WO2018007710A1 - Procédé de liquéfaction de gaz naturel et de récupération d'éventuels liquides du gaz naturel comprenant deux cycles réfrigérant semi-ouverts au gaz naturel et un cycle réfrigérant fermé au gaz réfrigérant - Google Patents

Procédé de liquéfaction de gaz naturel et de récupération d'éventuels liquides du gaz naturel comprenant deux cycles réfrigérant semi-ouverts au gaz naturel et un cycle réfrigérant fermé au gaz réfrigérant Download PDF

Info

Publication number
WO2018007710A1
WO2018007710A1 PCT/FR2017/051630 FR2017051630W WO2018007710A1 WO 2018007710 A1 WO2018007710 A1 WO 2018007710A1 FR 2017051630 W FR2017051630 W FR 2017051630W WO 2018007710 A1 WO2018007710 A1 WO 2018007710A1
Authority
WO
WIPO (PCT)
Prior art keywords
natural gas
temperature
refrigerant
stream
main
Prior art date
Application number
PCT/FR2017/051630
Other languages
English (en)
Inventor
Eric ZIELINSKI
Nathalie TRICHARD
Julien BELLANDE
Benjamin RODIER
Original Assignee
Saipem S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA3029464A priority Critical patent/CA3029464C/fr
Priority to JP2018568282A priority patent/JP6985306B2/ja
Priority to EP21155666.7A priority patent/EP3839392A1/fr
Priority to MA44302A priority patent/MA44302B1/fr
Priority to CN201780042291.2A priority patent/CN109564057B/zh
Priority to DK17745789.2T priority patent/DK3482146T3/da
Priority to MX2019000197A priority patent/MX2019000197A/es
Priority to SG11201811359VA priority patent/SG11201811359VA/en
Priority to AU2017294126A priority patent/AU2017294126B2/en
Priority to ES17745789T priority patent/ES2862304T3/es
Application filed by Saipem S.A. filed Critical Saipem S.A.
Priority to EP17745789.2A priority patent/EP3482146B1/fr
Priority to RU2019101462A priority patent/RU2743095C2/ru
Priority to KR1020197002719A priority patent/KR102413811B1/ko
Priority to US16/315,115 priority patent/US11255602B2/en
Priority to BR112019000141-7A priority patent/BR112019000141B1/pt
Priority to MYPI2019000005A priority patent/MY195636A/en
Publication of WO2018007710A1 publication Critical patent/WO2018007710A1/fr
Priority to CONC2018/0013887A priority patent/CO2018013887A2/es
Priority to PH12018502729A priority patent/PH12018502729A1/en
Priority to IL264067A priority patent/IL264067B/en
Priority to CY20211100243T priority patent/CY1123975T1/el

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0095Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0097Others, e.g. F-, Cl-, HF-, HClF-, HCl-hydrocarbons etc. or mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • F25J1/0209Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop as at least a three level refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/0231Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the working-up of the hydrocarbon feed, e.g. reinjection of heavier hydrocarbons into the liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • F25J1/0278Unit being stationary, e.g. on floating barge or fixed platform
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/029Mechanically coupling of different refrigerant compressors in a cascade refrigeration system to a common driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft

