WO2018007207A1 - Verfahren zur herstellung von sekundären, cycloaliphatischen aminen - Google Patents

Verfahren zur herstellung von sekundären, cycloaliphatischen aminen Download PDF

Info

Publication number
WO2018007207A1
WO2018007207A1 PCT/EP2017/065864 EP2017065864W WO2018007207A1 WO 2018007207 A1 WO2018007207 A1 WO 2018007207A1 EP 2017065864 W EP2017065864 W EP 2017065864W WO 2018007207 A1 WO2018007207 A1 WO 2018007207A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
diisopropyl
compounds
catalyst
mixtures
Prior art date
Application number
PCT/EP2017/065864
Other languages
English (en)
French (fr)
Inventor
Christian Gruenanger
Alexander Panchenko
Johann-Peter Melder
Norbert Gutfrucht
Martin Ernst
Klaus Breuer
Irene GORMAN
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2018007207A1 publication Critical patent/WO2018007207A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/24Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
    • C07C209/26Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds by reduction with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/33Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C211/34Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton
    • C07C211/36Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton containing at least two amino groups bound to the carbon skeleton

Definitions

  • the invention relates to a process for the preparation of a compound of the formula I.
  • R 1 is a hydrocarbon radical having a maximum of 14 carbon atoms, which is characterized in that a compound of formula III
  • Secondary amines are important for various technical applications, z. B. as additives to polymers, as corrosion inhibitors or as starting materials for the preparation of active ingredients.
  • a process for the preparation of compounds of formula I or II is described by Seung Geun Oh et al. in Catalysis Communications 43 (2014), pages 79-83. The preparation is carried out by reacting the corresponding nitro compounds with alcohols in the presence of hydrogen and a catalyst. The yield of N-alkylated cycloaliphatic compounds is low, as is evident from Table 2.
  • DE-A 4404220 relates to the use of ruthenium catalysts for the preparation of cycloaliphatic polyamines.
  • Starting materials are N-alkylated, aromatic amino compounds. From this, the corresponding N-alkylated cycloaliphatic compounds are prepared by nuclear hydrogenation.
  • Processes for the preparation of secondary amines should be as economical as possible and economically feasible on an industrial scale.
  • the resulting secondary amine should be as pure as possible.
  • Of particular interest for many uses are secondary amines with little discoloration.
  • the processes should also be able to be carried out continuously with the highest possible yields and selectivities.
  • the object of the invention was such a process for compounds of the formula I and II. Accordingly, the process defined at the outset was found. To the products of the process
  • R 1 is a hydrocarbon radical having a maximum of 14 carbon atoms.
  • the hydrocarbon radical can be aliphatic or aromatic or contain both aromatic and aliphatic groups. Examples which may be mentioned are C 1 - to C 14 -alkyl groups, the cyclohexyl group, the phenyl group, aromatics substituted by alkyl groups, for example a tolyl group, and also alkaromatic groups, for example groups of the formula -R 2 -C 6 H 5 , where R 2 is a C 1 - to C 4 - Alkylene group is, for example, the benzyl group or the phenylethyl group (the latter by reaction with acetophenone).
  • R 1 is a C 1 to C 10 alkyl group.
  • R 1 particularly preferably represents the isopropyl group.
  • N, N '-diisopropyl-1-methyl-2,4-diamino-cyclohexane and N, N - diisopropyl-1-methyl-2,6-diamino-cyclohexane the proportion of N, N' -diisopropyl 1-methyl-2,4-diamino-cyclohexane 70 to 90 wt.%, Particularly preferably 75 to 85 wt.%, Based on the sum of the two compounds.
  • N, N corresponding to is' -diisopropyl-1-methyl-2,4-diamino cyclohexane, and N, N '-diisopropyl-1-methyl-2,6-diamino-cyclohexane the proportion of N, N' Diisop- ropyl-1-methyl-2,6-diamino-cyclohexane 10 to 30 wt.%, Particularly preferably 15 to 25 wt.%, Based on the sum of the two compounds.
  • it is a Gemsich from about 80 wt% N, N -. Diisopropyl-1-methyl-2,4-diamino-cyclohexane by weight and about 20% N, N '-diisopropyl-1 -methyl-. 2,6-diamino-cyclohexane (abbreviated as ⁇ , ⁇ '-diisopropyl-MDACH hereinafter).
  • Starting materials are compounds of the formula III or IV or mixtures thereof.
  • the preferred proportions of the compounds of the formula III or IV correspond to the proportions of the compounds of the formulas I and II, see above.
  • Mixtures of compounds of formula III and IV can be obtained by mixing the compounds in the desired proportions. Such mixtures are particularly easily obtainable by nuclear hydrogenation of the 2,4- and 2,6-diamino-toluene present as a mixture.
  • aldehydes or ketones are chosen according to the desired R 1 radicals. Suitable aldehydes or ketones are therefore, for example, C 1 - to C 14 -alkanals, in particular C 1 - to C 10 -alkanals, such as formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde or C 1 - to C 14 Alkanones, in particular C1 - to C10 alkanones, such as acetone or methyl ethyl ketone (butanone), and cyclohexanone, acetophenone or benzophenone.
  • C 1 - to C 14 -alkanals in particular C 1 - to C 10 -alkanals, such as formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde or C 1 - to C 14 Alkanones, in particular C1 - to C10 alkanones, such as acetone or
  • ketones Particularly preferred are aliphatic ketones having 1 to 10 carbon atoms.
  • the reaction preferably takes place in the presence of a catalyst.
  • Suitable catalysts are conventional catalysts as are known for hydrogenation (hydrogenation catalysts).
  • the catalyst may be a conventional heterogeneous hydrogenation catalyst in particulate form.
  • Heterogeneous catalysts for the hydrogenation are catalytically active elements or compounds, they may be present without carriers in particulate form (full-contact catalysts), for. B. as
  • Raney nickel or Raney cobalt may be supported on a support, e.g. Example of calcium carbonate, silica, zirconia or alumina, be applied (supported catalysts).
  • the hydrogenation catalyst is a supported catalyst.
  • Preferred catalysts contain active metals, either in elemental form or in the form of compounds, e.g. B. oxides. Often the catalysts contain mixtures of active metals.
  • the term metal therefore in the following includes elemental metals or even metals as they are present in chemical bonds, whether in ionic form or covalently bonded form.
  • When using the active metals in the form of their oxides or optionally also other compounds is generally carried out in higher temperatures, especially in the presence of hydrogen, a reduction of the oxides to the metals. This can be done at the beginning of the implementation or in advance in a separate step.
  • catalysts are e.g. those which contain a metal of groups IVb, Vb, Vlb, Vllb, VIIIb, Ib, or IIb.
  • catalysts which contain at least one metal from the iron, cobalt, nickel or copper group of the periodic table.
  • catalysts which contain at least one metal of the cobalt, nickel or copper group of the Periodic Table, in particular at least one metal selected from Cobalt, rhodium, iridium, nickel, palladium, platinum or copper; very particularly preferred is palladium.
