WO2018006698A1 - 一种用于激光扫描雷达的收发装置 - Google Patents
一种用于激光扫描雷达的收发装置 Download PDFInfo
- Publication number
- WO2018006698A1 WO2018006698A1 PCT/CN2017/088497 CN2017088497W WO2018006698A1 WO 2018006698 A1 WO2018006698 A1 WO 2018006698A1 CN 2017088497 W CN2017088497 W CN 2017088497W WO 2018006698 A1 WO2018006698 A1 WO 2018006698A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- lens
- receiving unit
- scanning radar
- optical
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
Definitions
- the utility model relates to the field of laser equipment, in particular to a transceiver device for laser scanning radar.
- the laser radar directly emits laser light through a laser diode, and the laser light is transmitted through a lens to a target object for reflection, and then received by a laser receiving unit through a lens. Since the effect of the lens on the laser transmission is difficult to refine and standardize, the position transmitted by the laser may not correspond to the laser receiving unit, resulting in partial laser not being received, resulting in low spatial resolution. There are also technical difficulties in assembly and arrangement.
- the position of the lens and the laser receiving unit is usually limited more and cannot be freely placed.
- the utility model discloses a transceiver device for a laser scanning radar, comprising a laser source for transmitting laser light, changing a lens of a laser light path emitted by the laser source, the laser light being reflected back to the lens by a target object And transmitted to a laser receiving unit, the laser receiving unit and the An optical fiber module is further disposed between the lenses; the optical fiber module receives the laser light transmitted by the lens, and transmits the optical pulse of the laser light to the laser receiving unit, wherein the optical fiber module comprises a plurality of optical fibers, and the optical fiber is The array is arranged and integrated into a Fibre Channel.
- the optical fiber has a lateral width that is slightly larger than the width of the lens.
- the laser receiving unit is an avalanche photodiode.
- each of the fiber channels is in communication with one of the avalanche photodiodes.
- Densely arranged optical fibers can increase the resolution of signal reception
- the optical fiber can be bent and formed, and the position of the lens and the laser receiving unit is more free.
- FIG. 1 is a schematic structural view of a transceiver device for a laser scanning radar in the prior art
- FIG. 2 is a schematic structural view of a transceiver device for a laser scanning radar according to a preferred embodiment of the present invention
- FIG. 3 is an interface diagram of a plurality of optical fibers integrated in accordance with a preferred embodiment of the present invention.
- 1-lens, 2-fiber module, 3-laser receiving unit 1-lens, 2-fiber module, 3-laser receiving unit.
- a laser source is provided to transmit laser light outwardly for ranging, leveling, collimating, etc.
- a lens 1 is disposed on the emitted laser light path, and the laser light is transmitted through the lens 1, and the optical path is simultaneously changed.
- the laser continues to be emitted until a target object reflects the laser light, and the reflected light is reflected back to the lens 1, which in turn transmits the reflected laser light.
- the laser is finally connected by laser Receiving unit 3 receives, and can perform ranging by transmitting and receiving phase and power difference between lasers.
- a fiber optic module 22 is disposed between the laser receiving unit 3 and the lens 1.
- the fiber optic module 2 has a laser receiving end facing the laser light transmitted through the lens 1.
- the optical fiber is firstly used by the optical fiber.
- Module 2 receives. Since the optical fiber is elongated, when the optical fiber is disposed facing the lens 1, the number of optical fibers disposed per unit area can be many, that is, the density of the optical fiber is much larger than the density at which the original laser receiving unit 3 can be disposed.
- the fiber module 2 can be received regardless of where the laser is transmitted.
- the optical fiber module 2 is connected to the laser receiving unit 3, and after receiving the laser light, the optical fiber module 2 transmits the optical pulse of the laser light to the laser receiving unit 3.
- the plurality of fibers disposed in the fiber module 2 are arranged in an array, that is, a plurality of fibers are stacked in a matrix, and then the plurality of fibers are integrated by the package.
- the integration of the optical fiber not only protects the optical fiber from damage, but also facilitates the user to arrange the lens 1 and the laser receiving unit 3 without considering whether or not the connection is possible, and the flexible fiber channel will be abutting the lens under any conditions. 1 and laser receiving unit 3.
- the fiber module 2 can be received at the corresponding position to receive the laser signal, and the received laser signal is “thinned”, thereby improving Spatial resolution.
