WO2018006664A1 - 一种输入自适应控制的方法和装置 - Google Patents

一种输入自适应控制的方法和装置 Download PDF

Info

Publication number
WO2018006664A1
WO2018006664A1 PCT/CN2017/085933 CN2017085933W WO2018006664A1 WO 2018006664 A1 WO2018006664 A1 WO 2018006664A1 CN 2017085933 W CN2017085933 W CN 2017085933W WO 2018006664 A1 WO2018006664 A1 WO 2018006664A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
voltage
input information
control signal
control
Prior art date
Application number
PCT/CN2017/085933
Other languages
English (en)
French (fr)
Inventor
周平森
张滨
高芙蓉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018006664A1 publication Critical patent/WO2018006664A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc

Definitions

  • the present application relates to, but is not limited to, the field of electronic technology, and in particular, to a method and apparatus for input adaptive control.
  • the AC power supply of the single-input interface is compatible with the high-voltage DC input. It can be used not only in the equipment room of the alternating current (AC) power supply, but also in the high voltage direct current (HVDC) input equipment room to expand the AC power supply. The scope of application.
  • the two conversion schemes can be designed inside the power supply for the AC input and the HVDC input, the isolated AC/DC conversion is adopted under the AC input, and the isolated DC/DC conversion is implemented under the HVDC input, thereby realizing the most different systems.
  • AC power supply is compatible with high-voltage DC input. Although the application range of AC power supply is expanded, it is difficult to achieve optimal efficiency under different inputs while ensuring the same area and cost.
  • Embodiments of the present invention provide a method and apparatus for input adaptive control, which solves the problem of achieving optimal efficiency under various inputs under the condition that the area and cost are substantially unchanged.
  • An embodiment of the present invention provides a method for input adaptive control, including:
  • PFC Power Factor Correction
  • An embodiment of the present invention further provides an apparatus for input adaptive control, including:
  • a sampling module configured to detect input information
  • control module configured to identify the input information and generate a control signal corresponding to the input information
  • a PFC conversion module configured to transmit the control signal to the PFC conversion unit to control the PFC conversion unit to be in a conduction state or a switch state corresponding to the input information, wherein the switch state indicates every other preset Time to perform a switching action.
  • Embodiments of the present invention also provide a machine readable medium having stored therein one or more programs executable by a computer, the one or more programs being executed by the computer to cause the computer to execute A method of input adaptive control as provided above.
  • detecting input information identifying the input information, and generating a control signal corresponding to the input information; transmitting the control signal to a PFC transform unit to control the PFC transform unit to be in the input information
  • Corresponding conduction state or switch state wherein the switch state indicates that a switching action is performed every other preset time.
  • FIG. 1 is a schematic structural diagram of a function of an application power supply according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for input adaptive control according to an embodiment of the present invention
  • FIG. 3 is a schematic circuit diagram of another application power supply according to an embodiment of the present invention.
  • FIG. 4 is a schematic circuit diagram of another application power supply according to an embodiment of the present invention.
  • FIG. 5 is a schematic circuit diagram of another application power supply according to an embodiment of the present invention.
  • FIG. 6 is a schematic circuit diagram of another application power supply according to an embodiment of the present invention.
  • FIG. 7 is a schematic circuit diagram of another application power supply according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an apparatus for input adaptive control according to an embodiment of the present invention.
  • an application power supply includes: an input interface, a guard filter, an input rectification, a PFC transform unit, a DC/DC transform, a sampling unit, and a control unit.
  • an embodiment of the present invention provides a method for input adaptive control, including:
  • the control signal is transmitted to the PFC conversion unit to control the PFC conversion unit to be in a conduction state or a switch state corresponding to the input information, where the switch state indicates that a switch is executed every other preset time. action.
  • the above steps S201 to S203 may be implemented by the control unit in the power supply shown in FIG. 1, or the above step S201 may be implemented by the control unit by the acquisition unit, and the steps S202 and S203 are directly from the control unit. achieve.
  • the detecting the input information may further include: detecting a voltage system and a voltage amplitude of the input voltage signal. In this embodiment, by identifying the voltage system and the voltage amplitude of the voltage signal, a corresponding control signal is generated, and the PFC conversion unit is controlled.
  • the identifying the input information and generating the control signal corresponding to the input information may further include:
  • a control signal is generated to control the PFC conversion unit to operate in an on state.
  • the identifying the input information and generating the control signal corresponding to the input information may further include:
  • the input voltage signal is AC or a low-voltage high-voltage DC, generating a control signal for controlling the PFC conversion unit to operate in a switch state;
  • the input voltage signal is a high voltage direct current having a higher amplitude
  • a control signal for controlling the PFC conversion unit to operate in an on state is generated.
  • the input voltage information of the voltage is judged by the check, and the PFC conversion unit is controlled to operate in the switch state or the conductive state according to different inputs.
