WO2018010239A1 - 一种智能风扇控制方法和系统 - Google Patents

一种智能风扇控制方法和系统 Download PDF

Info

Publication number
WO2018010239A1
WO2018010239A1 PCT/CN2016/093943 CN2016093943W WO2018010239A1 WO 2018010239 A1 WO2018010239 A1 WO 2018010239A1 CN 2016093943 W CN2016093943 W CN 2016093943W WO 2018010239 A1 WO2018010239 A1 WO 2018010239A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
adjustment threshold
fan control
fan
value
Prior art date
Application number
PCT/CN2016/093943
Other languages
English (en)
French (fr)
Inventor
吴球
Original Assignee
邦彦技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邦彦技术股份有限公司 filed Critical 邦彦技术股份有限公司
Publication of WO2018010239A1 publication Critical patent/WO2018010239A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the invention relates to the field of fans, and in particular to a smart fan control method and system.
  • the corresponding fan module uses multiple fan designs.
  • the power consumption, heat generated, and temperature rise of each board are different.
  • the power consumption of each board is not fully utilized, and the temperature is controlled by the fan, but according to the inside of the chassis.
  • the temperature values collected by one or several temperature sensors are uniformly controlled for all fan speeds. All fans work at the same speed for fan heat, which increases power consumption, wastes energy, and reduces the life of the fan. Good heat dissipation requirements. Therefore, it is necessary to make improvements.
  • an object of the present invention is to provide a smart fan control method and system.
  • the technical solution adopted by the present invention is:
  • the present invention provides a smart fan control method, including the steps of:
  • the temperature value reaches the temperature adjustment threshold, it is determined whether the half-zone temperature is higher than the highest adjustment threshold.
  • the corresponding fan control parameter is calculated and output.
  • an n-stage fan speed regulation stage is set, and an n value and a temperature adjustment threshold value of each stage are determined according to heat dissipation requirements.
  • the temperature adjustment threshold value queue and the corresponding temperature control coefficient table are determined according to the heat dissipation requirement
  • each temperature control coefficient is obtained by measurement.
  • the temperature adjustment threshold corresponding to the temperature value is determined, and then the corresponding temperature control coefficient is obtained.
  • the present invention further provides an intelligent fan control system, including: a fan control module, a plurality of fans, and temperature sensors corresponding to the fans; the plurality of fans and each temperature sensor corresponding to each fan are The fan control module is connected.
  • the present invention also provides an intelligent fan control system, including:
  • An acquisition module configured to perform collecting temperature values of each area
  • a judging module configured to perform, determining whether each collected temperature value reaches a temperature adjustment threshold
  • the temperature value reaches the temperature adjustment threshold, it is determined whether the half-zone temperature is higher than the highest adjustment threshold.
  • the speed control module is configured to perform adjustment of the speed of the fan according to the fan control parameter.
  • the invention has the beneficial effects that the intelligent fan control method and system provided by the invention can precisely improve the heat dissipation performance of the system by precisely controlling the fans in the fan queue, and improve the heat dissipation of the device while ensuring good heat dissipation. Efficiency and increased fan life.
  • FIG. 1 is a schematic diagram of a control flow of a first embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a second embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a control module in accordance with an embodiment of the present invention.
  • the invention provides a smart fan control method, comprising the steps of:
  • the temperature value reaches the temperature adjustment threshold, it is determined whether the half-zone temperature is higher than the highest adjustment threshold.
  • the corresponding fan control parameter is calculated and output.
  • an n-stage fan speed regulation stage is set, and an n value and a temperature adjustment threshold value of each stage are determined according to heat dissipation requirements.
  • the temperature adjustment threshold value queue and the corresponding temperature control coefficient table are determined according to the heat dissipation requirement
  • each temperature control coefficient is obtained by measurement.