  • the content of the above metals of the cobalt, nickel or copper group in the catalyst is at least 5% by weight, particularly preferably at least 20% by weight and very particularly preferably at least 50% by weight and in particular 90% by weight, based on the total weight all active metals of the catalyst (for metal compounds, eg oxides, only the metal content is considered here).
  • mixtures of the above metals are used.
  • Other active metals that can be used with the above metals of the cobalt, nickel or copper group are, for. As manganese, tin, ruthenium or alkali metals and alkaline earth metals.
  • the catalysts contain palladium in amounts of 5% by weight in total, more preferably at least 20% by weight and very preferably at least 50% by weight and in particular at least 90% by weight, based on the total weight of all active metals of the hydrogenation catalyst ,
  • the reaction is carried out in the presence of the above catalyst and additionally in the presence of acidic solid particles, as already described in WO 2015/124413.
  • acidic solid particles are meant solid particles which act collectively as acid. Therefore, the acidic solid particles contain acidic compounds in an amount such that the solid particles as a whole have the action as an acid.
  • these are solid particles which, upon addition of at least 10 g of solid particles in 100 g of neutral water (pH 7), bring about a reduction in the pH, irrespective of whether the solid particles are soluble, partially soluble or insoluble in water.
  • the acidic solid particles may be Lewis acids or Bronsted acids.
  • Preferred acidic compounds are acidic metal oxides, phosphates, tungstates, sulfates and organic acids or their salts.
  • Titanium dioxide, zirconium dioxide, aluminum oxide, silicon dioxide or mixed oxides of aluminum and silicon (zeolites) and acidic clays may be mentioned as acidic metal oxides.
  • aluminum and silicon atoms may also be partially replaced by other atoms, e.g.
  • aluminum may be replaced by other trivalent metals.
  • Particularly suitable acidic organic compounds are organic ion exchange resins having acid groups, for example carboxylic acid groups or sulfonic acid groups.
  • these are sulfonated copolymers of styrene and divinylbenzene (eg the brands Lewatit from Lanxess, Amberlite from Rohm & Haas).
  • the acidic solid particles are alumina, zirconia or titania.
  • the reaction can be carried out without the use of a solvent or using a solvent. If the selected aldehyde or ketone is liquid under emergency conditions (21 ° C, 1 bar), it can simultaneously serve as a solvent.
  • Suitable solvents include e.g. Ethers, such as tetrahydrofuran, diethyl ether, methyl tert-butyl ether or 1, 4-dioxane, alcohols, such as methanol, ethanol, propanol or isopropanol or water.
  • Ethers such as tetrahydrofuran, diethyl ether, methyl tert-butyl ether or 1, 4-dioxane
  • alcohols such as methanol, ethanol, propanol or isopropanol or water.
  • no solvent is included in the reaction.
  • reaction of the compounds of the formula III or IV, or mixtures thereof with the ketone or aldehyde and hydrogen can, for. B. at temperatures of 20 to 250 ° C, preferably at 80 to 180 ° C.
  • the implementation can z. B. be carried out at normal pressure or pressure. In a preferred embodiment, it is at elevated pressure z. B. from 1, 1 to 300 bar, in particular 5 to 200 bar and most preferably carried out 60 to 200 bar.
  • the pressure is preferably set in the batch process by the corresponding pressure of the supplied hydrogen or gas mixture (eg hydrogen and inert gas).
  • the pressure results from the amount of starting materials fed in per unit time and apparatus conditions, e.g. Constrictions through valves in tubular reactors.
  • the carbonyl compound, the amine of the formula III or IV or mixtures thereof (in short the amine component), the hydrogen and, if used, a solvent can be separated from the reactor or already supplied as a mixture of at least two of the said starting materials.
  • Hydrogen is supplied in gaseous form, preferably by adjusting and maintaining a corresponding hydrogen pressure. If desired, hydrogen can also be used in admixture with inert gases such as nitrogen or noble gases.
  • the carbonyl compound is used in at least equimolar amounts per amine group. In particular, the molar ratio of carbonyl compound to the diamine component is 2: 1 to 50: 1, more preferably 2: 1 to 20: 1, and most preferably 2: 1 to 5: 1.
  • the hydrogen is supplied in gaseous form in sufficient quantities, generally in molar excess, based on the carbonyl compound.
  • the reactor may be e.g. to act a stirred tank or a tubular reactor.
  • the reaction can be carried out batchwise (presentation of the total amount of all starting materials in the reactor) or semi-continuously (continuous addition of at least one starting component).
  • the reaction is carried out continuously, that is, the starting materials are fed continuously and the resulting products are continuously lent removed.
  • the reaction mixture containing the carbonyl compound, the amine component and hydrogen in the reactor is first contacted with the catalyst.
  • the catalyst may, for. B. as a fixed bed (short catalyst fixed bed) may be introduced into the reactor.
  • the reaction mixture may additionally be brought into contact with the above-described acidic solid particles.
  • the acidic solid particles can also be introduced into the reactor as a fixed bed (short-term acidic fixed bed).
  • the acidic solid particles may also be a constituent (eg as support material) of the catalyst.
  • the reaction mixture is preferably contacted first with the acidic fixed bed and then with the fixed catalyst bed.
  • the isomer mixture is prepared from approx. 80 '-diisopropyl-1-methyl-2,4-diamino-cyclohexane by weight and about 20th% N, N'% N, N -diisopropyl-1-methyl-2 , 6-diamino-cyclohexane referred to as ⁇ , ⁇ ' diisopropyl MDACH.
  • the ratio of the obtained ⁇ , ⁇ '-diisopropyl-MDACH to the mono-isopropyl derivatives was 83:17.
  • water of reaction and further low boilers were removed on a rotary evaporator at 60 ° C. and 30 mbar, and acetone (1093 g, 18.8 mol) was added again to the product mixture.
  • acetone 1093 g, 18.8 mol
  • catalysts again ⁇ 02 (75 g) and a Pd / Ag catalyst supported on Alox (75 g) was used in a catalyst basket.
  • the autoclave was sealed and purged with nitrogen.
  • the reaction mixture was heated to 154 ° C and stirred for 4 h.
  • the color number determined was the APHA color number known to the person skilled in the art.
  • samples are colorimetrically compared with acidic solutions of potassium hexachloroplatinate (IV) and cobalt (II) chloride which, depending on their platinum content, correspond to an APHA color number of 0 to 500 mg / L.
  • Example 1 The product obtained in Example 1 was stored under air at 80 ° C for 8 days. The color number was then 47 APHA.
  • the mixture of starting materials (corresponding mixture of compounds of formula III and IV) has an APHA color number of 159 APHA under the same conditions. The discoloration of the products obtained is therefore even lower than the discoloration of the starting materials.
  • Example 2
  • a Pd / Ag catalyst supported on Al 2 O 3 (335 g) was placed in a tubular reactor. At a temperature of 130 ° C and a pressure of 200 bar hydrogen (100 Nl / h), the mixture of isomers of Example 1 (100 g / h) and acetone (188 g / h) was fed continuously.
  • the ratio ⁇ , ⁇ '-diisopropyl-MDACH to the mono-isopropyl derivatives was 91: 9 in the crude yield.
  • the isomer mixture used was converted to the ⁇ , ⁇ '-diisopropyl MDACH with> 99% conversion and> 80% selectivity. The selectivity in favor of the ⁇ , ⁇ '-diisopropyl-MDACH exceeds that of the specified literature.
  • the crude product was purified by distillation.

