WO2018006699A1 - 一种用于激光扫描雷达的收发装置 - Google Patents

一种用于激光扫描雷达的收发装置 Download PDF

Info

Publication number
WO2018006699A1
WO2018006699A1 PCT/CN2017/088541 CN2017088541W WO2018006699A1 WO 2018006699 A1 WO2018006699 A1 WO 2018006699A1 CN 2017088541 W CN2017088541 W CN 2017088541W WO 2018006699 A1 WO2018006699 A1 WO 2018006699A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
lens
laser light
optical fiber
fibers
Prior art date
Application number
PCT/CN2017/088541
Other languages
English (en)
French (fr)
Inventor
朱亚平
张瓯
Original Assignee
杭州欧镭激光技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州欧镭激光技术有限公司 filed Critical 杭州欧镭激光技术有限公司
Publication of WO2018006699A1 publication Critical patent/WO2018006699A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves

Definitions

  • the utility model relates to the field of laser equipment, in particular to a transceiver device for laser scanning radar.
  • a laser scanning radar acquires parameters of a measured end by emitting laser light through a plurality of arranged laser diodes and then receiving the returned laser light through an avalanche photodiode.
  • the laser diode LD inside the existing radar structure is formed by a direct dense arrangement to form a certain width of the scanning beam, but because each LD and its circuit control board itself need to occupy a certain volume, the adjacent two tubes in the assembly process The angle between the two cannot be reduced, the laser between the two laser diodes will not be received, and the resolution of the scanning is limited, and the above structure is complicated in the assembly process.
  • the object of the present invention is to provide a transceiver for a laser scanning radar that does not cause signal loss and ensures that the laser light of the laser source is conducted to the lens.
  • the utility model discloses a transceiver device for a laser scanning radar, which comprises a laser source for transmitting laser light, a lens for changing a laser light path emitted by the laser source, and an optical fiber between the laser source and the lens. a module; the fiber optic module receives a laser of the laser source and conducts a pulse of light of the laser to the lens.
  • the fiber optic module includes at least one optical fiber; the optical fiber has a lateral width that is slightly larger than a width of the lens.
  • one or more optical fibers correspond to the lens; when the optical fibers are multiple, a plurality of the optical fibers are bundled to form a bundle of optical fibers.
  • the optical fibers are in an array shape.
  • Densely arranged optical fibers can increase the resolution of signal reception
  • the laser signal that deviates from the center of the lens according to the original optical path will also be collected by the optical fiber, so that the received signal is more complete and there is no problem of dead zone.
  • FIG. 1 is a schematic structural view of a transceiver device for a laser scanning radar in the prior art
  • FIG. 2 is a schematic structural view of a transceiver for a laser scanning radar in accordance with a preferred embodiment of the present invention.
  • a laser source is provided to transmit laser light outwardly for ranging, leveling, collimation, etc.
  • a lens 2 is provided on the emitted laser light path, and the laser light is transmitted through the lens 2, and the optical path is simultaneously changed.
  • a fiber optic module 1 is provided between the laser source and the lens 2. The fiber optic module 1 has a laser receiving end facing the laser source when the laser source is emitted. When the laser is directed at the lens 2, it will first be received by the fiber optic module 1.
  • the optical fiber Since the optical fiber is elongated, when the optical fiber is disposed facing the laser source, the number of optical fibers disposed per unit area can be many, that is, the density of the optical fiber is much larger than that of the original lens 2 The density of the reception.
  • the fiber module 1 can be received regardless of where the laser light emitted by the laser source is directed.
  • the optical fiber module 1 is connected to the lens 2, and after receiving the laser light, the optical fiber module 1 transmits a laser pulse of the laser light to the lens 2.
  • the optical fiber module 1 Through the high density and high conductivity of the optical fiber module 1, regardless of whether the laser signal deviates from the lens 2, the optical path is outward, etc., the optical fiber module 1 is disposed at the corresponding position to receive the laser signal, and the received laser signal is "thinned", thereby improving The spatial resolution.
  • the fiber optic module 1 can include one or more fibers.
  • a smaller number of fibers can be used.
  • a larger number of fibers can be used to correspond to a large-width laser source or lens 2.
  • a plurality of optical fibers can be bundled into one fiber bundle. More preferably, after a bundle of fiber bundles, the plurality of optical fibers are in an array shape, so that the optical fibers are made. It covers the cross-sectional area of the laser signal transmission and does not cause signal leakage.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种用于激光扫描雷达的收发装置,包括用于发送激光的激光源、改变激光源发出的激光光路的透镜(2),在激光源与透镜间还设有一光纤模块(1)。光纤模块(1)接收激光源的激光,并将激光的光脉冲传导至透镜(2)。采用该收发装置,可完整接收激光信号,扫描而得的分辨率也得到提高。