  • the temperature adjustment threshold corresponding to the temperature value is determined, and then the corresponding temperature control coefficient is obtained.
  • the ATCA chassis Inside the ATCA chassis, it consists of multiple function board modules. The power consumption, heat generation and temperature rise of different areas of each module are different. In order to accurately and timely control the heat dissipation of each part, temperature sensors are deployed in each area. Fans with independent control are deployed in different areas for heat dissipation. The fan control algorithm is used to generate fan control parameters through the temperature values collected by the various parts, and the corresponding fans in the area are controlled to perform heat dissipation.
  • the specific implementation methods are as follows:
  • the inside of the chassis is divided into m areas, each area corresponding to a temperature sensor and a controllable fan, and the temperature status queue of the entire chassis formed by the temperature parameters collected by all the regions.
  • T [t1, t2, t3, ... tm], where ti (i is an integer from 1 to m) is the current temperature value corresponding to the i-th zone, and the fan control parameter is calculated by the fan control algorithm using the current temperature value as an input.
  • Fi (i is an integer from 1 to m) is the current fan control parameter corresponding to the i-th zone.
  • the control parameter can directly control the fan speed.
  • the solution adopts discrete fan control mode, that is, when the collected temperature reaches a certain temperature adjustment threshold, the corresponding fan control parameters are calculated and output, and the fan speed is controlled, and the present invention sets n level.
  • the fan speed regulation stage determines the n value and the temperature adjustment threshold of each stage according to the actual heat dissipation requirement. Generally, the higher the heat dissipation control accuracy requirement, the more the classification is, the larger the n is, and the temperature adjustment threshold values of the various levels can be evenly distributed.
  • the threshold value corresponds to different temperature control coefficients, which indicate that a corresponding temperature control amount is to be provided at the temperature to ensure that the temperature cannot be higher or lower than the value, and the parameter is obtained through actual testing.
  • the temperature control coefficient, the fan control parameter generation algorithm is as follows (fan control parameter calculation flow chart shown in Figure 3):
  • the temperature collected on the region y is t(y), and it is judged which temperature adjustment threshold value the temperature falls on, thereby obtaining the corresponding temperature control coefficient c(y), 1 ⁇ y ⁇ m; obtaining the temperature of the m regions
  • the fan control coefficient can directly output and control the corresponding fan speed to reach the control corresponding area. The purpose of the temperature.
  • the chassis temperature is mostly too high.
  • the fan of all zones is controlled to operate at full speed, and the overall heat dissipation effect of the frame is improved.
  • FIG. 3 there is shown a schematic diagram of a control module in accordance with an embodiment of the present invention.
  • the present invention provides a smart fan control system, including: a fan control module, a plurality of fans, and temperature sensors corresponding to the fans; the plurality of fans and each temperature sensor corresponding to each fan are connected to the fan control module.
  • the invention also provides an intelligent fan control system, comprising:
  • An acquisition module configured to perform collecting temperature values of each area
  • a judging module configured to perform, determining whether each collected temperature value reaches a temperature adjustment threshold
  • the temperature value reaches the temperature adjustment threshold, it is determined whether the half-zone temperature is higher than the highest adjustment threshold.
  • the speed control module is configured to perform adjustment of the speed of the fan according to the fan control parameter.
  • the invention provides a set of algorithms and processes for intelligently controlling multi-fan heat dissipation of an ATCA chassis.
  • the algorithm and the process automatically determine each area after obtaining a heat dissipation requirement (temperature adjustment threshold) and obtaining a fan heat dissipation capability (fan heat dissipation coefficient).
  • the temperature value can be used to calculate the fan control parameter values in each area through software, so that the fan speed in each area of the chassis can be controlled in real time and accurately, and a high efficiency heat dissipation effect is realized in practical applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

