WO2018008368A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2018008368A1
WO2018008368A1 PCT/JP2017/022432 JP2017022432W WO2018008368A1 WO 2018008368 A1 WO2018008368 A1 WO 2018008368A1 JP 2017022432 W JP2017022432 W JP 2017022432W WO 2018008368 A1 WO2018008368 A1 WO 2018008368A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation chamber
separation
oil
chamber
discharged
Prior art date
Application number
PCT/JP2017/022432
Other languages
French (fr)
Japanese (ja)
Inventor
好信 前村
美早子 冠城
芳夫 小和田
宏 本田
淳夫 手島
和博 生方
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Publication of WO2018008368A1 publication Critical patent/WO2018008368A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a compressor having a function of separating lubricating oil contained in refrigerant gas.
  • lubricating oil is mixed in refrigerant gas to lubricate each part of the compressor.
  • the compressor is provided with a collision separation type separation chamber for intentionally colliding the discharged refrigerant gas discharged from the compression mechanism with the internal structural member of the compressor and separating the lubricating oil in the discharged refrigerant gas.
  • Patent Document 1 Have been proposed (for example, see Patent Document 1) and those equipped with a centrifugal separation chamber for rotating the discharged refrigerant gas to centrifuge the lubricating oil in the discharged refrigerant gas (for example, see Patent Document 2). ing.
  • an object of the present invention is to provide a compressor that suppresses fluctuations in oil separation efficiency due to changes in the flow rate of discharged refrigerant.
  • the compressor of the present invention discharges the discharged refrigerant to the outside after the separation process of the contained oil is performed.
  • a first separation chamber that separates and lowers and a second separation chamber that swirls the discharged refrigerant and separates and lowers the contained oil until the discharged refrigerant is discharged to the outside. are arranged in series in the flow path.
  • the “discharge refrigerant” is a concept that can include a liquid phase refrigerant in a gas phase refrigerant.
  • the discharged refrigerant in the flow path until the discharged refrigerant is discharged to the outside, the discharged refrigerant is caused to collide with the colliding body to separate and lower the contained oil, and the discharged refrigerant is swirled and contained. Since the second separation chamber that separates and lowers the oil is arranged in series, fluctuations in the oil separation efficiency due to changes in the flow rate of the discharged refrigerant can be suppressed.
  • FIG. 1 shows an example of a compressor according to an embodiment of the present invention.
  • the compressor 100 is used by being incorporated in a refrigerant circuit (not shown) that circulates a refrigerant by connecting a condenser, an expansion valve, an evaporator, and the like in a vehicle air conditioner system or the like.
  • the compressor 100 includes a refrigerant gas in which the liquid phase refrigerant radiated and condensed by the condenser is decompressed and expanded by the downstream expansion valve and partially evaporated, and the remaining liquid phase refrigerant is evaporated downstream of the expansion valve.
  • the refrigerant gas that has been vaporized by removing heat from ambient air in the condenser is compressed and heated, and then pumped toward the condenser, whereby the refrigerant circulates in the refrigerant circuit.
  • lubricating oil containing oil
  • the compressor 100 compresses the refrigerant gas sucked into the suction chamber 300, the suction port 200 which is a suction port for sucking the refrigerant gas from the outside, the suction chamber 300 for sucking the refrigerant gas through the suction port 200, and the suction chamber 300.
  • a scroll type electric compressor that compresses the refrigerant gas by rotating the other using the rotational force of the electric motor 20.
  • One fixed spiral body is referred to as a fixed scroll 10
  • the other spiral body to be rotated is referred to as a rotary scroll 11.
  • the compressor 100 includes an inverter 30 for driving the electric motor 20.
  • the fixed scroll 10 has a spiral scroll wrap 10b protruding from the end plate 10a in a substantially vertical direction
  • the orbiting scroll 11 has a scroll wrap 11b protruding from the end plate 11a in a substantially vertical direction. .
  • a similar tip seal (not shown) is also embedded in the protruding end of the scroll wrap 11b, and the protruding end of the scroll wrap 11b contacts the end plate 10a via the tip seal.
  • the fixed scroll 10 and the orbiting scroll 11 have a plurality of locations where the side surfaces of the scroll wraps 10b and 14b except for the projecting ends are different in the circumferential direction with the circumferential angles of the scroll wraps 10b and 14b shifted from each other.
  • both end plates 10a, 14a and both scroll wraps 10b, 14b are fluid pockets which are crescent-shaped sealed spaces when viewed from the vertical direction with respect to the end plate 10a (or the end plate 11a). 12 is partially formed.
  • the orbiting scroll 11 meshed with the fixed scroll 10 as described above is configured to be capable of revolving orbiting around the central axis of the fixed scroll 10 via a crank mechanism described later in a state in which the rotation is prevented.
  • the fluid pockets 12 partially formed by the both end plates 10a and 14a and the both scroll wraps 10b and 14b are formed from the outer ends of the both scroll wraps 10b and 14b.
  • the volume of the fluid pocket 12 is gradually reduced while moving toward the inner end of the center. Accordingly, the refrigerant gas taken into the fluid pocket 12 from the outer end side of both scroll wraps 10b, 14b is compressed.
  • the electric motor 20 includes a cylindrical or columnar rotor (rotor) 22 in which a permanent magnet is disposed in a central space of a cylindrical stator (stator) 21 in which a coil is disposed in a slot of an armature core. 21 is configured to be rotatable while maintaining an air gap with the inner peripheral surface of 21.
  • the rotor 22 is provided with a drive shaft 23 for driving the orbiting scroll 11 on its axis.
  • the drive shaft 23 is connected to the end plate 11a of the orbiting scroll 11 via a crank mechanism, which will be described later.
  • the crank mechanism 40 has a cylindrical boss 41 projecting from the end plate 11 a toward the opposite side of the scroll wrap 11 b and one shaft end 23 a of the drive shaft 23. And an eccentric bush 42 attached to the provided crank 23b in an eccentric state.
  • the eccentric bush 42 is rotatably supported in the boss portion 41.
  • the compressor 100 is provided with a rotation prevention mechanism for preventing the rotation of the orbiting scroll 11, so that the rotation of the orbiting scroll 11 is inhibited via the crank mechanism 40. It is configured to be capable of revolving around the central axis of the fixed scroll 10.
  • a balancer weight 43 that cancels the centrifugal force generated when the orbiting scroll 11 is turned is attached to one shaft end 23 a of the drive shaft 23.
  • the housing of the compressor 100 includes a front housing 50 that houses the electric motor 20 and the inverter 30, an inverter cover 60, a center housing 70 that houses the fixed scroll 10 and the orbiting scroll 11, and a rear housing 80. Become.
  • the front housing 50 and the rear housing 80 are disposed with the center housing 70 interposed therebetween, and the inverter cover 60 is disposed on the opposite side of the front housing 50 from the center housing 70.
  • the front housing 50 and the center housing 70, the center housing 70 and the rear housing 80, and the front housing 50 and the inverter cover 60 are fastened by fastening means (not shown) such as bolts.
  • the front housing 50 includes a substantially cylindrical peripheral wall portion 51 and a partition wall portion 52 that partitions the internal space of the peripheral wall portion 51 into one end opening side and the other end opening side.
  • the electric motor 20 is housed and fixed in the peripheral wall portion 51 on the one end opening side from the partition wall portion 52 with the drive shaft 23 facing the center housing 70 from the front housing 50, and the peripheral wall on the other end opening side from the partition wall portion 52.
  • the inverter 30 is accommodated and fixed in the part 51.
  • One end opening of the peripheral wall portion 51 is closed by the center housing 70, and the other end opening of the peripheral wall portion 51 is closed by the inverter cover 60.
  • the front housing 50 opens toward the center housing 70 on one end opening side of the partition wall portion 52, and the other shaft end portion 23c of the drive shaft 23 of the electric motor 20 is rotatably fitted. It has a cylindrical support portion 53 that supports the shaft end portion 23c.
  • the center housing 70 includes a substantially cylindrical peripheral wall portion 71, an annular inner flange portion 72 that protrudes inward from the inner surface of the peripheral wall portion 71 and opens toward the front housing 50, and an opening peripheral edge portion of the inner flange portion 72. And a bowl-shaped bulging portion 73 that bulges toward the front housing 50.
  • One end opening of the peripheral wall portion 71 is closed by the rear housing 80, and the other end opening of the peripheral wall portion 71 is closed by the front housing 50.
  • the fixed scroll 10 and the orbiting scroll 11 are accommodated in a peripheral wall portion 71 on one end opening side with respect to the inner flange portion 72.
  • the surface of the inner flange portion 72 on the one end opening side is in contact with the end plate 11 a of the orbiting scroll 11 via the annular thrust plate 74 to support the orbiting scroll 11 in the thrust direction of the drive shaft 23.
  • the back pressure chamber 600 formed by being surrounded by the bulging portion 73 and the end plate 11a accommodates the crank mechanism 40 and extends from the electric motor 20 of the front housing 50 and passes through the bulging portion 73.
  • a bearing portion 75 that pivotally supports the shaft 23 is disposed.
  • the end plate 10 a of the fixed scroll 10 meshed with the orbiting scroll 11 closes one end opening of the peripheral wall portion 71.
  • the suction port 200 is formed at one end opening side from the partition wall portion 52 of the peripheral wall portion 51 of the front housing 50, and the suction chamber 300 for sucking the refrigerant through the suction port 200 is connected to the peripheral wall portion 51 of the front housing 50 and the partition wall.
  • the wall portion 52 and the peripheral wall portion 71, the inner flange portion 72, and the bulging portion 73 of the center housing 70 are surrounded.
  • the compression chamber 400 is formed by being surrounded by the end plate 10 a, the peripheral wall 71 on the opening side from the inner flange 72, the inner flange 72, and the end plate 11 a that closes the opening of the inner flange 72.
  • At least one of the peripheral wall portion 71 and the inner flange portion 72 of the center housing 70 is formed with a refrigerant introduction passage L1 for guiding the refrigerant gas sucked into the suction chamber 300 to the compression chamber 400.
  • the end plate 10 a of the fixed scroll 10 is formed with a discharge hole 700 for discharging the refrigerant gas compressed in the fluid pocket 12 to the outside of the compression chamber 400 at the inner end of the scroll wrap 10 b.
  • a one-way valve V for preventing the discharged refrigerant gas (discharged refrigerant gas) from flowing back into the compression chamber 400 is provided.
  • the rear housing 80 is formed in a substantially bottomed cylindrical shape having a bottom portion 81 and a peripheral wall portion 82, and the opening end surface of the peripheral wall portion 82 is in contact with one end opening in the peripheral wall portion 71 of the center housing 70 and the end plate 10 a of the fixed scroll 10.
  • a discharge port 500 that is in contact with each other to form an internal space and communicates the internal space with the outside is provided on the side of the peripheral wall 82 of the rear housing 80 that is close to the bottom 81.
  • the compressor 100 is installed with the discharge port 500 facing upward.
  • the compressor 100 includes a first separation chamber 83 and a second separation chamber 84 that separate and lower the lubricating oil from the discharged refrigerant gas in the inner space of the rear housing 80.
  • An oil storage chamber 85 is provided which is arranged in series in a flow path from the discharge port 500 to the outside and stores lubricating oil (separated oil) separated and lowered in the first separation chamber 83 and the second separation chamber 84.
  • the rear housing 80 includes a partition wall 86 that divides an internal space into a discharge hole 700 side space communicating with the compression chamber 400 via the discharge hole 700 and a discharge port 500 side space communicating with the outside via the discharge port 500. It is provided facing the bottom 81 and the end plate 10a.
  • the first separation chamber 83 is formed by the space on the discharge hole 700 side
  • the second separation chamber 84 is formed by the space on the discharge port 500 side
  • the first separation chamber 83 and the second separation chamber 84 have the same vertical direction.