Definitions

  • the present invention relates to the general field of liquefaction of natural gas mainly based on methane to produce LNG for liquefied natural gas, also called LNG in English (for "Liquefied Natural Gas”).
  • a particular but non-limiting field of application of the invention is that of floating natural gas liquefaction plants, called FLNG in English (for "Floating Liquefaction of Natural Gas”), which make it possible to liquefy the offshore natural gas, on a ship or other floating support at sea.
  • FLNG floating natural gas liquefaction plants
  • the predominantly methane-based natural gas that is used to produce LNG is either a by-product from oil fields, ie produced in association with crude oil, in which case it is in low or medium quantity , a major product from gas fields.
  • natural gas When natural gas is produced from gas fields and produced in large quantities, it is sought, conversely, to transport it so as to be able to use it in regions other than those in which it has been produced.
  • natural gas may be transported in vessels of specialized transport vessels (known as "LNG carriers") in the form of a cryogenic liquid (at a temperature of the order of -160 ° C) and at a pressure close to ambient atmospheric pressure.
  • LNG carriers specialized transport vessels
  • the liquefaction of natural gas for transport is generally carried out near the gas production site and requires large-scale facilities and considerable amounts of mechanical energy for production capacities of up to several million tons per year.
  • the mechanical energy required for the liquefaction process can be produced at the site of the liquefaction plant using part of the natural gas as fuel.
  • Natural gas must be treated prior to its liquefaction in order to extract acid gases (in particular carbon dioxide), water (to prevent it from freezing in the liquefaction plant), mercury ( to avoid the risk of degradation of the aluminum equipment of the liquefaction plant) and part of the natural gas liquids, also called NGLs in English (for "Natural Gas Liquids").
  • NGLs include all heavier hydrocarbons than methane in natural gas that can be condensed.
  • NGLs include in particular ethane, LPGs (propane and butanes) for Liquefied Petroleum Gas, also called LPGs in English (for "Liquefied Petroleum Gas”), pentanes and heavier hydrocarbons than pentanes present in gas natural.
  • NGLs are either integrated into the natural gas liquefaction plant, or carried out in a dedicated unit upstream of the liquefaction plant. In the first case, this extraction is generally performed at a relatively high pressure (of the order of 4 to 5 MPa) whereas in the second case, it is most often carried out at a lower pressure (of the order from 2 to 4 MPa).
  • NGLs integrated with the liquefaction of natural gas as described, for example, in US Pat. No. 4,430,103 has the advantage of being simple. However, this type of process only operates at a pressure below the critical pressure of the gas to be liquefied, which affects the efficiency of the liquefaction. In addition, this type of process typically separates natural gas and NGLs at a pressure of the order of 4 to 5 MPa. However, at these pressures, the selectivity of the extraction of NGLs is low. Indeed, a significant portion of methane is extracted at the same time as the NGLs. Downstream processing is then usually necessary to reject this methane.
  • NGLs NGLs
  • the way in which NGLs are extracted has a significant impact on the cost and degree of complexity of the liquefaction plant, the liquefaction performance and the energy efficiency of the liquefaction plant as a whole.
  • thermodynamic cycle the compressed refrigerant (in the form of gas) is cooled (and possibly condensed) by a thermal source having a temperature greater than that of the refrigerated fluid and called "hot source" (water, air , another refrigeration cycle) then further cooled by a flow of cold gas generated by the thermodynamic cycle itself before being relaxed.
  • the cold refrigerant flow at low temperature resulting from this expansion is used to cool the natural gas and pre-cool the refrigerant.
  • the low pressure gaseous refrigerant is again compressed to its initial pressure level (via compressors driven by gas turbines, steam turbines or electric motors).
  • the power required for refrigeration and liquefaction of natural gas can be provided either by the vaporization and heating of a liquid refrigerant, most of the refrigeration heat being produced by the latent heat put into play during the change of state, either by heating a cold refrigerant in the form of gas.
  • a refrigerant gas the temperature of the refrigerant is typically lowered by expansion of pressure through a gas turbine expander (in English "gas expander").
  • the cooling effect produced by the refrigerant is mainly in the form of a sensible heat.
  • the temperature of the refrigerant is generally lowered by expansion through a valve and / or a liquid expansion turbine (in English "liquid expander").
  • the cooling effect produced by the refrigerant is mainly in the form of latent heat (and, to a lesser extent, in the form of sensible heat). Since the latent heat is much higher than the sensible heat, the refrigerant flow rates that are necessary to obtain the same refrigeration power are higher for the thermodynamic cycles using a refrigerant in the form of gas than for the thermodynamic cycles using a refrigerant in the form of liquid.
  • thermodynamic refrigeration cycles using a gas as a refrigerant require refrigeration compressors of higher capacity and larger diameter pipes than for thermodynamic refrigeration cycles using a liquid as refrigerant.
  • Thermodynamic cycles with a gaseous refrigerant are also generally less efficient than liquid refrigerant thermodynamic cycles, in particular because the temperature difference between the fluid undergoing refrigeration and the refrigerant is on average more high for a gaseous refrigerant cycle which contributes to increase efficiency losses by irreversibility.
  • thermodynamic refrigeration cycles with liquid refrigerants implement higher refrigerant mass inventories than thermodynamic gaseous refrigerant cycles.
  • the liquid refrigerant thermodynamic cycles have a lower intrinsic safety level than the gaseous refrigerant processes, particularly when comparing liquid refrigerant thermodynamic cycles using hydrocarbons as a refrigerant with thermodynamic cycles which use as inert refrigerant an inert gas such as nitrogen. This point is particularly critical in an environment where many facilities are concentrated in a small space and especially on an offshore installation. Thermodynamic refrigeration cycles using liquid refrigerants are thus effective but have a number of disadvantages, particularly for offshore application on a floating support.
  • the main purpose of the present invention is thus to overcome such drawbacks by proposing a liquefaction process using thermodynamic cycles with a gaseous refrigerant and having a higher efficiency than the liquefaction processes of the prior art while proposing a simple and compact method. extraction of possible NGLs, which is integrated in the liquefaction process and which offers a better overall energy optimization than the processes of the prior art.
  • this object is achieved by a liquefaction process of a natural gas comprising a mixture of hydrocarbons, mainly methane, the process comprising:
  • a feed stream of natural gas at a pressure P0 previously treated to extract acid gases, water and mercury is mixed with a stream of natural gas, expanded at a pressure PI and its temperature lowered to a temperature Tl at means of an expansion turbine at ambient temperature so as to obtain a condensation of any natural gas liquids contained in the natural gas, any condensed natural gas liquids are separated in a main separator of the natural gas feed stream, the latter then passing through a main cryogenic heat exchanger to form a first heat exchange-contributing natural gas stream, a part in the pre-cooling of a main flow of natural gas flowing against the current through the main cryogenic heat exchanger, and secondly, cooling of an initial flow of refrigerant gas circulating against current in the main cryogenic heat exchanger,
  • the first stream of natural gas which is at a temperature T2 higher than T1 and close to the temperature of a hot source is compressed at a pressure P2 by means of a compressor driven by the expansion turbine at ambient temperature before being admitted to the suction of a natural gas compressor to be further compressed at a pressure P3 greater than P2 and to form a second stream of natural gas, the second stream of natural gas the discharge of the natural gas compressor is partly expanded and mixed with the natural gas feed stream upstream of the expansion turbine at ambient temperature, and partly forms the main flow of natural gas,
  • the third natural gas stream is reintroduced into the main cryogenic heat exchanger to heat-exchange the main natural gas stream and the initial gas flow by thermal exchange countercurrent circulating refrigerant in the main cryogenic heat exchanger,
  • the third natural gas stream which is at a temperature T6 close to the temperature of the hot source is directed to a compressor driven by the intermediate expansion turbine to be compressed and then it is cooled before being mixed with the first stream of natural gas upstream of the natural gas compressor;
  • the initial flow of refrigerant gas which is at a temperature T8 lower than T7 is directed to a low temperature expansion turbine so that its temperature is lowered by expansion to a temperature T9 less than T8, the first flow of refrigerant gas thus formed being reintroduced into the main cryogenic heat exchanger to contribute to the cooling of the main stream of natural gas and the initial flow of refrigerant gas;
  • the first flow of refrigerant gas which is at a temperature T10 close to the temperature of the hot source is directed to a compressor driven by the low temperature expansion turbine to be compressed before being cooled and then directed to the suction of the refrigerant gas compressor.
  • the liquefaction process according to the invention comprises two semi-open refrigerant cycles with natural gas and a single refrigerant cycle closed with refrigerant gas.
  • the first natural gas semi-open refrigerant cycle is used to extract heavy natural gas liquids (NGLs) that may be present in the natural gas to avoid freezing problems in the cold section of the liquefaction plant, and pre-cool natural gas and refrigerant gas.
  • the second semi-open refrigerant cycle with natural gas serves to contribute to the pre-cooling of natural gas and refrigerant gas and liquefaction of natural gas.
  • the function of the refrigerant cycle closed with refrigerant gas is to ensure the subcooling of the liquefied natural gas and to provide a refrigerating power complementary to the other two cycles.
  • the refrigerant gas used is typically nitrogen.
  • the process according to the invention has a ratio of mechanical power consumed per tonne of LNG produced for equivalent conditions of the order of 15% lower than a two-cycle process refrigerant nitrogen, 10 % lower than a three-cycle nitrogen refrigerant process, and 8% lower than a natural gas refrigerant cycle process and two nitrogen refrigerant cycles when these processes are associated with one unit of nitrogen extraction of NGL upstream of the liquefaction requiring a reccompression of the gas (this re-compression power being taken into account in the comparison).
  • the power consumed per tonne of LNG produced by the process according to the invention is thus lower than for the known processes of the prior art, which shows a higher efficiency for this process.
  • the process according to the invention incorporates the extraction of heavy natural gas liquids (NGLs) in the liquefaction, which improves the overall energy efficiency of the natural gas liquefaction plant and eliminates the need to resort to dedicated to this extraction.
  • NGLs heavy natural gas liquids
  • the process of pretreatment of natural gas is simplified.
  • the extraction being carried out at low pressure, few light hydrocarbons (in particular methane) are entrained during this extraction process, which makes it possible to treat heavy NGLs by using a simple method of implementation. artwork.
  • the single refrigerant gas cycle of the process according to the invention is closed. Also, the only extra refrigerant gas that is needed can be easily produced (in this case when the refrigerant gas comprises mainly nitrogen). In particular, no dedicated unit is required for the import, production, processing or storage of liquid hydrocarbons used as a refrigerant. The implementation of the method according to the invention is thus greatly facilitated.
  • the method according to the invention has a high level of intrinsic safety. Indeed, the mass inventories of hydrocarbons are limited (in particular compared to a process using hydrocarbons in liquid form as refrigerant). The implementation of the method according to the invention is facilitated.
  • the process is particularly suitable for a liquefaction plant for natural gas at sea, such as for example aboard an FLNG, because of its high level of intrinsic safety and because it does not require storage of fuel. refrigerants.
  • auxiliary pre-cooling by auxiliary refrigerant cycle during the first natural gas semi-open refrigerant cycle, the natural gas feed stream at the inlet of the expansion turbine at ambient temperature is further cooled in an auxiliary heat exchanger.
  • an auxiliary refrigeration cycle provides the refrigeration power necessary for the operation of the auxiliary heat exchanger.
  • the third natural gas stream at the exhaust of the intermediate expansion turbine is directed towards a separator at the outlet of which the flow of natural gas is reintroduced into the main cryogenic heat exchanger, the flow of natural gas liquids at the outlet of the auxiliary separator being pumped in whole or in part to the main separator to contribute to the absorption of liquids from natural gas.
  • the contact between the natural gas to be treated and the subcooled reflux can for example be made against the current.
  • the main separator can be equipped with a packing bed.
  • LNG NGL Absorption Absorption during the first half-open natural gas refrigerant cycle, a portion of the main natural gas stream fraction that flows through the main cryogenic heat exchanger to provide therein is extracted from said main cryogenic heat exchanger at a temperature TU higher than the temperature T3 to be directed to the main separator so as to contribute to the absorption of liquids from the natural gas.
  • the contact between the natural gas to be treated and the reflux of LNG can for example be made against the current.
  • the main separator can be equipped with a packing bed.
  • the natural gas feed stream is advantageously mixed with lighter natural gas from the discharge of the natural gas compressor before being expanded in the turbine at room temperature without pre-cooling in the main cryogenic exchanger, which allows to effectively produce a cold flow ensuring the pre-cooling of natural gas and refrigerant gas and to extract possible NGLs with excellent selectivity.
  • the natural gas feed stream at the exhaust of the expansion turbine at ambient temperature is introduced into the main separator at the outlet of which a flow of heavy gas liquids is recovered.
  • a fraction of the recovered natural gas liquid stream is reheated and partially vaporized to facilitate its downstream processing.
  • the pressure of the main natural gas stream is greater than the critical pressure of the natural gas, which makes it possible to maximize the efficiency of the liquefaction and ensures that the liquefaction takes place without phase change.
  • the invention also relates to a liquefaction plant for natural gas for implementing the method as defined above, the installation comprising an expansion turbine at ambient temperature for receiving a natural gas feed stream and a portion of a second natural gas stream from the discharge of a natural gas compressor and having an exhaust connected to an inlet of a main separator, a main cryogenic heat exchanger for receiving natural gas streams and refrigerant gas, a compressor driven by the room temperature expansion turbine for receiving a first stream of natural gas from the main separator and having an output connected to the suction of the natural gas compressor, an intermediate temperature expansion turbine intended to receive a portion of a main stream of natural gas from the discharge of the gas compressor and connected at the inlet and the outlet to the main cryogenic heat exchanger, a compressor driven by the intermediate temperature expansion turbine for receiving a third stream of natural gas
  • the natural gas compressor and the refrigerant gas compressor are driven by the same drive machine providing the power necessary for the pressure increase of the natural gas to be liquefied and the compression of the circulating fluids in the three refrigerant cycles.
  • the mechanical power consumption required for these functions is optimized to maximize the production of LNG while minimizing the number of equipment.
  • the natural gas compressor is downstream of the compressors driven by the expansion turbine at ambient temperature and the expansion turbine at intermediate temperature
  • the refrigerant gas compressor is downstream of the compressor driven by the expansion turbine. low temperature.
  • FIG. 1 shows schematically an example of implementation of the liquefaction process according to the invention
  • FIG. 2 shows an alternative implementation of the liquefaction process according to the invention called "recompression in series"
  • FIG. 3 represents another alternative embodiment of the liquefaction process according to the invention called "complementary pre-cooling by auxiliary refrigerant cycle";