一种智能风扇控制方法及对应装置,方法包括:采集多个监测区域的温度值;判断每个采集的温度值是否到达温度调节门限值,若各温度值均未到达温度调节门限值,则重新采集各区域的温度值,若有温度值到达温度调节门限值,则判断是否有过半区域温度高于最高调节门限值,若过半温度高于最高调节门限值,则设置所有风扇控制参数为全速运转模式,否则获取调节门限值对应的温度控制系数,采用风扇控制参数算法计算风扇控制参数;根据风扇控制参数调节风扇的转速。通过控制风扇队列中的各个风扇,有针对性地提高系统散热效能,在保证良好散热的同时,提高了设备散热功耗效率和风扇寿命,应用于风扇领域。

Description

一种智能风扇控制方法和系统
技术领域
本发明涉及风扇领域,具体为一种智能风扇控制方法和系统。
背景技术
在ATCA机框内部,存在多个板卡和模块,对应的风扇模块会采用多个风扇设计。每个板卡的功耗、产生的热量、温升不同,在风扇转速控制上,并没有充分利用各个板卡的功耗大小、温度高低进行精确的风扇控制,而是根据机框内部的某个或某几个温度传感器采集到的温度值进行所有风扇转速统一控制,所有风扇以相同的转速进行工作扇热,增加了功耗,浪费了能量,同时降低了风扇的寿命,并没有起到良好的散热要求。因此有必要进行改进。
发明内容
为了解决上述技术问题,本发明的目的是提供一种智能风扇控制方法和系统。
本发明所采用的技术方案是:本发明提供一种智能风扇控制方法,包括步骤:
采集多个监测区域的温度值;
判断每个采集的温度值是否到达温度调节门限值,
若各温度值均未到达温度调节门限值,则重新采集各区域的温度值,
若有温度值到达温度调节门限值,则判断是否有过半区域温度高于最高调节门限值,
若有过半区域温度高于最高调节门限值,则设置所有风扇控制参数为全速运转模式,否则获取调节门限值对应的温度控制系数,并采用风扇控制参数算法计算风扇控制参数;
根据风扇控制参数调节风扇的转速。
作为该技术方案的改进,当采集到的温度值到达其对应的温度调节门限值时,计算并输出相应的风扇控制参数。
作为该技术方案的改进,设定n级风扇调速级,根据散热要求确定n值及每一级的温度调节门限值。
作为该技术方案的改进,根据散热要求确定温度调节门限值队列及对应温度控制系数表;
采集各区域温度值,并判别该值所在的温度调节门限值,根据温度调节门限值获取对应的温度控制系数队列C;
根据风扇属性参数确定风扇散热参数a;
根据F=a*C计算风扇控制参数队列。
进一步地,通过测量获取各个温度控制系数。
进一步地,对采集到的温度值,判断所述温度值对应的温度调节门限值,进而获得其对应的温度控制系数。
另一方面,本发明还提供一种智能风扇控制系统,包括:风扇控制模块、多台风扇以及与各风扇对应的各温度传感器;所述多台风扇以及与各风扇对应的各温度传感器均与风扇控制模块连接。
再一方面,本发明还提供一种智能风扇控制系统,包括:
采集模块,用于执行采集各区域的温度值;
判断模块,用于执行判断每个采集的温度值是否到达温度调节门限值,
若各温度值均未到达温度调节门限值,则重新采集各区域的温度值,
若有温度值到达温度调节门限值,则判断是否有过半区域温度高于最高调节门限值,
若有过半区域温度高于最高调节门限值,则设置所有风扇控制参数为全速运转模式,否则获取调节门限值对应的温度控制系数,并采用风扇控制参数算法计算风扇控制参数;
转速控制模块,用于执行根据风扇控制参数调节风扇的转速。
本发明的有益效果是:本发明提供的智能风扇控制方法和系统,通过精确控制风扇队列中的各个风扇,可有针对性提高系统散热效能,在保证良好散热的同时,提高了设备散热功耗效率和提高风扇寿命。
附图说明
下面结合附图对本发明的具体实施方式作进一步说明:
图1是本发明第一实施例的控制流程示意图;
图2是本发明第二实施例的流程示意图;
图3是本发明一实施例的控制模块示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本发明提供一种智能风扇控制方法,包括步骤:
采集多个监测区域的温度值;
判断每个采集的温度值是否到达温度调节门限值,
若各温度值均未到达温度调节门限值,则重新采集各区域的温度值,
若有温度值到达温度调节门限值,则判断是否有过半区域温度高于最高调节门限值,
若有过半区域温度高于最高调节门限值,则设置所有风扇控制参数为全速运转模式,否则获取调节门限值对应的温度控制系数,并采用风扇控制参数算法计算风扇控制参数;
根据风扇控制参数调节风扇的转速。