  • the upper portions 83a and 84a communicate with each other through the flow passage L2 that penetrates the partition wall 86. Therefore, the flow path from when the discharge refrigerant gas discharged from the compression chamber 400 through the discharge hole 700 is discharged to the outside through the discharge port 500 is the first separation chamber 83, the flow passage L2, the second separation chamber 84,
  • the discharge port 500 is configured in this order.
  • the first separation chamber 83 has a collided body 83b for colliding the discharged refrigerant gas discharged from the compression chamber 400 through the discharge hole 700, and lubricating oil from the discharged refrigerant gas due to the collision with the collided body 83b.
  • This is a collision separation type separation chamber in which the separation of the lubricating oil is promoted, and the separated lubricating oil is selectively lowered by the relative specific gravity difference to perform the separation processing of the lubricating oil.
  • the collision object 83 b is provided so that the discharged refrigerant gas discharged from the discharge hole 700 does not scatter to the lower part 83 c of the first separation chamber 83. As shown in FIG.
  • the collision object 83b in the present embodiment has the discharge hole 700 (or one-way valve V) so that the discharged refrigerant gas is discharged from the discharge hole 700 in the radial direction (see the broken line arrow).
  • the discharge refrigerant gas discharged in the radial direction from the discharge hole 700 collides and scatters from the end plate 10a so as to be scattered outside the lower part 83c of the first separation chamber 83.
  • It is configured as a substantially U-shaped collision wall surrounding the lower side of the periphery of the hole 700. Note that the discharged refrigerant gas may directly collide from the discharge hole 700 to the partition wall 86, the peripheral wall portion 82, and the like.
  • the discharged refrigerant is allowed to fall in the lubricating oil separated from the discharged refrigerant gas at a position that is not above the collision target 83 b (for example, the lowermost position of the collision target 83 b or below it).
  • a shielding body 83d is provided for suppressing gas lowering (particularly, the discharge refrigerant gas that has collided with the collision target 83b enters the lower portion 83c of the first separation chamber 83).
  • the shield 83d in the present embodiment extends from the partition wall 86 toward the end plate 10a at the lowermost position of the collided body 83b, and has a gap between the end plate 10a (including the collided body 83b).
  • the second separation chamber 84 swirls the discharged refrigerant gas introduced from the first separation chamber 83 via the flow path L2, and promotes centrifugal separation of the lubricating oil contained in the discharged refrigerant gas by a relative specific gravity difference.
  • the separation chamber is a centrifugal separation system in which the separated lubricating oil is lowered to separate the lubricating oil.
  • the second separation chamber 84 has an inner peripheral surface 84b having a substantially circular cross section, and an intubation tube 84c substantially coaxial with the second separation chamber 84 opens one end into the second separation chamber 84, and the like. The end is connected to the discharge port 500.
  • the flow path L2 is formed in the upper portion 84a of the second separation chamber 84 between the inner peripheral surface 84b of the second separation chamber 84 and the outer peripheral surface of the inner tube 84c from the substantially tangential direction of the second separation chamber 84. Oriented to be introduced.
  • the oil storage chamber 85 is located at substantially the same height or lower than the lowest position of the first separation chamber 83 and the second separation chamber 84. It is formed independently of the second separation chamber 84, communicates with the lower portion 83c of the first separation chamber 83 through the first communication passage E1, and communicates with the lower portion 84d of the second separation chamber 84 through the second communication passage E2.
  • the relationship between the passage resistance of the first communication passage E1 and the passage resistance of the second communication passage E2 is, for example, by making the passage cross-sectional area of the first communication passage E1 smaller than the passage cross-sectional area of the second communication passage E2.
  • the passage resistance of the first communication passage E1 is set to be higher than the passage resistance of the second communication passage E2.
  • the oil storage chamber 85 is a back pressure chamber 600 by a first oil return passage R1 formed in the peripheral wall portion 82 of the rear housing 80 and the peripheral wall portion 71 and flange portion (including the bulging portion 73) of the center housing 70. Communicate with.
  • the back pressure chamber 600 communicates with the suction chamber 300 by a second oil return passage R2 formed through the drive shaft 23 from one shaft end 23a to the other shaft end 23c.
  • a second oil return passage R2 formed through the drive shaft 23 from one shaft end 23a to the other shaft end 23c.
  • the lubricating oil separated from the discharged refrigerant gas (indicated by the white arrow in the figure) falls to the lower portion 83c of the first separation chamber 83 due to the relative specific gravity difference.
  • the lubricating oil separated from the discharged refrigerant gas descends to the lower part 83c of the first separation chamber 83 through the gap between the shield 83d and the end plate 10a (including the collided body 83b).
  • most of the discharged refrigerant gas rises toward the upper portion 83a after the collision with the collision target 83b, and part of the discharged refrigerant gas falls.
  • the shield 83d due to the shield 83d, part of the discharged refrigerant gas is in the first separation chamber 83. Since the entry to the lower portion 83c of the fuel is suppressed, re-mixing of the separated oil into the discharged refrigerant gas can be suppressed.
  • the discharged refrigerant gas that has undergone the collision separation type oil separation process in the first separation chamber 83 is introduced into the second separation chamber 84 via the flow passage L2 of the upper portion 83a. Since the discharged refrigerant gas introduced into the second separation chamber 84 may contain lubricating oil that could not be separated in the first separation chamber 83, further oil separation processing is performed in the second separation chamber 84. Thus, oil separation efficiency can be increased.
  • the discharged refrigerant gas introduced into the second separation chamber 84 swirls between the inner peripheral surface 84b and the outer peripheral surface of the inner tube 84c and descends in a spiral manner, the lubricating oil contained in the discharged refrigerant gas is Centrifugal separation is performed by the relative difference in specific gravity, and the separated lubricating oil descends along the inner peripheral surface 84b to the lower portion 84d of the second separation chamber 84.
  • the discharged refrigerant gas starts to rise toward the one end opening of the outflow pipe as the turning motion becomes smaller, and is discharged from the discharge port 500 through the outflow pipe.
  • the separated oil that has dropped to the lower portion 83c of the first separation chamber 83 flows into the oil storage chamber 85 via the first communication passage E1, and the separation oil that has fallen to the lower portion 84d of the second separation chamber 84 passes through the second communication passage E2. Then, the oil flows into the oil storage chamber 85 and the separated oil is stored in the oil storage chamber 85. At this time, since the passage resistance of the first communication passage E1 is higher than the passage resistance of the second communication passage E2, the separation oil flowing into the oil storage chamber 85 is affected by the internal pressure of the first separation chamber 83, and the second resistance The possibility of backflow to the second separation chamber 84 via the communication path E2 is reduced.
  • the separated oil stored in the oil storage chamber 85 due to the internal pressure difference between the suction chamber 300 and the oil storage chamber 85 is further supplied to the back pressure chamber 600 via the first oil return passage R1 with reference to FIG.
  • the lubricating oil is used for lubrication of the sliding mechanism such as the portion 75, and is further returned from the back pressure chamber 600 to the suction chamber 300 through the second oil return passage R2 and sucked through the suction port 200. It is mixed.
  • the oil in the first separation chamber 83 of the collision separation method is oiled.
  • the separation efficiency is lowered, the oil separation efficiency is increased in the second separation chamber 84 of the centrifugal separation method, so that the oil separation efficiency is higher than that in the case where the compressor 100 includes only the first separation chamber 83. The decrease can be suppressed.
  • the oil separation is performed in the centrifugal separation type second separation chamber 84.
  • the efficiency is decreased, the oil separation efficiency is increased in the first separation chamber 83 of the collision separation method, and therefore, the oil separation efficiency is decreased as compared with the case where the compressor 100 includes only the second separation chamber 84. Can be suppressed.
  • the discharged refrigerant gas is collided in the flow path until the discharged refrigerant gas discharged from the compression chamber 400 through the discharge hole 700 is discharged to the outside through the discharge port 500.
  • a first separation chamber 83 that collides with the body 83b to separate and lower the lubricating oil, and a second separation chamber 84 that separates and lowers the lubricating oil by swirling the discharged refrigerant gas are connected in series. Since it arrange
  • the compressor 100 includes the first separation chamber 83 and the second separation chamber 83 for separating and lowering the lubricating oil from the discharged refrigerant gas in the flow path until the discharged refrigerant gas is discharged from the discharge port 500 to the outside.
  • the separation chambers 84 are arranged in series in this order.
  • the present invention is not limited to this, and the second separation chamber 84 and the first separation chamber 83 are replaced by replacing the first separation chamber 83 and the second separation chamber 84. Even if they are arranged in series in this order, the same effects as in the above embodiment can be obtained.
  • the discharge hole 700 is formed so that the discharged refrigerant gas is discharged from the substantially tangential direction of the second separation chamber 84 in the upper portion 84a of the second separation chamber 84. Oriented so as to be introduced between the inner peripheral surface 84b of the second separation chamber 84 and the outer peripheral surface of the inner intubation tube 84c.
  • the other end of the inner tube 84c having one end opened into the second separation chamber 84 is connected to the flow path L2.
  • the collision object 83b of the first separation chamber 83 is provided so that the discharged refrigerant gas introduced into the first separation chamber 83 from the flow passage L2 collides, for example, the outlet of the flow passage L2 is in the radial direction. It may be configured as a substantially U-shaped collision object 83b which is formed so as to have a structure to be discharged and which stands up from the partition wall 86 and surrounds the lower side of the periphery of the outlet of the flow path L2.
  • a discharge port 500 is provided in the upper part 83 a of the first separation chamber 83.
  • formed by this inventor was concretely demonstrated based on said embodiment, this invention is not limited to said embodiment, A various change is possible in the range which does not deviate from the summary. Needless to say.
  • the discharge refrigerant discharged from the discharge hole 700 of the compressor 100 has been described as the discharge refrigerant gas, the discharge refrigerant may include not only a gas phase refrigerant but also a liquid phase refrigerant.
  • the compressor 100 meshes the pair of fixed scrolls 10 and the orbiting scroll 11 having the same shape in the compression chamber 400 and turns the orbiting scroll 11 using the rotational force of the built-in electric motor 20. It demonstrated as what compresses refrigerant
  • the orbiting scroll 11 may be turned by an external drive source.
  • an engine may be used as an external drive source, and the rotational force of the crank 23b shaft may be transmitted to the drive shaft 23 via a pulley.
  • a reciprocating compressor that compresses the refrigerant gas by changing the volume of the cylinder due to the reciprocating motion of the piston, or a plurality of vanes in the housing.
  • the present invention can be applied to any compression type compressor such as a rotary vane type compressor that compresses the refrigerant gas by rotating the rotor on the side surface while bringing the vane into contact with the inner wall of the housing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

