WO2018006679A1 - 高Tg有机电子传输器件 - Google Patents

高Tg有机电子传输器件 Download PDF

Info

Publication number
WO2018006679A1
WO2018006679A1 PCT/CN2017/087505 CN2017087505W WO2018006679A1 WO 2018006679 A1 WO2018006679 A1 WO 2018006679A1 CN 2017087505 W CN2017087505 W CN 2017087505W WO 2018006679 A1 WO2018006679 A1 WO 2018006679A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
electron transport
transport device
compound
Prior art date
Application number
PCT/CN2017/087505
Other languages
English (en)
French (fr)
Inventor
鲁锦鸿
李哲
陈金鑫
戴雷
蔡丽菲
Original Assignee
广东阿格蕾雅光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东阿格蕾雅光电材料有限公司 filed Critical 广东阿格蕾雅光电材料有限公司
Publication of WO2018006679A1 publication Critical patent/WO2018006679A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure

Definitions

  • the invention relates to a high Tg organic electron transport device, which is prepared by vacuum deposition into a thin film by using a novel organic electron transport material, and includes only an electronic organic semiconductor diode device and an organic electroluminescence device.
  • Electron-only organic semiconductor diode devices are one type of single-carrier devices that are used as power semiconductor devices for switches or rectifiers of smart digital power integrated circuits.
  • the electron transporting material of the present invention can also be applied to an organic electroluminescent device and a field effect transistor.
  • Electron-only organic semiconductor diode devices are devices prepared by spin coating or depositing one or more layers of organic materials between electrodes of two metals, inorganic or organic compounds.
  • a classic layer of electronically only organic semiconductor diode device comprises an anode, an electron transport layer and a cathode.
  • a hole blocking layer may be added between the anode and the electron transporting layer of the multilayer electronic-only semiconductor diode device, and an electron injecting layer may be added between the electron transporting layer and the cathode.
  • the hole blocking layer, the electron transport layer and the electron injecting layer are respectively composed of a hole blocking material, an electron transporting material, and an electron injecting material.
  • BPhen bathophenanthroline
  • BCP bathocuproine
  • the present invention provides a long lifetime electron-only semiconductor diode device fabricated using an organic electron transport material having high morphology stability.
  • a high Tg organic electron transport device comprising an anode, a cathode and an organic layer, the anode and cathode being a metal, an inorganic or an organic compound; the organic layer having a compound of the formula (I),
  • the 9,9'-spirobifluorene linkage position is 1-, 2-, 3-, or 4-position; wherein, Ar 1 and Ar 2 are independently represented as unsubstituted or C1-C6 substituted C6-C25 aromatic base.
  • Ar 1 , Ar 2 are independently represented by a C1-C5 alkyl group or a phenyl substituted or unsubstituted phenyl, naphthyl, anthryl, phenanthryl, anthracenyl, fluorenyl, fluoranthenyl, (9, 9-Dialkyl substituted or unsubstituted aryl) fluorenyl or 9,9-spiropurinyl.
  • the 9,9'-spirobifluorene linkage position is 2- or 4-position; wherein Ar 1 and Ar 2 are independently represented by phenyl, tolyl, xylyl, naphthyl, methylnaphthalene, Biphenyl, diphenylphenyl, naphthylphenyl, diphenylbiphenyl, (9,9-dialkyl)indenyl, (9,9-dimethyl substituted or unsubstituted phenyl) anthracene Base, 9, 9-threaded base.
  • Ar 1 and Ar 2 are independently represented by phenyl, tolyl, xylyl, naphthyl, methylnaphthalene, Biphenyl, diphenylphenyl, naphthylphenyl, diphenylbiphenyl, (9,9-dialkyl)indenyl, (9,9-dimethyl substituted or unsubstituted phenyl) anthracene Base
  • Ar 1 and Ar 2 are represented by a phenyl group.
  • the 9,9'-spirobifluorene linkage position is 2- or 4-position;
  • the compound of formula (I) is the following structural compound:
  • the high Tg organic electron transport device is an electron only organic semiconductor diode device, and the organic layer includes at least one electron transport layer.
  • the high Tg organic electron transport device is an organic electroluminescent device, and the organic layer includes at least one light emitting layer.