作为该技术方案的改进,当采集到的温度值到达其对应的温度调节门限值时,计算并输出相应的风扇控制参数。
作为该技术方案的改进,设定n级风扇调速级,根据散热要求确定n值及每一级的温度调节门限值。
作为该技术方案的改进,根据散热要求确定温度调节门限值队列及对应温度控制系数表;
采集各区域温度值,并判别该值所在的温度调节门限值,根据温度调节门限值获取对应的温度控制系数队列C;
根据风扇属性参数确定风扇散热参数a;
根据F=a*C计算风扇控制参数队列。
进一步地,通过测量获取各个温度控制系数。
进一步地,对采集到的温度值,判断所述温度值对应的温度调节门限值,进而获得其对应的温度控制系数。
在ATCA机框内部由多个功能板卡模块组成,各个模块的不同区域的功耗、产生的热量和温升都不同,为能精确、及时对各个部分进行散热控制,各个区域部署了温度传感器,不同的区域部署有独立控制的风扇进行散热,通过各个部分采集到的温度值,进行风扇控制算法运算产生风扇控制参数,控制该区域对应的风扇进行散热工作,具体实现方法如下:
参照图1-2,机框内部分割为m个区域,每个区域对应有一个温度传感器和一个可控风扇,则对所有区域温度传感采集的温度参数而形成的整个机框的温度状态队列为T=[t1,t2,t3,…tm],其中ti(i为1到m的整数)为对应第i区的当前温度值,以该当前温度值作为输入通过风扇控制算法计算风扇控制参数fi(i为1到m的整数)为对应第i区的当前风扇控制参数,该控制参数可直接控制风扇转速,所有区域的风扇控制参数形成整机箱的风扇控制参数队列为F=[f1,f2,f3,…fm]。为确保风扇控制稳定可靠,该方案采用离散风扇控制方式,即当采集到的温度到达某一温度调节门限值时,计算并输出相应的风扇控制参数,控制风扇转速,本发明设定n级风扇调速级,根据实际散热要求确定n值及每一级的温度调节门限,一般散热控制精度要求越高,则分级越多,n就越大,各级温度调节门限值可均匀分布,n级温度调节门限值形成的队列为D=[d1,d2,d3,…dn],其中di(i为1到n的整数)为对应第i级温度调节门限值,因为不同温度调节门限值对应不同的温度控制系数,该系数表示在该温度下要提供对应的温度控制量,确保温度不能高于或低于该值,该参数通过实际测试中获取。通过测量获取各个温度控制系数而形成的温度控制系数队列为E=[e1,e2,e3,…en],其中ei(i为1到n的整数)为对应第i级温度调节门限值对应的温度控制系数,则风扇控制参数产生算法如下(风扇控制参数计算流程图如图3所示):
采集到区域y上的温度为t(y),判断该温度落在哪个温度调节门限值上,从而获得对应的温度控制系数c(y),1≤y≥m;获取m个区域的温度控制系数形成温度控制系数队列C=[c1,c2,c3,…cm],则风扇控制参数队列F= a*C;其中a为风扇散热系数,该系数与风扇的工作散热能力参数有关,实际应用中需要根据风扇属性参数或测试确定,风扇控制系数可直接输出控制对应风扇的转速,达到控制对应区域温度的目的。
当检测到有一半以上的区域温度超过最大门温度限值dn时,说明机箱温度大部分过高,在这种情况下,控制所有区域的风扇全速运转,提高机框整体散热效果。
参照图3,是本发明一实施例的控制模块示意图。本发明提供一种智能风扇控制系统,包括:风扇控制模块、多台风扇以及与各风扇对应的各温度传感器;所述多台风扇以及与各风扇对应的各温度传感器均与风扇控制模块连接。
本发明还提供一种智能风扇控制系统,包括:
采集模块,用于执行采集各区域的温度值;
判断模块,用于执行判断每个采集的温度值是否到达温度调节门限值,
若各温度值均未到达温度调节门限值,则重新采集各区域的温度值,
若有温度值到达温度调节门限值,则判断是否有过半区域温度高于最高调节门限值,
若有过半区域温度高于最高调节门限值,则设置所有风扇控制参数为全速运转模式,否则获取调节门限值对应的温度控制系数,并采用风扇控制参数算法计算风扇控制参数;
转速控制模块,用于执行根据风扇控制参数调节风扇的转速。
本发明提供了一套智能控制ATCA机箱多风扇散热的算法和流程,该算法和流程通过制定散热要求(温度调节门限),在获取风扇散热能力(风扇散热系数)后,通过自动检测到各个区域温度值,就能通过软件计算各个区域的风扇控制参数值,从而能实时、精确地控制机箱各个区域的风扇转速,在实际应用中实现了高效率的散热效果。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (8)