  • FIG. 4 represents another variant of implementation of the liquefaction process according to the invention known as "absorption of NGL by sub-cooled reflux";
  • FIG. 5 shows another alternative implementation of the liquefaction process according to the invention called "NGL absorption by reflux of LNG".
  • the liquefaction process according to the invention is particularly (but not exclusively) applicable to natural gas originating from gas fields.
  • this natural gas mainly comprises methane and is in combination with other gases, mainly C 2, C 3, C 4, C 5 and C 6 hydrocarbons, acid gases, water, and inert gases of which nitrogen, as well as various impurities including mercury.
  • FIG. 1 represents an example of installation 2 for the implementation of the natural gas liquefaction process according to the invention.
  • the liquefaction process according to the invention uses three thermodynamic refrigeration cycles, namely two semi-open refrigerant cycles with natural gas and a single refrigerant cycle closed with refrigerant gas. Furthermore, the process according to the invention preferably uses a gas comprising predominantly nitrogen, which makes the process particularly suitable for offshore implementation, typically on a floating natural gas liquefaction plant (called in English FLNG for "Floating Liquefaction of Natural Gas”).
  • this liquefaction plant 2 requires only one main cryogenic heat exchanger 4, which may consist of an assembly of brazed aluminum heat exchangers which is installed in a cold box (called “cold box” in English).
  • the liquefaction plant 2 according to the invention also requires three turboexpanderers, namely a room temperature turboexpander 6 dedicated to natural gas, an intermediate temperature turboexpander 8 dedicated to natural gas, and a low temperature turboexpander dedicated to the refrigerant gas.
  • a turboexpander is a rotary machine which is composed of a gas expansion turbine (here respectively an expansion turbine at ambient temperature 6a, an intermediate temperature expansion turbine 8a and a low temperature expansion turbine 10a. and a gas compressor (here respectively a compressor 6b, a compressor 8b and a compressor 10b) driven by the gas expansion turbine.
  • a gas expansion turbine here respectively an expansion turbine at ambient temperature 6a, an intermediate temperature expansion turbine 8a and a low temperature expansion turbine 10a.
  • a gas compressor here respectively a compressor 6b, a compressor 8b and a compressor 10b driven by the gas expansion turbine.
  • the liquefaction plant 2 also comprises a natural gas compressor 12 and a refrigerant gas compressor 14, these two compressors 12, 14 being preferably driven by the same drive machine ME, for example a turbine gas supplying the power required to increase the pressure of the natural gas to be liquefied as well as the compression of the circulating fluids in the three refrigerant cycles.
  • the natural gas compressor has a threefold function: to pressurize and circulate natural gas so as to provide sufficient refrigeration power to contribute to the cooling and liquefaction of natural gas and refrigerant gas. -compress the natural gas that has been relaxed for the extraction of heavy NGLs, and ensure that the natural gas to be liquefied is at optimum pressure to maximize the efficiency of liquefaction.
  • the refrigerant gas compressor its function is to pressurize and circulate the refrigerant gas so as to obtain the refrigeration power necessary to contribute to the cooling of the refrigerant gas, to contribute to the pre-cooling and the liquefaction of the gas and subcooling natural gas.
  • the liquefaction plant 2 also comprises a main separator 16 intended for the separation of the NGLs possibly contained in the natural gas, and a flask 18 intended to allow a separation between the final flash gases and the liquefied natural gas (LNG).
  • a main separator 16 intended for the separation of the NGLs possibly contained in the natural gas
  • a flask 18 intended to allow a separation between the final flash gases and the liquefied natural gas (LNG).
  • natural gas Prior to the first semi-open natural gas refrigeration cycle, natural gas undergoes pretreatment to make it suitable for liquefaction.
  • This pretreatment includes a treatment for extracting natural gas acid gases (including carbon dioxide), these acid gases can in particular freeze in the liquefaction plant.
  • the pretreatment also includes a dewatering treatment for extracting natural gas from the water and a demercurization treatment, the mercury being liable to degrade the aluminum equipment of the liquefaction plant (including the main cryogenic heat exchanger 4).
  • the natural gas feed stream F-0 comes out of this pretreatment pretreatment stage typically at a pressure P0 of between 5 and 10 MPa and a neighboring temperature T0 (ie here slightly higher) of the temperature of the hot source.
  • hot source is meant here the thermal source which is used to cool the non-cryogenic flow of the liquefaction process.
  • This hot source can typically be ambient air, seawater, fresh water cooled by seawater, a fluid cooled by an auxiliary refrigerant cycle or a combination of several of these sources.
  • This F-0 stream is mixed with the natural gas stream F-2-1 from the liquefaction plant (and subsequently described) and feeds the first half-open refrigerant cycle to natural gas.
  • this first natural gas semi-open refrigerant cycle has the function of extracting the heavy NGLs possibly present in the natural gas, and of pre-cooling the natural gas and the refrigerant gas.
  • the natural gas feed stream F-0 (combined with the flow of natural gas F-2-1 described later) passes through the expansion turbine at ambient temperature 6a to the exhaust (ie output) of which its pressure P1 is lowered to a pressure of between 1 and 3 MPa and its temperature T1 is lowered to a temperature between -40 ° C and -60 ° C.
  • This phase of relaxation of the natural gas feed stream leads to a condensation of any heavy natural gas liquids (NGLs) contained in the natural gas.
  • NNLs heavy natural gas liquids
  • heavy NGLs is meant here most of the hydrocarbons in C5 (pentanes), C6 (hexanes, benzene) and more that are contained in natural gas, as well as a more restricted and variable portion of ethane, propane and butanes and a very limited portion of methane.
  • the natural gas stream at the exhaust of the expansion turbine at room temperature 6a is directed towards the inlet of the main separator 16.
  • the flow of liquids from the gas The natural F-HL is reheated, for example by flowing in the main cryogenic heat exchanger 4 (as shown in the figure) or via a dedicated NGL reboiler, and then directed to an NGLs processing unit 20.
  • the F-HL natural gas liquids flow is two-phase and can either be sent directly to the NGLs processing unit 20 (as shown in the figure) or be gas-liquid separated. evaporated gases being returned to the main separator 16.
  • the NGLs processing unit 20 is a unit which makes it possible to treat heavy NGLs, and in particular to separate butanes and lighter hydrocarbons from pentanes and heavier hydrocarbons to form a flow of liquids of light natural gas FG (also called light NGLs flux FG) and a gasoline gas flow.
  • this stream of light NGLs FG which mainly comprises ethane, propane and butanes is intended to be reinjected into the gas to be liquefied if this is compatible with the target LNG specification (or upgraded out of the liquefaction facility if this is not the case).
  • an F-HL-1 fraction of the F-HL heavy natural gas liquid stream can be directed to a NGL 19 cooler to provide the thermal power necessary for the operation of this exchanger.
  • the stream of F-G light natural gas liquids from the NGLs processing unit 20 is cooled in the NGLs cooler 19.
  • An F-G-1 fraction of the cooled F-G light NGLs stream is reinjected into the main separator 16.
  • the fraction of the stream of cooled NGLs F-G that is not reinjected into the main separator 16 is reinjected into the main stream of natural gas F-P, downstream of the withdrawal supplying the turbine to intermediate temperature 8a (mentioned later).
  • the injection of the light NGLs stream F-G can be carried out either in co-current or in countercurrent.
  • the flow of light NGLs F-G is reinjected against the current in the main separator 16, it may optionally be equipped with a packing bed to improve the efficiency of extraction of NGLs.
  • the stream of natural gas freed from heavy hydrocarbons (gas residue) is at an acceptable temperature to ensure pre-cooling of the gas to be liquefied and the refrigerant gas.
  • this gas residue forms a first flow of natural gas Fl through the main cryogenic heat exchanger.
  • the first flow of natural gas F1 is cooled by heat exchange, on the one hand a main flow of natural gas FP circulating countercurrently in the main cryogenic heat exchanger, and on the other hand the initial flow of refrigerant gas G-0 (mentioned later) circulating countercurrent in the main cryogenic heat exchanger.
  • the first natural gas stream F-1 is at a temperature T2 higher than T1 and close to the temperature of the hot source. It is sent to the compressor 6b driven by the expansion turbine at room temperature 6a to be compressed at a pressure P2, typically between 2 and 4 MPa.
  • the natural gas stream passes through a natural gas cooler 21 and is then admitted to the inlet (ie at the inlet) of the natural gas compressor 12 to be further compressed at a pressure P3 greater than P2 and P0 (and preferably greater than the critical pressure of the natural gas) and form at the outlet a second flow of natural gas F-2.
  • the pressure P3 may be between 6 and 10 MPa.
  • the flow of natural gas can be compressed in two successive compression phases between which the flow of natural gas can be cooled by a natural gas cooler 22.
  • the second stream of natural gas F-2 passes through another natural gas cooler 24 and is separated into two stream fractions: a stream fraction F-2-1 is expanded and mixed with the gas feed stream F-0 natural upstream of the expansion turbine at room temperature 6a (as previously described), and the remaining fraction of this stream forms the main flow of natural gas FP through the main cryogenic heat exchanger 4.
  • the expansion of the flow F-2-1 can be done either by means of a simple control valve 23 (as shown in the figure), or by means of an expansion turbine.
  • a fraction of this main flow of natural gas FP passes through the main cryogenic heat exchanger to be cooled to a temperature T3 (typically between -140 ° C and -160 ° C) sufficiently low to ensure liquefaction natural gas.
  • Another fraction of the main stream of natural gas F-P is subjected to a second semi-open cycle with natural gas.
  • the objective of this second cycle is to contribute to the cooling of the refrigerant gas and to contribute to the pre-cooling of the natural gas and its liquefaction.
  • the fraction of the main stream of natural gas FP subjected to this second half-open cycle is extracted from the main cryogenic heat exchanger at a temperature T4 (typically between -10 ° C. and -40 ° C.) higher than the temperature T3. to be directed to the intermediate temperature expansion turbine 8a to lower its temperature by expansion to a temperature T5 (typically between -80 ° C and -110 ° C) lower than the temperature T4 and form a third flow natural gas F-3.
  • T4 typically between -10 ° C. and -40 ° C.
  • T5 typically between -80 ° C and -110 ° C
  • the third natural gas stream F-3 which may optionally contain a variable fraction of condensed liquid, is then reintroduced into the main cryogenic heat exchanger to heat-exchange the initial flow of cooling gas G-0 and the flow of natural gas.
  • main FP passing through the main countercurrent cryogenic heat exchanger.
  • the third natural gas stream F-3 in the gas phase and at a temperature T6 close to the temperature of the hot source is directed to a compressor 8b driven by the expansion turbine.
  • intermediate temperature 8a to be compressed It is then cooled by a natural gas cooler 26 before being mixed with the first natural gas stream F-1 upstream of the natural gas compressor 12.
  • the main stream of natural gas FP is cooled by heat exchange with the first stream of natural gas F1, the third stream of natural gas F3, and with a first flow of refrigerant gas. Gl (described later) circulating all three against the current in the main cryogenic heat exchanger 4.
  • the main stream of natural gas FP has thus been cooled to a temperature permitting its liquefaction. It undergoes a relaxation Joule-Thomson through a valve 28 to reach a pressure close to atmospheric pressure. Alternatively, this relaxation could be achieved by means of a liquid expansion turbine to improve its efficiency.
  • the relaxation of the liquefied natural gas has the effect of generating flash gases which are separated from the liquefied natural gas in the balloon 18 dedicated for this purpose.
  • the liquefied natural gas stream LNG free of flash gases is sent to the LNG storage tanks.
  • the FF flash gases are sent into the main cryogenic heat exchanger to be heated to a temperature TU typically between -50 ° C and -110 ° C, then to a flash gas treatment unit, which reduces the need for refrigeration power in the cold section of the main cryogenic heat exchanger.
  • the refrigerant gas compressor 14 delivers an initial flow of refrigerant gas G-0 which, after cooling in a refrigerant gas cooler 32, is at a temperature T7 close to the temperature of the hot source.
  • This initial flow of G-0 refrigerant gas is mainly circulated in the main cryogenic heat exchanger 4 to be pre-cooled by heating the first flow of natural gas F1, a third natural gas flow F-3 and the first flow of subsequently mentioned refrigerant gas G flowing countercurrently in the main cryogenic heat exchanger.
  • the initial flow of refrigerant gas G-0 is at a temperature T8 (for example between -80 ° C. and -110 ° C.) which is lower than the temperature T7.
  • This flow is directed to the low-pressure turbine temperature 10a to be further cooled to a temperature T9 (for example between -140 ° C and -160 ° C) lower than the temperature T8 before being reintroduced into the main cryogenic heat exchanger to form a first flow of refrigerant gas Gl.
  • the circulation of this first flow of refrigerant gas G1 in the main cryogenic heat exchanger makes it possible, by thermal exchange, to cool the main stream of natural gas FP and the initial flow of cooling gas G-0 circulating at countercurrent in the main cryogenic heat exchanger.
  • the first flow of refrigerant gas G-1 is at a temperature T10 greater than T9 and close to the temperature of the hot source. This flow is directed to the compressor 10b driven by the low-temperature expansion turbine 10a to be compressed before being cooled by a refrigerant gas cooler 34 and then reinjected into suction of the refrigerant gas compressor 14.
  • the first refrigerant gas stream G-1 can be compressed into two successive compression phases between which the flow of refrigerant gas can be cooled by another refrigerant gas cooler 30.
  • FIG. 2 illustrates a variant of the liquefaction process according to the invention called "recompression in series”.
  • This variant differs from the embodiment of FIG. 1 in that the discharge current of the compressor 8b driven by the intermediate temperature expansion turbine 8a is directed towards the suction of the compressor 6b driven by the expansion turbine at room temperature. 6a (instead of being directly admitted to the suction of the natural gas compressor 12 as described in the embodiment of FIG. 1). At the discharge of the compressor 6b, this stream of natural gas passes through the natural gas cooler 21 and is admitted to the suction of the natural gas compressor.
  • This variant thus makes it possible to achieve a stepped compression of the natural gas which is more efficient than that described with reference to FIG.
  • FIG. 3 illustrates another variant of the liquefaction process according to the invention known as "complementary pre-cooling by auxiliary refrigerant cycle”.
  • This variant differs from the embodiment of FIG. 1 in that, during the first half-open natural gas refrigeration cycle, the natural gas feed stream at the inlet of the expansion turbine at ambient temperature 6a is further cooled in an auxiliary heat exchanger 36.
  • an auxiliary refrigeration cycle 38 provides the refrigerating power necessary for the operation of the auxiliary heat exchanger 36.
  • This cycle can be, for example, a hydrofluorocarbon (HFC) or dioxide cycle. of carbon.
  • the temperature in the main separator 16 is lowered, which makes it possible to obtain better recovery of the NGLs.
  • FIG. 4 illustrates another variant of the liquefaction process according to the invention known as "absorption of NGL by subcooled reflux”.
  • the third natural gas stream F-3 at the exhaust of the intermediate expansion turbine 8a is directed towards an auxiliary separator 40 at the outlet of which the flow of natural gas is reintroduced into the main cryogenic heat exchanger 4, the flow of natural gas liquids at the outlet of the auxiliary separator 40 being pumped in whole or in part to the main separator 16 to contribute to the absorption of liquids of the natural gas.
  • FIG. 5 illustrates another variant of the liquefaction process according to the invention known as "absorption of NGL by reflux of LNG".
  • a portion F1 of the main natural gas flow fraction FP which passes through the main cryogenic heat exchanger 4 in order to be cooled is extracted from said exchanger primary cryogenic heat at a temperature TU to be directed to the main separator 16 so as to contribute to the absorption of liquids from the natural gas.
  • the temperature TU for extracting the flow F-I is greater than the temperature T3. It is for example between -70 ° C and -110 ° C.
  • the contact between the natural gas to be treated and the reflux of LNG can for example be made against the current.
  • the main separator may for example be equipped with a packing bed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