  • the luminescent layer is a host-guest doping system or a single luminescent material system composed of a host material and a guest material.
  • the organic layer further includes one or two layers of a hole transport layer and an electron injection layer.
  • the organic layer further includes one or more layers of a hole injection layer, a hole transport layer, a hole blocking layer, and an electron injection layer.
  • the hole transport layer, the electron transport layer and/or the light-emitting layer contain the compound of the formula (I).
  • the organic layer has a total thickness of from 1 to 1000 nm, preferably from 1 to 500 nm, more preferably from 5 to 300 nm.
  • the organic layer may be formed into a film by steaming or spin coating.
  • the material experiments show that the compound of the formula (I) of the present invention has a high glass transition temperature, thus demonstrating that the compound of the formula (I) of the present invention has an organic material having high form stability.
  • the device experiments show that only the electronic organic semiconductor diode device and the organic electroluminescent device prepared by using the organic electron transporting material of the present invention have good and stable performance and long device life.
  • Figure 1 is a structural view of a device of the present invention
  • 10 represents a glass substrate
  • 20 represents an anode
  • 30 represents a hole blocking layer
  • 40 represents an electron transport layer
  • 50 represents an electron injecting layer
  • 60 represents a cathode.
  • Figure 3 is a 13 C NMR chart of Compound 2.
  • Figure 5 is a TGA diagram of Compound 2.
  • Figure 6 is a DSC chart of Compound 2.
  • Example 7 is a graph showing the relationship between current density and electric field strength of Example 2, Example 3, and Example 4.
  • the transparent conductive ITO glass substrate 10 (with the anode 20 on the surface) was sequentially washed with a detergent solution and deionized water, ethanol, acetone, deionized water, and then treated with oxygen plasma for 30 seconds.
  • a compound 2 having a thickness of 100 nm was vapor-deposited on the hole blocking layer as the electron transport layer 40.
  • lithium fluoride of 1 nm thick was vapor-deposited on the electron transport layer as the electron injection layer 50.
  • SCLC space charge limited current
  • J is the current density (mA cm -2 )
  • is the relative dielectric constant (the organic material usually takes 3)
  • ⁇ 0 is the vacuum dielectric constant (8.85 ⁇ 10 -14 C V -1 cm -1 )
  • E is the electric field strength (V cm -1 )
  • L is the thickness (cm) of the sample in the device
  • ⁇ 0 is the charge mobility under the electric field (cm 2 V -1 s -1 )
  • is the Poole–Frenkel factor. Indicates how quickly the mobility changes with the strength of the electric field.
  • the device produced in E electron mobility under operating electric field is 1x 10 6 Vcm -1 was 4.25x 10 -4 cm 2 V -1 s -1.
  • the method was the same as in Example 2 except that a commonly used commercially available compound TmPyPB was used as the electron transport layer 40, and an electron-only semiconductor diode device for comparison was fabricated.
  • the device produced in E electron mobility under operating electric field is 1x 10 6 Vcm -1 was 1.34x 10 -5 cm 2 V -1 s -1.
  • Comparing the data of devices 1-3 and 4-5 shows that material compound 2 has a 30-fold higher electron mobility than the conventional TmPyPB under the same working electric field, and the glass transition temperature is three times higher due to device lifetime and material vitrification.
  • the transition temperature the higher the glass transition temperature of the material, the better the device stability and the longer the life, so the material of the present invention is applicable to a long-life electronic-only semiconductor diode device and an organic electroluminescent device. Morphologically stable organic electron transport material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种高Tg有机电子传输器件,包含阳极,阴极和有机层,所述阳极和阴极为金属、无机物或有机化合物;所述有机层具有式(I)所述结构的化合物,其中,9,9'-螺二芴连接位置为1-,2-,3-,或4-位;其中,Ar 1、Ar 2独立地表示为未取代或者C1-C6取代的C6-C25芳基。材料实验表明,式(I)所述的化合物具有高玻璃化转变温度,因此证明式(I)所述的化合物为高形态稳定性的有机材料。器件实验表明,上述有机电子传输材料制备的仅电子有机半导体二极管器件及有机电致发光器件性能良好且稳定,器件寿命长。