- the optical fiber module 2 has a lateral width slightly larger than the width of the lens 1, and the laser light transmitted through the lens 1 will not overflow to the outside of the optical fiber module 2, ensuring that the laser signals are all received.
- the laser receiving unit 3 is an avalanche diode (APD), which is widely used, mainly for receiving laser light, such as a laser range finder, a military sight, and some medical instruments. After having an avalanche diode, each fiber channel is communicatively coupled to an avalanche photodiode to receive a signal.
- APD avalanche diode
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
一种用于激光扫描雷达的收发装置,包括用于发送激光的激光源,改变激光源发出的激光光路的透镜(1),激光经一目标物体反射回透镜(1),并透射至激光接收单元(3),激光接收单元与透镜间还设有一光纤模块(2),光纤模块(2)接收透镜透射的激光,并将激光的光脉冲传导至激光接收单元,光纤模块包括多根光纤,光纤呈阵列排布,并整合至一光纤通道中,该激光扫描雷达的收发装置,可完整接收激光信号,扫描而得的分辨率也可得到提高,激光接收单元和透镜的位置可任意自由摆放。
Description
本实用新型涉及激光设备领域,尤其涉及一种用于激光扫描雷达的收发装置。
参阅图1,现有的技术中,激光雷达通过激光二极管直接发射激光,激光经过透镜透射至目标物体后反射,再经透镜后由激光接收单元接收。由于透镜对激光透射的效果较难精细化和标准化,激光透射而出的位置可能无法对应到激光接收单元上,导致部分激光未接收,使得空间分辨率较低。且在组装、排布上也存在工艺方面的困难。
此外,由于空间的限定,通常对透镜和激光接收单元的位置布设限制较多,无法自由放置。
因此,需要一种具有新型结构的用于激光扫描雷达的收发装置,可完整接收激光信号,扫描而得的分辨率也可得到提高。
实用新型内容
为了克服上述技术缺陷,本实用新型的目的在于提供一种用于激光扫描雷达的收发装置,不会造成信号的丢失,即便是偏离中心的信号也可接收。且激光接收单元和透镜的位置可任意摆放,光纤模块将帮助信号传导。
本实用新型公开了一种用于激光扫描雷达的收发装置,包括用于发送激光的激光源,改变所述激光源发出的激光光路的透镜,所述激光经一目标物体反射回至所述透镜,并透射至一激光接收单元,所述激光接收单元与所述
透镜间还设有一光纤模块;所述光纤模块接收所述透镜透射的激光,并将所述激光的光脉冲传导至所述激光接收单元,其中所述光纤模块包括多根光纤,所述光纤呈阵列排布,并整合至一光纤通道中。
优选地,所述光纤具有的横向宽度略大于所述透镜的宽度。
优选地,所述激光接收单元为雪崩光电二极管。
优选地,每一所述光纤通道与一所述雪崩光电二极管通信连接。
采用了上述技术方案后,与现有技术相比,具有以下有益效果:
1.密集排布的光纤可增加信号接收的分辨率;
2.偏离透镜中心的信号也会被光纤采集,使得接收到的信号更为完整,不会存在盲区的问题;
3.光纤可弯曲成型,则透镜和激光接收单元的放置位置更加自由。
图1为现有技术中用于激光扫描雷达的收发装置的结构示意图;
图2为符合本实用新型一优选实施例中用于激光扫描雷达的收发装置的结构示意图;
图3为符合本实用新型一优选实施例中多根光纤整合后的界面图。
附图标记:
1-透镜、2-光纤模块、3-激光接收单元。
以下结合附图与具体实施例进一步阐述本实用新型的优点。
参阅图2,为符合本实用新型一优选实施例中用于激光扫描雷达的收发装置的结构示意图。在该优选实施例中,设有一激光源,向外发送激光,可用于测距、扫平、准直等,在发出的激光光路上,设有一透镜1,激光透射该透镜1,光路同时改变。激光继续射出,直至一目标物体对该激光进行反射,反射光线回射至透镜1,透镜1再而透射反射激光。激光最终由激光接
收单元3接收,可通过发送和接收激光间相位、功率差进行测距等。
在激光接收单元3和透镜1间设有一光纤模块22,光纤模块2具有一激光接收端,该激光接收端面向经透镜1透射的激光,当激光射向激光接收单元3时,将先由光纤模块2接收。由于光纤呈细长状,因此在面向透镜1布设光纤时,单位面积上布设有的光纤数量可以很多,也就是说,光纤布设的密度远大于原激光接收单元3可布设的密度。则无论激光透射至何处,均可被光纤模块2接收。光纤模块2与激光接收单元3连接,光纤模块2接收激光后,将激光的光脉冲传导至激光接收单元3。
且为了节省额外增加的光纤模块2的空间占有,光纤模块2内设有的多根光纤,呈阵列排布,也即,以矩阵的形式叠放多根光纤,而后通过封装将多根光纤整合至一光纤通道中。在该实施例中,光纤的整合既可以保护光纤不损坏,也可方便使用者在布设透镜1和激光接收单元3时,无需考虑是否可连接,可弯曲的光纤通道将在任意条件下对接透镜1和激光接收单元3。
通过光纤模块2高密度、高传导率的特点,无论激光信号偏离中心、光路向外等,在对应位置处设置光纤模块2即可接收激光信号,接收的激光信号“变细”,从而提高了空间分辨率。
光纤模块2所具有的横向宽度略大于透镜1的宽度,则经透镜1透射后的激光将不会外溢至光纤模块2外部,保证激光信号全部接收。
一优选实施例中,激光接收单元3为雪崩二极管(APD),其应用广泛,主要使用在激光的接收上,比如激光测距仪,军工的瞄准器,以及一些医疗器械等。具有雪崩二极管后,每一光纤通道与一雪崩光电二极管通信连接,从而接收信号。