In order to reduce variation in oil separation efficiency due to changes in the flow volume of a discharged coolant, a first separation chamber 83, which uses a collision separation method wherein the discharged coolant gas collides with a collision body 83b and lubricating oil is separated and dropped down, and a second separation chamber 84, which uses a centrifugal separation method wherein the discharged coolant gas is made to swirl and the lubricating oil is separated and dropped down, are arranged in series in a flow path through which a discharged coolant gas discharged from a compression chamber 400 via a discharge hole 700 is exhausted to the outside via an exhaust port 500. When the flow volume of the discharged coolant gas increases, the oil separation efficiency in the first separation chamber 83 using the collision separation method decreases, but the oil separation efficiency in the second separation chamber 84 using the centrifugal separation method increases. Conversely, when the flow volume of the discharged coolant gas decreases, the oil separation efficiency in the second separation chamber 84 using the centrifugal separation method decreases, but the oil separation efficiency in the first separation chamber 83 using the collision separation method increases.

Description

圧縮機Compressor
 本発明は、冷媒ガスに含まれる潤滑オイルを分離する機能を備えた圧縮機に関する。 The present invention relates to a compressor having a function of separating lubricating oil contained in refrigerant gas.
 従来の車両エアコンシステム等に使用される圧縮機では、冷媒ガス中に潤滑オイルを混入させて圧縮機各部の潤滑を行っているが、熱交換のための外部冷媒回路へ潤滑オイルが流出するとシステム効率が低下するため、圧縮機から外部冷媒回路へ流出する潤滑オイル量を低減することが求められている。
 このため、圧縮機には、圧縮機構から吐出された吐出冷媒ガスを圧縮機の内部構造部材へ意図的に衝突させて吐出冷媒ガス中の潤滑オイルを分離する衝突分離方式の分離室を備えたもの(例えば、特許文献1参照)や、吐出冷媒ガスを旋回させて吐出冷媒ガス中の潤滑オイルを遠心分離する遠心分離方式の分離室を備えたもの(例えば、特許文献2参照)が提案されている。
In a compressor used in a conventional vehicle air conditioner system or the like, lubricating oil is mixed in refrigerant gas to lubricate each part of the compressor. However, when the lubricating oil flows out to an external refrigerant circuit for heat exchange, the system Since the efficiency is lowered, it is required to reduce the amount of lubricating oil flowing out from the compressor to the external refrigerant circuit.
For this reason, the compressor is provided with a collision separation type separation chamber for intentionally colliding the discharged refrigerant gas discharged from the compression mechanism with the internal structural member of the compressor and separating the lubricating oil in the discharged refrigerant gas. Have been proposed (for example, see Patent Document 1) and those equipped with a centrifugal separation chamber for rotating the discharged refrigerant gas to centrifuge the lubricating oil in the discharged refrigerant gas (for example, see Patent Document 2). ing.
特開2010−031655号公報JP 2010-031655 A 特開2009−13827号公報JP 2009-13827 A
 しかしながら、衝突分離方式の分離室では、吐出冷媒ガスの流量が増大するに従ってオイル分離効率が低下するという傾向がある一方、遠心分離方式の分離室では、吐出冷媒ガスの流量が減少するに従ってオイル分離効率が低下するという傾向があるため、吐出冷媒ガスの流量変化によってはオイルを効率的に分離できなくなるおそれがあった。
 そこで、本発明は以上のような従来の問題点に鑑み、吐出冷媒の流量変化によるオイル分離効率の変動を抑制する圧縮機を提供することを目的とする。
However, in the separation chamber of the collision separation type, the oil separation efficiency tends to decrease as the flow rate of the discharged refrigerant gas increases, whereas in the separation chamber of the centrifugal separation type, the oil separation occurs as the flow rate of the discharged refrigerant gas decreases. Since the efficiency tends to decrease, the oil may not be efficiently separated depending on the change in the flow rate of the discharged refrigerant gas.
In view of the above-described conventional problems, an object of the present invention is to provide a compressor that suppresses fluctuations in oil separation efficiency due to changes in the flow rate of discharged refrigerant.
 上記目的を達成するために、本発明の圧縮機は、吐出冷媒を含有オイルの分離処理が行われてから外部に排出するものであって、吐出冷媒を被衝突体に衝突させて含有オイルの分離降下させる第1分離室と、吐出冷媒を旋回させて含有オイルを分離降下させる第2分離室と、を含み、第1分離室及び第2分離室は、吐出冷媒が外部に排出されるまでの流路において直列に配置されている。ここで、「吐出冷媒」は、気相冷媒に液相冷媒を含み得る概念である。 In order to achieve the above object, the compressor of the present invention discharges the discharged refrigerant to the outside after the separation process of the contained oil is performed. A first separation chamber that separates and lowers and a second separation chamber that swirls the discharged refrigerant and separates and lowers the contained oil until the discharged refrigerant is discharged to the outside. Are arranged in series in the flow path. Here, the “discharge refrigerant” is a concept that can include a liquid phase refrigerant in a gas phase refrigerant.
 本発明の圧縮機によれば、吐出冷媒を外部に排出するまでの流路において、吐出冷媒を被衝突体に衝突させて含有オイルを分離降下させる第1分離室と吐出冷媒を旋回させて含有オイルを分離降下させる第2分離室とを直列に配置しているので、吐出冷媒の流量変化によるオイル分離効率の変動を抑制することができる。 According to the compressor of the present invention, in the flow path until the discharged refrigerant is discharged to the outside, the discharged refrigerant is caused to collide with the colliding body to separate and lower the contained oil, and the discharged refrigerant is swirled and contained. Since the second separation chamber that separates and lowers the oil is arranged in series, fluctuations in the oil separation efficiency due to changes in the flow rate of the discharged refrigerant can be suppressed.
本発明の実施形態に係る圧縮機の全体構成を模式的に示す断面図である。It is sectional drawing which shows typically the whole structure of the compressor which concerns on embodiment of this invention. 同圧縮機におけるセンターハウジングの内部を拡大した断面図である。It is sectional drawing to which the inside of the center housing in the compressor was expanded. 同圧縮機におけるリアハウジングの内部を拡大した断面図である。It is sectional drawing to which the inside of the rear housing in the same compressor was expanded. 同圧縮機における被衝突体を模式的に示す説明図である。It is explanatory drawing which shows typically the to-be-collided body in the compressor.
 以下、添付された図面を参照し、本発明を実施するための実施形態について詳述する。
 図1は、本発明の実施形態に係る圧縮機の一例を示す。
 圧縮機100は、例えば車両用エアコンシステム等において、凝縮器、膨張弁、蒸発器等を連通接続して冷媒を循環させる冷媒回路(図示省略)に組み込まれて使用される。冷媒回路において、圧縮機100は、凝縮器で放熱・凝縮した液相冷媒が下流の膨張弁で減圧・膨張して一部蒸発した冷媒ガスと、残りの液相冷媒が膨張弁の下流の蒸発器において周囲空気から熱を奪って気化した冷媒ガスと、を圧縮して昇温した後、凝縮器に向けて圧送し、これにより冷媒が冷媒回路を循環する。圧縮機100において、冷媒ガスには、圧縮機100の各部の潤滑を行うために潤滑オイル(含有オイル)が混入される。
 圧縮機100は、冷媒ガスを外部から吸入する吸入口である吸入ポート200、吸入ポート200を介して冷媒ガスを吸入するための吸入室300と、吸入室300に吸入された冷媒ガスを圧縮するための圧縮室400と、圧縮室400から吐出された冷媒ガスを外部へ排出する排出口である排出ポート500と、を備え、圧縮室400において一対の同一形状の渦巻き体を噛合わせて、一方を固定し他方を電動モータ20の回転力を用いて旋回せしめることで冷媒ガスを圧縮するスクロール型の電動圧縮機である。固定される一方の渦巻き体を固定スクロール10といい、旋回せしめる他方の渦巻き体を旋回スクロール11というものとする。また、圧縮機100は、電動モータ20を駆動するためのインバータ30を内蔵している。
 固定スクロール10は、端板10aから略垂直方向に渦巻き状のスクロールラップ10bを突設させてなり、また、旋回スクロール11は、端板11aから略垂直方向にスクロールラップ11bを突設させてなる。固定スクロール10のスクロールラップ10bと旋回スクロール11のスクロールラップ11bとを噛合わせると端板10aと端板11aとが平行になり、固定スクロール10におけるスクロールラップ10bの突設端が端板11aに対向し、旋回スクロール11におけるスクロールラップ11bの突設端が端板10aに対向する。
 スクロールラップ10bの突設端には、これと端板11aとの隙間における冷媒ガスの流通を阻害する気密性のチップシール(図示省略)が埋設され、スクロールラップ10bの突設端はチップシールを介して端板11aと接触する。また、スクロールラップ11bの突設端にも、同様のチップシール(図示省略)が埋設され、スクロールラップ11bの突設端はチップシールを介して端板10aと接触する。
 また、固定スクロール10と旋回スクロール11とは、両スクロールラップ10b,14bの周方向の角度が互いにずれた状態で、両スクロールラップ10b,14bの突設端を除く側面は周方向で異なる複数箇所で接触するように噛合わされ、これにより、両端板10a,14a及び両スクロールラップ10b,14bは、端板10a(あるいは端板11a)に対して垂直方向からみて三日月状の密閉空間である流体ポケット12を部分的に形成する。
 固定スクロール10と前述のように噛合わされた旋回スクロール11は、その自転が阻止された状態で、後述するクランク機構を介して、固定スクロール10の中心軸周りに公転旋回運動可能に構成される。旋回スクロール11が前述のように公転旋回運動することで、両端板10a,14a及び両スクロールラップ10b,14bで部分的に形成される流体ポケット12が、両スクロールラップ10b,14bの外端部から中心の内端部へ向かって移動するとともに流体ポケット12の容積が徐々に縮小する。従って、両スクロールラップ10b,14bの外端部側から流体ポケット12内に取込まれた冷媒ガスが圧縮される。
 電動モータ20は、電機子鉄心のスロットにコイルを配設した円筒状のステータ(固定子)21の中央空間に、永久磁石を配設した円筒又は円柱状のロータ(回転子)22を、ステータ21の内周面とエアギャップを維持しつつ回転可能に備えて構成される。ロータ22には、その軸線上に、旋回スクロール11を駆動するための駆動軸23が設けられる。駆動軸23は旋回スクロール11の端板11aに後述のクランク機構を介して連結され、ロータ22とステータ21との間における電磁力の相互作用によってロータ22が軸線周りに回転したときに、電動モータ20の回転力が駆動軸23から旋回スクロール11へ伝達される。インバータ30は、電動モータ20におけるステータ21のコイルと電気的に接続され、外部制御装置からの指示信号に応じてコイルに対する通電量を制御し、ロータ22の回転速度を任意に変更可能である。
 図2に示すように、クランク機構40は、端板11aからスクロールラップ11bとは反対側に向けて突出形成された円筒状のボス部41と、駆動軸23のうち一方の軸端部23aに設けられたクランク23bに偏心状態で取り付けられた偏心ブッシュ42と、を含む。偏心ブッシュ42はボス部41内に回転可能に支持される。また、図示省略したが、圧縮機100には、旋回スクロール11の自転を阻止する自転阻止機構が設けられ、これにより、旋回スクロール11はその自転が阻止された状態で、クランク機構40を介して固定スクロール10の中心軸周りに公転旋回運動可能に構成される。なお、駆動軸23の一方の軸端部23aには、旋回スクロール11の旋回時に生じる遠心力を相殺するバランサウエイト43が取り付けられる。
 圧縮機100のハウジングは、電動モータ20及びインバータ30を収容するフロントハウジング50と、インバータカバー60と、固定スクロール10及び旋回スクロール11を収容するセンターハウジング70と、リアハウジング80と、を有してなる。フロントハウジング50及びリアハウジング80は、センターハウジング70を挟んで配置され、また、インバータカバー60はフロントハウジング50のうちセンターハウジング70と反対側に配置される。そして、フロントハウジング50とセンターハウジング70との間、センターハウジング70とリアハウジング80との間、及びフロントハウジング50とインバータカバー60との間は、ボルト等の締結手段(図示省略)によって締結されることで一体的なハウジングを構成する。
 フロントハウジング50は、略筒状の周壁部51と、周壁部51の内部空間を一端開口側と他端開口側とに区画する仕切壁部52と、を有する。仕切壁部52から一端開口側の周壁部51内には、駆動軸23をフロントハウジング50からセンターハウジング70に向けて電動モータ20が収容・固定され、仕切壁部52から他端開口側の周壁部51内にはインバータ30が収容・固定される。周壁部51の一端開口は、センターハウジング70によって閉止され、周壁部51の他端開口は、インバータカバー60によって閉止される。また、フロントハウジング50は、仕切壁部52のうち一端開口側において、センターハウジング70に向けて開口し、電動モータ20の駆動軸23のうち他方の軸端部23cが回転自在に嵌め込まれてこの軸端部23cを支持する筒状の支持部53を有する。
 センターハウジング70は、略筒状の周壁部71と、周壁部71の内面から内方へ突出しつつフロントハウジング50に向けて開口する環状の内フランジ部72と、内フランジ部72の開口周縁部からフロントハウジング50に向けて膨出する椀状の膨出部73と、を有する。周壁部71の一端開口は、リアハウジング80によって閉止され、周壁部71の他端開口は、フロントハウジング50によって閉止される。
 センターハウジング70において、固定スクロール10及び旋回スクロール11は内フランジ部72に対して一端開口側の周壁部71内に収容される。内フランジ部72の一端開口側の表面は、環状のスラストプレート74を介して旋回スクロール11の端板11aと当接して、旋回スクロール11を駆動軸23のスラスト方向で支持する。膨出部73及び端板11aに囲まれて形成される背圧室600には、クランク機構40が収容されるとともに、フロントハウジング50の電動モータ20から延出して膨出部73を貫通する駆動軸23を回動自在に軸支する軸受部75が配設される。旋回スクロール11と噛合わされた固定スクロール10の端板10aは、周壁部71の一端開口を閉塞する。
 吸入ポート200は、フロントハウジング50の周壁部51のうち仕切壁部52から一端開口側に形成され、吸入ポート200を介して冷媒を吸入する吸入室300は、フロントハウジング50の周壁部51及び仕切壁部52、並びにセンターハウジング70の周壁部71、内フランジ部72及び膨出部73に囲まれて形成される。また、圧縮室400は、端板10a、内フランジ部72から一端開口側の周壁部71、内フランジ部72、及び内フランジ部72の開口を閉塞する端板11aに囲まれて形成される。センターハウジング70の周壁部71及び内フランジ部72の少なくとも一方には、吸入室300に吸入された冷媒ガスを圧縮室400へ導くための冷媒導入通路L1が形成される。固定スクロール10の端板10aには、スクロールラップ10bの内端部において、流体ポケット12内で圧縮された冷媒ガスを圧縮室400の外部へ吐出する吐出孔700が形成される。吐出孔700の出口側には、吐出した冷媒ガス(吐出冷媒ガス)が圧縮室400へ逆流することを阻止するための一方弁Vが設けられ、一方弁Vは、吐出した冷媒ガスが圧縮室400へ逆流したときに吐出孔700を塞ぐ弾性変形可能な弁体が、ボルト等の締結手段によって固定スクロール10の端板10aに締結されて構成される。
 リアハウジング80は、底部81と周壁部82とを有する略有底筒状に形成され、周壁部82の開口端面がセンターハウジング70の周壁部71における一端開口及び固定スクロール10の端板10aと当接して内部空間を形成し、その内部空間と外部とを連通する排出ポート500は、リアハウジング80の周壁部82のうち底部81に近い側に設けられる。圧縮機100は排出ポート500を上側にして設置される。
 ここで、図3に示すように、圧縮機100は、リアハウジング80の内部空間において、吐出冷媒ガスから潤滑オイルを分離降下させる第1分離室83及び第2分離室84を、吐出冷媒ガスが排出ポート500から外部に排出されるまでの流路に直列に配置して備えるとともに、第1分離室83及び第2分離室84で分離降下した潤滑オイル(分離オイル)を貯留する貯油室85を備える。
 リアハウジング80には、吐出孔700を介して圧縮室400と連通する吐出孔700側空間と排出ポート500を介して外部と連通する排出ポート500側空間とに内部空間を区画する隔壁86が、底部81及び端板10aに対向して設けられる。そして、吐出孔700側空間によって第1分離室83が形成され、排出ポート500側空間によって第2分離室84が形成され、第1分離室83及び第2分離室84は、上下方向を同じにしつつ、それぞれの上部83a,84aにおいて隔壁86を貫通する流通路L2によって連通する。したがって、圧縮室400から吐出孔700を介して吐出された吐出冷媒ガスが排出ポート500から外部に排出されるまでの流路は、第1分離室83、流通路L2、第2分離室84、排出ポート500の順で構成される。
 第1分離室83は、圧縮室400から吐出孔700を介して吐出した吐出冷媒ガスを衝突させるための被衝突体83bを有し、被衝突体83bへの衝突によって吐出冷媒ガスからの潤滑オイルの分離を促進させ、分離した潤滑オイルを相対的な比重差によって選択的に降下させて潤滑オイルの分離処理を行う、衝突分離方式の分離室である。被衝突体83bは、吐出孔700から吐出された吐出冷媒ガスが第1分離室83の下部83cへ飛散しないように設けられる。図4に示すように、例えば、本実施形態における被衝突体83bは、吐出冷媒ガスが吐出孔700から径方向(破線矢印参照)に吐出されるように吐出孔700(あるいは一方弁V)を図示省略の構成で形成したうえで、吐出孔700から径方向に吐出した吐出冷媒ガスが衝突して第1分離室83の下部83c以外へ飛散するように、端板10aから立設して吐出孔700の周囲のうち下側を囲む略U字形状の衝突壁として構成される。なお、吐出孔700から隔壁86や周壁部82等に吐出冷媒ガスを直接衝突させるようにしてもよい。