Description

高Tg有机电子传输器件 技术领域
本发明涉及一种高Tg有机电子传输器件,采用新型的有机电子传输材料,通过真空沉积成薄膜制备得到,包括仅电子有机半导体二极管器件及有机电致发光器件。
背景技术
仅电子有机半导体二极管器件是单载流子器件的一种,作为功率半导体装置用于智能数字功率集成电路的开关或整流器。其中本发明的电子传输材料也可应用于有机电致发光器件及场效应晶体管。
仅电子有机半导体二极管器件为在两个金属、无机物或有机化合物的电极之间通过旋涂或沉积一层或多层有机材料而制备的器件。一个经典的一层仅电子有机半导体二极管器件包含阳极,电子传输层和阴极。在多层仅电子有机半导体二极管器件阳极和电子传输层之间可以加入空穴阻挡层,而电子传输层和阴极之间可以加入电子注入层。空穴阻挡层,电子传输层和电子注入层分别由空穴阻挡材料,电子传输材料和电子注入材料组成。连接到仅电子有机半导体二极管器件的电压到达开启电压后,由阴极产生的电子经电子传输层传输到阳极,相反地,空穴不能从阳极注入。仅电子有机半导体二极管器件中的电子传输材料可应用到其它半导体器件如有机电致发光器件。有机电致发光器件市场庞大,因而稳定、高效的有机电子传输材料对有机电致发光器件的应用和推广具有重要作用,同时也是有机电致发光大面积面板显示的应用推广的迫切需求。
市场上现有较多使用的电子传输材料向红菲咯啉(bathophenanthroline,BPhen)和浴铜灵(bathocuproine,BCP),基本上能符合有机电致发光面板的市场需求,但其效率和稳定性仍有待进一步提高。从BPhen及BCP的分子结构中分析(见下式,分子结构的镜面用虚线表示),其对称结构会使分子倾向有规则地堆叠,时间过后容易做成结晶。电子传输材料一旦结晶,分子间的电荷跃迁机制跟在正常运作的非晶态薄膜机制不相同,引致电子传输性能改变。如果BPhen对称分子结构的材料在有机电致发光器件中使用,时间过后会使整个器件导电性能改变,令电子和空穴电荷迁移率失衡,引致到器件效能下降,也可能会在器件中产生局部短路,影响器件稳定性,甚至令器件失效。(参考文献Journal of Applied Physics 80,2883(1996);doi:10.1063/1.363140)
Figure PCTCN2017087505-appb-000001
发明内容
针对上述材料的缺陷,本发明提供一种使用高形态稳定性的有机电子传输材料制备的长寿命仅电子有机半导体二极管器件。
高Tg有机电子传输器件,包含阳极,阴极和有机层,所述阳极和阴极为金属、无机物或有机化合物;所述有机层具有式(I)所述结构的化合物,
Figure PCTCN2017087505-appb-000002
其中,9,9'-螺二芴连接位置为1-,2-,3-,或4-位;其中,Ar1、Ar2独立地表示为未取代或者C1-C6取代的C6-C25芳基。
优选:Ar1,Ar2独立地表示为C1-C5烷基取代或者苯基取代或者未取代的苯基、萘基、蒽基,菲基,芘基,苝基,荧蒽基,(9,9-二烷基取代或未取代芳基)芴基或9,9-螺芴基。
优选:其中,9,9'-螺二芴连接位置为2-或4-位;其中,Ar1、Ar2独立地表示为苯基,甲苯基,二甲苯基,萘基,甲基萘,联苯基,二苯基苯基,萘基苯基,二苯基联苯基,(9,9-二烷基)芴基,(9,9-二甲基取代或未取代苯基)芴基,9,9-螺芴基。
优选:Ar1、Ar2表示为苯基。
优选:9,9'-螺二芴连接位置为2-或4-位;式(I)所述的化合物为下列结构化合物:
Figure PCTCN2017087505-appb-000003
所述高Tg有机电子传输器件为仅电子有机半导体二极管器件,所述有机层至少包括一层电子传输层。
所述高Tg有机电子传输器件为有机电致发光器件,所述有机层至少包括一层发光层。
所述发光层为由主体材料和客体材料组成的主客体掺杂体系或单一发光材料体系。
所述有机层还包括空穴传输层、电子注入层中的一层或两层。
所述有机层还包括为空穴注入层,空穴传输层,空穴阻挡层、电子注入层中的一层或多层。
所述空穴传输层,电子传输层和/或发光层中含有式(I)所述的化合物。
所述有机层的总厚度为1-1000nm,优选1-500nm,更优选5-300nm。
所述有机层可以通过蒸渡或旋涂形成薄膜。
如上面提到的,本发明的式(I)所述的化合物如下,但不限于所列举的结构:
Figure PCTCN2017087505-appb-000004
Figure PCTCN2017087505-appb-000005