Abstract

Verfahren zur Herstellung einer Verbindung der Formel I (I) oder der Formel II (II) oder deren Gemische, wobei R1 für einen Kohlenwasserstoffrest mit maximal 14 C-Atomen steht, dadurch gekennzeichnet, dass eine Verbindung der Formel III (III) oder der Formel IV (IV) oder deren Gemische mit einem Aldehyd oder Keton mit jeweils maximal 14 C-Atomen in Gegenwart von Wasserstoff umgesetzt werden.

Description

Verfahren zur Herstellung von sekundären, cycloaliphatischen Aminen
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung einer Verbindung der Formel I
oder der Formel II
Figure imgf000003_0001
oder deren Gemische, wobei R1 für einen Kohlenwasserstoffrest mit maximal 14 C-Atomen steht, welches dadurch gekennzeichnet ist, dass eine Verbindung der Formel III
Figure imgf000003_0002
oder der Formel IV
Figure imgf000003_0003
oder deren Gemisch mit einem Aldehyd oder Keton mit jeweils maximal 14 C-Atomen in Gegenwart von Wasserstoff umgesetzt werden.
Sekundäre Amine sind für verschiedenste technische Anwendungen von Bedeutung, z. B. als Additive zu Polymeren, als Korrosionsinhibitoren oder als Ausgangsstoffe zur Herstellung von Wirkstoffen. Ein Verfahren zur Herstellung von Verbindungen der Formel I oder II wird von Seung Geun Oh et al. in Catalysis Communications 43 (2014), Seiten 79 - 83 beschrieben. Die Herstellung erfolgt durch Umsetzung der entsprechenden Nitroverbindungen mit Alkoholen in Gegenwart von Wasserstoff und einem Katalysator. Die Ausbeute an N-alkylierten, cycloaliphatischen Verbindungen ist nur gering, wie aus Tabelle 2 offensichtlich ist.
DE-A 4404220 betrifft die Verwendung von Ruthenium-Katalysatoren zur Herstellung von cycloaliphatischen Polyaminen. Ausgangsstoffe sind N-alkylierte, aromatische Aminoverbindungen. Daraus werden durch Kernhydrierung die entsprechenden N-alkylierten cycloaliphatischen Verbindungen hergestellt.
Verfahren der reduktiven Aminierung sind generell bekannt und sind z.B. in EP-A 2556046 und US 2004/0015016 beschrieben. WO 2015/124413 beschreibt eine reduktive Aminierung in Ge- genwart eines Hydrier-katalysators und sauren Feststoffteilchen.
Verfahren zur Herstellung von sekundären Aminen sollen in technischem Maßstab möglichst kostengünstig und wirtschaftlich durchführbar sein. Das erhaltene sekundäre Amin soll möglichst rein sein. Von Interesse sind für viele Verwendungen insbesondere sekundäre Amine mit einer geringen Verfärbung. Insbesondere sollen die Verfahren auch kontinuierlich mit möglichst hohen Ausbeuten und Selektivitäten durchführbar sein.
Aufgabe der Erfindung war ein derartiges Verfahren für Verbindungen der Formel I und II. Demgemäß wurde das eingangs definierte Verfahren gefunden. Zu den Produkten des Verfahrens
In Formeln I und II steht R1 für einen Kohlenwasserstoffrest mit maximal 14 C-Atomen. Der Kohlenwasserstoffrest kann aliphatisch oder aromatisch sein oder sowohl aromatische als auch aliphatische Gruppen enthalten. Als Beispiele genannt seien C1 - bis C14-Alkylgruppen, die Cyclohexylgruppe, die Phenylgruppe, durch Alkylgruppen substituierte Aromaten, z.B. eine Tolylgruppe, sowie alkaromatische Gruppen, z.B. Gruppen der Formel -R2-C6H5, wobei R2 für eine C1 - bis C4- Alkylengruppe steht, z.B. die Benzylgruppe oder die die Phenylethylgruppe (letztere durch Umsetzung mit Acetophenon).
In einer bevorzugten Ausführungsform steht R1 für eine C1 - bis C10-Alkylgruppe. Besonders bevorzugt steht R1 für die Isopropylgruppe.
Mit der Isopropylgruppe als R1 sind dann die besonders bevorzugten Verbindungen des Verfahrens N, N'-Diisopropyl-1 -methyl-2,4-diamino-cyclohexan (Formel I mit R1= isopropyl) und N, N'-Diisopropyl-1 -methyl-2,6-diamino-cyclohexan (Formel II mit R1= isopropyl)
sowie Gemische dieser beiden vorstehenden Verbindungen.
Ganz besonders bevorzugt sind Gemische von N, N'-Diisopropyl-1 -methyl-2,4-diamino-cyclohe- xan und N, N'-Diisopropyl-1 -methyl-2,6-diamino-cyclohexan.
In bevorzugten Gemischen von N, N'-Diisopropyl-1 -methyl-2,4-diamino-cyclohexan und N, N - Diisopropyl-1 -methyl-2,6-diamino-cyclohexan beträgt der Anteil des N, N'-Diisopropyl-1 -methyl- 2,4-diamino-cyclohexan 70 bis 90 Gew. %, besonders bevorzugt 75 bis 85 Gew. %, bezogen auf die Summe der beiden Verbindungen.
Entsprechend beträgt in bevorzugten Gemischen von N, N'-Diisopropyl-1 -methyl-2,4-diamino- cyclohexan und N, N'-Diisopropyl-1 -methyl-2,6-diamino-cyclohexan der Anteil des N, N'-Diisop- ropyl-1 -methyl-2,6-diamino-cyclohexan 10 bis 30 Gew. %, besonders bevorzugt 15 bis 25 Gew. %, bezogen auf die Summe der beiden Verbindungen.
In einer besonderen Ausführungsform handelt es sich um ein Gemsich aus ca 80 Gew. % N, N - Diisopropyl-1 -methyl-2,4-diamino-cyclohexan und ca 20 Gew.% N, N'-Diisopropyl-1 -methyl-2,6- diamino-cyclohexan (kurz als Ν,Ν'-Diisopropyl-MDACH bezeichnet).