 第1分離室83には、被衝突体83bより上方でない位置(例えば、被衝突体83bの最下位置またはその下方)に、吐出冷媒ガスから分離した潤滑オイルの降下を許容しつつ、吐出冷媒ガスの降下(特に被衝突体83bに衝突した吐出冷媒ガスの第1分離室83の下部83cへの進入)を抑制するための遮蔽体83dが備えられている。本実施形態における遮蔽体83dは、被衝突体83bの最下位置において隔壁86から端板10aに向けて延びつつ、端板10a(被衝突体83bを含む)との間に隙間を有する遮蔽壁として構成される。
 第2分離室84は、第1分離室83から流通路L2を介して導入された吐出冷媒ガスを旋回させて、相対的な比重差によって吐出冷媒ガス中に含まれる潤滑オイルの遠心分離を促進し、分離した潤滑オイルを降下させて潤滑オイルの分離処理を行う、遠心分離方式の分離室である。本実施形態において、第2分離室84は断面略円形の内周面84bを有し、第2分離室84と略同軸の内挿管84cが、一端を第2分離室84内に開口させ、他端を排出ポート500に接続して配置される。流通路L2は、第2分離室84の上部84aにおいて、吐出冷媒ガスが第2分離室84の略接線方向から第2分離室84の内周面84bと内挿管84cの外周面との間に導入されるように配向される。
 貯油室85は、リアハウジング80の内部空間において、第1分離室83及び第2分離室84の最下位置に対して、略同じ高さ又はそれよりも低い位置に、第1分離室83及び第2分離室84とは独立して形成され、第1連通路E1によって第1分離室83の下部83cと連通し、第2連通路E2によって第2分離室84の下部84dと連通する。第1連通路E1の通路抵抗と第2連通路E2の通路抵抗との関係は、例えば第1連通路E1の通路断面積を第2連通路E2の通路断面積よりも小さくすること等によって、第2連通路E2の通路抵抗よりも第1連通路E1の通路抵抗の方が高くなるように設定される。
 また、貯油室85は、リアハウジング80の周壁部82、並びにセンターハウジング70の周壁部71及びフランジ部(膨出部73も含み得る)に形成された第1オイル戻し通路R1によって背圧室600と連通する。背圧室600は、駆動軸23の内部に一方の軸端部23aから他方の軸端部23cへ貫通形成された第2オイル戻し通路R2によって吸入室300と連通する。
 次に、図3を参照して、圧縮機100において吐出冷媒ガスから潤滑オイルを分離するためのオイル分離処理について説明する。
 圧縮室400から吐出孔700を介して第1分離室83へ吐出された吐出冷媒ガス(図中の破線矢印で示される)は、第1分離室83内の被衝突体83bと衝突して、含有する潤滑オイルの分離が促進される。そして、吐出冷媒ガスから分離した潤滑オイル(図中の白抜き矢印で示される)は相対的な比重差によって第1分離室83の下部83cへ降下する。このとき、吐出冷媒ガスから分離した潤滑オイルは、遮蔽体83dと端板10a(被衝突体83bを含む)との間の隙間を通って第1分離室83の下部83cへ降下する。一方、吐出冷媒ガスは、被衝突体83bと衝突後、大部分が上部83aに向けて上昇し、一部は降下するが、遮蔽体83dによって、吐出冷媒ガスの一部が第1分離室83の下部83cへの進入することを抑制しているので、吐出冷媒ガスへの分離オイルの再混入を抑制できる。
 第1分離室83で衝突分離方式のオイル分離処理が行われた吐出冷媒ガスは、上部83aの流通路L2を介して第2分離室84へ導入される。第2分離室84に導入された吐出冷媒ガスには、第1分離室83で分離できなかった潤滑オイルが含まれている可能性があるので、第2分離室84でさらにオイル分離処理を行うことでオイル分離効率を高めることができる。
 第2分離室84に導入された吐出冷媒ガスは、内周面84bと内挿管84cの外周面との間を旋回して螺旋状に降下する際に、吐出冷媒ガス中に含まれる潤滑オイルは相対的な比重差によって遠心分離し、分離した潤滑オイルは内周面84bに沿って第2分離室84の下部84dへ降下する。一方、吐出冷媒ガスは、旋回運動が小さくなるに従って流出管の一端開口に向けて上昇し始め、流出管を通って排出ポート500から排出される。
 第1分離室83の下部83cに降下した分離オイルは第1連通路E1を介して貯油室85に流入し、第2分離室84の下部84dに降下した分離オイルは第2連通路E2を介して貯油室85に流入し、分離オイルは貯油室85に貯留される。このとき、第1連通路E1の通路抵抗は第2連通路E2の通路抵抗よりも高いので、貯油室85に流入した分離オイルが、第1分離室83の内圧の影響を受けて、第2連通路E2を介して第2分離室84へ逆流する可能性は低減される。吸入室300と貯油室85との内圧差によって、貯油室85に貯留された分離オイルは、さらに図1を参照して、第1オイル戻し通路R1を介して背圧室600に供給されて軸受部75等の摺動機構に対する潤滑に供され、さらに、背圧室600から第2オイル戻し通路R2を介して吸入室300へ戻され、吸入ポート200を介して吸入した冷媒ガスに潤滑オイルが混入される。
 ここで、電動モータ20の回転速度が高くなって、圧縮室400から吐出孔700を介して吐出される吐出冷媒ガスの流量が増大した場合には、衝突分離方式の第1分離室83ではオイル分離効率が低下するが、逆に遠心分離方式の第2分離室84ではオイル分離効率が上昇するので、圧縮機100が第1分離室83のみを備えている場合に比べると、オイル分離効率の低下を抑制することができる。一方、電動モータ20の回転速度が低くなって、圧縮室400から吐出孔700を介して吐出される吐出冷媒ガスの流量が減少した場合には、遠心分離方式の第2分離室84ではオイル分離効率が低下するが、逆に衝突分離方式の第1分離室83ではオイル分離効率が上昇するので、圧縮機100が第2分離室84のみを備えている場合と比べると、オイル分離効率の低下を抑制することができる。
 このような圧縮機100によれば、圧縮室400から吐出孔700を介して吐出された吐出冷媒ガスを、排出ポート500を介して外部に排出するまでの流路において、吐出冷媒ガスを被衝突体83bに衝突させて潤滑オイルを分離降下させる衝突分離方式の第1分離室83と、吐出冷媒ガスを旋回させて潤滑オイルを分離降下させる遠心分離方式の第2分離室84と、を直列に配置しているので、吐出冷媒ガスの流量変化によるオイル分離効率の変動を抑制することができる。したがって、吐出冷媒ガスの流量にかかわらず、圧縮機100から外部の冷媒回路へ流出する潤滑オイル量を一定レベルに抑えて、圧縮機100が適用される車両エアコンシステム等のシステム効率の低下を抑制することが可能となる。
 なお、上記の実施形態において、圧縮機100は、吐出冷媒ガスが排出ポート500から外部に排出されるまでの流路に、吐出冷媒ガスから潤滑オイルを分離降下させる第1分離室83及び第2分離室84を、この順で直列に配置して備えていたが、これに限らず、第1分離室83と第2分離室84とを入れ換えて、第2分離室84及び第1分離室83をこの順で直列に配置して備えても、上記の実施形態と同様の効果を奏することができる。
 第2分離室84及び第1分離室83をこの順で直列に配置した場合、吐出孔700は、第2分離室84の上部84aにおいて、吐出冷媒ガスが第2分離室84の略接線方向から第2分離室84の内周面84bと内挿管84cの外周面との間に導入されるように配向される。一端が第2分離室84内に開口する内挿管84cの他端は流通路L2と接続される。また、第1分離室83の被衝突体83bは、流通路L2から第1分離室83内に導入された吐出冷媒ガスが衝突するように設けられ、例えば、流通路L2の出口が径方向に吐出される構造を有するように形成されたうえで、隔壁86から立設して流通路L2の出口の周囲のうち下側を囲む略U字形状の被衝突体83bとして構成されてもよい。そして、第1分離室83の上部83aに排出ポート500が設けられる。
 以上、本発明者にとってなされた発明を上記の実施形態に基づき具体的に説明したが、本発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更が可能であることはいうまでもない。例えば、圧縮機100の吐出孔700から吐出される吐出冷媒を吐出冷媒ガスとして説明したが、吐出冷媒には気相冷媒だけでなく液相冷媒も含み得る。
 また、上記の実施形態において、圧縮機100は、圧縮室400において一対の同一形状の固定スクロール10及び旋回スクロール11を噛合わせて、旋回スクロール11を内蔵の電動モータ20の回転力を用いて旋回せしめることで冷媒ガスを圧縮するものとして説明した。しかし、内蔵する電動モータ20に代えて、外部の駆動源によって旋回スクロール11を旋回させてもよい。例えば、圧縮機100が車両エアコンシステムに適用される場合、外部の駆動源としてはエンジンを用い、クランク23bシャフトの回転力を、プーリを介して駆動軸23に伝達してもよい。あるいは、固定スクロール10及び旋回スクロール11で冷媒ガスを圧縮するスクロール型圧縮機に代えて、ピストンの往復運動によるシリンダーの容積変化で冷媒ガスを圧縮する往復圧縮機や、ハウジング内において複数のベーンを側面に有するロータがベーンをハウジング内壁に接触させつつ回転することで冷媒ガスを圧縮するロータリーベーン型圧縮機等、いかなる圧縮方式の圧縮機であって本発明の適用は可能である。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows an example of a compressor according to an embodiment of the present invention.
The compressor 100 is used by being incorporated in a refrigerant circuit (not shown) that circulates a refrigerant by connecting a condenser, an expansion valve, an evaporator, and the like in a vehicle air conditioner system or the like. In the refrigerant circuit, the compressor 100 includes a refrigerant gas in which the liquid phase refrigerant radiated and condensed by the condenser is decompressed and expanded by the downstream expansion valve and partially evaporated, and the remaining liquid phase refrigerant is evaporated downstream of the expansion valve. The refrigerant gas that has been vaporized by removing heat from ambient air in the condenser is compressed and heated, and then pumped toward the condenser, whereby the refrigerant circulates in the refrigerant circuit. In the compressor 100, lubricating oil (containing oil) is mixed into the refrigerant gas in order to lubricate each part of the compressor 100.
The compressor 100 compresses the refrigerant gas sucked into the suction chamber 300, the suction port 200 which is a suction port for sucking the refrigerant gas from the outside, the suction chamber 300 for sucking the refrigerant gas through the suction port 200, and the suction chamber 300. A compression chamber 400 and a discharge port 500 that is a discharge port for discharging refrigerant gas discharged from the compression chamber 400 to the outside. Is a scroll type electric compressor that compresses the refrigerant gas by rotating the other using the rotational force of the electric motor 20. One fixed spiral body is referred to as a fixed scroll 10, and the other spiral body to be rotated is referred to as a rotary scroll 11. The compressor 100 includes an inverter 30 for driving the electric motor 20.
The fixed scroll 10 has a spiral scroll wrap 10b protruding from the end plate 10a in a substantially vertical direction, and the orbiting scroll 11 has a scroll wrap 11b protruding from the end plate 11a in a substantially vertical direction. . When the scroll wrap 10b of the fixed scroll 10 and the scroll wrap 11b of the orbiting scroll 11 are engaged with each other, the end plate 10a and the end plate 11a become parallel, and the protruding end of the scroll wrap 10b in the fixed scroll 10 faces the end plate 11a. The protruding end of the scroll wrap 11b in the orbiting scroll 11 faces the end plate 10a.
At the projecting end of the scroll wrap 10b, an airtight chip seal (not shown) that obstructs the circulation of the refrigerant gas in the gap between the end plate 11a and the end is provided, and the projecting end of the scroll wrap 10b has a chip seal. Via the end plate 11a. A similar tip seal (not shown) is also embedded in the protruding end of the scroll wrap 11b, and the protruding end of the scroll wrap 11b contacts the end plate 10a via the tip seal.
The fixed scroll 10 and the orbiting scroll 11 have a plurality of locations where the side surfaces of the scroll wraps 10b and 14b except for the projecting ends are different in the circumferential direction with the circumferential angles of the scroll wraps 10b and 14b shifted from each other. Thus, both end plates 10a, 14a and both scroll wraps 10b, 14b are fluid pockets which are crescent-shaped sealed spaces when viewed from the vertical direction with respect to the end plate 10a (or the end plate 11a). 12 is partially formed.
The orbiting scroll 11 meshed with the fixed scroll 10 as described above is configured to be capable of revolving orbiting around the central axis of the fixed scroll 10 via a crank mechanism described later in a state in which the rotation is prevented. As the orbiting scroll 11 revolves as described above, the fluid pockets 12 partially formed by the both end plates 10a and 14a and the both scroll wraps 10b and 14b are formed from the outer ends of the both scroll wraps 10b and 14b. The volume of the fluid pocket 12 is gradually reduced while moving toward the inner end of the center. Accordingly, the refrigerant gas taken into the fluid pocket 12 from the outer end side of both scroll wraps 10b, 14b is compressed.
The electric motor 20 includes a cylindrical or columnar rotor (rotor) 22 in which a permanent magnet is disposed in a central space of a cylindrical stator (stator) 21 in which a coil is disposed in a slot of an armature core. 21 is configured to be rotatable while maintaining an air gap with the inner peripheral surface of 21. The rotor 22 is provided with a drive shaft 23 for driving the orbiting scroll 11 on its axis. The drive shaft 23 is connected to the end plate 11a of the orbiting scroll 11 via a crank mechanism, which will be described later. When the rotor 22 rotates around the axis due to the interaction of electromagnetic force between the rotor 22 and the stator 21, the electric motor Twenty rotational forces are transmitted from the drive shaft 23 to the orbiting scroll 11. The inverter 30 is electrically connected to the coil of the stator 21 in the electric motor 20, controls the amount of current supplied to the coil in accordance with an instruction signal from the external control device, and can arbitrarily change the rotation speed of the rotor 22.
As shown in FIG. 2, the crank mechanism 40 has a cylindrical boss 41 projecting from the end plate 11 a toward the opposite side of the scroll wrap 11 b and one shaft end 23 a of the drive shaft 23. And an eccentric bush 42 attached to the provided crank 23b in an eccentric state. The eccentric bush 42 is rotatably supported in the boss portion 41. Although not shown in the drawings, the compressor 100 is provided with a rotation prevention mechanism for preventing the rotation of the orbiting scroll 11, so that the rotation of the orbiting scroll 11 is inhibited via the crank mechanism 40. It is configured to be capable of revolving around the central axis of the fixed scroll 10. A balancer weight 43 that cancels the centrifugal force generated when the orbiting scroll 11 is turned is attached to one shaft end 23 a of the drive shaft 23.
The housing of the compressor 100 includes a front housing 50 that houses the electric motor 20 and the inverter 30, an inverter cover 60, a center housing 70 that houses the fixed scroll 10 and the orbiting scroll 11, and a rear housing 80. Become. The front housing 50 and the rear housing 80 are disposed with the center housing 70 interposed therebetween, and the inverter cover 60 is disposed on the opposite side of the front housing 50 from the center housing 70. The front housing 50 and the center housing 70, the center housing 70 and the rear housing 80, and the front housing 50 and the inverter cover 60 are fastened by fastening means (not shown) such as bolts. This constitutes an integral housing.