材料实验表明,本发明式(I)所述的化合物具有高玻璃化转变温度,因此证明本发明式(I)所述的化合物有高形态稳定性的有机材料。器件实验表明,使用本发明的有机电子传输材料制备的仅电子有机半导体二极管器件及有机电致发光器件性能良好且稳定,器件寿命长。
附图说明
图1为本发明的器件结构图,
其中10代表为玻璃基板,20代表为阳极,30代表为空穴阻挡层,40代表为电子传输层,50代表为电子注入层,60代表为阴极。
图2为化合物2的1H NMR图。
图3为化合物2的13C NMR图。
图4为化合物2的HPLC图。
图5为化合物2的TGA图。
图6为化合物2的DSC图。
图7为实施例2,实施例3,实施例4的电流密度与电场强度关系图
图8为比较例1,比较例2的电流密度与电场强度关系图
具体实施方式
为了更详细叙述本发明,特举以下例子,但是不限于此。
实施例1
Figure PCTCN2017087505-appb-000006
化合物2的合成
反应投放:3L三口反应瓶,装配磁力搅拌及低温温度计,氮气排空3次,加入2-溴-9,9'-螺二芴(20.0g,50.6mmol),无水四氢呋喃(1000mL),搅拌至溶解,液氮/乙醇浴冷却至-90~-80℃,缓慢滴加正丁基锂的正己烷溶液(42mL,1.25M),控制反应温度-75℃以下,正丁基锂全部滴加完毕后,继续反应0.5h,而后滴加4,7-二苯基菲罗啉(25.0g,75mmol)/THF溶液(1000mL),控制温度-75℃以下,滴加完毕后,加入溶液后室温搅拌8h,加水(10mL)然后在空气中搅拌24h。停止反应后,旋干THF,加入水和乙酸乙酯萃取,有机层合并,用无水硫酸镁干燥后过滤,滤液旋干后用丙酮打浆,抽滤,滤质为含化合物2(12.46g,产率38.1%,HPLC纯度99.2%)。7.40g粗产品在真空(4x 10-5torr)加热320℃升华完成后得到5.11g淡黄色粉末状产品,纯度99.5%。
实施例2
仅电子有机半导体二极管器件1的制备
使用本发明的有机电子传输材料制备仅电子有机半导体二极管器件
首先,将透明导电ITO玻璃基板10(上面带有阳极20)依次经:洗涤剂溶液和去离子水,乙醇,丙酮,去离子水洗净,再用氧等离子处理30秒。
然后,在ITO上蒸渡5nm厚的BCP作为空穴阻挡层30。
然后,在空穴阻挡层上蒸渡100nm厚的化合物2作为电子传输层40。
然后,在电子传输层上蒸渡1nm厚的氟化锂作为电子注入层50。
最后,在电子注入层上蒸渡100nm厚的铝作为器件阴极60。
通过利用空间限制电流(space charge limited current,SCLC)电流密度与电场强度的关系如式(1):
Figure PCTCN2017087505-appb-000007
其中,J为电流密度(mA cm-2),ε为相对介电常数(有机材料通常取值为3),ε0为真空介电常数(8.85×10-14C V-1cm-1),E为电场强度(V cm-1),L为器件中样本的厚度(cm),μ0为零电场下的电荷迁移率(cm2V-1s-1),β为Poole–Frenkel因子,表示迁移率随电场强度变化的快慢程度。
所制备的器件在E=1x 106Vcm-1的工作电场下的电子迁移率为4.25x 10-4cm2V-1s-1
器件中所述结构式
Figure PCTCN2017087505-appb-000008
实施例2
仅电子有机半导体二极管器件2的制备
与仅电子有机半导体二极管器件1的制备一样,作为重复验证数据。
实施例3
仅电子有机半导体二极管器件3的制备
与仅电子有机半导体二极管器件1的制备一样,作为重复验证数据。
比较例1
仅电子有机半导体二极管器件4的制备
方法同实施例2,但使用常用市售化合物TmPyPB作为电子传输层40,制作对比用仅电子有机半导体二极管器件。
所制备的器件在E=1x 106Vcm-1的工作电场下的电子迁移率为1.34x 10-5cm2V-1s-1
器件中所述结构式
Figure PCTCN2017087505-appb-000009
比较例2
仅电子有机半导体二极管器件5的制备
与仅电子有机半导体二极管器件4的制备一样,作为重复验证数据。
比较材料的玻璃化转变温度:
Figure PCTCN2017087505-appb-000010
比较器件1-3及4-5数据表明材料化合物2比常用的TmPyPB在相同的工作电场下的电子迁移率高出30倍,玻璃化转变温度高出3倍,因为器件寿命和材料的玻璃化转变温度有关,材料的玻璃化转变温度越高,器件稳定性越好寿命越长,因此本发明的材料是一种可应用在长寿命仅电子有机半导体二极管器件和有机电致发光器件中的高形态稳定性的有机电子传输材料。

