-05-11 2012-12-06 Toshiba Corp 電力系統安定化システム、電力系統安定化方法及び電力系統安定化プログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703791A (en) * 1994-02-17 1997-12-30 Hitachi, Ltd. Electric power system stabilization control apparatus and method thereof
JP4108578B2 (ja) 2003-09-12 2008-06-25 三菱電機株式会社 電力系統安定化制御システム及び電力系統安定化制御方法
JP6223833B2 (ja) * 2014-01-09 2017-11-01 株式会社東芝 電力系統安定化装置
JP6244255B2 (ja) 2014-04-25 2017-12-06 株式会社日立製作所 電圧安定度監視装置および方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001333549A (ja) * 2000-03-15 2001-11-30 Mitsubishi Electric Corp 電力系統保護制御システム及びシステム構築方法
JP2003319559A (ja) * 2002-04-19 2003-11-07 Mitsubishi Electric Corp 電力系統安定化制御システム
JP2011115003A (ja) * 2009-11-30 2011-06-09 Toshiba Corp 系統安定化装置
JP2012239307A (ja) * 2011-05-11 2012-12-06 Toshiba Corp 電力系統安定化システム、電力系統安定化方法及び電力系統安定化プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3484000A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11852660B2 (en) 2018-07-06 2023-12-26 Schneider Electric USA, Inc. Systems and methods for analyzing effects of electrical perturbations on equipment in an electrical system
CN110556923A (zh) * 2019-09-29 2019-12-10 上海电机学院 一种配电变压器数据监控终端、监控系统及监控方法

Also Published As

Publication number Publication date
US10756571B2 (en) 2020-08-25
EP3484000A1 (en) 2019-05-15
US20190305590A1 (en) 2019-10-03
EP3484000A4 (en) 2020-03-04
JP6594544B2 (ja) 2019-10-23
JPWO2018011843A1 (ja) 2019-02-21
EP3484000B1 (en) 2022-04-27

Similar Documents

Publication Publication Date Title
JP6594544B2 (ja) 電力系統安定化システムおよび安定化方法
US20210210958A1 (en) Proactive intelligent load shedding
US8554385B2 (en) Systems and methods for monitoring and controlling electrical system stability
US10622805B2 (en) Power restoration in nested microgrids
US10971933B2 (en) Distributed control in electric power delivery systems
US10680430B2 (en) Fault recovery systems and methods for electrical power distribution networks
CN111337855B (zh) 一种基于负序电流比的主动配电网断线故障保护方法
KR102325452B1 (ko) 배전 시스템 내의 불안정성을 검출 및 정정하기 위한 방법 및 장치
Zhang et al. Remedial action schemes and defense systems
JP5147739B2 (ja) 配電系統の地絡保護システム、配電系統の地絡保護方法、プログラム
WO2019047610A1 (zh) 一种具有后备功能的小电流接地故障选线系统及方法
JP5728289B2 (ja) 電力系統安定化システム、電力系統安定化方法及び電力系統安定化プログラム
Barnes et al. The Risk of Hidden Failures to the United States Electrical Grid and Potential for Mitigation
Sykes et al. IEEE/PES PSRC report on design and testing of selected system integrity protection schemes
AU2019362586B2 (en) Method of and system for power island detection on a power distribution network
Allen Effects of wide-area control on the protection and operation of distribution networks
Jena et al. Supervisory control based wide area back-up protection scheme for power transmission network
CN102611084B (zh) 一种自适应电压保护方法
WO2022044777A1 (ja) 電力系統安定化システム
JP7163163B2 (ja) 電力系統安定化システム
JP2012170221A (ja) 電力系統の安定度判定装置、安定化システムおよび安定度判定方法
KR20220132988A (ko) 기기 상호간 1:1 통신하는 배전자동화 단말장치 및 그를 이용한 배전선로 부하불평형 보상 방법
Nagpal et al. Main 1 and Main 2 Protection-Same or Different?

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527046

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016908747

Country of ref document: EP

Effective date: 20190211