The front housing 50 includes a substantially cylindrical peripheral wall portion 51 and a partition wall portion 52 that partitions the internal space of the peripheral wall portion 51 into one end opening side and the other end opening side. The electric motor 20 is housed and fixed in the peripheral wall portion 51 on the one end opening side from the partition wall portion 52 with the drive shaft 23 facing the center housing 70 from the front housing 50, and the peripheral wall on the other end opening side from the partition wall portion 52. The inverter 30 is accommodated and fixed in the part 51. One end opening of the peripheral wall portion 51 is closed by the center housing 70, and the other end opening of the peripheral wall portion 51 is closed by the inverter cover 60. Further, the front housing 50 opens toward the center housing 70 on one end opening side of the partition wall portion 52, and the other shaft end portion 23c of the drive shaft 23 of the electric motor 20 is rotatably fitted. It has a cylindrical support portion 53 that supports the shaft end portion 23c.
The center housing 70 includes a substantially cylindrical peripheral wall portion 71, an annular inner flange portion 72 that protrudes inward from the inner surface of the peripheral wall portion 71 and opens toward the front housing 50, and an opening peripheral edge portion of the inner flange portion 72. And a bowl-shaped bulging portion 73 that bulges toward the front housing 50. One end opening of the peripheral wall portion 71 is closed by the rear housing 80, and the other end opening of the peripheral wall portion 71 is closed by the front housing 50.
In the center housing 70, the fixed scroll 10 and the orbiting scroll 11 are accommodated in a peripheral wall portion 71 on one end opening side with respect to the inner flange portion 72. The surface of the inner flange portion 72 on the one end opening side is in contact with the end plate 11 a of the orbiting scroll 11 via the annular thrust plate 74 to support the orbiting scroll 11 in the thrust direction of the drive shaft 23. The back pressure chamber 600 formed by being surrounded by the bulging portion 73 and the end plate 11a accommodates the crank mechanism 40 and extends from the electric motor 20 of the front housing 50 and passes through the bulging portion 73. A bearing portion 75 that pivotally supports the shaft 23 is disposed. The end plate 10 a of the fixed scroll 10 meshed with the orbiting scroll 11 closes one end opening of the peripheral wall portion 71.
The suction port 200 is formed at one end opening side from the partition wall portion 52 of the peripheral wall portion 51 of the front housing 50, and the suction chamber 300 for sucking the refrigerant through the suction port 200 is connected to the peripheral wall portion 51 of the front housing 50 and the partition wall. The wall portion 52 and the peripheral wall portion 71, the inner flange portion 72, and the bulging portion 73 of the center housing 70 are surrounded. Further, the compression chamber 400 is formed by being surrounded by the end plate 10 a, the peripheral wall 71 on the opening side from the inner flange 72, the inner flange 72, and the end plate 11 a that closes the opening of the inner flange 72. At least one of the peripheral wall portion 71 and the inner flange portion 72 of the center housing 70 is formed with a refrigerant introduction passage L1 for guiding the refrigerant gas sucked into the suction chamber 300 to the compression chamber 400. The end plate 10 a of the fixed scroll 10 is formed with a discharge hole 700 for discharging the refrigerant gas compressed in the fluid pocket 12 to the outside of the compression chamber 400 at the inner end of the scroll wrap 10 b. On the outlet side of the discharge hole 700, a one-way valve V for preventing the discharged refrigerant gas (discharged refrigerant gas) from flowing back into the compression chamber 400 is provided. An elastically deformable valve element that closes the discharge hole 700 when backflowing to 400 is fastened to the end plate 10a of the fixed scroll 10 by fastening means such as a bolt.
The rear housing 80 is formed in a substantially bottomed cylindrical shape having a bottom portion 81 and a peripheral wall portion 82, and the opening end surface of the peripheral wall portion 82 is in contact with one end opening in the peripheral wall portion 71 of the center housing 70 and the end plate 10 a of the fixed scroll 10. A discharge port 500 that is in contact with each other to form an internal space and communicates the internal space with the outside is provided on the side of the peripheral wall 82 of the rear housing 80 that is close to the bottom 81. The compressor 100 is installed with the discharge port 500 facing upward.
Here, as shown in FIG. 3, the compressor 100 includes a first separation chamber 83 and a second separation chamber 84 that separate and lower the lubricating oil from the discharged refrigerant gas in the inner space of the rear housing 80. An oil storage chamber 85 is provided which is arranged in series in a flow path from the discharge port 500 to the outside and stores lubricating oil (separated oil) separated and lowered in the first separation chamber 83 and the second separation chamber 84. Prepare.
The rear housing 80 includes a partition wall 86 that divides an internal space into a discharge hole 700 side space communicating with the compression chamber 400 via the discharge hole 700 and a discharge port 500 side space communicating with the outside via the discharge port 500. It is provided facing the bottom 81 and the end plate 10a. The first separation chamber 83 is formed by the space on the discharge hole 700 side, the second separation chamber 84 is formed by the space on the discharge port 500 side, and the first separation chamber 83 and the second separation chamber 84 have the same vertical direction. However, the upper portions 83a and 84a communicate with each other through the flow passage L2 that penetrates the partition wall 86. Therefore, the flow path from when the discharge refrigerant gas discharged from the compression chamber 400 through the discharge hole 700 is discharged to the outside through the discharge port 500 is the first separation chamber 83, the flow passage L2, the second separation chamber 84, The discharge port 500 is configured in this order.
The first separation chamber 83 has a collided body 83b for colliding the discharged refrigerant gas discharged from the compression chamber 400 through the discharge hole 700, and lubricating oil from the discharged refrigerant gas due to the collision with the collided body 83b. This is a collision separation type separation chamber in which the separation of the lubricating oil is promoted, and the separated lubricating oil is selectively lowered by the relative specific gravity difference to perform the separation processing of the lubricating oil. The collision object 83 b is provided so that the discharged refrigerant gas discharged from the discharge hole 700 does not scatter to the lower part 83 c of the first separation chamber 83. As shown in FIG. 4, for example, the collision object 83b in the present embodiment has the discharge hole 700 (or one-way valve V) so that the discharged refrigerant gas is discharged from the discharge hole 700 in the radial direction (see the broken line arrow). After forming with a configuration not shown in the figure, the discharge refrigerant gas discharged in the radial direction from the discharge hole 700 collides and scatters from the end plate 10a so as to be scattered outside the lower part 83c of the first separation chamber 83. It is configured as a substantially U-shaped collision wall surrounding the lower side of the periphery of the hole 700. Note that the discharged refrigerant gas may directly collide from the discharge hole 700 to the partition wall 86, the peripheral wall portion 82, and the like.
In the first separation chamber 83, the discharged refrigerant is allowed to fall in the lubricating oil separated from the discharged refrigerant gas at a position that is not above the collision target 83 b (for example, the lowermost position of the collision target 83 b or below it). A shielding body 83d is provided for suppressing gas lowering (particularly, the discharge refrigerant gas that has collided with the collision target 83b enters the lower portion 83c of the first separation chamber 83). The shield 83d in the present embodiment extends from the partition wall 86 toward the end plate 10a at the lowermost position of the collided body 83b, and has a gap between the end plate 10a (including the collided body 83b). Configured as
The second separation chamber 84 swirls the discharged refrigerant gas introduced from the first separation chamber 83 via the flow path L2, and promotes centrifugal separation of the lubricating oil contained in the discharged refrigerant gas by a relative specific gravity difference. In addition, the separation chamber is a centrifugal separation system in which the separated lubricating oil is lowered to separate the lubricating oil. In the present embodiment, the second separation chamber 84 has an inner peripheral surface 84b having a substantially circular cross section, and an intubation tube 84c substantially coaxial with the second separation chamber 84 opens one end into the second separation chamber 84, and the like. The end is connected to the discharge port 500. The flow path L2 is formed in the upper portion 84a of the second separation chamber 84 between the inner peripheral surface 84b of the second separation chamber 84 and the outer peripheral surface of the inner tube 84c from the substantially tangential direction of the second separation chamber 84. Oriented to be introduced.
In the internal space of the rear housing 80, the oil storage chamber 85 is located at substantially the same height or lower than the lowest position of the first separation chamber 83 and the second separation chamber 84. It is formed independently of the second separation chamber 84, communicates with the lower portion 83c of the first separation chamber 83 through the first communication passage E1, and communicates with the lower portion 84d of the second separation chamber 84 through the second communication passage E2. The relationship between the passage resistance of the first communication passage E1 and the passage resistance of the second communication passage E2 is, for example, by making the passage cross-sectional area of the first communication passage E1 smaller than the passage cross-sectional area of the second communication passage E2. The passage resistance of the first communication passage E1 is set to be higher than the passage resistance of the second communication passage E2.