Claims (10)

  1. 高Tg有机电子传输器件,包含阳极,阴极和有机层,所述阳极和阴极为金属、无机物或有机化合物;所述有机层具有式(I)所述结构的化合物,
    Figure PCTCN2017087505-appb-100001
    其中,9,9'-螺二芴连接位置为1-,2-,3-,或4-位;其中,Ar1、Ar2独立地表示为未取代或者C1-C6取代的C6-C25芳基。
  2. 根据权利要求权利要求1所述的高Tg有机电子传输器件,其中,Ar1,Ar2独立地表示为C1-C5烷基取代或者苯基取代或者未取代的苯基、萘基、蒽基,菲基,芘基,苝基,荧蒽基,(9,9-二烷基取代或未取代芳基)芴基或9,9-螺芴基。
  3. 根据权利要求权利要求2所述的高Tg有机电子传输器件,其中9,9'-螺二芴连接位置为2-或4-位;其中,Ar1、Ar2独立地表示为苯基,甲苯基,二甲苯基,萘基,甲基萘,联苯基,二苯基苯基,萘基苯基,二苯基联苯基,(9,9-二烷基)芴基,(9,9-二甲基取代或未取代苯基)芴基,9,9-螺芴基。
  4. 根据权利要求权利要求3所述的高Tg有机电子传输器件,Ar1、Ar2表示为苯基。
  5. 根据权利要求权利要求1所述的高Tg有机电子传输器件,9,9'-螺二芴连接位置为2-或4-位;式(I)所述的化合物为下列结构化合物:
    Figure PCTCN2017087505-appb-100002
  6. 根据权利要求权利要求1-5任一所述的高Tg有机电子传输器件,所述高Tg有机电子传输器件为仅电子有机半导体二极管器件,所述有机层至少包括一层电子传输层;
    或者所述高Tg有机电子传输器件为有机电致发光器件,所述有机层至少包括一层发光层。
  7. 根据权利要求权利要求6所述的高Tg有机电子传输器件,所述发光层为由主体材料和客体材料组成的主客体掺杂体系或单一发光材料体系。
  8. 根据权利要求权利要求6所述的高Tg有机电子传输器件,所述有机层还包括空穴传输层、电子注入层中的一层或两层。
  9. 根据权利要求权利要求6所述的高Tg有机电子传输器件,所述有机层还包括为空穴注入层,空穴阻挡层、空穴传输层、电子注入层中一层或多层。
  10. 根据权利要求权利要求9所述的高Tg有机电子传输器件,所述空穴传输层,电子传输层和/或发光层中含有式(I)所述的化合物。
PCT/CN2017/087505 2016-07-08 2017-06-08 高Tg有机电子传输器件 WO2018006679A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610539848.0 2016-07-08
CN201610539848.0A CN107586294B (zh) 2016-07-08 2016-07-08 高Tg有机电子传输器件

Publications (1)

Publication Number Publication Date
WO2018006679A1 true WO2018006679A1 (zh) 2018-01-11

Family

ID=60901714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087505 WO2018006679A1 (zh) 2016-07-08 2017-06-08 高Tg有机电子传输器件

Country Status (3)