  1. 一种智能风扇控制方法,其特征在于,包括步骤:
    采集多个监测区域的温度值;
    判断每个采集的温度值是否到达温度调节门限值,
    若各温度值均未到达温度调节门限值,则重新采集各区域的温度值,
    若有温度值到达温度调节门限值,则判断是否有过半区域温度高于最高调节门限值,
    若有过半区域温度高于最高调节门限值,则设置所有风扇控制参数为全速运转模式,否则获取调节门限值对应的温度控制系数,并采用风扇控制参数算法计算风扇控制参数;
    根据风扇控制参数调节风扇的转速。
  2. 根据权利要求1所述的一种智能风扇控制方法,其特征在于:当采集到的温度值到达其对应的温度调节门限值时,计算并输出相应的风扇控制参数。
  3. 根据权利要求1所述的一种智能风扇控制方法,其特征在于:设定n级风扇调速级,根据散热要求确定n值及每一级的温度调节门限值。
  4. 根据权利要求1所述的一种智能风扇控制方法,其特征在于:根据散热要求确定温度调节门限值队列及对应温度控制系数表;
    采集各区域温度值,并判别该值所在的温度调节门限值,根据温度调节门限值获取对应的温度控制系数队列C;
    根据风扇属性参数确定风扇散热参数a;
    根据F=a*C计算风扇控制参数队列。
  5. 根据权利要求4所述的一种智能风扇控制方法,其特征在于:通过测量获取各个温度控制系数。
  6. 根据权利要求5所述的一种智能风扇控制方法,其特征在于:对采集到的温度值,判断所述温度值对应的温度调节门限值,进而获得其对应的温度控制系数。
  7. 一种智能风扇控制系统,其特征在于,包括:风扇控制模块、多台风扇以及与各风扇对应的各温度传感器;所述多台风扇以及与各风扇对应的各温度传感器均与风扇控制模块连接。
  8. 一种智能风扇控制系统,其特征在于,包括:
    采集模块,用于执行采集各区域的温度值;
    判断模块,用于执行判断每个采集的温度值是否到达温度调节门限值,
    若各温度值均未到达温度调节门限值,则重新采集各区域的温度值,
    若有温度值到达温度调节门限值,则判断是否有过半区域温度高于最高调节门限值,
    若有过半区域温度高于最高调节门限值,则设置所有风扇控制参数为全速运转模式,否则获取调节门限值对应的温度控制系数,并采用风扇控制参数算法计算风扇控制参数;
    转速控制模块,用于执行根据风扇控制参数调节风扇的转速。
PCT/CN2016/093943 2016-07-12 2016-08-08 一种智能风扇控制方法和系统 WO2018010239A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610548212.2 2016-07-12
CN201610548212.2A CN106050718B (zh) 2016-07-12 2016-07-12 一种智能风扇控制方法和系统

Publications (1)

Publication Number Publication Date
WO2018010239A1 true WO2018010239A1 (zh) 2018-01-18

Family

ID=57186475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093943 WO2018010239A1 (zh) 2016-07-12 2016-08-08 一种智能风扇控制方法和系统

Country Status (2)