L'invention concerne un procédé de liquéfaction d'un gaz naturel comprenant un mélange d'hydrocarbures dont majoritairement du méthane, le procédé comprenant un premier cycle réfrigérant semi-ouvert au gaz naturel dans lequel les éventuels liquides du gaz naturel qui ont été condensés sont séparés du flux d'alimentation de gaz naturel, ce dernier traversant alors un échangeur de chaleur cryogénique principal (4) pour contribuer par échange thermique au pré-refroidissement d'un flux principal de gaz naturel (F-P) et au refroidissement d'un flux initial de gaz réfrigérant (G-0), un second cycle réfrigérant semi-ouvert au gaz naturel pour contribuer au pré-refroidissement du gaz naturel et du gaz réfrigérant ainsi qu'à la liquéfaction du gaz naturel, et un cycle réfrigérant fermé au gaz réfrigérant pour assurer le sous-refroidissement du gaz naturel liquéfié et fournir une puissance de réfrigération complémentaire aux deux autres cycles. L'invention concerne également une installation de liquéfaction de gaz naturel pour la mise en œuvre d'un tel procédé.

Description

Titre de l'invention
Procédé de liquéfaction de gaz naturel et de récupération d'éventuels liquides du gaz naturel comprenant deux cycles réfrigérant semi-ouverts au gaz naturel et un cycle réfrigérant fermé au gaz réfrigérant
Arrière-plan de l'invention
La présente invention se rapporte au domaine général de la liquéfaction de gaz naturel à base majoritairement de méthane pour produire du GNL, pour Gaz Naturel Liquéfié, appelé également LNG en anglais (pour « Liquefied Natural Gas »).
Un domaine particulier mais non limitatif d'application de l'invention est celui des installations flottantes de liquéfaction de gaz naturel, appelées FLNG en anglais (pour « Floating Liquéfaction of Natural Gas »), qui permettent de réaliser une liquéfaction du gaz naturel offshore, sur un navire ou sur tout autre support flottant en mer.
Le gaz naturel à base majoritairement de méthane qui est utilisé pour produire du GNL est soit un sous-produit issu des champs pétroliers, c'est-à-dire produit en association avec du pétrole brut, auquel cas il est en quantité faible ou moyenne, soit un produit majeur issu de champs de gaz.
Lorsque le gaz naturel est associé en faible quantité avec du pétrole brut, il est généralement traité et séparé puis réinjecté dans les puits de pétrole, exporté par pipeline et/ou utilisé sur place, notamment comme carburant pour alimenter des générateurs de puissance électrique, des fours ou des chaudières.
Lorsque le gaz naturel est issu de champs de gaz et produit en haute quantité, on cherche à l'inverse à le transporter de manière à pouvoir l'utiliser dans d'autres régions que celles dans laquelle il a été produit. A cet effet, le gaz naturel peut être transporté dans des cuves de navires de transport spécialisés (appelés « méthaniers ») sous forme de liquide cryogénique (à une température de l'ordre de -160°C) et à une pression proche de la pression atmosphérique ambiante.
La liquéfaction du gaz naturel en vue de son transport s'effectue généralement à proximité du site de production de gaz et nécessite des installations de grande échelle et des quantités d'énergie mécanique considérables pour des capacités de production pouvant atteindre plusieurs millions de tonnes par an. L'énergie mécanique nécessaire au procédé de liquéfaction peut être produite sur le site de l'installation de liquéfaction en utilisant une partie du gaz naturel comme combustible.
Le gaz naturel doit subir un traitement préalablement à sa liquéfaction afin d'en extraire les gaz acides (en particulier le dioxyde de carbone), l'eau (pour éviter qu'elle ne gèle dans l'installation de liquéfaction), le mercure (pour éviter les risques de dégradation des équipements en aluminium de l'installation de liquéfaction) et une partie des liquides du gaz naturel, appelés également NGLs en anglais (pour « Natural Gas Liquids »). Les NGLs comprennent l'ensemble des hydrocarbures plus lourds que le méthane présents dans le gaz naturel et susceptibles d'être condensés. Les NGLs comprennent notamment de l'éthane, des GPLs (propane et butanes) pour Gaz de Pétrole Liquéfié, appelés également LPGs en anglais (pour « Liquefied Petroleum Gas »), des pentanes et des hydrocarbures plus lourds que les pentanes présents dans le gaz naturel. Parmi ces hydrocarbures, il est en particulier critique d'extraire en amont des installations de liquéfaction le benzène, la plus grande partie des pentanes et les autres hydrocarbures plus lourds pour éviter qu'ils ne gèlent dans l'installation de liquéfaction. Par ailleurs, l'extraction de GPL et d'éthane peut être elle aussi nécessaire pour que le GNL satisfasse la spécification commerciale de pouvoir calorifique ou afin d'assurer une production commerciale de ces produits.
L'extraction de NGLs est soit intégrée à l'installation de liquéfaction du gaz naturel, soit effectuée dans une unité dédiée en amont de l'installation de liquéfaction. Dans le premier cas, cette extraction est généralement réalisée à une pression relativement élevée (de l'ordre de 4 à 5 MPa) alors que dans le second cas, elle est la plupart du temps réalisée à une pression plus basse (de l'ordre de 2 à 4 MPa).
Une extraction de NGLs intégrée à la liquéfaction du gaz naturel comme décrite par exemple dans la publication US 4,430,103 présente l'avantage d'être simple. Néanmoins, ce type de procédé ne fonctionne qu'à une pression inférieure à la pression critique du gaz à liquéfier, ce qui nuit à l'efficacité de la liquéfaction. De plus ce type de procédé effectue typiquement la séparation du gaz naturel et des NGLs à une pression de l'ordre de 4 à 5 MPa. Or, à ces pressions, la sélectivité de l'extraction de NGLs est faible. En effet, une portion significative de méthane est extraite en même temps que les NGLs. Un traitement en aval est alors généralement nécessaire pour rejeter ce méthane.
Par ailleurs, à une pression de l'ordre de 4 à 5 MPa, les densités du liquide et du gaz naturel sont relativement proches, ce qui rend la conception et l'opération de ballons séparateurs et de colonnes à distiller délicate (en particulier dans le cadre d'une application sur un support flottant).
Une extraction de NGLs à une pression de l'ordre de 2 à 4 MPa en amont de l'installation de liquéfaction dans une unité dédiée comme décrite par exemple dans la publication US 4,157,904 permet d'atteindre des taux de récupération de NGLs élevés avec une bonne sélectivité (i.e. peu de méthane extrait). Elle permet également de s'assurer que le gaz d'alimentation de la liquéfaction soit à la pression optimale pour la liquéfaction (typiquement au moins équivalente à la pression critique) par l'utilisation d'un re-compresseur dédié. Par contre, une telle extraction de NGLs requiert des équipements nombreux et complexes et nécessite des quantités d'énergie mécanique non négligeables pour la re-compression du gaz naturel.
Aussi, la façon dont les NGLs sont extraits a un impact significatif sur le coût et le degré de complexité de l'usine de liquéfaction, sur les performances de la liquéfaction et sur l'efficacité énergétique de l'usine de liquéfaction dans son ensemble.
Différents procédés de liquéfaction du gaz naturel ont été développés afin d'optimiser leur rendement énergétique global. Dans leur principe, ces procédés de liquéfaction reposent typiquement sur une réfrigération mécanique du gaz naturel obtenue grâce à un ou plusieurs cycles thermodynamiques de réfrigération fournissant la puissance thermique nécessaire au refroidissement et à la liquéfaction du gaz naturel. Dans chaque cycle thermodynamique mis en œuvre par ces procédés, le réfrigérant comprimé (sous forme de gaz) est refroidi (et éventuellement condensé) par une source thermique ayant une température supérieure à celle du fluide réfrigéré et appelée « source chaude » (eau, air, autre cycle de réfrigération) puis davantage refroidi par un flux de gaz froid généré par le cycle thermodynamique lui-même avant d'être détendu. Le flux de réfrigérant froid à basse température résultant de cette détente est utilisé pour refroidir le gaz naturel et prérefroidir le réfrigérant. Le réfrigérant gazeux à basse pression est à nouveau comprimé à son niveau de pression initial (par l'intermédiaire de compresseurs entraînés par des turbines à gaz, des turbines à vapeur ou des moteurs électriques).
Au cours de ces cycles thermodynamiques de réfrigération, la puissance nécessaire à la réfrigération et la liquéfaction du gaz naturel peut être fournie soit par la vaporisation et réchauffement d'un réfrigérant liquide, l'essentiel de la chaleur de réfrigération étant produite par la chaleur latente mise en jeu lors du changement d'état, soit par réchauffement d'un réfrigérant froid sous forme de gaz. Dans le cas d'un gaz réfrigérant, la température du réfrigérant est typiquement abaissée par détente de pression au travers d'une turbine de détente (en anglais « gas expander »). L'effet de refroidissement produit par le réfrigérant se présente majoritairement sous la forme d'une chaleur sensible.
Dans le cas d'un réfrigérant liquide, la température du réfrigérant est généralement abaissée par détente au travers d'une vanne et/ou d'une turbine de détente liquide (en anglais « liquid expander »). L'effet de refroidissement produit par le réfrigérant se présente principalement sous la forme d'une chaleur latente (et, dans une moindre mesure, sous la forme d'une chaleur sensible). Comme la chaleur latente est bien plus élevée que la chaleur sensible, les débits de réfrigérant qui sont nécessaires pour obtenir une même puissance de réfrigération sont plus élevés pour les cycles thermodynamiques recourant à un réfrigérant sous forme de gaz que pour les cycles thermodynamiques recourant à un réfrigérant sous forme de liquide.
Aussi, pour une même capacité de liquéfaction, les cycles thermodynamiques de réfrigération utilisant comme réfrigérant un gaz nécessitent des compresseurs de réfrigération de plus haute capacité et des conduites de diamètre plus élevés que pour les cycles thermodynamiques de réfrigération utilisant comme réfrigérant un liquide. Les cycles thermodynamiques à réfrigérant gazeux sont également généralement moins efficaces que les cycles thermodynamiques à réfrigérant liquide, notamment parce que l'écart de température entre le fluide subissant la réfrigération et le fluide réfrigérant est en moyenne plus élevé pour un cycle à réfrigérant gazeux ce qui contribue à accroître les pertes d'efficacité par irréversibilité.
D'un autre côté, les cycles thermodynamiques de réfrigération à réfrigérant liquide mettent en œuvre des inventaires massiques de réfrigérant plus élevés que les cycles thermodynamiques à réfrigérant gazeux. Lorsque les fluides réfrigérant utilisés sont inflammables ou toxiques, les cycles thermodynamiques à réfrigérant liquide ont un niveau de sécurité intrinsèque plus faible que les procédés à réfrigérant gazeux, en particulier si l'on compare des cycles thermodynamiques à réfrigérant liquide utilisant des hydrocarbures comme réfrigérant avec des cycles thermodynamiques qui utilisent comme réfrigérant un gaz inerte comme l'azote. Ce point est particulièrement critique dans un environnement où de nombreux équipements sont concentrés dans un espace restreint et notamment sur une installation offshore. Les cycles thermodynamiques de réfrigération utilisant des réfrigérants liquides sont ainsi efficaces mais présentent un certain nombre d'inconvénients, en particulier pour une application offshore sur un support flottant.
Différents procédés de liquéfaction utilisant des cycles thermodynamiques de réfrigération à réfrigérant gazeux ont été proposés. On connaît par exemple des documents US 5,916,260, WO 2005/071333, WO 2009/130466, WO 2012/175889 et WO 2013/057314 des procédés de liquéfaction à double ou triple détente d'azote dans lesquels de l'azote réchauffé en sortie d'un échangeur de chaleur est comprimé. Au refoulement des compresseurs, l'azote est refroidi et détendu par des turbines afin d'être utilisé pour refroidir et liquéfier le gaz naturel.
De tels procédés de liquéfaction à détente d'azote présentent des avantages certains en termes de simplicité, de sécurité intrinsèque et de robustesse qui les rendent particulièrement appropriés à une application sur un support flottant offshore. Néanmoins, ces procédés sont également peu efficaces. Ainsi un procédé utilisant des réfrigérants liquides produit typiquement de l'ordre de 30% de GNL de plus qu'un procédé à double détente d'azote (à puissance mécanique dépensée équivalente).
On connaît par ailleurs des documents WO 2007/021351 et US 6,412,302 des procédés de liquéfaction du gaz naturel combinant des détentes de gaz naturel et d'azote. Ces procédés permettent d'améliorer l'efficacité de la liquéfaction mais n'intègrent pas l'extraction des NGLs à la liquéfaction. Or cette extraction peut requérir des équipements nombreux et complexes et/ou avoir un impact négatif sur l'efficacité de la liquéfaction.
On connaît enfin des documents US 7,225,636 et WO
2009/017414 des procédés de liquéfaction de gaz naturel combinant des cycles de réfrigération pour la liquéfaction du gaz naturel par turbine de détente gaz et une extraction de NGLs. Cependant, ces procédés présentent un certain nombre de désavantages. En particulier, dans ces deux documents, l'extraction des NGLs se fait à une pression relativement élevée ce qui induit une sélectivité de séparation faible, tandis que la liquéfaction du gaz naturel se fait à basse pression (sous la pression critique), ce qui nuit à son efficacité. Objet et résumé de l'invention
La présente invention a donc pour but principal de pallier de tels inconvénients en proposant un procédé de liquéfaction utilisant des cycles thermodynamiques à réfrigérant gazeux et ayant une efficacité plus élevée que les procédés de liquéfaction de l'art antérieur tout en proposant une méthode simple et compacte d'extraction d'éventuels NGLs, qui soit intégrée au procédé de liquéfaction et qui offre une meilleure optimisation énergétique globale que les procédés de l'art antérieur.
Conformément à l'invention, ce but est atteint grâce à un procédé de liquéfaction d'un gaz naturel comprenant un mélange d'hydrocarbures dont majoritairement du méthane, le procédé comprenant :
a) un premier cycle semi-ouvert au gaz naturel dans lequel, successivement :
un flux d'alimentation de gaz naturel à une pression P0 préalablement traité pour en extraire les gaz acides, l'eau et le mercure est mélangé à un flux de gaz naturel, détendu à une pression PI et sa température abaissée à une température Tl au moyen d'une turbine de détente à température ambiante de sorte à obtenir une condensation d'éventuels liquides du gaz naturel contenus dans le gaz naturel, les éventuels liquides du gaz naturel qui ont été condensés sont séparés dans un séparateur principal du flux d'alimentation de gaz naturel, ce dernier traversant alors un échangeur de chaleur cryogénique principal pour former un premier flux de gaz naturel contribuant par échange thermique, d'une part au pré-refroidissement d'un flux principal de gaz naturel circulant à contre-courant au travers de l'échangeur de chaleur cryogénique principal, et d'autre part, au refroidissement d'un flux initial de gaz réfrigérant circulant à contre-courant dans l'échangeur de chaleur cryogénique principal,
en sortie de l'échangeur de chaleur cryogénique principal, le premier flux de gaz naturel qui est à une température T2 supérieure à Tl et voisine de la température d'une source chaude est comprimé à une pression P2 au moyen d'un compresseur entraîné par la turbine de détente à température ambiante avant d'être admis à l'aspiration d'un compresseur de gaz naturel pour y être davantage comprimé à une pression P3 supérieure à P2 et former un deuxième flux de gaz naturel, le deuxième flux de gaz naturel au refoulement du compresseur de gaz naturel est pour partie détendu et mélangé au flux d'alimentation de gaz naturel en amont de la turbine de détente à température ambiante, et pour partie forme le flux principal de gaz naturel,
une fraction de ce flux principal de gaz naturel traverse l'échangeur de chaleur cryogénique principal afin d'y être refroidi jusqu'à une température T3 suffisamment basse pour permettre la liquéfaction du gaz naturel ;
b) un second cycle réfrigérant semi-ouvert au gaz naturel dans lequel, successivement :
une autre fraction du flux principal de gaz naturel est extraite de l'échangeur de chaleur cryogénique principal à une température T4 supérieure à T3 pour être dirigée vers une turbine de détente intermédiaire afin que sa température soit abaissée par détente jusqu'à une température T5 inférieure à T4 et former un troisième flux de gaz naturel,
le troisième flux de gaz naturel est réintroduit dans l'échangeur de chaleur cryogénique principal pour refroidir par échange thermique le flux de gaz naturel principal et le flux initial de gaz réfrigérant circulant à contre-courant dans l'échangeur de chaleur cryogénique principal,
en sortie de l'échangeur de chaleur cryogénique principal, le troisième flux de gaz naturel qui est à une température T6 voisine de la température de la source chaude est dirigé vers un compresseur entraîné par la turbine de détente intermédiaire pour y être comprimé puis il est refroidi avant d'être mélangé au premier flux de gaz naturel en amont du compresseur de gaz naturel;