Zu Ausgangsstoffen des Verfahrens
Ausgansstoffe sind Verbindungen der Formel III oder IV oder deren Gemische. Im Falle der Gemische entsprechen die bevorzugten Anteile der Verbindungen der Formel III oder IV den Antei- len der Verbindungen der Formel I und II, siehe oben.
Gemische von Verbindungen der Formel III und IV können durch Mischen der Verbindungen in den gewünschten Anteilen erhalten werden. Besonders leicht sind derartige Mischungen direkt durch Kernhydrierung der als Mischung vorliegenden 2,4- und 2,6 Diamino-toluole erhältlich.
Weitere Ausgangsstoffe sind Aldehyde oder Ketone mit jeweils maximal 14 C-Atomen.
Die Aldehyde oder Ketone werden entsprechend den gewünschten Resten R1 gewählt. Geeignete Aldehyde oder Ketone sind daher z.B. C1 - bis C14-Alkanale, insbesondere C1 - bis C10-Alkanale, wie Formaldehyd, Acetaldehyd, Propionaldehyd, Butyraldehyd oder CI - bis C14 Alkanone, insbesondere C1 - bis C10 Alkanone, wie Aceton oder Methylethylketon (Butanon), sowie Cyclohexanon, Acetophenon oder Benzophenon.
Bevorzugt sind Ketone. Besonders bevorzugt sind aliphatische Ketone mit 1 bis 10 C-Atomen.
Entsprechend dem besonders bevorzugten Fall (R1= Isopropyl) ist Aceton besonders bevorzugt.
Zum Katalysator und gegebenenfalls mitverwendeten sauren Feststoffteilchen Die Verbindungen der Formel III oder IV bzw. deren Mischungen werden mit dem Keton oder Aldehyd in Gegenwart von Wasserstoff umgesetzt.
Vorzugsweise erfolgt die Umsetzung in Gegenwart eines Katalysators. Geeignet sind übliche Katalysatoren wie sie für die Hydrierung bekannt sind (Hydrierkatalysatoren).
Bei dem Katalysator kann es um einen üblichen heterogenen Hydrierkatalysator in Teilchenform handeln.
Heterogene Katalysatoren für die Hydrierung sind katalytisch aktive Elemente oder Verbindun- gen, sie können ohne Träger in Teilchenform vorliegen (Vollkontakt-Katalysatoren), z. B. als
Raney-Nickel oder Raney-Cobalt, oder sie können auf einen Träger, z. B. aus Calciumcarbonat, Siliciumoxid, Zirkoniumdioxid oder Aluminiumdioxid, aufgebracht sein (Trägerkatalysatoren). In einer bevorzugten Ausführungsform handelt es sich bei dem Hydrierkatalysator um einen Trägerkatalysator.
Bevorzugte Katalysatoren enthalten aktive Metalle, entweder in elementarer Form oder in Form von Verbindungen, z. B. Oxiden. Oft enthalten die Katalysatoren Mischungen von aktiven Metallen. Der Begriff Metall umfasst daher im Folgenden elementare Metalle oder auch Metalle, wie sie in chemischen Bindungen, sei es in ionischer Form oder kovalent gebundener Form vorlie- gen. Bei Verwendung der aktiven Metalle in Form ihrer Oxide oder gegebenenfalls auch sonstiger Verbindungen erfolgt im Allgemeinen bei höheren Temperaturen, insbesondere in Gegenwart von Wasserstoff, eine Reduktion der Oxide zu den Metallen. Dies kann mit Beginn der Umsetzung geschehen oder in einem separaten Schritt vorher durchgeführt werden. Als Katalysatoren kommen z.B. solche in Betracht, die ein Metall der Gruppen IVb, Vb, Vlb, Vllb, Vlllb, Ib, oder IIb enthalten.
Als Katalysatoren kommen insbesondere Katalysatoren in Betracht, die mindestens ein Metall aus der Eisen-, Cobalt-, Nickel- oder der Kupfergruppe des Periodensystems enthalten.
Bevorzugt sind Katalysatoren, welche mindestens ein Metall der Cobalt-, Nickel- oder Kupfergruppe des Periodensystems enthalten, insbesondere mindestens ein Metall ausgewählt aus Cobalt, Rhodium, Iridium, Nickel, Palladium, Platin oder Kupfer; ganz besonders bevorzugt ist Palladium. Insbesondere beträgt der Gehalt der vorstehenden Metalle der Cobalt-, Nickel- oder Kupfergruppe im Katalysator insgesamt mindestens 5 Gew. %, besonders bevorzugt mindestens 20 Gew. % und ganz besonders bevorzugt mindestens 50 Gew. % und insbesondere 90 Gew.% bezogen auf die Gewichtssumme aller aktiven Metalle des Katalysators (bei Metallverbindungen, z.B. Oxiden, wird hier nur der Metallanteil berücksichtigt). In einer besonderen Ausführungsform werden Mischungen der vorstehenden Metalle verwendet. Weitere aktive Metalle, die mit den vorstehenden Metallen der Cobalt-, Nickel- oder Kupfergruppe mitverwendet werden können, sind z. B. Mangan, Zinn, Ruthenium oder auch Alkalimetalle und Erdalkalimetalle.
In einer besonders bevorzugten Ausführungsform enthalten die Katalysatoren Palladium in Mengen von insgesamt 5 Gew.%, besonders bevorzugt mindestens 20 Gew.% und ganz besonders bevorzugt mindestens 50 Gew.% und insbesondere mindestens 90 Gew.% bezogen auf die Gewichtssumme aller aktiven Metalle des Hydrierkatalysators.