Country Link
CN (1) CN106050718B (zh)
WO (1) WO2018010239A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113133286A (zh) * 2021-04-19 2021-07-16 西安易朴通讯技术有限公司 散热控制方法、装置、设备及存储介质
CN113590428A (zh) * 2021-08-12 2021-11-02 北京中电兴发科技有限公司 一种风扇转速抖动抑制方法
CN114521097A (zh) * 2022-02-22 2022-05-20 南京巨鲨显示科技有限公司 一种智能散热方法及其装置
US11422445B2 (en) * 2018-10-23 2022-08-23 Delta Electronics, Inc. Projector with temperature sensor and projector protection method
CN114942155A (zh) * 2022-07-22 2022-08-26 光久良热控科技(江苏)有限公司 一种大功率照明灯具中散热器状态实时监测方法
CN115992832A (zh) * 2023-02-08 2023-04-21 江苏华丽智能科技股份有限公司 一种风机百叶窗的智能控制方法及系统
CN117329156A (zh) * 2023-11-30 2024-01-02 中国标准化研究院 一种温室风扇用自动控制方法及系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111684369B (zh) * 2018-02-05 2023-08-04 施乐百有限公司 用于风扇或风扇总成的优化操作的方法
CN110762044B (zh) * 2019-11-04 2021-03-30 北京丰凯换热器有限责任公司 独立散热系统风扇目标转速估算方法
CN110989725A (zh) * 2019-12-07 2020-04-10 苏州晶旭新能源科技有限公司 一种十字轴式光伏发电汇流箱的热管理控制方法
TWI698082B (zh) * 2020-04-01 2020-07-01 保銳科技股份有限公司 具有溫度補償之風扇控制電路及其風扇控制方法
CN114675683A (zh) * 2022-03-08 2022-06-28 南京巨鲨显示科技有限公司 一种医用显示器内部温度控制方法及其装置
CN115013342A (zh) * 2022-05-26 2022-09-06 中航光电科技股份有限公司 一种冗余设计的风扇转速控制系统及方法
CN115013346A (zh) * 2022-07-21 2022-09-06 浪潮思科网络科技有限公司 一种基于设备的风扇调速方法、设备及介质
CN116696831B (zh) * 2023-08-08 2023-10-31 宝德华南(深圳)热能系统有限公司 基于互联网的风扇风量自动调节方法
CN117627951B (zh) * 2023-12-29 2024-04-30 东莞市百旺电机科技有限公司 一种风机控制方法、系统、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060156747A1 (en) * 2005-01-19 2006-07-20 Nec Corporation Object temperature adjusting system, control unit for adjusting object temperature, method of adjusting temperature of object, and signal-bearing medium embodying program of controller
CN101013328A (zh) * 2007-01-30 2007-08-08 中兴通讯股份有限公司 一种温控风扇转速的装置和方法
CN101303021A (zh) * 2008-06-23 2008-11-12 中兴通讯股份有限公司 一种温度自适应控制风扇的装置和方法
CN101761500A (zh) * 2008-12-24 2010-06-30 大唐移动通信设备有限公司 控制风扇转速的方法、装置及控制散热速度的方法、装置
CN101876322A (zh) * 2010-06-25 2010-11-03 中兴通讯股份有限公司 风扇控制方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346512A (ja) * 1999-06-03 2000-12-15 Fujitsu Ltd 冷却装置
CN100478820C (zh) * 2006-06-09 2009-04-15 技嘉科技股份有限公司 电子元件的温度控制方法及其系统
CN101566965A (zh) * 2008-04-22 2009-10-28 鸿富锦精密工业(深圳)有限公司 风扇转速控制方法
CN102591436B (zh) * 2012-01-17 2015-02-04 中国矿业大学 一种能随温度变化匹配风速的笔记本电脑智能散热器
CN104122910A (zh) * 2014-07-23 2014-10-29 深圳市腾讯计算机系统有限公司 整体机柜风墙控制系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060156747A1 (en) * 2005-01-19 2006-07-20 Nec Corporation Object temperature adjusting system, control unit for adjusting object temperature, method of adjusting temperature of object, and signal-bearing medium embodying program of controller
CN101013328A (zh) * 2007-01-30 2007-08-08 中兴通讯股份有限公司 一种温控风扇转速的装置和方法
CN101303021A (zh) * 2008-06-23 2008-11-12 中兴通讯股份有限公司 一种温度自适应控制风扇的装置和方法
CN101761500A (zh) * 2008-12-24 2010-06-30 大唐移动通信设备有限公司 控制风扇转速的方法、装置及控制散热速度的方法、装置
CN101876322A (zh) * 2010-06-25 2010-11-03 中兴通讯股份有限公司 风扇控制方法及装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11422445B2 (en) * 2018-10-23 2022-08-23 Delta Electronics, Inc. Projector with temperature sensor and projector protection method
CN113133286A (zh) * 2021-04-19 2021-07-16 西安易朴通讯技术有限公司 散热控制方法、装置、设备及存储介质
CN113590428A (zh) * 2021-08-12 2021-11-02 北京中电兴发科技有限公司 一种风扇转速抖动抑制方法
CN114521097A (zh) * 2022-02-22 2022-05-20 南京巨鲨显示科技有限公司 一种智能散热方法及其装置
CN114942155A (zh) * 2022-07-22 2022-08-26 光久良热控科技(江苏)有限公司 一种大功率照明灯具中散热器状态实时监测方法
CN114942155B (zh) * 2022-07-22 2022-10-21 光久良热控科技(江苏)有限公司 一种大功率照明灯具中散热器状态实时监测方法
CN115992832A (zh) * 2023-02-08 2023-04-21 江苏华丽智能科技股份有限公司 一种风机百叶窗的智能控制方法及系统
CN115992832B (zh) * 2023-02-08 2024-03-22 江苏华丽智能科技股份有限公司 一种风机百叶窗的智能控制方法及系统
CN117329156A (zh) * 2023-11-30 2024-01-02 中国标准化研究院 一种温室风扇用自动控制方法及系统
CN117329156B (zh) * 2023-11-30 2024-04-09 中国标准化研究院 一种温室风扇用自动控制方法及系统

