WO2018006697A1 - 一种用于激光扫描雷达的收发装置 - Google Patents

一种用于激光扫描雷达的收发装置 Download PDF

Info

Publication number
WO2018006697A1
WO2018006697A1 PCT/CN2017/088491 CN2017088491W WO2018006697A1 WO 2018006697 A1 WO2018006697 A1 WO 2018006697A1 CN 2017088491 W CN2017088491 W CN 2017088491W WO 2018006697 A1 WO2018006697 A1 WO 2018006697A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser light
lens
receiving unit
fibers
Prior art date
Application number
PCT/CN2017/088491
Other languages
English (en)
French (fr)
Inventor
朱亚平
张瓯
Original Assignee
杭州欧镭激光技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州欧镭激光技术有限公司 filed Critical 杭州欧镭激光技术有限公司
Publication of WO2018006697A1 publication Critical patent/WO2018006697A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the utility model relates to the field of laser equipment, in particular to a transceiver device for laser scanning radar.
  • the laser radar directly emits laser light through a laser diode, and the laser light is transmitted through a lens to a target object for reflection, and then received by a laser receiving unit through a lens. Since the effect of the lens on the laser transmission is difficult to refine and standardize, the position transmitted by the laser may not correspond to the laser receiving unit, resulting in partial laser not being received, resulting in low spatial resolution. There are also technical difficulties in assembly and arrangement.
  • the utility model discloses a transceiver device for a laser scanning radar, comprising a laser source for transmitting laser light, changing a lens of a laser light path emitted by the laser source, the laser light being reflected back to the lens by a target object And transmitting to a laser receiving unit, wherein the laser receiving unit and the lens are further provided with a fiber module; the fiber module receives the laser light transmitted by the lens, and transmits the laser pulse of the laser light to the laser Receiving unit.
  • the fiber optic module includes at least one optical fiber; the optical fiber has a lateral width slightly Greater than the width of the lens.
  • one or more optical fibers correspond to one of the laser receiving units; when the plurality of optical fibers are multiple, a plurality of the optical fibers are bundled to form a bundle of optical fibers.
  • the laser receiving unit is an avalanche photodiode.
  • Densely arranged optical fibers can increase the resolution of signal reception
  • the signal that deviates from the center of the lens is also collected by the fiber, so that the received signal is more complete and there is no blind zone problem.
  • FIG. 1 is a schematic structural view of a transceiver device for a laser scanning radar in the prior art
  • FIG. 2 is a schematic structural view of a transceiver for a laser scanning radar in accordance with a preferred embodiment of the present invention.
  • 1-lens, 2-fiber module, 3-laser receiving unit 1-lens, 2-fiber module, 3-laser receiving unit.
  • a laser source is provided to transmit laser light outwardly for ranging, leveling, collimating, etc.
  • a lens 1 is disposed on the emitted laser light path, and the laser light is transmitted through the lens 1, and the optical path is simultaneously changed.
  • the laser continues to be emitted until a target object reflects the laser light, and the reflected light is reflected back to the lens 1, which in turn transmits the reflected laser light.
  • the laser is finally received by the laser receiving unit 3, and can be measured by transmitting and receiving the phase and power difference between the lasers.
  • a fiber optic module 2 is disposed between the laser receiving unit 3 and the lens 1.
  • the fiber optic module 2 has a laser receiving end facing the laser light transmitted through the lens 1.
  • the optical fiber is firstly used by the optical fiber.
  • Module 2 receives. Since the optical fiber is elongated, it is clothed on the lens 1
  • the number of optical fibers disposed on a unit area can be many, that is, the density of the optical fiber layout is much larger than the density that the original laser receiving unit 3 can lay.
  • the fiber module 2 can be received regardless of where the laser is transmitted.
  • the optical fiber module 2 is connected to the laser receiving unit 3, and after receiving the laser light, the optical fiber module 2 transmits the optical pulse of the laser light to the laser receiving unit 3.
  • the fiber module 2 can be received at the corresponding position to receive the laser signal, and the received laser signal is “thinned”, thereby improving Spatial resolution.
  • the fiber optic module 2 can include one or more fibers.
  • a smaller number of fibers can be used.
  • a larger number of fibers can be used to correspond to the lens 1 of a large width. It can be understood that, in order to save space, and to unify the arrangement direction of the optical fibers, a plurality of optical fibers can be bundled into one optical fiber bundle, so that the optical fiber covers the cross-sectional area of the laser signal transmission without causing signal omission.
  • the laser receiving unit 3 is an avalanche diode (APD), which is widely used, mainly for receiving laser light, such as a laser range finder, a military sight, and some medical instruments.
  • APD avalanche diode

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种用于激光扫描雷达的收发装置,包括用于发送激光的激光源,改变激光源发出的激光光路的透镜(1),激光经一目标物体反射回至透镜(1),并透射至一激光接收单元(3),激光接收单元(3)与透镜(1)间还设有一光纤模块(2);光纤模块(2)接收透镜(1)透射的激光,并将激光的光脉冲传导至激光接收单元(3)。采用该收发装置后,可完整接收激光信号,扫描而得的分辨率也可得到提高。