Further, the oil storage chamber 85 is a back pressure chamber 600 by a first oil return passage R1 formed in the peripheral wall portion 82 of the rear housing 80 and the peripheral wall portion 71 and flange portion (including the bulging portion 73) of the center housing 70. Communicate with. The back pressure chamber 600 communicates with the suction chamber 300 by a second oil return passage R2 formed through the drive shaft 23 from one shaft end 23a to the other shaft end 23c.
Next, an oil separation process for separating the lubricating oil from the discharged refrigerant gas in the compressor 100 will be described with reference to FIG.
Discharged refrigerant gas (indicated by broken line arrows in the figure) discharged from the compression chamber 400 to the first separation chamber 83 through the discharge hole 700 collides with the collision target 83b in the first separation chamber 83, Separation of the contained lubricating oil is promoted. Then, the lubricating oil separated from the discharged refrigerant gas (indicated by the white arrow in the figure) falls to the lower portion 83c of the first separation chamber 83 due to the relative specific gravity difference. At this time, the lubricating oil separated from the discharged refrigerant gas descends to the lower part 83c of the first separation chamber 83 through the gap between the shield 83d and the end plate 10a (including the collided body 83b). On the other hand, most of the discharged refrigerant gas rises toward the upper portion 83a after the collision with the collision target 83b, and part of the discharged refrigerant gas falls. However, due to the shield 83d, part of the discharged refrigerant gas is in the first separation chamber 83. Since the entry to the lower portion 83c of the fuel is suppressed, re-mixing of the separated oil into the discharged refrigerant gas can be suppressed.
The discharged refrigerant gas that has undergone the collision separation type oil separation process in the first separation chamber 83 is introduced into the second separation chamber 84 via the flow passage L2 of the upper portion 83a. Since the discharged refrigerant gas introduced into the second separation chamber 84 may contain lubricating oil that could not be separated in the first separation chamber 83, further oil separation processing is performed in the second separation chamber 84. Thus, oil separation efficiency can be increased.
When the discharged refrigerant gas introduced into the second separation chamber 84 swirls between the inner peripheral surface 84b and the outer peripheral surface of the inner tube 84c and descends in a spiral manner, the lubricating oil contained in the discharged refrigerant gas is Centrifugal separation is performed by the relative difference in specific gravity, and the separated lubricating oil descends along the inner peripheral surface 84b to the lower portion 84d of the second separation chamber 84. On the other hand, the discharged refrigerant gas starts to rise toward the one end opening of the outflow pipe as the turning motion becomes smaller, and is discharged from the discharge port 500 through the outflow pipe.
The separated oil that has dropped to the lower portion 83c of the first separation chamber 83 flows into the oil storage chamber 85 via the first communication passage E1, and the separation oil that has fallen to the lower portion 84d of the second separation chamber 84 passes through the second communication passage E2. Then, the oil flows into the oil storage chamber 85 and the separated oil is stored in the oil storage chamber 85. At this time, since the passage resistance of the first communication passage E1 is higher than the passage resistance of the second communication passage E2, the separation oil flowing into the oil storage chamber 85 is affected by the internal pressure of the first separation chamber 83, and the second resistance The possibility of backflow to the second separation chamber 84 via the communication path E2 is reduced. The separated oil stored in the oil storage chamber 85 due to the internal pressure difference between the suction chamber 300 and the oil storage chamber 85 is further supplied to the back pressure chamber 600 via the first oil return passage R1 with reference to FIG. The lubricating oil is used for lubrication of the sliding mechanism such as the portion 75, and is further returned from the back pressure chamber 600 to the suction chamber 300 through the second oil return passage R2 and sucked through the suction port 200. It is mixed.
Here, when the rotational speed of the electric motor 20 is increased and the flow rate of the discharged refrigerant gas discharged from the compression chamber 400 through the discharge hole 700 is increased, the oil in the first separation chamber 83 of the collision separation method is oiled. Although the separation efficiency is lowered, the oil separation efficiency is increased in the second separation chamber 84 of the centrifugal separation method, so that the oil separation efficiency is higher than that in the case where the compressor 100 includes only the first separation chamber 83. The decrease can be suppressed. On the other hand, when the rotational speed of the electric motor 20 decreases and the flow rate of the discharged refrigerant gas discharged from the compression chamber 400 through the discharge hole 700 decreases, the oil separation is performed in the centrifugal separation type second separation chamber 84. Although the efficiency is decreased, the oil separation efficiency is increased in the first separation chamber 83 of the collision separation method, and therefore, the oil separation efficiency is decreased as compared with the case where the compressor 100 includes only the second separation chamber 84. Can be suppressed.
According to such a compressor 100, the discharged refrigerant gas is collided in the flow path until the discharged refrigerant gas discharged from the compression chamber 400 through the discharge hole 700 is discharged to the outside through the discharge port 500. A first separation chamber 83 that collides with the body 83b to separate and lower the lubricating oil, and a second separation chamber 84 that separates and lowers the lubricating oil by swirling the discharged refrigerant gas are connected in series. Since it arrange | positions, the fluctuation | variation of the oil separation efficiency by the flow volume change of discharge refrigerant gas can be suppressed. Therefore, regardless of the flow rate of the discharged refrigerant gas, the amount of lubricating oil flowing out from the compressor 100 to the external refrigerant circuit is suppressed to a certain level, thereby suppressing a decrease in system efficiency of a vehicle air conditioner system to which the compressor 100 is applied. It becomes possible to do.
In the above-described embodiment, the compressor 100 includes the first separation chamber 83 and the second separation chamber 83 for separating and lowering the lubricating oil from the discharged refrigerant gas in the flow path until the discharged refrigerant gas is discharged from the discharge port 500 to the outside. The separation chambers 84 are arranged in series in this order. However, the present invention is not limited to this, and the second separation chamber 84 and the first separation chamber 83 are replaced by replacing the first separation chamber 83 and the second separation chamber 84. Even if they are arranged in series in this order, the same effects as in the above embodiment can be obtained.
When the second separation chamber 84 and the first separation chamber 83 are arranged in series in this order, the discharge hole 700 is formed so that the discharged refrigerant gas is discharged from the substantially tangential direction of the second separation chamber 84 in the upper portion 84a of the second separation chamber 84. Oriented so as to be introduced between the inner peripheral surface 84b of the second separation chamber 84 and the outer peripheral surface of the inner intubation tube 84c. The other end of the inner tube 84c having one end opened into the second separation chamber 84 is connected to the flow path L2. Further, the collision object 83b of the first separation chamber 83 is provided so that the discharged refrigerant gas introduced into the first separation chamber 83 from the flow passage L2 collides, for example, the outlet of the flow passage L2 is in the radial direction. It may be configured as a substantially U-shaped collision object 83b which is formed so as to have a structure to be discharged and which stands up from the partition wall 86 and surrounds the lower side of the periphery of the outlet of the flow path L2. A discharge port 500 is provided in the upper part 83 a of the first separation chamber 83.
As mentioned above, although the invention made | formed by this inventor was concretely demonstrated based on said embodiment, this invention is not limited to said embodiment, A various change is possible in the range which does not deviate from the summary. Needless to say. For example, although the discharge refrigerant discharged from the discharge hole 700 of the compressor 100 has been described as the discharge refrigerant gas, the discharge refrigerant may include not only a gas phase refrigerant but also a liquid phase refrigerant.
Further, in the above embodiment, the compressor 100 meshes the pair of fixed scrolls 10 and the orbiting scroll 11 having the same shape in the compression chamber 400 and turns the orbiting scroll 11 using the rotational force of the built-in electric motor 20. It demonstrated as what compresses refrigerant | coolant gas by damaging. However, instead of the built-in electric motor 20, the orbiting scroll 11 may be turned by an external drive source. For example, when the compressor 100 is applied to a vehicle air conditioner system, an engine may be used as an external drive source, and the rotational force of the crank 23b shaft may be transmitted to the drive shaft 23 via a pulley. Alternatively, instead of the scroll compressor that compresses the refrigerant gas by the fixed scroll 10 and the orbiting scroll 11, a reciprocating compressor that compresses the refrigerant gas by changing the volume of the cylinder due to the reciprocating motion of the piston, or a plurality of vanes in the housing. The present invention can be applied to any compression type compressor such as a rotary vane type compressor that compresses the refrigerant gas by rotating the rotor on the side surface while bringing the vane into contact with the inner wall of the housing.
 83  第1分離室
 83b 被衝突体
 83d 遮蔽体
 84  第2分離室
 84b 内周面
 84c 内挿管
 85  貯油室
 100 圧縮機
 400 圧縮室
 500 排出ポート
 700 吐出孔
 L2  流通路
 E1  第1連通路
 E2  第2連通路
83 First separation chamber 83b Colliding body 83d Shielding body 84 Second separation chamber 84b Inner peripheral surface 84c Inner tube 85 Oil storage chamber 100 Compressor 400 Compression chamber 500 Discharge port 700 Discharge hole L2 Flow passage E1 First communication passage E2 Second Communication path