Description

一种用于激光扫描雷达的收发装置 技术领域
本实用新型涉及激光设备领域,尤其涉及一种用于激光扫描雷达的收发装置。
背景技术
参阅图1,现有的技术中,激光扫描雷达是通过若干排列组合的激光二极管发射出激光后再通过雪崩光电二极管接收返回的激光,来获取被测量端的参数。现有雷达结构内部的激光二极管LD,是通过直接密集排列的方式来形成一定广度的扫描束,但因为各个LD及其电路控制板本身需占用一定的体积,导致装配工艺过程中相邻两管之间的夹角无法缩小,处于两激光二极管间的激光将无法接收,从而扫描的分辨率有限,且上述结构在组装过程复杂。
因此,需要一种具有新型结构的用于激光扫描雷达的收发装置,可完整接收激光信号,扫描而得的分辨率也可得到提高。
实用新型内容
为了克服上述技术缺陷,本实用新型的目的在于提供一种用于激光扫描雷达的收发装置,不会造成信号的丢失,保证激光源的激光均传导至透镜。
本实用新型公开了一种用于激光扫描雷达的收发装置,包括用于发送激光的激光源、改变所述激光源发出的激光光路的透镜,所述激光源与所述透镜间还设有一光纤模块;所述光纤模块接收所述激光源的激光,并将所述激光的光脉冲传导至所述透镜。
优选地,所述光纤模块包括至少一根光纤;所述光纤具有的横向宽度略大于所述透镜的宽度。
优选地,一根或多根光纤对应所述透镜;当所述光纤为多根时,多根所述光纤捆绑形成一光纤组束。
优选地,当所述光纤模块中包括的光纤为多根时,所述光纤呈阵列形状。
采用了上述技术方案后,与现有技术相比,具有以下有益效果:
1.密集排布的光纤可增加信号接收的分辨率;
2.按照原光路会偏离透镜中心的激光信号也会被光纤采集,使得接收到的信号更为完整,不会存在盲区的问题。
附图说明
图1为现有技术中用于激光扫描雷达的收发装置的结构示意图;
图2为符合本实用新型一优选实施例中用于激光扫描雷达的收发装置的结构示意图。
附图标记:
1-光纤模块、2-透镜。
具体实施方式
以下结合附图与具体实施例进一步阐述本实用新型的优点。
参阅图2,为符合本实用新型一优选实施例中用于激光扫描雷达的收发装置的结构示意图。在该优选实施例中,设有一激光源,向外发送激光,可用于测距、扫平、准直等,在发出的激光光路上,设有一透镜2,激光透射该透镜2,光路同时改变。为了防止激光源发出的激光所偏移导致的漏接收,在激光源与透镜2间,设有光纤模块1,光纤模块1具有一激光接收端,该激光接收端面向激光源,当激光源发出的激光射向透镜2时,将先由光纤模块1接收。由于光纤呈细长状,因此在面向激光源布设光纤时,单位面积上布设有的光纤数量可以很多,也就是说,光纤布设的密度远大于原透镜2可 接收的密度。则无论激光源发射的激光投向何处,均可被光纤模块1接收。光纤模块1与透镜2连接,光纤模块1接收激光后,将激光的光脉冲传导至透镜2。
通过光纤模块1高密度、高传导率的特点,无论激光信号偏离透镜2、光路向外等,在对应位置处设置光纤模块1即可接收激光信号,接收的激光信号“变细”,从而提高了空间分辨率。
光纤模块1可以包括一根或多根光纤。例如,当使用的激光源及透镜2较小时,可使用较少数量的光纤。而当使用的激光源及透镜2较大时,可使用较多数量的光纤,以对应大宽度的激光源或透镜2。可以理解的是,为了节省空间,以及统一光纤的排布方向等,多根光纤可捆绑成一根光纤束,更优选地,困办成一根光纤束后,多根光纤呈阵列形状,使得光纤覆盖了激光信号传送的截面面积内,不会造成信号遗漏的情况。
应当注意的是,本实用新型的实施例有较佳的实施性,且并非对本实用新型作任何形式的限制,任何熟悉该领域的技术人员可能利用上述揭示的技术内容变更或修饰为等同的有效实施例,但凡未脱离本实用新型技术方案的内容,依据本实用新型的技术实质对以上实施例所作的任何修改或等同变化及修饰,均仍属于本实用新型技术方案的范围内。