Description

一种用于激光扫描雷达的收发装置 技术领域
本实用新型涉及激光设备领域,尤其涉及一种用于激光扫描雷达的收发装置。
背景技术
参阅图1,现有的技术中,激光雷达通过激光二极管直接发射激光,激光经过透镜透射至目标物体后反射,再经透镜后由激光接收单元接收。由于透镜对激光透射的效果较难精细化和标准化,激光透射而出的位置可能无法对应到激光接收单元上,导致部分激光未接收,使得空间分辨率较低。且在组装、排布上也存在工艺方面的困难。
因此,需要一种具有新型结构的用于激光扫描雷达的收发装置,可完整接收激光信号,扫描而得的分辨率也可得到提高。
实用新型内容
为了克服上述技术缺陷,本实用新型的目的在于提供一种用于激光扫描雷达的收发装置,不会造成信号的丢失,即便是偏离中心的信号也可接收。
本实用新型公开了一种用于激光扫描雷达的收发装置,包括用于发送激光的激光源,改变所述激光源发出的激光光路的透镜,所述激光经一目标物体反射回至所述透镜,并透射至一激光接收单元,所述激光接收单元与所述透镜间还设有一光纤模块;所述光纤模块接收所述透镜透射的激光,并将所述激光的光脉冲传导至所述激光接收单元。
优选地,所述光纤模块包括至少一根光纤;所述光纤具有的横向宽度略 大于所述透镜的宽度。
优选地,一根或多根光纤对应一所述激光接收单元;当所述光纤为多根时,多根所述光纤捆绑形成一光纤组束。
优选地,所述激光接收单元为雪崩光电二极管。
采用了上述技术方案后,与现有技术相比,具有以下有益效果:
1.密集排布的光纤可增加信号接收的分辨率;
2.偏离透镜中心的信号也会被光纤采集,使得接收到的信号更为完整,不会存在盲区的问题。
附图说明
图1为现有技术中用于激光扫描雷达的收发装置的结构示意图;
图2为符合本实用新型一优选实施例中用于激光扫描雷达的收发装置的结构示意图。
附图标记:
1-透镜、2-光纤模块、3-激光接收单元。
具体实施方式
以下结合附图与具体实施例进一步阐述本实用新型的优点。
参阅图2,为符合本实用新型一优选实施例中用于激光扫描雷达的收发装置的结构示意图。在该优选实施例中,设有一激光源,向外发送激光,可用于测距、扫平、准直等,在发出的激光光路上,设有一透镜1,激光透射该透镜1,光路同时改变。激光继续射出,直至一目标物体对该激光进行反射,反射光线回射至透镜1,透镜1再而透射反射激光。激光最终由激光接收单元3接收,可通过发送和接收激光间相位、功率差进行测距等。
在激光接收单元3和透镜1间设有一光纤模块2,光纤模块2具有一激光接收端,该激光接收端面向经透镜1透射的激光,当激光射向激光接收单元3时,将先由光纤模块2接收。由于光纤呈细长状,因此在面向透镜1布 设光纤时,单位面积上布设有的光纤数量可以很多,也就是说,光纤布设的密度远大于原激光接收单元3可布设的密度。则无论激光透射至何处,均可被光纤模块2接收。光纤模块2与激光接收单元3连接,光纤模块2接收激光后,将激光的光脉冲传导至激光接收单元3。
通过光纤模块2高密度、高传导率的特点,无论激光信号偏离中心、光路向外等,在对应位置处设置光纤模块2即可接收激光信号,接收的激光信号“变细”,从而提高了空间分辨率。
光纤模块2可以包括一根或多根光纤。例如,当使用的激光源及透镜1较小时,可使用较少数量的光纤。而当使用的激光源及透镜1较大时,可使用较多数量的光纤,以对应大宽度的透镜1。可以理解的是,为了节省空间,以及统一光纤的排布方向等,多根光纤可捆绑成一根光纤束,使得光纤覆盖了激光信号传送的截面面积内,不会造成信号遗漏的情况。
一优选实施例中,激光接收单元3为雪崩二极管(APD),其应用广泛,主要使用在激光的接收上,比如激光测距仪,军工的瞄准器,以及一些医疗器械等。
应当注意的是,本实用新型的实施例有较佳的实施性,且并非对本实用新型作任何形式的限制,任何熟悉该领域的技术人员可能利用上述揭示的技术内容变更或修饰为等同的有效实施例,但凡未脱离本实用新型技术方案的内容,依据本实用新型的技术实质对以上实施例所作的任何修改或等同变化及修饰,均仍属于本实用新型技术方案的范围内。

Claims (4)