应当注意的是,本实用新型的实施例有较佳的实施性,且并非对本实用新型作任何形式的限制,任何熟悉该领域的技术人员可能利用上述揭示的技术内容变更或修饰为等同的有效实施例,但凡未脱离本实用新型技术方案的内容,依据本实用新型的技术实质对以上实施例所作的任何修改或等同变化及修饰,均仍属于本实用新型技术方案的范围内。
Claims (4)
- 一种用于激光扫描雷达的收发装置,包括用于发送激光的激光源,改变所述激光源发出的激光光路的透镜,所述激光经一目标物体反射回至所述透镜,并透射至一激光接收单元,其特征在于,所述激光接收单元与所述透镜间还设有一光纤模块;所述光纤模块接收所述透镜透射的激光,并将所述激光的光脉冲传导至所述激光接收单元,其中所述光纤模块包括多根光纤,所述光纤呈阵列排布,并整合至一光纤通道中。
- 如权利要求1所述的用于激光扫描雷达的收发装置,其特征在于,所述光纤模块具有的横向宽度略大于所述透镜的宽度。
- 如权利要求1所述的用于激光扫描雷达的收发装置,其特征在于,所述激光接收单元为雪崩光电二极管。
- 如权利要求3所述的用于激光扫描雷达的收发装置,其特征在于,每一所述光纤通道与一所述雪崩光电二极管通信连接。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201620703031.8U CN206020657U (zh) | 2016-07-04 | 2016-07-04 | 一种用于激光扫描雷达的收发装置 |
CN201620703031.8 | 2016-07-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018006698A1 true WO2018006698A1 (zh) | 2018-01-11 |
Family
ID=58244151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/088497 WO2018006698A1 (zh) | 2016-07-04 | 2017-06-15 | 一种用于激光扫描雷达的收发装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN206020657U (zh) |
WO (1) | WO2018006698A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109828256A (zh) * | 2019-02-14 | 2019-05-31 | 昂纳信息技术(深圳)有限公司 | 一种探测装置及激光雷达 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN206020657U (zh) * | 2016-07-04 | 2017-03-15 | 杭州欧镭激光技术有限公司 | 一种用于激光扫描雷达的收发装置 |
CN206020656U (zh) * | 2016-07-04 | 2017-03-15 | 杭州欧镭激光技术有限公司 | 一种用于激光扫描雷达的收发装置 |
CN110703394A (zh) * | 2018-07-09 | 2020-01-17 | 余姚舜宇智能光学技术有限公司 | 一种大面积信号光能量采集系统、方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100296077A1 (en) * | 2007-11-01 | 2010-11-25 | Nasa Headquarters | Three-dimensional range imaging apparatus and method |
US20110085154A1 (en) * | 2009-10-10 | 2011-04-14 | Eads Deutschland Gmbh | Fiber optic scanner |
US20140168631A1 (en) * | 2012-12-18 | 2014-06-19 | Pouch Holdings LLC | Multi-clad Fiber Based Optical Apparatus and Methods for Light Detection and Ranging Sensors |
CN103994719A (zh) * | 2014-05-30 | 2014-08-20 | 中国科学院国家天文台南京天文光学技术研究所 | 基于盖革apd阵列的高精度三维成像装置及其使用方法 |
US20140231647A1 (en) * | 2010-11-23 | 2014-08-21 | United States Of America, As Represented By The Secretary Of The Army | Compact fiber-based scanning laser detection and ranging system |
CN206020657U (zh) * | 2016-07-04 | 2017-03-15 | 杭州欧镭激光技术有限公司 | 一种用于激光扫描雷达的收发装置 |
-
2016
- 2016-07-04 CN CN201620703031.8U patent/CN206020657U/zh active Active
-
2017
- 2017-06-15 WO PCT/CN2017/088497 patent/WO2018006698A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100296077A1 (en) * | 2007-11-01 | 2010-11-25 | Nasa Headquarters | Three-dimensional range imaging apparatus and method |