c) un cycle réfrigérant fermé au gaz réfrigérant dans lequel, successivement :
un flux initial de gaz réfrigérant avec une température T7 voisine de la température de la source chaude et préalablement comprimé par un compresseur de gaz réfrigérant est circulé dans l'échangeur de chaleur cryogénique principal pour y être pré-refroidi,
à la sortie de l'échangeur de chaleur cryogénique principal, le flux initial de gaz réfrigérant qui est à une température T8 inférieure à T7 est dirigé vers une turbine de détente à basse température afin que sa température soit abaissée par détente jusqu'à une température T9 inférieure à T8, le premier flux de gaz réfrigérant ainsi formé étant réintroduit dans l'échangeur de chaleur cryogénique principal pour contribuer au refroidissement du flux principal de gaz naturel et du flux initial de gaz réfrigérant ;
à la sortie de l'échangeur de chaleur cryogénique principal, le premier flux de gaz réfrigérant qui est à une température T10 voisine de la température de la source chaude est dirigé vers un compresseur entraîné par la turbine de détente à basse température pour y être comprimé avant d'être refroidi puis dirigé vers l'aspiration du compresseur de gaz réfrigérant.
Le procédé de liquéfaction selon l'invention comprend deux cycles réfrigérant semi-ouverts au gaz naturel et un unique cycle réfrigérant fermé au gaz réfrigérant. Le premier cycle réfrigérant semi- ouvert au gaz naturel a pour fonction d'extraire les liquides du gaz naturel (NGLs) lourds éventuellement présents dans le gaz naturel pour éviter les problèmes de gel dans la section froide de l'installation de liquéfaction, et de pré-refroidir le gaz naturel et le gaz réfrigérant. Le second cycle réfrigérant semi-ouvert au gaz naturel a pour fonction de contribuer au pré-refroidissement du gaz naturel et du gaz réfrigérant ainsi qu'à la liquéfaction du gaz naturel. Le cycle réfrigérant fermé au gaz réfrigérant a pour fonction d'assurer le sous-refroidissement du gaz naturel liquéfié et de fournir une puissance de réfrigération complémentaire aux deux autres cycles. Le gaz réfrigérant utilisé est typiquement de l'azote.
Il a été calculé que le procédé selon l'invention présente un rapport de puissance mécanique consommée par tonne de GNL produit pour des conditions équivalentes de l'ordre de 15% plus faible qu'un procédé à deux cycles réfrigérant à l'azote, 10% plus faible qu'un procédé à trois cycles réfrigérant à l'azote, et 8% plus faible qu'un procédé à un cycle réfrigérant au gaz naturel et deux cycles réfrigérant à l'azote lorsque ces procédés sont associés à une unité d'extraction de NGL en amont de la liquéfaction nécessitant une re-com pression du gaz (cette puissance de re-com pression étant prise en compte dans la comparaison). La puissance consommée par tonne de GNL produit par le procédé selon l'invention est ainsi plus basse que pour les procédés connus de l'art antérieur, ce qui montre une efficacité plus élevée pour ce procédé.
Le procédé selon l'invention intègre à la liquéfaction l'extraction des liquides du gaz naturel (NGLs) lourds, ce qui améliore l'efficacité énergétique globale de l'usine de liquéfaction de gaz naturel et permet de se dispenser de recourir à des installations dédiées à cette extraction. Le procédé de prétraitement du gaz naturel s'en trouve simplifié. De plus, l'extraction étant réalisée à basse pression, peu d'hydrocarbures légers (en particulier le méthane) sont entraînées au cours de ce processus d'extraction, ce qui permet de traiter les NGLs lourds en utilisant un procédé simple de mise en œuvre.
L'unique cycle au gaz réfrigérant du procédé selon l'invention est fermé. Aussi, le seul appoint en gaz réfrigérant qui soit nécessaire peut être facilement produit (en l'occurrence lorsque le gaz réfrigérant comprend majoritairement de l'azote). En particulier, aucune unité dédiée n'est requise pour l'importation, la production, le traitement ou le stockage d'hydrocarbures liquides utilisés comme réfrigérant. L'implantation du procédé selon l'invention s'en trouve ainsi grandement facilitée.
Le procédé selon l'invention présente un niveau élevé de sécurité intrinsèque. En effet, les inventaires massiques d'hydrocarbures sont limités (en particulier par rapport à un procédé utilisant des hydrocarbures sous forme liquide comme réfrigérant). L'implantation du procédé selon l'invention s'en trouve facilitée.
Enfin, le procédé est particulièrement approprié à une installation de liquéfaction du gaz naturel en mer, telle que par exemple à bord d'un FLNG, en raison de son haut niveau de sécurité intrinsèque et du fait qu'il ne requiert pas de stockage de réfrigérants.
Selon une variante dite de « recompression en série », au cours du second cycle réfrigérant semi-ouvert au gaz naturel, le flux de gaz naturel en sortie du compresseur entraîné par la turbine de détente intermédiaire est refroidi puis mélangé au premier flux de gaz naturel avant d'être dirigé vers l'entrée du compresseur entraîné par la turbine de détente à température ambiante. Cette variante permet de réaliser une compression étagée du gaz naturel de sorte à rendre cette dernière plus efficace.
Selon une variante dite à « pré-refroidissement complémentaire par cycle réfrigérant auxiliaire », au cours du premier cycle réfrigérant semi-ouvert au gaz naturel, le flux d'alimentation de gaz naturel à l'admission de la turbine de détente à température ambiante est davantage refroidi dans un échangeur de chaleur auxiliaire. Dans cette variante, un cycle de réfrigération auxiliaire fournit la puissance de réfrigération nécessaire au fonctionnement de l'échangeur de chaleur auxiliaire. Il résulte de cet arrangement que la température dans le séparateur principal est abaissée, ce qui permet d'obtenir une meilleure récupération des NGLs.
Selon une variante dite à « absorption de NGL par reflux sous- refroidi », au cours du second cycle réfrigérant semi-ouvert au gaz naturel, le troisième flux de gaz naturel à l'échappement de la turbine de détente intermédiaire est dirigé vers un séparateur auxiliaire à la sortie duquel le flux de gaz naturel est réintroduit dans l'échangeur de chaleur cryogénique principal, le flux de liquides du gaz naturel à la sortie du séparateur auxiliaire étant pompé en totalité ou en partie vers le séparateur principal pour contribuer à l'absorption de liquides du gaz naturel. Le contact entre le gaz naturel à traiter et le reflux sous-refroidi peut par exemple être réalisé à contre-courant. A cet effet, le séparateur principal peut être équipé d'un lit de garnissage. Avec cette variante, il est possible de traiter facilement des gaz légers avec une haute teneur en composés aromatiques (par exemple le benzène) ou d'extraire des GPLs avec un taux de récupération élevé (par exemple pour assurer une production industrielle de GPLs).
Selon une variante dite à « absorption de NGL par reflux de GNL », au cours du premier cycle réfrigérant semi-ouvert au gaz naturel, une partie de la fraction de flux principal de gaz naturel qui traverse l'échangeur de chaleur cryogénique principal afin d'y être refroidi est extraite dudit échangeur de chaleur cryogénique principal à une température TU supérieure à la température T3 pour être dirigée vers le séparateur principal de façon à contribuer à l'absorption de liquides du gaz naturel. Le contact entre le gaz naturel à traiter et le reflux de GNL peut par exemple être réalisé à contre-courant. A cet effet, le séparateur principal peut être équipé d'un lit de garnissage. Avec cette variante, il est possible de traiter des gaz légers avec une teneur en composés aromatiques (par exemple benzène) ou d'extraire notamment des GPLs avec un taux de récupération élevé et de l'éthane.
Au cours du premier cycle réfrigérant semi-ouvert au gaz naturel, le flux d'alimentation de gaz naturel est avantageusement mélangé avec du gaz naturel plus léger provenant du refoulement du compresseur de gaz naturel avant d'être détendu dans la turbine à température ambiante sans pré-refroidissement dans l'échangeur cryogénique principal, ce qui permet de produire de manière efficace un flux froid assurant le pré-refroidissement du gaz naturel et du gaz réfrigérant et d'extraire d'éventuels NGLs avec une excellente sélectivité.
Au cours du premier cycle réfrigérant semi-ouvert au gaz naturel, le flux d'alimentation de gaz naturel à l'échappement de la turbine de détente à température ambiante est introduit dans le séparateur principal à la sortie duquel un flux de liquides de gaz lourds est récupéré. Dans ce cas, une fraction du flux de liquides du gaz naturel récupéré est réchauffée et partiellement vaporisée en vue de faciliter son traitement en aval.
Selon une disposition avantageuse, la pression du flux de gaz naturel principal est supérieure à la pression critique du gaz naturel, ce qui permet de maximiser l'efficacité de la liquéfaction et assure que la liquéfaction se fasse sans changement de phase. L'invention a également pour objet une installation de liquéfaction de gaz naturel pour la mise en œuvre du procédé tel que défini précédemment, l'installation comprenant une turbine de détente à température ambiante destinée à recevoir un flux d'alimentation de gaz naturel ainsi qu'une partie d'un deuxième flux de gaz naturel provenant du refoulement d'un compresseur de gaz naturel et ayant un échappement relié à une entrée d'un séparateur principal, un échangeur de chaleur cryogénique principal destiné à recevoir les flux de gaz naturels et de gaz réfrigérant , un compresseur entraîné par la turbine de détente à température ambiante destiné à recevoir un premier flux de gaz naturel issu du séparateur principal et ayant une sortie reliée à l'aspiration du compresseur de gaz naturel, une turbine de détente à température intermédiaire destinée à recevoir une partie d'un flux principal de gaz naturel provenant du refoulement du compresseur de gaz naturel et reliée en entrée et en sortie à l'échangeur de chaleur cryogénique principal, un compresseur entraîné par la turbine de détente à température intermédiaire destiné à recevoir un troisième flux de gaz naturel issu de l'échangeur de chaleur cryogénique principal, une turbine de détente à basse température pour du gaz réfrigérant reliée en entrée et en sortie à l'échangeur de chaleur cryogénique principal, et un compresseur entraîné par la turbine de détente à basse température et ayant une sortie reliée à l'aspiration d'un compresseur de gaz réfrigérant.
De préférence, le compresseur de gaz naturel et le compresseur de gaz réfrigérant sont entraînés par une même machine d'entraînement fournissant la puissance nécessaire à l'augmentation de pression du gaz naturel à liquéfier ainsi qu'à la compression des fluides circulants dans les trois cycles réfrigérants. La consommation de puissance mécanique nécessaire pour ces fonctions est ainsi optimisée de manière à maximiser la production de GNL tout en minimisant le nombre d'équipements.
De préférence également, le compresseur de gaz naturel est en aval des compresseurs entraînés par la turbine de détente à température ambiante et la turbine de détente à température intermédiaire, et le compresseur de gaz réfrigérant est en aval du compresseur entraîné par la turbine de détente à basse température. Brève description des dessins
D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent des exemples de réalisation dépourvus de tout caractère limitatif. Sur les figures :
- la figure 1 représente de façon schématique un exemple de mise en œuvre du procédé de liquéfaction selon l'invention ;
- la figure 2 représente une variante de mise en œuvre du procédé de liquéfaction selon l'invention dite de « recompression en série » ;
- la figure 3 représente une autre variante de mise en œuvre du procédé de liquéfaction selon l'invention dite à « pré-refroidissement complémentaire par cycle réfrigérant auxiliaire » ;
- la figure 4 représente une autre variante de mise en œuvre du procédé de liquéfaction selon l'invention dite à « absorption de NGL par reflux sous-refroidi » ; et
- la figure 5 représente une autre variante de mise en œuvre du procédé de liquéfaction selon l'invention dite à « absorption de NGL par reflux de GNL ».
Description détaillée de l'invention
Le procédé de liquéfaction selon l'invention s'applique notamment (mais pas exclusivement) au gaz naturel provenant de champs de gaz. Typiquement, ce gaz naturel comprend majoritairement du méthane et se trouve en combinaison avec d'autres gaz, principalement des hydrocarbures en C2, C3, C4, C5, C6, des gaz acides, de l'eau, et des gaz inertes dont l'azote, ainsi que diverses impuretés dont le mercure.
La figure 1 représente un exemple d'installation 2 pour la mise en œuvre du procédé de liquéfaction de gaz naturel selon l'invention.
En substance, le procédé de liquéfaction selon l'invention recourt à trois cycles thermodynamiques de réfrigération, à savoir deux cycles réfrigérant semi-ouverts au gaz naturel et un unique cycle réfrigérant fermé au gaz réfrigérant. Par ailleurs, le procédé selon l'invention utilise comme gaz réfrigérant de préférence un gaz comprenant majoritairement de l'azote, ce qui rend le procédé particulièrement adapté à une mise en œuvre offshore, typiquement sur une installation flottante de liquéfaction de gaz naturel (appelée en anglais FLNG pour « Floating Liquéfaction of Natural Gas »).
Comme représenté sur la figure 1, cette installation de liquéfaction 2 ne nécessite qu'un seul échangeur de chaleur cryogénique principal 4, ce dernier pouvant être constitué d'un assemblage d'échangeurs de chaleur en aluminium brasés qui est installé dans une boîte froide (appelée « cold box » en anglais).
L'installation de liquéfaction 2 selon l'invention nécessite également trois turbodétendeurs (appelés « turbo-expander » en anglais), à savoir un turbodétendeur à température ambiante 6 dédié au gaz naturel, un turbodétendeur à température intermédiaire 8 dédié au gaz naturel, et un turbodétendeur à basse température 10 dédié au gaz réfrigérant.
De manière connue, un turbodétendeur est une machine tournante qui est composée d'une turbine de détente de gaz (ici respectivement une turbine de détente à température ambiante 6a, une turbine de détente à température intermédiaire 8a et une turbine de détente à basse température 10a et d'un compresseur de gaz (ici respectivement un compresseur 6b, un compresseur 8b et un compresseur 10b) entraîné par la turbine de détente de gaz.
L'installation de liquéfaction 2 selon l'invention comprend encore un compresseur de gaz naturel 12 et un compresseur de gaz réfrigérant 14, ces deux compresseurs 12, 14 étant de préférence entraînés par une même machine d'entraînement ME, par exemple une turbine à gaz fournissant la puissance nécessaire à l'augmentation de pression du gaz naturel à liquéfier ainsi qu'à la compression des fluides circulants dans les trois cycles réfrigérants.
Comme il sera détaillé ultérieurement, le compresseur de gaz naturel remplit une triple fonction : pressuriser et assurer la circulation du gaz naturel de manière à fournir suffisamment de puissance de réfrigération pour contribuer au refroidissement et à la liquéfaction du gaz naturel et du gaz réfrigérant, re-comprimer le gaz naturel qui a été détendu pour l'extraction des NGLs lourds, et assurer que le gaz naturel à liquéfier soit à la pression optimale pour maximiser l'efficacité de la liquéfaction.
Quant au compresseur de gaz réfrigérant, il a pour fonction de pressuriser et d'assurer la circulation du gaz réfrigérant de manière à permettre d'obtenir la puissance de réfrigération nécessaire pour contribuer au refroidissement du gaz réfrigérant, contribuer au prérefroidissement et la liquéfaction du gaz naturel et assurer le sous- refroidissement du gaz naturel.
L'installation de liquéfaction 2 comprend encore un séparateur principal 16 destiné à la séparation des NGLs éventuellement contenus dans le gaz naturel, et un ballon 18 destiné à permettre une séparation entre les gaz de flash final et le gaz naturel liquéfié (GNL).
On décrira maintenant les différentes étapes du procédé de liquéfaction de gaz naturel selon l'invention.
Préalablement au premier cycle réfrigérant semi-ouvert au gaz naturel, le gaz naturel subit un prétraitement destiné à le rendre propre à la liquéfaction. Ce prétraitement comprend notamment un traitement pour extraire du gaz naturel les gaz acides (dont le dioxyde de carbone), ces gaz acides pouvant notamment geler dans l'installation de liquéfaction. Le prétraitement comprend également un traitement de déshydratation pour extraire du gaz naturel l'eau et un traitement de démercurisation, le mercure risquant de dégrader les équipements en aluminium de l'installation de liquéfaction (dont l'échangeur de chaleur cryogénique principal 4).