Claims (4)

  1. 一种用于激光扫描雷达的收发装置,包括用于发送激光的激光源、改变所述激光源发出的激光光路的透镜,其特征在于,
    所述激光源与所述透镜间还设有一光纤模块;
    所述光纤模块接收所述激光源的激光,并将所述激光的光脉冲传导至所述透镜。
  2. 如权利要求1所述的用于激光扫描雷达的收发装置,其特征在于,
    所述光纤模块包括至少一根光纤;
    所述光纤具有的横向宽度略大于所述透镜的宽度。
  3. 如权利要求2所述的用于激光扫描雷达的收发装置,其特征在于,
    一根或多根光纤对应所述透镜;
    当所述光纤为多根时,多根所述光纤捆绑形成一光纤组束。
  4. 如权利要求1所述的用于激光扫描雷达的收发装置,其特征在于,
    当所述光纤模块中包括的光纤为多根时,所述光纤呈阵列形状。
PCT/CN2017/088541 2016-07-04 2017-06-16 一种用于激光扫描雷达的收发装置 WO2018006699A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620703032.2U CN205899007U (zh) 2016-07-04 2016-07-04 一种用于激光扫描雷达的收发装置
CN201620703032.2 2016-07-04

Publications (1)

Publication Number Publication Date
WO2018006699A1 true WO2018006699A1 (zh) 2018-01-11

Family

ID=57771698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088541 WO2018006699A1 (zh) 2016-07-04 2017-06-16 一种用于激光扫描雷达的收发装置

Country Status (2)