US20110085154A1 (en) * | 2009-10-10 | 2011-04-14 | Eads Deutschland Gmbh | Fiber optic scanner |
US20140231647A1 (en) * | 2010-11-23 | 2014-08-21 | United States Of America, As Represented By The Secretary Of The Army | Compact fiber-based scanning laser detection and ranging system |
US20140168631A1 (en) * | 2012-12-18 | 2014-06-19 | Pouch Holdings LLC | Multi-clad Fiber Based Optical Apparatus and Methods for Light Detection and Ranging Sensors |
CN103994719A (zh) * | 2014-05-30 | 2014-08-20 | 中国科学院国家天文台南京天文光学技术研究所 | 基于盖革apd阵列的高精度三维成像装置及其使用方法 |
CN206020657U (zh) * | 2016-07-04 | 2017-03-15 | 杭州欧镭激光技术有限公司 | 一种用于激光扫描雷达的收发装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109828256A (zh) * | 2019-02-14 | 2019-05-31 | 昂纳信息技术(深圳)有限公司 | 一种探测装置及激光雷达 |
Also Published As
Publication number | Publication date |
---|---|
CN206020657U (zh) | 2017-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018006698A1 (zh) | 一种用于激光扫描雷达的收发装置 | |
WO2019165289A1 (en) | Receive path for lidar system | |
US9547138B2 (en) | Light receiving module having built-in wavelength-tunable wavelength-selective filter | |
US8961042B2 (en) | Optical coupling device | |
JP6461509B2 (ja) | 光レセプタクルおよび光モジュール | |
US20070030474A1 (en) | Optical range finder | |
WO2018006699A1 (zh) | 一种用于激光扫描雷达的收发装置 | |
WO2021196192A1 (zh) | 激光收发系统、激光雷达及自动驾驶设备 | |
US9006643B2 (en) | Photoelectric converter with optical signal splitting holes for reflecting optical signals to monitor | |
WO2018006697A1 (zh) | 一种用于激光扫描雷达的收发装置 | |
US8979392B2 (en) | Photoelectric converter | |
US20150293316A1 (en) | Optical assembly | |
US20150147030A1 (en) | Optical coupling lens | |
CN211718520U (zh) | 一种多线激光雷达 | |
CN209590262U (zh) | 相控阵激光雷达 | |
CN110346779B (zh) | 一种用于多波束激光雷达的时间通道复用的测量方法 | |
US11237399B2 (en) | Optical beam shaping unit, distance measuring device and laser illuminator | |
US20150063749A1 (en) | Lens unit and optical communication device | |
TW201801486A (zh) | 具有雷射光分路裝置的光纖雷射傳輸系統 | |
WO2018221401A1 (ja) | 光レセプタクルおよび光モジュール | |
US9729243B2 (en) | Optoelectronic transmitter, optoelectronic receiver and optoelectronic transceiver | |
WO2024114293A1 (zh) | 一种探测装置,光环回方法及终端 | |
JP2016048284A (ja) | 光レセプタクルおよび光モジュール | |
US9057855B2 (en) | Bidirectional and double-frequency optical transmission module and transmission assembly | |
RU2620767C1 (ru) | Лазерный дальномер с сумматором зондирующих пучков излучения |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17823510 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17823510 Country of ref document: EP Kind code of ref document: A1 |