Le flux d'alimentation de gaz naturel F-0 sort de cette phase préalable de prétraitement typiquement à une pression P0 comprise entre 5 et 10 MPa et une température T0 voisine (à savoir ici légèrement supérieure) de la température de la source chaude. Par « source chaude », on entend ici la source thermique qui est utilisée pour refroidir les flux non cryogéniques du procédé de liquéfaction. Cette source chaude peut typiquement être l'air ambiant, l'eau de mer, de l'eau douce refroidie par l'eau de mer, un fluide refroidi par un cycle réfrigérant auxiliaire ou une combinaison de plusieurs de ces sources. Ce flux F-0 est mélangé au flux de gaz naturel F-2-1 provenant de l'installation de liquéfaction (et décrit ultérieurement) et alimente le premier cycle réfrigérant semi-ouvert au gaz naturel.
Comme indiqué précédemment, ce premier cycle réfrigérant semi-ouvert au gaz naturel a pour fonction d'extraire les NGLs lourds éventuellement présents dans le gaz naturel, et de pré-refroidir le gaz naturel et le gaz réfrigérant.
A cet effet, le flux d'alimentation de gaz naturel F-0 (combiné au au flux de gaz naturel F-2-1 décrit ultérieurement) traverse la turbine de détente à température ambiante 6a à l'échappement (i.e. sortie) de laquelle sa pression PI est abaissée à une pression comprise entre 1 et 3 MPa et sa température Tl est abaissée à une température comprise entre -40°C et -60°C. Cette phase de détente du flux d'alimentation de gaz naturel conduit à une condensation d'éventuels NGLs (pour « Natural Gas Liquids » en anglais) lourds contenus dans le gaz naturel.
Par NGLs lourds, on entend ici l'essentiel des hydrocarbures en C5 (pentanes), C6 (hexanes, benzène) et plus qui sont contenus dans le gaz naturel, ainsi qu'une portion plus restreinte et variable d'éthane, de propane et de butanes et une portion très limitée de méthane.
Avec la condensation des NGLs lourds, le flux de gaz naturel à l'échappement de la turbine de détente à température ambiante 6a est dirigé vers l'entrée du séparateur principal 16. A la sortie du séparateur principal 16, le flux de liquides du gaz naturel F-HL est réchauffé, par exemple en circulant dans l'échangeur de chaleur cryogénique principal 4 (comme représenté sur la figure) ou en passant par un rebouilleur de NGLs dédié, puis il est dirigé vers une unité de traitement des NGLs 20. Après avoir été réchauffé, le flux de liquides du gaz naturel F-HL est diphasique et peut soit être envoyé directement à l'unité de traitement des NGLs 20 (comme représenté sur la figure) soit être soumis à une séparation gaz-liquide, les gaz évaporés étant renvoyés dans le séparateur principal 16.
L'unité de traitement des NGLs 20 est une unité qui permet de traiter les NGLs lourds, et notamment de séparer les butanes et hydrocarbures plus légers des pentanes et hydrocarbures plus lourds pour former en sortie un flux de liquides du gaz naturel légers F-G (aussi appelé flux de NGLs légers F-G) et un flux d'essences de gaz naturel. En sortie de l'unité de traitement des NGLs, ce flux de NGLs légers F-G qui comprend majoritairement de l'éthane, du propane et des butanes est destiné à être réinjecté dans le gaz à liquéfier si cela est compatible avec la spécification de GNL visée (ou valorisé hors de l'installation de liquéfaction si ce n'est pas le cas).
Par ailleurs, une fraction F-HL-1 du flux de liquides du gaz naturel lourds F-HL peut être dirigée vers un refroidisseur de NGLs 19 pour fournir la puissance thermique nécessaire à l'opération de cet échangeur. En particulier, le flux de liquides du gaz naturel légers F-G provenant de l'unité de traitement des NGLs 20 est refroidie dans le refroidisseur de NGLs 19. Une fraction F-G-l du flux de NGLs légers F-G refroidi est réinjectée dans le séparateur principal 16.
En contrôlant le débit de réinjection de ce flux F-G-l dans le séparateur principal, il est ainsi possible d'améliorer l'extraction de NGLs lourds et en particulier de réduire la quantité résiduelle de benzène et d'hydrocarbures lourds dans le gaz de sortie du séparateur principal.
La fraction du flux de NGLs légers F-G refroidi qui n'est pas réinjectée dans le séparateur principal 16 est réinjectée dans le flux principal de gaz naturel F-P, en aval du soutirage alimentant la turbine à température intermédiaire 8a (mentionnée ultérieurement).
On notera que la réinjection de la fraction F-G-l du flux de NGLs légers F-G refroidie dans le séparateur principal 16 n'est pas nécessaire si les quantités de benzène et d'hydrocarbures en C5 et plus dans le flux d'alimentation de gaz naturel sont faibles. On notera également que le refroidissement du flux de NGLs légers F-G peut être réalisé directement dans l'échangeur cryogénique principal 4 si un échangeur dédié à cet effet n'est pas prévu.
On notera enfin que l'injection du flux de NGLs légers F-G peut être réalisée soit à co-courant soit à contre-courant. Dans le cas où le flux de NGLs légers F-G est réinjecté à contre-courant dans le séparateur principal 16, celui-ci pourra éventuellement être équipé d'un lit de garnissage pour améliorer l'efficacité de l'extraction des NGLs.
En sortie du séparateur principal 16, le flux de gaz naturel débarrassé des hydrocarbures lourds (résidu gaz) est à une température acceptable pour assurer un pré-refroidissement du gaz à liquéfier et du gaz réfrigérant. A cet effet, ce résidu gaz forme un premier flux de gaz naturel F-l qui traverse l'échangeur de chaleur cryogénique principal.
Lorsqu'il traverse l'échangeur de chaleur cryogénique principal, le premier flux de gaz naturel F-l refroidit par échange thermique, d'une part un flux principal de gaz naturel F-P circulant à contre-courant dans l'échangeur de chaleur cryogénique principal, et d'autre part le flux initial de gaz réfrigérant G-0 (mentionné ultérieurement) circulant à contre- courant dans l'échangeur de chaleur cryogénique principal.
En sortie de l'échangeur de chaleur cryogénique principal, le premier flux de gaz naturel F-l est à une température T2 supérieure à Tl et voisine de la température de la source chaude. Il est envoyé vers le compresseur 6b entraîné par la turbine de détente à température ambiante 6a pour y être comprimé à une pression P2, typiquement comprise entre 2 et 4 MPa .
Au refoulement (i.e. en sortie) du compresseur 6b, le flux de gaz naturel traverse un refroidisseur de gaz naturel 21 puis est admis à l'aspiration (i.e. en entrée) du compresseur de gaz naturel 12 pour y être davantage comprimé à une pression P3 supérieure à P2 et P0 (et de préférence supérieure à la pression critique du gaz naturel) et former à la sortie un deuxième flux de gaz naturel F-2. Typiquement, la pression P3 pourra être comprise entre 6 et 10 MPa.
Dans ce compresseur de gaz naturel 12, le flux de gaz naturel pourra être comprimé en deux phases successives de compression entre lesquelles le flux de gaz naturel pourra être refroidi par un refroidisseur de gaz naturel 22.
Le deuxième flux de gaz naturel F-2 passe au travers d'un autre refroidisseur de gaz naturel 24 puis est séparé en deux fractions de flux : une fraction de flux F-2-1 est détendue et mélangée au flux d'alimentation de gaz naturel F-0 en amont de la turbine de détente à température ambiante 6a (comme décrit précédemment), et la fraction restante de ce flux forme le flux principal de gaz naturel F-P qui traverse l'échangeur de chaleur cryogénique principal 4.
On notera que la détente du flux F-2-1 peut se faire soit au moyen d'une simple vanne de contrôle 23 (comme représenté sur la figure), soit au moyen d'une turbine de détente. Une fraction de ce flux principal de gaz naturel F-P traverse l'échangeur de chaleur cryogénique principal afin d'y être refroidi jusqu'à une température T3 (typiquement comprise entre -140°C et -160°C) suffisamment basse pour assurer la liquéfaction du gaz naturel.
Une autre fraction du flux principal de gaz naturel F-P est soumise à un second cycle semi-ouvert au gaz naturel. L'objectif de ce second cycle est de contribuer au refroidissement du gaz réfrigérant et de contribuer au pré-refroidissement du gaz naturel et à sa liquéfaction.
La fraction du flux principal de gaz naturel F-P soumise à ce second cycle semi-ouvert est extraite de l'échangeur de chaleur cryogénique principal à une température T4 (typiquement comprise entre -10°C et -40°C) supérieure à la température T3 pour être dirigé vers la turbine de détente à température intermédiaire 8a afin d'abaisser sa température par détente jusqu'à une température T5 (typiquement comprise entre -80°C et -110°C) inférieure à la température T4 et former un troisième flux de gaz naturel F-3.
Le troisième flux de gaz naturel F-3 qui peut éventuellement contenir une fraction variable de liquide condensé est ensuite réintroduit dans l'échangeur de chaleur cryogénique principal pour refroidir par échange thermique le flux initial de gaz réfrigérant G-0 et le flux de gaz naturel principal F-P traversant l'échangeur de chaleur cryogénique principal à contre-courant.
A la sortie de l'échangeur de chaleur cryogénique principal, le troisième flux de gaz naturel F-3 en phase gaz et à une température T6 voisine de la température de la source chaude est dirigé vers un compresseur 8b entraîné par la turbine de détente à température intermédiaire 8a pour y être comprimé. Il est alors refroidi par un refroidisseur de gaz naturel 26 avant d'être mélangé au premier flux de gaz naturel F-l en amont du compresseur de gaz naturel 12.
Lors de son passage dans l'échangeur de chaleur cryogénique principal, le flux principal de gaz naturel F-P est refroidi par échange thermique avec le premier flux de gaz naturel F-l, le troisième flux de gaz naturel F3, et par un premier flux de gaz réfrigérant G-l (décrit ultérieurement) circulant tous les trois à contre-courant dans l'échangeur de chaleur cryogénique principal 4. A la sortie de l'échangeur de chaleur cryogénique principal, le flux principal de gaz naturel F-P a ainsi été refroidi à une température permettant sa liquéfaction. Celui-ci subit une détente de Joule-Thomson en traversant une vanne 28 jusqu'à atteindre une pression voisine de la pression atmosphérique. Alternativement, cette détente pourrait être réalisée au moyen d'une turbine de détente liquide pour améliorer son efficacité.
La détente du gaz naturel liquéfié a pour effet de générer des gaz de flash qui sont séparés du gaz naturel liquéfié dans le ballon 18 dédié à cet effet. En sortie du ballon, le flux de gaz naturel liquéfié GNL débarrassé des gaz de flash est envoyé vers les cuves de stockage de GNL.
Quant aux gaz de flash F-F, ils sont envoyés dans l'échangeur de chaleur cryogénique principal pour être réchauffés à une température TU typiquement comprise entre -50°C et -110°C, puis vers une unité de traitement du gaz de flash, ce qui permet de réduire les besoins en puissance de réfrigération dans la section froide de l'échangeur de chaleur cryogénique principal.
On décrira maintenant l'unique cycle réfrigérant fermé au gaz réfrigérant (ici majoritairement de l'azote) qui a pour but de fournir la puissance thermique complémentaire aux deux autres cycles réfrigérant et d'assurer le sous-refroidissement du gaz naturel liquéfié.
Le compresseur de gaz réfrigérant 14 délivre un flux initial de gaz réfrigérant G-0 qui, après refroidissement dans un refroidisseur de gaz réfrigérant 32, se trouve à une température T7 voisine de la température de la source chaude.
Ce flux initial de gaz réfrigérant G-0 est majoritairement circulé dans l'échangeur de chaleur cryogénique principal 4 pour y être prérefroidi en réchauffant le premier flux de gaz naturel F-l, un troisième flux de gaz naturel F-3 ainsi que le premier flux de gaz réfrigérant G-l mentionné ultérieurement circulant à contre-courant dans l'échangeur de chaleur cryogénique principal.
A la sortie de l'échangeur de chaleur cryogénique principal, le flux initial de gaz réfrigérant G-0 se trouve à une température T8 (par exemple comprise entre -80°C et -110°C) qui est inférieure à la température T7. Ce flux est dirigé vers la turbine de détente à basse température 10a pour y être davantage refroidi jusqu'à une température T9 (par exemple comprise entre -140°C et -160°C) inférieure à la température T8 avant d'être réintroduite dans l'échangeur de chaleur cryogénique principal pour former un premier flux de gaz réfrigérant G-l.
Comme décrit précédemment, la circulation de ce premier flux de gaz réfrigérant G-l dans l'échangeur de chaleur cryogénique principal permet d'assurer par échange thermique un refroidissement du flux principal de gaz naturel F-P et du flux initial de gaz réfrigérant G-0 circulant à contre-courant dans l'échangeur de chaleur cryogénique principal.
A la sortie de l'échangeur de chaleur cryogénique principal 4, le premier flux de gaz réfrigérant G-l est à une température T10 supérieure à T9 et voisine de la température de la source chaude. Ce flux est dirigé vers le compresseur 10b entraîné par la turbine de détente à basse température 10a pour y être comprimé avant d'être refroidi par un refroidisseur de gaz réfrigérant 34 puis réinjecté en aspiration du compresseur de gaz réfrigérant 14.
On notera que dans le compresseur de gaz réfrigérant 14, le premier flux de gaz réfrigérant G-l pourra être comprimé en deux phases successives de compression entre lesquelles le flux de gaz réfrigérant pourra être refroidi par un autre refroidisseur de gaz réfrigérant 30.
En liaison avec les figures 2 à 5, on décrira maintenant différentes variantes du procédé de liquéfaction selon l'invention, étant noté que chacune de ces variantes peut être mise en œuvre séparément ou combinée avec les autres en fonction du cas d'application.
La figure 2 illustre une variante du procédé de liquéfaction selon l'invention dite de « recompression en série ».
Cette variante se distingue du mode de réalisation de la figure 1 en ce que le courant au refoulement du compresseur 8b entraîné par la turbine de détente à température intermédiaire 8a est dirigé vers l'aspiration du compresseur 6b entraîné par la turbine de détente à température ambiante 6a (au lieu d'être directement admis à l'aspiration du compresseur de gaz naturel 12 comme décrit dans le mode de réalisation de la figure 1). Au refoulement du compresseur 6b, ce courant de gaz naturel traverse le refroidisseur de gaz naturel 21 puis est admis à l'aspiration du compresseur de gaz naturel. Cette variante permet ainsi de réaliser une compression étagée du gaz naturel qui est plus efficace que celle décrite en liaison avec la figure 1.
La figure 3 illustre une autre variante du procédé de liquéfaction selon l'invention dite à « pré-refroidissement complémentaire par cycle réfrigérant auxiliaire ».
Cette variante se distingue du mode de réalisation de la figure 1 en ce que, au cours du premier cycle réfrigérant semi-ouvert au gaz naturel, le flux d'alimentation de gaz naturel à l'admission de la turbine de détente à température ambiante 6a est davantage refroidi dans un échangeur de chaleur auxiliaire 36.
Comme représenté sur la figure 3, un cycle de réfrigération auxiliaire 38 fournit la puissance de réfrigération nécessaire au fonctionnement de l'échangeur de chaleur auxiliaire 36. Ce cycle peut être par exemple un cycle aux Hydro-Fluoro-Carbones (HFC) ou au dioxyde de carbone.
Dans cette variante, la température dans le séparateur principal 16 est abaissée, ce qui permet d'obtenir une meilleure récupération des NGLs.
La figure 4 illustre une autre variante du procédé de liquéfaction selon l'invention dite à « absorption de NGL par reflux sous-refroidi ».
Dans cette variante, au cours du second cycle réfrigérant semi- ouvert au gaz naturel, le troisième flux de gaz naturel F-3 à l'échappement de la turbine de détente intermédiaire 8a est dirigé vers un séparateur auxiliaire 40 à la sortie duquel le flux de gaz naturel est réintroduit dans l'échangeur de chaleur cryogénique principal 4, le flux de liquides du gaz naturel à la sortie du séparateur auxiliaire 40 étant pompé en totalité ou en partie vers le séparateur principal 16 pour contribuer à l'absorption de liquides du gaz naturel.
Le contact entre le gaz naturel à traiter et le reflux sous-refroidi peut par exemple être réalisé à contre-courant. A cet effet, le séparateur principal peut par exemple être équipé d'un lit de garnissage. Avec cette variante, il est possible de traiter des gaz légers avec une haute teneur en composés aromatiques (par exemple le benzène) ou extraire les LPGs avec un taux de récupération élevé (par exemple pour assurer une production industrielle de GPLs). La figure 5 illustre une autre variante du procédé de liquéfaction selon l'invention dite à « absorption de NGL par reflux de GNL ».
Dans cette variante, au cours du premier cycle réfrigérant semi- ouvert au gaz naturel, une partie F-I de la fraction de flux principal de gaz naturel F-P qui traverse l'échangeur de chaleur cryogénique principal 4 afin d'y être refroidi est extraite dudit échangeur de chaleur cryogénique principal à une température TU pour être dirigée vers le séparateur principal 16 de façon à contribuer à l'absorption de liquides du gaz naturel.
La température TU d'extraction du flux F-I est supérieure à la température T3. Elle est par exemple comprise entre -70°C et -110°C.
Le contact entre le gaz naturel à traiter et le reflux de GNL peut par exemple être réalisé à contre-courant. A cet effet, le séparateur principal peut par exemple être équipé d'un lit de garnissage. Avec cette variante, il est possible de traiter des gaz légers avec une haute teneur en composés aromatiques en composés aromatiques (par exemple le benzène) ou d'extraire notamment des GPLs avec un taux de récupération élevé et de l'éthane.