Country Link
CN (1) CN205899007U (zh)
WO (1) WO2018006699A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109828256A (zh) * 2019-02-14 2019-05-31 昂纳信息技术(深圳)有限公司 一种探测装置及激光雷达
CN110235025A (zh) * 2018-04-28 2019-09-13 深圳市大疆创新科技有限公司 距离探测装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206020656U (zh) * 2016-07-04 2017-03-15 杭州欧镭激光技术有限公司 一种用于激光扫描雷达的收发装置
CN205899007U (zh) * 2016-07-04 2017-01-18 杭州欧镭激光技术有限公司 一种用于激光扫描雷达的收发装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202075449U (zh) * 2011-05-10 2011-12-14 西安工程大学 一种光固化细小结构光纤束发射装置
CN203259695U (zh) * 2013-05-07 2013-10-30 苏州旭创科技有限公司 微型串行scsi宽带高速传输的并行光收发组件
CN103744087A (zh) * 2014-01-11 2014-04-23 桂林理工大学 一种脉冲式n×n阵列激光雷达系统
US20140176933A1 (en) * 2012-12-18 2014-06-26 Pouch Holdings LLC Light detecting and ranging sensing apparatus and methods
US20140231647A1 (en) * 2010-11-23 2014-08-21 United States Of America, As Represented By The Secretary Of The Army Compact fiber-based scanning laser detection and ranging system
CN105445744A (zh) * 2015-11-19 2016-03-30 东南大学 一种线激光目标探测系统和目标探测方法
CN205899007U (zh) * 2016-07-04 2017-01-18 杭州欧镭激光技术有限公司 一种用于激光扫描雷达的收发装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140231647A1 (en) * 2010-11-23 2014-08-21 United States Of America, As Represented By The Secretary Of The Army Compact fiber-based scanning laser detection and ranging system
CN202075449U (zh) * 2011-05-10 2011-12-14 西安工程大学 一种光固化细小结构光纤束发射装置
US20140176933A1 (en) * 2012-12-18 2014-06-26 Pouch Holdings LLC Light detecting and ranging sensing apparatus and methods
CN203259695U (zh) * 2013-05-07 2013-10-30 苏州旭创科技有限公司 微型串行scsi宽带高速传输的并行光收发组件
CN103744087A (zh) * 2014-01-11 2014-04-23 桂林理工大学 一种脉冲式n×n阵列激光雷达系统
CN105445744A (zh) * 2015-11-19 2016-03-30 东南大学 一种线激光目标探测系统和目标探测方法
CN205899007U (zh) * 2016-07-04 2017-01-18 杭州欧镭激光技术有限公司 一种用于激光扫描雷达的收发装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110235025A (zh) * 2018-04-28 2019-09-13 深圳市大疆创新科技有限公司 距离探测装置
CN110235025B (zh) * 2018-04-28 2023-08-04 深圳市大疆创新科技有限公司 距离探测装置
US12092737B2 (en) 2018-04-28 2024-09-17 SZ DJI Technology Co., Ltd. Distance detection apparatuses
CN109828256A (zh) * 2019-02-14 2019-05-31 昂纳信息技术(深圳)有限公司 一种探测装置及激光雷达

Also Published As

Publication number Publication date
CN205899007U (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
WO2018006699A1 (zh) 一种用于激光扫描雷达的收发装置
JP6461509B2 (ja) 光レセプタクルおよび光モジュール
US20230014366A1 (en) Laser transceiver system, lidar, and autonomous driving apparatus
WO2018006698A1 (zh) 一种用于激光扫描雷达的收发装置
US8923671B2 (en) Optical coupling lens and optical communication apparatus with same
CN113167870B (zh) 激光收发系统、激光雷达及自动驾驶设备
US9513448B2 (en) Optical assembly
RU2014105431A (ru) Устройство для измерения транспортных средств
CN211653130U (zh) 激光发射阵列、扫描装置、激光雷达及智能车辆、无人机
CN111007484B (zh) 一种单线激光雷达
WO2018006697A1 (zh) 一种用于激光扫描雷达的收发装置
WO2020215577A1 (zh) 激光雷达及其探测装置
US9448372B2 (en) Optical coupling element and optical module having the same
US20170063037A1 (en) Light emission module
US20150147030A1 (en) Optical coupling lens
CN209417295U (zh) 一种激光雷达主模块及激光雷达
KR20140034681A (ko) 광학 분할 장치
US9606309B2 (en) Optical coupling module and photoelectric conversion device including same
CN110333500B (zh) 一种多波束激光雷达
CN209590262U (zh) 相控阵激光雷达
WO2020164224A1 (zh) 一种探测装置及激光雷达
CN215116780U (zh) 一种光发射装置、激光雷达系统及电子设备
CN210401654U (zh) 一种收发同轴的多线激光雷达
CN110346779B (zh) 一种用于多波束激光雷达的时间通道复用的测量方法
CN113064141A (zh) 一种基于单波长和单探测器的多线激光雷达及探测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17823511

Country of ref document: EP

Kind code of ref document: A1