Country Link
CN (1) CN107586294B (zh)
TW (1) TWI643856B (zh)
WO (1) WO2018006679A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111490163A (zh) * 2020-04-15 2020-08-04 电子科技大学 一种基于me-bt复合空穴传输层的钙钛矿光电探测器及其制备方法
US11233200B2 (en) 2018-01-16 2022-01-25 Samsung Electronics Co., Ltd. Condensed cyclic compound, composition including the same, and organic light-emitting device including the condensed cyclic compound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468243A (zh) * 2012-06-06 2013-12-25 广东阿格蕾雅光电材料有限公司 有机电子材料和有机电致发光器件
CN103718316A (zh) * 2011-07-29 2014-04-09 默克专利有限公司 用于电子器件的化合物
JP2014133727A (ja) * 2013-01-11 2014-07-24 Canon Inc 表示装置及び表示装置の製造方法、並びにこの表示装置の製造方法で用いられる有機化合物
CN106549103A (zh) * 2015-11-10 2017-03-29 广东阿格蕾雅光电材料有限公司 仅电子有机半导体二极管器件
CN106543172A (zh) * 2015-11-10 2017-03-29 广东阿格蕾雅光电材料有限公司 有机电子传输材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718316A (zh) * 2011-07-29 2014-04-09 默克专利有限公司 用于电子器件的化合物
CN103468243A (zh) * 2012-06-06 2013-12-25 广东阿格蕾雅光电材料有限公司 有机电子材料和有机电致发光器件
JP2014133727A (ja) * 2013-01-11 2014-07-24 Canon Inc 表示装置及び表示装置の製造方法、並びにこの表示装置の製造方法で用いられる有機化合物
CN106549103A (zh) * 2015-11-10 2017-03-29 广东阿格蕾雅光电材料有限公司 仅电子有机半导体二极管器件
CN106543172A (zh) * 2015-11-10 2017-03-29 广东阿格蕾雅光电材料有限公司 有机电子传输材料

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11233200B2 (en) 2018-01-16 2022-01-25 Samsung Electronics Co., Ltd. Condensed cyclic compound, composition including the same, and organic light-emitting device including the condensed cyclic compound
CN111490163A (zh) * 2020-04-15 2020-08-04 电子科技大学 一种基于me-bt复合空穴传输层的钙钛矿光电探测器及其制备方法
CN111490163B (zh) * 2020-04-15 2023-09-12 电子科技大学 一种基于me-bt复合空穴传输层的钙钛矿光电探测器及其制备方法

Also Published As

Publication number Publication date
CN107586294B (zh) 2019-10-18
TWI643856B (zh) 2018-12-11
TW201802090A (zh) 2018-01-16
CN107586294A (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
JP6067668B2 (ja) 有機セレン材料および有機発光デバイス内でのその使用
Suzuki et al. A solution-processable host material of 1, 3-bis {3-[3-(9-carbazolyl) phenyl]-9-carbazolyl} benzene and its application in organic light-emitting diodes employing thermally activated delayed fluorescence
Kumar et al. Solution-processable naphthalene and phenyl substituted carbazole core based hole transporting materials for efficient organic light-emitting diodes
TW201815769A (zh) 有機發光裝置
WO2017215549A1 (zh) 一种有机电致发光化合物及其应用
JP2011506564A (ja) ナフチル置換されたアントラセン誘導体および有機発光ダイオードにおけるその使用
WO2019085686A1 (zh) 含咔唑及吡啶构建单元材料的有机电致发光器件
Gu et al. Tetrasubstituted adamantane derivatives with arylamine groups: Solution-processable hole-transporting and host materials with high triplet energy and good thermal stability for organic light-emitting devices
KR20160127503A (ko) 트리아진 유도체 및 이를 포함한 유기 전계발광 소자
WO2019085759A1 (zh) 一种以氮杂螺芴和芳基酮为核心的化合物、其制备方法及其在oled上的应用
WO2018006679A1 (zh) 高Tg有机电子传输器件
TWI651301B (zh) 有機空穴傳輸材料
TWI623532B (zh) 有機空穴傳輸材料
TWI612047B (zh) 有機電子傳輸材料
WO2014180037A1 (zh) 含砜基的化合物、采用含砜基的化合物的有机电致发光器件及其制备方法
WO2017080446A1 (zh) 仅电子有机半导体二极管器件
WO2018006680A1 (zh) 高Tg有机电子传输材料
WO2019085684A1 (zh) 一种含有氰基苯或者硫氰基苯的化合物及其在有机电致发光器件上的应用
TWI612028B (zh) 有機電子傳輸材料
WO2019085685A1 (zh) 基于咔唑及吡啶构建单元的电致发光材料
TWI612703B (zh) 僅電子有機半導體二極體器件
CN111320636B (zh) 一种有机电致发光材料及其应用
TWI624091B (zh) 僅空穴有機半導體二極體器件
Gao et al. A simple bipolar host material based on triphenylamine and pyridine featuring σ-linkage for efficient solution-processed phosphorescent organic light-emitting diodes
TW201823206A (zh) 應用於有機發光二極體的主體材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17823491

Country of ref document: EP

Kind code of ref document: A1