Claims

REVENDICATIONS
1. Procédé de liquéfaction d'un gaz naturel comprenant un mélange d'hydrocarbures dont majoritairement du méthane, le procédé comprenant : a) un premier cycle réfrigérant semi-ouvert au gaz naturel dans lequel, successivement :
un flux d'alimentation de gaz naturel (F-0) à une pression PO préalablement traité pour en extraire les gaz acides, l'eau et le mercure est mélangé à un flux de gaz naturel, détendu à une pression PI et sa température abaissée à une température Tl au moyen d'une turbine de détente à température ambiante (6a) de sorte à obtenir une condensation d'éventuels liquides du gaz naturel contenus dans le gaz naturel,
les éventuels liquides du gaz naturel qui ont été condensés sont séparés dans un séparateur principal (16) du flux d'alimentation de gaz naturel, ce dernier traversant alors un échangeur de chaleur cryogénique principal (4) pour former un premier flux de gaz naturel (F-l) contribuant par échange thermique, d'une part au pré-refroidissement d'un flux principal de gaz naturel (F-P) circulant à contre-courant au travers de l'échangeur de chaleur cryogénique principal, et d'autre part, au refroidissement d'un flux initial de gaz réfrigérant (G-0) circulant à contre- courant dans l'échangeur de chaleur cryogénique principal,
en sortie de l'échangeur de chaleur cryogénique principal, le premier flux de gaz naturel (F-l) qui est à une température T2 supérieure à Tl et voisine de la température d'une source chaude est comprimé à une pression P2 au moyen d'un compresseur (6b) entraîné par la turbine de détente à température ambiante (6a) avant d'être admis à l'aspiration d'un compresseur de gaz naturel (12) pour y être davantage comprimé à une pression P3 supérieure à P2 et former un deuxième flux de gaz naturel (F-2),
le deuxième flux de gaz naturel (F-2) au refoulement du compresseur de gaz naturel (12) est pour partie détendu et mélangé au flux d'alimentation de gaz naturel (F-0) en amont de la turbine de détente à température ambiante, et pour partie forme le flux principal de gaz naturel (F-P), une fraction de ce flux principal de gaz naturel (F-P) traverse l'échangeur de chaleur cryogénique principal afin d'y être refroidi jusqu'à une température T3 suffisamment basse pour permettre la liquéfaction du gaz naturel ; b) un second cycle réfrigérant semi-ouvert au gaz naturel dans lequel, successivement :
une autre fraction du flux principal de gaz naturel (F-P) est extraite de l'échangeur de chaleur cryogénique principal à une température T4 supérieure à T3 pour être dirigée vers une turbine de détente intermédiaire (8a) afin que sa température soit abaissée par détente jusqu'à une température T5 inférieure à T4 et former un troisième flux de gaz naturel (F-3),
le troisième flux de gaz naturel (F-3) est réintroduit dans l'échangeur de chaleur cryogénique principal pour refroidir par échange thermique le flux de gaz naturel principal et le flux initial de gaz réfrigérant circulant à contre-courant dans l'échangeur de chaleur cryogénique principal,
en sortie de l'échangeur de chaleur cryogénique principal, le troisième flux de gaz naturel (F-3) qui est à une température T6 voisine de la température de la source chaude est dirigé vers un compresseur (8b) entraîné par la turbine de détente intermédiaire (8a) pour y être comprimé puis il est refroidi avant d'être mélangé au premier flux de gaz naturel en amont du compresseur de gaz naturel (12) ; c) un cycle réfrigérant fermé au gaz réfrigérant dans lequel, successivement :
un flux initial de gaz réfrigérant (G-0) avec une température T7 voisine de la température de la source chaude et préalablement comprimé par un compresseur de gaz réfrigérant (14) est circulé dans l'échangeur de chaleur cryogénique principal (4) pour y être pré-refroidi, à la sortie de l'échangeur de chaleur cryogénique principal, le flux initial de gaz réfrigérant (G-0) qui est à une température T8 inférieure à T7 est dirigé vers une turbine de détente à basse température (10a) afin que sa température soit abaissée par détente jusqu'à une température T9 inférieure à T8, le premier flux de gaz réfrigérant (G-l) ainsi formé étant réintroduit dans l'échangeur de chaleur cryogénique principal pour contribuer au refroidissement du flux principal de gaz naturel (F-P) et du flux initial de gaz réfrigérant (G-0) ;
à la sortie de l'échangeur de chaleur cryogénique principal, le premier flux de gaz réfrigérant (G-l) qui est à une température T10 voisine de la température de la source chaude est dirigé vers un compresseur (10b) entraîné par la turbine de détente à basse température (10a) pour y être comprimé avant d'être refroidi puis dirigé vers l'aspiration du compresseur de gaz réfrigérant (14).
2. Procédé selon la revendication 1, dans lequel, au cours du second cycle réfrigérant semi-ouvert au gaz naturel, le flux de gaz naturel en sortie du compresseur (8b) entraîné par la turbine de détente intermédiaire (8a) est refroidi puis mélangé au premier flux de gaz naturel avant d'être dirigé vers l'entrée du compresseur (6b) entraîné par la turbine de détente à température ambiante (6a).
3. Procédé selon l'une des revendications 1 et 2, dans lequel, au cours du premier cycle réfrigérant semi-ouvert au gaz naturel, le flux d'alimentation de gaz naturel à l'admission de la turbine de détente à température ambiante (6a) est davantage refroidi dans un échangeur de chaleur auxiliaire (36).
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel, au cours du second cycle réfrigérant semi-ouvert au gaz naturel, le troisième flux de gaz naturel (F-3) à l'échappement de la turbine de détente intermédiaire (8a) est dirigé vers un séparateur auxiliaire (40) à la sortie duquel le flux de gaz naturel est réintroduit dans l'échangeur de chaleur cryogénique principal (4), le flux de liquides du gaz naturel à la sortie du séparateur auxiliaire (40) étant pompé en totalité ou en partie vers le séparateur principal (16) pour contribuer à l'absorption de liquides du gaz naturel.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel, au cours du premier cycle réfrigérant semi-ouvert au gaz naturel, une partie de la fraction de flux principal de gaz naturel (F-P) qui traverse l'échangeur de chaleur cryogénique principal (4) afin d'y être refroidi est extraite dudit échangeur de chaleur cryogénique principal à une température TU supérieure à la température T3 pour être dirigée vers le séparateur principal (16) de façon à contribuer à l'absorption de liquides du gaz naturel.
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel, au cours du premier cycle réfrigérant semi-ouvert au gaz naturel, le flux d'alimentation de gaz naturel (F-0) est détendu et sa température abaissée au moyen de la turbine de détente à température ambiante (6a) sans subir de pré-refroidissement préalable dans l'échangeur de chaleur cryogénique principal.
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel, au cours du premier cycle réfrigérant semi-ouvert au gaz naturel, le flux d'alimentation de gaz naturel à l'échappement de la turbine de détente à température ambiante (6a) est introduit dans le séparateur principal (16) à la sortie duquel un flux de liquides du gaz naturel (F-HL) est récupéré.
8. Procédé selon la revendication 7, dans lequel le flux de liquides du gaz naturel (F-HL) récupéré est réchauffée et partiellement vaporisé en vue de faciliter son traitement en aval.
9. Procédé selon l'une des revendications 7 et 8, dans lequel la puissance thermique nécessaire pour réchauffer le flux de liquides du gaz naturel (F-HL) provient du refroidissement du flux principal de gaz naturel (F-P) et/ou du flux initial de gaz réfrigérant (G-0).
10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel la pression du flux principal de gaz naturel (F-P) est supérieure à la pression critique du gaz naturel.
11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel :
la température Tl est comprise entre -40°C et -60°C ; la température T3 est comprise entre -140°C et -160°C ;
la température T4 est comprise entre -10°C et -40°C ; la température T5 est comprise entre -80°C et -110°C ; la température T8 est comprise entre -80°C et -110°C ; la température T9 est comprise entre -140°C et -160°C ; la pression PO est comprise entre 5 et 10 MPa ;
la pression PI est comprise entre 1 et 3 MPa ;
la pression P2 est comprise entre 2 et 4 MPa ; et
la pression P3 est comprise entre 6 et 10 MPa.
12. Procédé selon l'une quelconque des revendications 1 à 11, dans lequel le gaz réfrigérant comprend majoritairement de l'azote.
13. Procédé selon l'une quelconque des revendications 1 à 12, dans lequel il est mis en œuvre à bord d'une installation de liquéfaction de gaz naturel en mer.
14. Installation de liquéfaction de gaz naturel pour la mise en œuvre du procédé selon l'une quelconque des revendications 1 à 13, comprenant :
une turbine de détente à température ambiante (6a) destinée à recevoir un flux d'alimentation de gaz naturel (F-0) ainsi qu'une partie d'un deuxième flux de gaz naturel (F-2) provenant du refoulement d'un compresseur de gaz naturel (12) et ayant un échappement relié à une entrée d'un séparateur principal (16) ;
un échangeur de chaleur cryogénique principal (4) destiné à recevoir des flux de gaz naturels (F-P, F-l, F-3) et de gaz réfrigérant ;
un compresseur (6b) entraîné par la turbine de détente à température ambiante (6a) destiné à recevoir un premier flux de gaz naturel (F-l) issu d'un séparateur principal (16) et ayant une sortie reliée à l'aspiration du compresseur de gaz naturel (12) ;
une turbine de détente à température intermédiaire (8a) destinée à recevoir une partie d'un flux principal de gaz naturel (F-P) provenant du refoulement du compresseur de gaz naturel (12) et reliée en entrée et en sortie à l'échangeur de chaleur cryogénique principal (4) ; un compresseur (8b) entraîné par la turbine de détente à température intermédiaire (8a) destiné à recevoir un troisième flux de gaz naturel (F-3) issu de l'échangeur de chaleur cryogénique principal (4) ;
une turbine de détente à basse température (10a) pour du gaz réfrigérant reliée en entrée et en sortie à l'échangeur de chaleur cryogénique principal (4) ; et
un compresseur (10b) entraîné par la turbine de détente à basse température (10a) et ayant une sortie reliée à l'aspiration d'un compresseur de gaz réfrigérant (14).
15. Installation selon la revendication 14, dans laquelle le compresseur de gaz naturel (12) et le compresseur de gaz réfrigérant (14) sont entraînés par une même machine d'entraînement (ME) fournissant la puissance nécessaire à l'augmentation de pression du gaz naturel à liquéfier ainsi qu'à la compression des fluides circulants dans les trois cycles réfrigérants.
16. Installation selon l'une des revendications 14 et 15, dans laquelle le compresseur de gaz naturel (12) est en aval des compresseurs entraînés par la turbine de détente à température ambiante (6a) et la turbine de détente à température intermédiaire (8a), et dans laquelle le compresseur de gaz réfrigérant (14) est en aval du compresseur entraîné par la turbine de détente à basse température (10a).
PCT/FR2017/051630 2016-07-06 2017-06-20 Procédé de liquéfaction de gaz naturel et de récupération d'éventuels liquides du gaz naturel comprenant deux cycles réfrigérant semi-ouverts au gaz naturel et un cycle réfrigérant fermé au gaz réfrigérant WO2018007710A1 (fr)

Priority Applications (20)

Application Number Priority Date Filing Date Title
EP17745789.2A EP3482146B1 (fr) 2016-07-06 2017-06-20 Procédé de liquéfaction de gaz naturel et de récupération d'éventuels liquides du gaz naturel comprenant deux cycles réfrigérant semi-ouverts au gaz naturel et un cycle réfrigérant fermé au gaz réfrigérant
JP2018568282A JP6985306B2 (ja) 2016-07-06 2017-06-20 天然ガスを液化し、天然ガスから任意の液体を回収するプロセスであって、天然ガスを用いた2つの半開放冷媒サイクルとガス冷媒を用いた1つの閉冷媒サイクルとを含むプロセス
MA44302A MA44302B1 (fr) 2016-07-06 2017-06-20 Procédé de liquéfaction de gaz naturel et de récupération d'éventuels liquides du gaz naturel comprenant deux cycles réfrigérant semi-ouverts au gaz naturel et un cycle réfrigérant fermé au gaz réfrigérant
CN201780042291.2A CN109564057B (zh) 2016-07-06 2017-06-20 用于使天然气液化和回收来自天然气的液体的方法
DK17745789.2T DK3482146T3 (da) 2016-07-06 2017-06-20 Fremgangsmåde til kondensation af en naturgas og genvinding af mulige væsker fra naturgassen med to halvåbne kølemiddelcyklusser med naturgas og en lukket kølemiddelcyklus med kølegas
MX2019000197A MX2019000197A (es) 2016-07-06 2017-06-20 Proceso para licuar gas natural y para recuperar posibles liquidos del gas natural, que comprenden dos ciclos refrigerantes semi-abiertos para el gas natural y un ciclo refrigerante cerrado para el gas refrigerante.
SG11201811359VA SG11201811359VA (en) 2016-07-06 2017-06-20 Method for liquefying natural gas and for recovering possible liquids from the natural gas, comprising two refrigerant cycles semi-open to the natural gas and a refrigerant cycle closed to the refrigerant gas
RU2019101462A RU2743095C2 (ru) 2016-07-06 2017-06-20 Способ сжижения природного газа и извлечения из него жидкостей, которые могут в нем находиться, включающий два полузамкнутых холодильных цикла для природного газа и замкнутый холодильный цикл для газа-хладагента
ES17745789T ES2862304T3 (es) 2016-07-06 2017-06-20 Procedimiento de licuación de gas natural y de recuperación de eventuales líquidos del gas natural que comprende dos ciclos refrigerantes semiabiertos con respecto al gas natural y un ciclo refrigerante cerrado con respecto al gas refrigerante
CA3029464A CA3029464C (fr) 2016-07-06 2017-06-20 Procede de liquefaction de gaz naturel et de recuperation d'eventuels liquides du gaz naturel comprenant deux cycles refrigerant semi-ouverts au gaz naturel et un cycle refrigerant ferme au gaz refrigerant
EP21155666.7A EP3839392A1 (fr) 2016-07-06 2017-06-20 Procédé de liquéfaction de gaz naturel et de récupération d'éventuels liquides du gaz naturel comprenant deux cycles réfrigérant semi-ouverts au gaz naturel et un cycle réfrigérant fermé au gaz réfrigérant
AU2017294126A AU2017294126B2 (en) 2016-07-06 2017-06-20 Method for liquefying natural gas and for recovering possible liquids from the natural gas, comprising two refrigerant cycles semi-open to the natural gas and a refrigerant cycle closed to the refrigerant gas
KR1020197002719A KR102413811B1 (ko) 2016-07-06 2017-06-20 천연 가스에 대한 2 개의 반-개방 냉매 사이클과 냉매 가스에 대한 폐쇄된 냉매 사이클을 포함하는 천연 가스의 액화 방법 및 천연 가스로부터 가용 액체를 회수하기 위한 방법
US16/315,115 US11255602B2 (en) 2016-07-06 2017-06-20 Method for liquefying natural gas and for recovering possible liquids from the natural gas, comprising two refrigerant cycles semi-open to the natural gas and a refrigerant cycle closed to the refrigerant gas
BR112019000141-7A BR112019000141B1 (pt) 2016-07-06 2017-06-20 Processo para liquefazer um gás natural que compreende uma mistura de hidrocarbonetos predominante em metano e instalação de liquefação de gás natural para executar o processo
MYPI2019000005A MY195636A (en) 2016-07-06 2017-06-20 Method for Liquefying Natural Gas and for Recovering Possible Liquids from The Natural Gas, Comprising Two Refrigerant Cycles Semi-Open to the Natural Gas and a Refrigerant Cycle Closed to the Refrigerant Gas
CONC2018/0013887A CO2018013887A2 (es) 2016-07-06 2018-12-20 Proceso para licuar gas natural y para recuperar posibles líquidos del gas natural, que comprenden dos ciclos refrigerantes semi-abiertos para el gas natural y un ciclo refrigerante cerrado para el gas refrigerante
PH12018502729A PH12018502729A1 (en) 2016-07-06 2018-12-21 Method for liquefying natural gas and for recovering possible liquids from the natural gas, comprising two refrigerant cycles semi-open to the natural gas and a refrigerant cycle closed to the refrigerant gas
IL264067A IL264067B (en) 2016-07-06 2019-01-03 A method for turning natural gas into a liquid and recovering possible liquids from the natural gas, containing two semi-open cooling cycles for natural gas and a closed cooling cycle for cooling gas
CY20211100243T CY1123975T1 (el) 2016-07-06 2021-03-22 Μεθοδος υγροποιησης φυσικου αεριου και ανακτησης ενδεχομενων υγρων απο φυσικο αεριο η οποια συμπεριλαμβανει δυο ψυκτικους κυκλους ημι-ανοικτους στο φυσικο αεριο και εναν ψυκτικο κλειστο στο ψυκτικο αεριο