Claims (6)

  1.  吐出冷媒を含有オイルの分離処理が行われてから外部に排出する圧縮機であって、
     前記吐出冷媒を被衝突体に衝突させて前記含有オイルを分離降下させる第1分離室と、
     前記吐出冷媒を旋回させて前記含有オイルを分離降下させる第2分離室と、を含み、
     前記第1分離室及び前記第2分離室は、前記吐出冷媒を外部に排出するまでの流路において直列に配置された、圧縮機。
    A compressor that discharges discharged refrigerant to the outside after separation of contained oil is performed,
    A first separation chamber that separates and lowers the contained oil by causing the discharged refrigerant to collide with a collision target;
    A second separation chamber that swirls the discharged refrigerant to separate and lower the contained oil,
    The first separation chamber and the second separation chamber are compressors arranged in series in a flow path until the discharged refrigerant is discharged to the outside.
  2.  前記第1分離室と前記第2分離室は、この順番で、前記吐出冷媒が外部に排出されるまでの流路において直列に配置された、請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the first separation chamber and the second separation chamber are arranged in series in a flow path until the discharged refrigerant is discharged to the outside in this order.
  3.  前記第1分離室及び前記第2分離室において分離降下した分離オイルを貯留するための貯油室を更に含み、
     前記第1分離室と前記貯油室とを連通する第1連通路、及び前記第2分離室と前記貯油室とを連通する第2連通路が設けられた、請求項1又は請求項2に記載の圧縮機。
    An oil storage chamber for storing the separated oil separated and lowered in the first separation chamber and the second separation chamber;
    The first communication path that communicates the first separation chamber and the oil storage chamber, and the second communication path that communicates the second separation chamber and the oil storage chamber are provided. Compressor.
  4.  前記第1連通路の通路抵抗は、前記第2連通路の通路抵抗よりも大きい、請求項3に記載の圧縮機。 The compressor according to claim 3, wherein a passage resistance of the first communication passage is larger than a passage resistance of the second communication passage.
  5.  前記第1分離室には、前記含有オイルの降下を許容しつつ、前記吐出冷媒の降下を阻害する遮蔽体が備えられた、請求項1~4のいずれか1つに記載の圧縮機。 The compressor according to any one of claims 1 to 4, wherein the first separation chamber is provided with a shield that prevents the discharge refrigerant from descending while allowing the oil contained to fall.
  6.  前記遮蔽体は、前記第1分離室において前記被衝突体より上方でない位置に備えられた、請求項5に記載の圧縮機。 The compressor according to claim 5, wherein the shield is provided at a position not higher than the collision target in the first separation chamber.
PCT/JP2017/022432 2016-07-05 2017-06-13 Compressor WO2018008368A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016133142A JP2018003736A (en) 2016-07-05 2016-07-05 Compressor
JP2016-133142 2016-07-05