In einer bevorzugten Ausführungsform wird die Umsetzung in Gegenwart des vorstehenden Katalysators und zusätzlich in Gegenwart von sauren Feststoffteilchen, wie sie bereits in WO 2015/124413 beschrieben sind, durchgeführt. Unter sauren Feststoffteilchen werden Feststoffteilchen verstanden, die insgesamt als Säure wirken. Daher enthalten die sauren Feststoffteilchen saure Verbindungen in einer Menge, dass die Feststoffteilchen insgesamt die Wirkung als Säure haben. Insbesondere handelt es sich um Feststoffteilchen, welche bei Zugabe von mindestens 10 g Feststoffteilchen in 100 g neutrales Wasser (pH 7) ein Absenkung des pH-Wertes bewirken, unabhängig davon, ob die Feststoffteil- chen in Wasser löslich, teilweise löslich oder unlöslich sind. Für die Charakterisierung der sauren Eigenschaften können auch andere klassische Methoden herangezogen werden; dazu gehören Titrationsmethoden (z.B. mit Hammett-Indikatoren), Adsorptionsmethoden, spektroskopische Methoden und Testreaktionen. Bei den sauren Feststoffteilchen kann es sich Lewis-Säuren oder Brönstedtsäuren handeln. Bevorzugte saure Verbindungen sind saure Metalloxide, Phosphate, Wolframate, Sulfate und organische Säuren oder deren Salze.
Als saure Metalloxide seien insbesondere Titandioxid, Zirkoniumdioxid, Aluminiumoxid, Silici- umdioxid, oder Mischoxide von Aluminium und Silicium (Zeolithe) und saure Tonerden genannt. In Zeolithen können Aluminium- und Siliciumatome auch teilweise durch andere Atome ersetzt sein, z. B. kann Aluminium durch andere dreiwertige Metalle ersetzt sein.
Als saure organische Verbindungen kommen insbesondere organische lonenaustauscherharze mit Säuregruppen, zum Beispiel Carbonsäuregruppen oder Sulfonsäuregruppen, in Betracht. Zum Beispiel handelt es sich dabei um sulfonierte Copolymerisate aus Styrol und Divenylbenzol (z.B. der Marken Lewatit der Fa. Lanxess, Amberlite der Fa. Rohm & Haas). In einer besonders bevorzugten Ausführungsform handelt es sich bei den sauren Feststoffteilchen um Aluminiumoxid, Zirkoniumdioxid oder Titanoxid.
Zu weiteren Verfahrensparametern
Die Umsetzung kann ohne Mitverwendung eines Lösemittels oder unter Verwendung eines Lösemittels durchgeführt werden. Falls das gewählte Aldehyd oder Ketone unter Notmalbedingun- gen (21 °C, 1 bar) flüssig ist, kann es gleichzeitig als Lösemittel dienen.
Als Lösemittel in Betracht kommen z.B. Ether, wie Tetrahydrofuran, Diethylether, Methyltertiär- butylether oder 1 ,4-Dioxan, Alkohole, wie Methanol, Ethanol, Propanol oder Isopropanol oder Wasser.
Vorzugsweise wird bei der Umsetzung kein Lösemittel mitverwendet.
Die Umsetzung der Verbindungen der Formel III oder IV, bzw. deren Mischungen mit dem Ke- ton oder Aldehyd und Wasserstoff kann z. B. bei Temperaturen von 20 bis 250°C, vorzugsweise bei 80 bis 180°C erfolgen.
Die Umsetzung kann z. B. bei Normaldruck oder Überdruck durchgeführt werden. In einer bevorzugten Ausführungsform wird sie bei erhöhtem Druck z. B. von 1 ,1 bis 300 bar, insbesondere 5 bis 200 bar und ganz besonders bevorzugt 60 bis 200 bar durchgeführt.
Der Druck wird im batch-Verfahren vorzugsweise durch den entsprechenden Druck des zugeführten Wasserstoffs oder Gasgemisches (z. B. Wasserstoff und Inertgas), eingestellt. Im kontinuierlichen Verfahren ergibt sich der Druck aus der zugeführten Menge der Ausgangsstoffe pro Zeiteinheit und apparativen Gegebenheiten, z.B. Verengungen durch Ventile in Rohrreaktoren.
Die Carbonylverbindung, das Amin der Formel III oder IV oder deren Mischungen (kurz die Aminkomponente), der Wasserstoff und, falls mitverwendet, ein Lösemittel können dem Reaktor getrennt oder bereits als Mischung von mindestens zwei der genannten Ausgangsstoffe zugeführt werden.
Wasserstoff wird gasförmig, vorzugsweise durch Einstellen und Aufrechterhaltung eines entsprechenden Wasserstoffdruckes, zugeführt. Wasserstoff kann gegebenenfalls auch im Gemisch mit Inertgasen wie Stickstoff oder Edelgase verwendet werden. Vorzugsweise wird die Carbonylverbindung in mindestens equimolaren Mengen pro Amin- gruppe eingesetzt. Insbesondere beträgt das Molverhältnis von Carbonylverbindung zur Diaminkomponente 2 : 1 bis 50 : 1 , besonders bevorzugt 2 : 1 bis 20 : 1 und ganz besonders bevorzugt 2 : 1 bis 5 : 1 .
Der Wasserstoff wird gasförmig in ausreichenden Mengen, im Allgemeinen im molaren Über- schuss, bezogen auf die Carbonylverbindung, zugeführt.
Bei dem Reaktor kann es sich z.B. um einen Rührkessel oder einen Rohrreaktor handeln.
Die Umsetzung kann diskontinuierlich (Vorlage der Gesamtmenge aller Ausgangsstoffe im Re- aktor) oder semi-kontinuierlich (kontinuierliche Zugabe mindestens einer Ausgangskomponenten) durchgeführt werden.