  1. 一种用于激光扫描雷达的收发装置,包括用于发送激光的激光源,改变所述激光源发出的激光光路的透镜,所述激光经一目标物体反射回至所述透镜,并透射至一激光接收单元,其特征在于,
    所述激光接收单元与所述透镜间还设有一光纤模块;
    所述光纤模块接收所述透镜透射的激光,并将所述激光的光脉冲传导至所述激光接收单元。
  2. 如权利要求1所述的用于激光扫描雷达的收发装置,其特征在于,
    所述光纤模块包括至少一根光纤;
    所述光纤具有的横向宽度略大于所述透镜的宽度。
  3. 如权利要求2所述的用于激光扫描雷达的收发装置,其特征在于,
    一根或多根光纤对应一所述激光接收单元;
    当所述光纤为多根时,多根所述光纤捆绑形成一光纤组束。
  4. 如权利要求1所述的用于激光扫描雷达的收发装置,其特征在于,
    所述激光接收单元为雪崩光电二极管。
PCT/CN2017/088491 2016-07-04 2017-06-15 一种用于激光扫描雷达的收发装置 WO2018006697A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620702915.1U CN206020656U (zh) 2016-07-04 2016-07-04 一种用于激光扫描雷达的收发装置
CN201620702915.1 2016-07-04

Publications (1)

Publication Number Publication Date
WO2018006697A1 true WO2018006697A1 (zh) 2018-01-11

Family

ID=58243499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088491 WO2018006697A1 (zh) 2016-07-04 2017-06-15 一种用于激光扫描雷达的收发装置

Country Status (2)

Country Link
CN (1) CN206020656U (zh)
WO (1) WO2018006697A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206020656U (zh) * 2016-07-04 2017-03-15 杭州欧镭激光技术有限公司 一种用于激光扫描雷达的收发装置
CN109283524B (zh) * 2018-08-01 2020-11-06 西安交通大学 一种用于提高地质雷达信号分辨率的方法
CN111669226B (zh) * 2020-06-12 2022-04-05 青岛镭创光电技术有限公司 一种全光纤式激光发射接收系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050168819A1 (en) * 2002-04-01 2005-08-04 Santur Corporation Laser and laser signal combiner
CN103424749A (zh) * 2012-05-22 2013-12-04 杨少辰 一种全光纤激光雷达能见度仪
CN104020474A (zh) * 2014-05-06 2014-09-03 南京大学 一种激光三维成像光学收发系统
CN205899007U (zh) * 2016-07-04 2017-01-18 杭州欧镭激光技术有限公司 一种用于激光扫描雷达的收发装置
CN206020657U (zh) * 2016-07-04 2017-03-15 杭州欧镭激光技术有限公司 一种用于激光扫描雷达的收发装置
CN206020656U (zh) * 2016-07-04 2017-03-15 杭州欧镭激光技术有限公司 一种用于激光扫描雷达的收发装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050168819A1 (en) * 2002-04-01 2005-08-04 Santur Corporation Laser and laser signal combiner
CN103424749A (zh) * 2012-05-22 2013-12-04 杨少辰 一种全光纤激光雷达能见度仪
CN104020474A (zh) * 2014-05-06 2014-09-03 南京大学 一种激光三维成像光学收发系统
CN205899007U (zh) * 2016-07-04 2017-01-18 杭州欧镭激光技术有限公司 一种用于激光扫描雷达的收发装置
CN206020657U (zh) * 2016-07-04 2017-03-15 杭州欧镭激光技术有限公司 一种用于激光扫描雷达的收发装置
CN206020656U (zh) * 2016-07-04 2017-03-15 杭州欧镭激光技术有限公司 一种用于激光扫描雷达的收发装置

Also Published As

Publication number Publication date
CN206020656U (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
CN109188397B (zh) 激光收发装置及激光雷达
JP7303925B2 (ja) 多波長ライダー設計
WO2018006698A1 (zh) 一种用于激光扫描雷达的收发装置
WO2019165289A1 (en) Receive path for lidar system
CN203745642U (zh) 一种基于y型光纤束的共轴微脉冲激光雷达装置
US8068215B2 (en) Laser distance meter
WO2018006697A1 (zh) 一种用于激光扫描雷达的收发装置
JP2011039052A5 (zh)
WO2018006699A1 (zh) 一种用于激光扫描雷达的收发装置
US20200341261A1 (en) Erecting system and binocular telescope for laser ranging
CN103116164B (zh) 外差脉冲压缩式多功能激光雷达及其控制方法
CN110133616B (zh) 一种激光雷达系统
CN109738880A (zh) 一种激光雷达系统及激光测距装置
CN111007484B (zh) 一种单线激光雷达
CN109444850A (zh) 相控阵激光雷达
CN108693505A (zh) 激光雷达及其相控阵激光发射单元
US20150378021A1 (en) Electronic distance meter
WO2024094099A1 (zh) 激光雷达
CN109444849A (zh) 相控阵激光雷达
CN211718520U (zh) 一种多线激光雷达
US20150147030A1 (en) Optical coupling lens
WO2024104362A1 (zh) 激光雷达
KR102280189B1 (ko) 라이다 장치
CN209590264U (zh) 相控阵激光雷达
CN104092493A (zh) 一种单向光功率监测器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17823509

Country of ref document: EP

Kind code of ref document: A1