Publications (1)

Publication Number Publication Date
WO2018008368A1 true WO2018008368A1 (en) 2018-01-11

Family

ID=60912769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022432 WO2018008368A1 (en) 2016-07-05 2017-06-13 Compressor

Country Status (2)

Country Link
JP (1) JP2018003736A (en)
WO (1) WO2018008368A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110259686A (en) * 2018-03-12 2019-09-20 广东威灵汽车部件有限公司 Compressor and vehicle with it

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110985378B (en) * 2019-12-19 2022-03-15 湖南华强电气股份有限公司 Horizontal scroll compressor and vehicle-mounted air conditioner with oil way oil supply structure
JP7055518B1 (en) * 2021-11-26 2022-04-18 株式会社石川エナジーリサーチ Scroll compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04175492A (en) * 1990-11-06 1992-06-23 Nippondenso Co Ltd Compressor
JP2006022658A (en) * 2004-07-06 2006-01-26 Matsushita Electric Ind Co Ltd Compressor
JP2012172618A (en) * 2011-02-22 2012-09-10 Toyota Industries Corp Compressor
JP2014202160A (en) * 2013-04-08 2014-10-27 サンデン株式会社 Compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04175492A (en) * 1990-11-06 1992-06-23 Nippondenso Co Ltd Compressor
JP2006022658A (en) * 2004-07-06 2006-01-26 Matsushita Electric Ind Co Ltd Compressor
JP2012172618A (en) * 2011-02-22 2012-09-10 Toyota Industries Corp Compressor
JP2014202160A (en) * 2013-04-08 2014-10-27 サンデン株式会社 Compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110259686A (en) * 2018-03-12 2019-09-20 广东威灵汽车部件有限公司 Compressor and vehicle with it

Also Published As

Publication number Publication date
JP2018003736A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6300829B2 (en) Rotary compressor
EP3584443B1 (en) Compressor
WO2018008368A1 (en) Compressor
JP2004270668A (en) Hermetic compressor
US20200003199A1 (en) Compressor
JP2019056322A (en) Compressor
JP5112090B2 (en) Scroll compressor
JP4149947B2 (en) Compressor
KR102566589B1 (en) Scroll compressor
JP2006348928A (en) Compressor
WO2019202682A1 (en) Oil separator, screw compressor, and refrigeration cycle device
JP2012149544A (en) Compressor
JP6738174B2 (en) Refrigerant compressor
CN114787518A (en) Compressor
JP2001050162A (en) Closed type compressor
JP6440927B2 (en) Hermetic scroll compressor
WO2023090148A1 (en) Compressor
JPWO2018186203A1 (en) Scroll compressor
EP3985256B1 (en) Scroll compressor
WO2024111194A1 (en) Scroll compressor
JP2008215220A (en) Compressor
JP2005344537A (en) Scroll compressor
KR20210027146A (en) Electric compressor
WO2020136815A1 (en) Oil separator, screw compressor, and refrigeration cycle device
JP2008202571A (en) Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17823975

Country of ref document: EP

Kind code of ref document: A1