In einer bevorzugten Ausführungsform wird die Umsetzung kontinuierlich durchgeführt, das heißt, dass die Ausgangsstoffe kontinuierlich zugeführt und die erhaltenen Produkte kontinuier- lieh entfernt werden.
Bei der kontinuierlichen Verfahrensweise wird das Reaktionsgemisch, welches die Carbonylverbindung, die Aminkomponente und Wasserstoff enthält, in dem Reaktor, vorzugsweise Rohrreaktor, zunächst mit dem Katalysator in Kontakt gebracht. Der Katalysator kann z. B. als Festbett (kurz Katalysatorfestbett) in den Reaktor eingebracht sein.
Das Reaktionsgemisch kann zusätzlich noch mit den oben beschriebenen sauren Feststoffteilchen in Kontakt gebracht werden. Auch die sauren Feststoffteilchen können als Festbett (kurz saures Festbett) in den Reaktor eingebracht sein. Die sauren Feststoffteilchen können auch Be- standteil (z. B. als Trägermaterial) des Katalysators sein.
Das Reaktionsgemisch wird vorzugsweise zuerst mit dem sauren Festbett und dann mit dem Katalysatorfestbett in Kontakt gebracht. Durch das erfindungsgemäße Verfahren können Verbindungen der Formel I, II oder deren Mischungen in technischem Maßstab in diskontinuierlicher oder kontinuierlicher Verfahrensweise mit hohen Umsätzen erhalten werden. Das Verfahren ist wirtschaftlich und erlaubt die Herstellung der Verbindungen in hoher Reinheit. Insbesondere sind die erhaltenen Verbindungen nicht oder nur wenig verfärbt. Die Farbzahl ist daher sehr gering. Beispiele
In den Beispielen wird das Isomerengemisch aus ca. 80 Gew. % N, N'-Diisopropyl-1 -methyl-2,4- diamino-cyclohexan und ca. 20 Gew.% N, N'-Diisopropyl-1 -methyl-2,6-diamino-cyclohexan als Ν,Ν'-Diisopropyl-MDACH bezeichnet.
Beispiel 1
Herstellung von Ν,Ν'-Diisopropyl-MDACH (diskontinuierlich): Ein Isomerengemisch aus ca 80 Gewichtsteilen 1 -Methyl-2,4-diamino-cyclohexan und ca 20 Gewichtsteilen 1 -Methyl-2,6-diamino-cyclohexan (730 g; 5,7 mol) wurde mit Aceton (1093 g; 18,8 mol) in einem Rührautoklaven (Volumen 3,5 Liter) vorgelegt. Als Katalysatoren wurde Ti02 (75 g) und ein Pd/Ag Katalysator geträgert auf Alox (75 g) in einem Katalysatorkorb eingesetzt. Der Autoklav wurde verschlossen und mit Stickstoff gespült. Das Reaktionsgemisch wurde auf 154°C aufgeheizt und 4 h gerührt. Anschließend wurde bei 154°C mit Wasserstoff auf 100 bar aufgepresst und 6 h gerührt.
Das Verhältnis des erhaltenen Ν,Ν'-Diisopropyl-MDACH zu den Mono-isopropylderivaten betrug 83:17. Um die Ausbeute zu steigern, wurde Reaktionswasser und weitere Leichtsieder am Rotationsverdampfer bei 60°C und 30 mbar entfernt und das Produktgemisch erneut mit Aceton (1093 g; 18,8 mol) versetzt. Als Katalysatoren wurde wieder ΤΊ02 (75 g) und ein Pd/Ag Katalysator geträgert auf Alox (75 g) in einem Katalysatorkorb eingesetzt. Der Autoklav wurde verschlossen und mit Stickstoff gespült. Das Reaktionsgemisch wurde auf 154°C aufgeheizt und 4 h gerührt. Anschließend wurde bei 154°C mit Wasserstoff auf 100 bar aufgepresst und 8 h gerührt. Das Verhältnis Ν,Ν'-Diisopropyl-MDACH zu den Mono-isopropylderivaten betrug nun >98:2.und das eingesetzte Isomerengemisch wurde mit >99% Umsatz und >95% Selektivität in das Ν,Ν'-Diisopropyl-MDACH umgesetzt. Die Selektivität zugunsten des N,N'-Diisopropyl- MDACH übersteigt damit die der angegebenen Literatur. Das Rohprodukt wurde destillativ aufgereinigt. Messung der Farbzahl
Als Farbzahl wurde die dem Fachmann bekannte APHA-Farbzahl bestimmt. Zur Bestimmung der APHA-Farbzahl werden Proben kolorimetrisch mit sauren Lösungen von Kaliumhexachloro- platinat (IV) und Kobalt(ll)-chlorid verglichen, die abhängig von ihrem Platingehalt einer APHA- Farbzahl von 0 bis 500 mg/L entsprechen. Je geringer die APHA-Farbzahl, desto geringer ist die Verfärbung.
Das in Bespiel 1 erhaltene Produkt wurde 8 Tage unter Luft bei 80°C gelagert. Die Farbzahl betrug danach 47 APHA.
Das Gemisch der Ausgangsstoffe (entsprechendes Gemisch der Verbindungen der Formel III und IV) hat unter den gleichen Bedingungen eine APHA-Farbzahl von 159 APHA. Die Verfärbung der erhaltenen Produkte ist daher sogar geringer als die Verfärbung der Ausgangsstoffe. Beispiel 2
Herstellung von Ν,Ν'-Diisopropyl-MDACH (kontinuierlich):
Ein Pd/Ag Katalysator geträgert auf AI203 (335 g) wurde in einem Rohrreaktor vorgelegt. Bei einer Temperatur von 130°C und einem Druck von 200 bar wurde Wasserstoff (100 Nl/h), das Isomerengemisch aus Bespiel 1 (100 g/h) und Aceton (188 g/h) kontinuierlich zugefahren. Das Verhältnis Ν,Ν'-Diisopropyl-MDACH zu den Mono-isopropylderivaten betrug im Rohaustrag 91 :9. Das eingesetzte Isomerengemisch wurde mit >99% Umsatz und >80% Selektivität in das Ν,Ν'-Diisopropyl-MDACH umgesetzt. Die Selektivität zugunsten des Ν,Ν'-Diisopropyl-MDACH übersteigt damit die der angegebenen Literatur. Das Rohprodukt wurde destillativ aufgereinigt.