Also Published As

Publication number Publication date
CN106050718A (zh) 2016-10-26
CN106050718B (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
WO2018010239A1 (zh) 一种智能风扇控制方法和系统
WO2014008737A1 (zh) 变频空调器的节能控制方法及装置
JP6615329B2 (ja) パワー半導体モジュールの損傷レベル又は寿命予測を推定する方法及びデバイス
WO2018000753A1 (zh) 电池温度的控制方法及系统
US7702223B2 (en) Circuit for controlling rotation speed of computer fan
WO2015010456A1 (zh) Led背光亮度的调整方法
US10209701B2 (en) Method of temperature control and cabinet
US11032938B2 (en) Temperature control device and control method thereof
US11093017B2 (en) Method for automatically optimizing power consumption
JP2015109420A (ja) 監視チップ温度に基づく供給電圧の動的調整
TW200921345A (en) Heat dissipation fan control method of electric device and the apparatus thereof
WO2017219242A1 (zh) 家用空调及其室外风机运行控制的方法
CN102654130A (zh) 一种对计算机进行温度控制的方法和计算机
CN107762936A (zh) 温度控制装置及其方法
CN105278647A (zh) 一种芯片温控管理方法及系统
WO2008137625A2 (en) Method and system for adaptive power management
US20200165154A1 (en) Method for controlling discharging of glass plate in glass plate tempering technology process
KR102211402B1 (ko) 스위치 캐비닛 냉각 장치의 조절 방법
US20080272828A1 (en) Method and system for adaptive power management
TW201925969A (zh) 溫度控制裝置及其方法
TW201918824A (zh) 溫度控制裝置及其控制方法
JPH09264647A (ja) 電子機器冷却回路
KR20120035780A (ko) 냉각팬 모터의 전압 제어 장치 및 방법
CN108334126B (zh) 一种电子元器件温度控制方法及装置
WO2018214755A1 (zh) 一种热泵压缩机运行过程中的保护方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908564

Country of ref document: EP

Kind code of ref document: A1