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1656460A FR3053771B1 (fr) 2016-07-06 2016-07-06 Procede de liquefaction de gaz naturel et de recuperation d'eventuels liquides du gaz naturel comprenant deux cycles refrigerant semi-ouverts au gaz naturel et un cycle refrigerant ferme au gaz refrigerant
FR1656460 2016-07-06

Publications (1)

Publication Number Publication Date
WO2018007710A1 true WO2018007710A1 (fr) 2018-01-11

Family

ID=57045120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/051630 WO2018007710A1 (fr) 2016-07-06 2017-06-20 Procédé de liquéfaction de gaz naturel et de récupération d'éventuels liquides du gaz naturel comprenant deux cycles réfrigérant semi-ouverts au gaz naturel et un cycle réfrigérant fermé au gaz réfrigérant

Country Status (21)

Country Link
US (1) US11255602B2 (fr)
EP (2) EP3482146B1 (fr)
JP (1) JP6985306B2 (fr)
KR (1) KR102413811B1 (fr)
CN (1) CN109564057B (fr)
AU (1) AU2017294126B2 (fr)
BR (1) BR112019000141B1 (fr)
CA (1) CA3029464C (fr)
CO (1) CO2018013887A2 (fr)
CY (1) CY1123975T1 (fr)
DK (1) DK3482146T3 (fr)
ES (1) ES2862304T3 (fr)
FR (1) FR3053771B1 (fr)
IL (1) IL264067B (fr)
MA (1) MA44302B1 (fr)
MX (1) MX2019000197A (fr)
MY (1) MY195636A (fr)
PH (1) PH12018502729A1 (fr)
RU (1) RU2743095C2 (fr)
SG (1) SG11201811359VA (fr)
WO (1) WO2018007710A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ308591B6 (cs) * 2019-10-04 2020-12-16 Siad Macchine Impianti S.P.A. Zařízení pro zpracování zemního plynu

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202100716QA (en) * 2018-08-22 2021-03-30 Exxonmobil Upstream Res Co Managing make-up gas composition variation for a high pressure expander process
EP3951297B1 (fr) * 2019-04-01 2023-11-15 Samsung Heavy Ind. Co., Ltd. Système de refroidissement
FR3098576B1 (fr) * 2019-07-08 2022-04-29 Air Liquide Procédé et installation de production d’hydrogène liquide
FR3099817B1 (fr) * 2019-08-05 2022-11-04 Air Liquide Procédé et installation de refroidissement et/ou de liquéfaction.
JP7355979B2 (ja) * 2019-09-26 2023-10-04 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード ガス液化装置
IT202000026978A1 (it) * 2020-11-11 2022-05-11 Saipem Spa Processo integrato di purificazione e liquefazione del gas naturale
US20220333856A1 (en) * 2021-04-15 2022-10-20 Henry Edward Howard System and method to produce liquefied natural gas using two distinct refrigeration cycles with an integral gear machine
US20220333855A1 (en) * 2021-04-15 2022-10-20 Henry Edward Howard System and method to produce liquefied natural gas using two distinct refrigeration cycles with an integral gear machine
US20220333858A1 (en) * 2021-04-15 2022-10-20 Henry Edward Howard System and method to produce liquefied natural gas using two distinct refrigeration cycles with an integral gear machine
US20220333853A1 (en) * 2021-04-16 2022-10-20 Henry Edward Howard System and method to produce liquefied natural gas using a three pinion integral gear machine
US20230115492A1 (en) * 2021-10-13 2023-04-13 Henry Edward Howard System and method to produce liquefied natural gas
US20230129424A1 (en) * 2021-10-21 2023-04-27 Henry Edward Howard System and method to produce liquefied natural gas
US20240125549A1 (en) * 2022-10-14 2024-04-18 Air Products And Chemicals, Inc. Open Loop Liquefaction Process with NGL Recovery

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2317609A1 (fr) * 1975-07-07 1977-02-04 Lummus Co Procede et appareil de liquefaction de gaz naturel
US4157904A (en) 1976-08-09 1979-06-12 The Ortloff Corporation Hydrocarbon gas processing
US4430103A (en) 1982-02-24 1984-02-07 Phillips Petroleum Company Cryogenic recovery of LPG from natural gas
WO1997013109A1 (fr) * 1995-10-05 1997-04-10 Bhp Petroleum Pty. Ltd. Procede de liquefaction
US6412302B1 (en) 2001-03-06 2002-07-02 Abb Lummus Global, Inc. - Randall Division LNG production using dual independent expander refrigeration cycles
WO2005071333A1 (fr) 2004-01-23 2005-08-04 Hamworthy Kse Gas Systems As Systeme et procede de reliquefaction de vaporisat
WO2007021351A1 (fr) 2005-08-09 2007-02-22 Exxonmobil Upstream Research Company Procede de liquefaction de gaz naturel destine a produire un gnl
US7225636B2 (en) 2004-04-01 2007-06-05 Mustang Engineering Lp Apparatus and methods for processing hydrocarbons to produce liquified natural gas
WO2009017414A1 (fr) 2007-06-22 2009-02-05 Kanfa Aragon As Procédé et système pour la production de gnl
WO2009130466A2 (fr) 2008-04-23 2009-10-29 Statoilhydro Asa Procédé de détente double d'azote
WO2012175889A2 (fr) 2011-06-24 2012-12-27 Saipem S.A. Procédé de liquéfaction de gaz naturel a triple circuit ferme de gaz réfrigérant
WO2013057314A2 (fr) 2011-10-21 2013-04-25 Single Buoy Moorings Inc. Procédé à détentes multiples d'azote pour la production de lng

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5036671A (en) * 1990-02-06 1991-08-06 Liquid Air Engineering Company Method of liquefying natural gas
US6158240A (en) * 1998-10-23 2000-12-12 Phillips Petroleum Company Conversion of normally gaseous material to liquefied product
US6658890B1 (en) * 2002-11-13 2003-12-09 Conocophillips Company Enhanced methane flash system for natural gas liquefaction
US7234322B2 (en) * 2004-02-24 2007-06-26 Conocophillips Company LNG system with warm nitrogen rejection
WO2006087330A2 (fr) * 2005-02-17 2006-08-24 Shell Internationale Research Maatschappij B.V. Installation et procede de liquefaction de gaz naturel
JP5725856B2 (ja) * 2007-08-24 2015-05-27 エクソンモービル アップストリーム リサーチ カンパニー 天然ガス液化プロセス
CN103270381B (zh) * 2010-07-28 2016-04-13 气体产品与化学公司 一种用于使气体液化的系统和工艺
GB2486036B (en) 2011-06-15 2012-11-07 Anthony Dwight Maunder Process for liquefaction of natural gas
CN102564059A (zh) * 2012-02-19 2012-07-11 中国石油集团工程设计有限责任公司 双级多组分混合冷剂制冷天然气液化系统及方法
US20150033792A1 (en) * 2013-07-31 2015-02-05 General Electric Company System and integrated process for liquid natural gas production
JP6225049B2 (ja) * 2013-12-26 2017-11-01 千代田化工建設株式会社 天然ガスの液化システム及び液化方法
GB2541464A (en) 2015-08-21 2017-02-22 Frederick Skinner Geoffrey Process for producing Liquefied natural gas
CN105627693B (zh) * 2016-03-11 2019-03-01 重庆耐德能源装备集成有限公司 一种天然气的处理装置及方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2317609A1 (fr) * 1975-07-07 1977-02-04 Lummus Co Procede et appareil de liquefaction de gaz naturel
US4157904A (en) 1976-08-09 1979-06-12 The Ortloff Corporation Hydrocarbon gas processing
US4430103A (en) 1982-02-24 1984-02-07 Phillips Petroleum Company Cryogenic recovery of LPG from natural gas
WO1997013109A1 (fr) * 1995-10-05 1997-04-10 Bhp Petroleum Pty. Ltd. Procede de liquefaction
US5916260A (en) 1995-10-05 1999-06-29 Bhp Petroleum Pty Ltd. Liquefaction process
US6412302B1 (en) 2001-03-06 2002-07-02 Abb Lummus Global, Inc. - Randall Division LNG production using dual independent expander refrigeration cycles
WO2005071333A1 (fr) 2004-01-23 2005-08-04 Hamworthy Kse Gas Systems As Systeme et procede de reliquefaction de vaporisat
US7225636B2 (en) 2004-04-01 2007-06-05 Mustang Engineering Lp Apparatus and methods for processing hydrocarbons to produce liquified natural gas
WO2007021351A1 (fr) 2005-08-09 2007-02-22 Exxonmobil Upstream Research Company Procede de liquefaction de gaz naturel destine a produire un gnl
WO2009017414A1 (fr) 2007-06-22 2009-02-05 Kanfa Aragon As Procédé et système pour la production de gnl
WO2009130466A2 (fr) 2008-04-23 2009-10-29 Statoilhydro Asa Procédé de détente double d'azote
WO2012175889A2 (fr) 2011-06-24 2012-12-27 Saipem S.A. Procédé de liquéfaction de gaz naturel a triple circuit ferme de gaz réfrigérant
FR2977015A1 (fr) * 2011-06-24 2012-12-28 Saipem Sa Procede de liquefaction de gaz naturel a triple circuit ferme de gaz refrigerant
WO2013057314A2 (fr) 2011-10-21 2013-04-25 Single Buoy Moorings Inc. Procédé à détentes multiples d'azote pour la production de lng

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ308591B6 (cs) * 2019-10-04 2020-12-16 Siad Macchine Impianti S.P.A. Zařízení pro zpracování zemního plynu

Also Published As

Publication number Publication date
CN109564057A (zh) 2019-04-02
BR112019000141B1 (pt) 2023-04-04
CA3029464C (fr) 2024-02-13
US20190310013A1 (en) 2019-10-10
MA44302B1 (fr) 2020-03-31
RU2019101462A (ru) 2020-08-06
PH12018502729A1 (en) 2019-04-15
DK3482146T3 (da) 2021-03-22
IL264067A (en) 2019-02-28
EP3482146A1 (fr) 2019-05-15
RU2019101462A3 (fr) 2020-09-15
CA3029464A1 (fr) 2018-01-11
KR102413811B1 (ko) 2022-06-29
CN109564057B (zh) 2021-04-02
CY1123975T1 (el) 2022-05-27
US11255602B2 (en) 2022-02-22
MA44302A1 (fr) 2019-11-29
AU2017294126B2 (en) 2022-06-16
SG11201811359VA (en) 2019-03-28
BR112019000141A2 (pt) 2019-04-16
FR3053771A1 (fr) 2018-01-12
CO2018013887A2 (es) 2019-02-19
MY195636A (en) 2023-02-03
FR3053771B1 (fr) 2019-07-19
MX2019000197A (es) 2019-06-10
KR20190023100A (ko) 2019-03-07
RU2743095C2 (ru) 2021-02-15
AU2017294126A1 (en) 2019-01-17
IL264067B (en) 2021-12-01
EP3482146B1 (fr) 2021-02-24
JP2019526770A (ja) 2019-09-19
EP3839392A1 (fr) 2021-06-23
ES2862304T3 (es) 2021-10-07
JP6985306B2 (ja) 2021-12-22

Similar Documents

Publication Publication Date Title
CA3029464C (fr) Procede de liquefaction de gaz naturel et de recuperation d'eventuels liquides du gaz naturel comprenant deux cycles refrigerant semi-ouverts au gaz naturel et un cycle refrigerant ferme au gaz refrigerant
EP2724100B1 (fr) Procédé de liquéfaction de gaz naturel a triple circuit ferme de gaz réfrigérant
EP2344821B1 (fr) Procédé de production de courants d'azote liquide et gazeux, d'un courant gazeux riche en hélium et d'un courant d'hydrocarbures déazoté et installation associée
EP1352203B1 (fr) Procede de refrigeration de gaz liquefie et installation mettant en oeuvre celui-ci
EP2724099B1 (fr) Procede de liquefaction de gaz naturel avec un melange de gaz refrigerant
FR3053770B1 (fr) Procede de liquefaction de gaz naturel et de recuperation d'eventuels liquides du gaz naturel comprenant un cycle refrigerant semi-ouvert au gaz naturel et deux cycles refrigerant fermes au gaz refrigerant
EP1118827B1 (fr) Procédé de liquéfaction partielle d'un fluide contenant des hydrocarbures tel que du gaz naturel
FR2675888A1 (fr) Procede a l'utilisation du gaz naturel liquefie (gnl) associe a un expanseur a froid pour produire de l'azote liquide.
EP2368083A2 (fr) Procédé de production d'un courant de gaz naturel liquéfié sous-refroidi à partir d'un courant de charge de gaz naturel et installation associée.
FR2772896A1 (fr) Procede de liquefaction d'un gaz notamment un gaz naturel ou air comportant une purge a moyenne pression et son application
EP0818661A1 (fr) Procédé et installation perfectionnés de refroidissement, en particulier pour la liquéfaction de gaz naturel
CA2823900C (fr) Procede de production d'une coupe riche en hydrocarbures c3+ et d'un courant riche en methane et ethane
OA19019A (en) Procédé de liquéfaction de gaz naturel et de récupération d'éventuels liquides du gaz naturel comprenant deux cycles réfrigérant semi-ouverts au gaz naturel et un cycle réfrigérant fermé au gaz réfrigérant
OA16683A (fr) Procédé de liquéfaction de gaz naturel à triple circuit fermé de gaz réfrigérant.
OA16795A (fr) Procédé de liquéfaction de gaz naturel avec un mélange de gaz réfrigérant.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17745789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568282

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3029464

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019000141

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017294126

Country of ref document: AU

Date of ref document: 20170620

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197002719

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017745789

Country of ref document: EP

Effective date: 20190206

ENP Entry into the national phase

Ref document number: 112019000141

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190104