Claims

Patentansprüche
1 . Verfahren zur Herstellung ein
oder der Formel II
Figure imgf000012_0001
oder deren Gemische, wobei R1 für einen Kohlenwasserstoffrest mit maximal 14 C-Atomen steht, dadurch gekennzeichnet, dass eine Verbindung der Formel III
Figure imgf000012_0002
oder der Formel IV
Figure imgf000012_0003
oder deren Gemische mit einem Aldehyd oder Keton mit jeweils maximal 14 C-Atomen in Gegenwart von Wasserstoff umgesetzt werden.
Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass es sich bei R1 um eine Isop- ropylgruppe handelt. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Umsetzung in Gegenwart eines Katalysators erfolgt, der mindestens ein Metall oder Metallkation ausgewählt aus Elementen der Eisen-, Cobalt-, Nickel- oder der Kupfergruppe des Periodensystems enthält.
Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass der Katalysator Palladium in elementarer Form oder als Kation enthält.
Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es sich um ein kontinuierliches Verfahren handelt.
Gemisch aus einer Verbindung der Formel I
Figure imgf000013_0001
und einer Verbindung der Formel II
Figure imgf000013_0002
wobei R1 für einen Kohlenwasserstoffrest mit maximal 14 C-Atomen steht.
Gemisch aus 70 bis 90 Gew.% N, N'-Diisopropyl-1 -methyl-2,4-diamino-cyclohexan und 10 bis 30 Gew.% N, N'-Diisopropyl-1 -methyl-2,6-diamino-cyclohexan, bezogen auf die
Gewichtssumme der beiden Verbindungen.
PCT/EP2017/065864 2016-07-07 2017-06-27 Verfahren zur herstellung von sekundären, cycloaliphatischen aminen WO2018007207A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16178314 2016-07-07
EP16178314.7 2016-07-07

Publications (1)

Publication Number Publication Date
WO2018007207A1 true WO2018007207A1 (de) 2018-01-11

Family

ID=56372786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/065864 WO2018007207A1 (de) 2016-07-07 2017-06-27 Verfahren zur herstellung von sekundären, cycloaliphatischen aminen

Country Status (1)

Country Link
WO (1) WO2018007207A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019145170A1 (en) * 2018-01-24 2019-08-01 Basf Se Aqueous dispersion of a polyurethane comprising a cycloaliphatic compound with two secondary amino groups as chain extender
US10774034B2 (en) 2017-05-03 2020-09-15 Basf Se Process for the conversion of ethylene oxide to monoethanolamine and ethylenediamine employing a zeolite
CN112703218A (zh) * 2018-09-20 2021-04-23 阿克佐诺贝尔国际涂料股份有限公司 双组分涂料组合物、涂覆基材的方法、涂覆的基材和该涂料组合物在改善耐侵蚀性中的用途
US11091425B2 (en) 2016-11-30 2021-08-17 Basf Se Process for the conversion of ethylene glycol to ethylenediamine employing a zeolite catalyst
US11104637B2 (en) 2016-11-30 2021-08-31 Basf Se Process for the conversion of monoethanolamine to ethylenediamine employing a copper-modified zeolite of the MOR framework structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4404220A1 (de) 1994-02-10 1995-08-17 Bayer Ag Ruthenium-Katalysatoren, deren Hersellung und ein Verfahren zur Herstellung von cycloaliphatischen Polyaminen unter Verwendung dieser Katalysatoren
US20040015016A1 (en) 2002-07-22 2004-01-22 Huntsman Petrochemical Corporation Preparation of secondary amines
WO2006104528A1 (en) * 2005-03-28 2006-10-05 Albemarle Corporation Diimines and secondary diamines
EP1775281A1 (de) * 2005-10-01 2007-04-18 Clariant Speciality Fine Chemicals (Deutschland) GmbH Verfahren zur reduktiven Aminierung von Ketonen und Aldehyden mit wässrigen Aminen
EP2556046A1 (de) 2010-04-07 2013-02-13 Basf Se Verfahren zur herstellung von unsymmetrischen sekundären tert-butylaminen in der flüssigphase
WO2015124413A1 (de) 2014-02-19 2015-08-27 Basf Se Zur reduktiven aminierung von aldehyden
CN106083607A (zh) * 2016-06-14 2016-11-09 景县本源精化有限公司 一种n,n’烷基化甲基环己二胺及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4404220A1 (de) 1994-02-10 1995-08-17 Bayer Ag Ruthenium-Katalysatoren, deren Hersellung und ein Verfahren zur Herstellung von cycloaliphatischen Polyaminen unter Verwendung dieser Katalysatoren
US20040015016A1 (en) 2002-07-22 2004-01-22 Huntsman Petrochemical Corporation Preparation of secondary amines
WO2006104528A1 (en) * 2005-03-28 2006-10-05 Albemarle Corporation Diimines and secondary diamines
EP1775281A1 (de) * 2005-10-01 2007-04-18 Clariant Speciality Fine Chemicals (Deutschland) GmbH Verfahren zur reduktiven Aminierung von Ketonen und Aldehyden mit wässrigen Aminen
EP2556046A1 (de) 2010-04-07 2013-02-13 Basf Se Verfahren zur herstellung von unsymmetrischen sekundären tert-butylaminen in der flüssigphase
WO2015124413A1 (de) 2014-02-19 2015-08-27 Basf Se Zur reduktiven aminierung von aldehyden
CN106083607A (zh) * 2016-06-14 2016-11-09 景县本源精化有限公司 一种n,n’烷基化甲基环己二胺及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GEUN OH ET AL., CATALYSIS COMMUNICATIONS, vol. 43, 2014, pages 79 - 83
SEUNG GEUN OH ET AL: "One pot catalytic NO2 reduction, ring hydrogenation, and N-alkylation from nitroarenes to generate alicyclic amines using Ru/C-NaNO2", CATALYSIS COMMUNICATIONS, vol. 43, 1 January 2014 (2014-01-01), AMSTERDAM, NL, pages 79 - 83, XP055321007, ISSN: 1566-7367, DOI: 10.1016/j.catcom.2013.09.012 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11091425B2 (en) 2016-11-30 2021-08-17 Basf Se Process for the conversion of ethylene glycol to ethylenediamine employing a zeolite catalyst
US11104637B2 (en) 2016-11-30 2021-08-31 Basf Se Process for the conversion of monoethanolamine to ethylenediamine employing a copper-modified zeolite of the MOR framework structure
US10774034B2 (en) 2017-05-03 2020-09-15 Basf Se Process for the conversion of ethylene oxide to monoethanolamine and ethylenediamine employing a zeolite
WO2019145170A1 (en) * 2018-01-24 2019-08-01 Basf Se Aqueous dispersion of a polyurethane comprising a cycloaliphatic compound with two secondary amino groups as chain extender
CN112703218A (zh) * 2018-09-20 2021-04-23 阿克佐诺贝尔国际涂料股份有限公司 双组分涂料组合物、涂覆基材的方法、涂覆的基材和该涂料组合物在改善耐侵蚀性中的用途
CN112703218B (zh) * 2018-09-20 2022-11-11 阿克佐诺贝尔国际涂料股份有限公司 双组分涂料组合物、涂覆基材的方法、涂覆的基材和该涂料组合物在改善耐侵蚀性中的用途

Similar Documents

Publication Publication Date Title
WO2018007207A1 (de) Verfahren zur herstellung von sekundären, cycloaliphatischen aminen
DE2907869C2 (de)
EP0449089B1 (de) Verfahren zur Herstellung von 3-Aminomethyl-3,5,5,-trimethyl-cyclohexylamin
EP0324984B1 (de) Verfahren zur Herstellung eines Gemisches aus Cyclohexylamin und Dicyclohexylamin unter Einsatz eines Ruthenium-Katalysators
EP2367783B1 (de) Verfahren zur herstellung eines isocyanats
EP0421196B1 (de) Verfahren zur Herstellung von Alkoholen (einstufig)
EP2125696B1 (de) Kontinuierliches verfahren zur hydrierung von 3-cyano-3,5,5-trimethyl-cyclohexylimin
EP2046721A1 (de) Direktaminierung von kohlenwasserstoffen
WO2011141470A1 (de) Verfahren zur herstellung von neopentylglykol
EP1775281A1 (de) Verfahren zur reduktiven Aminierung von Ketonen und Aldehyden mit wässrigen Aminen
DE19959053A1 (de) Verfahren zur Herstellung von Ketonen, insbesondere von 6-Methylheptan-2-on
EP3010880B1 (de) Verfahren zur herstellung von 2-chlordialkylbenzylaminen durch hydrierung
EP1971568B1 (de) Verfahren zur kontinuierlichen herstellung eines primären aromatischen amins
DE4010254A1 (de) Verfahren zur herstellung von 2-(3-aminopropyl)-cycloalkylaminen
EP0435072B1 (de) Verfahren zur Herstellung von N,N-Dimethylaminen
DE3741726A1 (de) Verfahren zur herstellung von tertiaeren n,n-dimethylaminen
EP1466887A1 (de) Verfahren zur Herstellung von N-Methyl-Dialkylaminen aus sekundären Dialkylaminen und Formaldehyd
EP0926130A1 (de) Verfahren zur Herstellung von 3-Aminomethyl-3,5,5-trimethyl-cyclohexylamin mit einem cic/trans-Isomerenverhältnis von mindestens 70/30
EP3107891B1 (de) Verfahren zur reduktiven aminierung von aldehyden
EP0452693A1 (de) Verfahren zur Herstellung von 2,2-disubstituierten Pentan-1,5-diaminen
DE10122758A1 (de) Verfahren zur Herstellung von gemischten, sekundären Aminen
EP0513640B1 (de) Verfahren zur Herstellung von Dicyclohexylaminen
DE4210311A1 (de) Verfahren zur Herstellung von Aminen aus Azinen
EP3107892B1 (de) Verfahren zur herstellung von n-ethyl-diisopropylamin
EP1209155A1 (de) Koppelprodukt freies Verfahren zur Herstellung von Propylenoxid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17731934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17731934

Country of ref document: EP

Kind code of ref document: A1