  • the PFC conversion unit is controlled to operate in the switch state; when the high-voltage DC input or the high-voltage DC input with a high amplitude is used, the PFC conversion unit is controlled to be in the on state, thereby improving Efficiency at high voltage DC input or high amplitude DC input with high amplitude.
  • the present application can achieve optimal efficiency under various inputs.
  • FIG. 3 another application power supply provided by the embodiment of the present invention, wherein the topology of the PFC conversion includes an input inductor L1, a switch transistor Q1, a diode D1, and an output capacitor C1.
  • a sampling unit configured to detect input information, including voltage standards and voltage amplitudes.
  • the control unit is configured to recognize the input information and generate a control signal corresponding to the input information.
  • Q1 works in the switch state, where the switch state indicates that Q1 operates under the control of pulse width modulation or pulse frequency modulation; when the input is high voltage DC, Q1 is cut off, and D1 is turned on. jobs.
  • Q1 when the input is AC or the input high voltage DC is low, Q1 operates in the switching state, where the switching state indicates that Q1 operates under the control of pulse width modulation or pulse frequency modulation; when the input is amplitude When the value is high, the high voltage DC, Q1 is cut off, and D1 is turned on.
  • the switching transistor may be composed of one or two switching devices, and the switching device may be one of the following: a triode, a metal oxide semiconductor field effect transistor (MOS), and an insulated gate bipolar type.
  • Power semiconductor devices such as Insulated Gate Bipolar Transistor (IGBT), Gallium Nitride (GAN), and Silicon Carbide (SIC).
  • FIG. 4 another application power supply provided by an embodiment of the present invention, wherein a PFC transform
  • the topology includes an input inductor L1, a switch transistor Q1, a switch transistor Q2, and an output capacitor C1.
  • a sampling unit configured to detect input information, including voltage standards and voltage amplitudes.
  • the control unit is configured to recognize the input information and generate a control signal corresponding to the input information.
  • Q1 and Q2 work in the switch state, where the switch state indicates that Q1 and Q2 operate under the control of pulse width modulation or pulse frequency modulation; when the input is high voltage DC, Q1 is cut off. Q2 is working.
  • Q1 and Q2 operate in a switching state, where the switching state indicates that Q1 and Q2 operate under the control of pulse width modulation or pulse frequency modulation;
  • the input is high voltage DC with high amplitude, Q1 is cut off and Q2 is turned on.
  • the switching transistor may be composed of one or two switching devices, and the switching device may be one of the following: a power semiconductor device such as a triode, a MOS transistor, an IGBT, a GAN, or an SIC.
  • a power semiconductor device such as a triode, a MOS transistor, an IGBT, a GAN, or an SIC.
  • FIG. 5 another application power supply provided by the embodiment of the present invention, wherein the topology of the PFC conversion includes an input inductor L1, a switch transistor Q1, a switch transistor Q2, a switch transistor Q3, a switch transistor Q4, and an output capacitor C1.
  • a sampling unit configured to detect input information, including voltage standards and voltage amplitudes.
  • the control unit is configured to recognize the input information and generate a control signal corresponding to the input information.
  • the control method further includes: when the input is AC or a low-voltage high-voltage direct current, Q1, Q2, Q3, and Q4 operate in a switch state, where the switch state indicates that Q1, Q2, Q3, and Q4 are in pulse width modulation or Under the control of pulse frequency modulation; when the input is high voltage DC with high amplitude, Q1 and Q4 are cut off, and Q2 and Q3 are turned on. When the input high voltage DC is reversed, Q2 and Q3 are cut off, and Q1 and Q4 are turned on. jobs).
  • the switching tube may be composed of one or two switching devices, and the switching device may be The following ones: power semiconductor devices such as triode, MOS, IGBT, GAN, and SIC.
  • FIG. 6 another application power supply provided by the embodiment of the present invention, wherein the topology of the PFC conversion includes an input inductor L1, a switch transistor Q1, diodes D1 and D2, and an output capacitor C1.
  • a sampling unit configured to detect input information, including voltage standards and voltage amplitudes.
  • the control unit is configured to recognize the input information and generate a control signal corresponding to the input information.
  • Q1 when the input is AC or the input high voltage DC is low, Q1 operates in the switching state, where the switching state indicates that Q1 operates under the control of pulse width modulation or pulse frequency modulation; when the input is amplitude When the value is high, the high voltage DC, Q1 is cut off, and D1 and D2 are turned on.
  • the switching transistor may be composed of one or two switching devices, and the switching device may be one of the following: a power semiconductor device such as a triode, a MOS transistor, an IGBT, a GAN, or an SIC.
  • a power semiconductor device such as a triode, a MOS transistor, an IGBT, a GAN, or an SIC.
  • the diode D2 can also be arranged in a circuit such as FIG. 4 or FIG. 5, and the diode can also be replaced by a rectifier bridge.
  • the topology of the PFC conversion includes two topologies in parallel, the topology one includes an input inductor L1, a switch transistor Q1, a diode D1, and an output capacitor C1;
  • the second includes an inductor L2, a switch transistor Q2, a diode D2, and an output capacitor C2.
  • a sampling unit configured to detect input information, including voltage standards and voltage amplitudes.
  • the control unit is configured to recognize the input information and generate a control signal corresponding to the input information.
  • Q1 and Q2 when the input is AC, Q1 and Q2 operate in a switch state, where the switch state indicates that Q1 and Q2 operate under the control of pulse width modulation or pulse frequency modulation; when the input is high voltage direct current, Q1. Q2 is cut off, and D1 and D2 are turned on.
  • Q1 and Q2 work in the switch state, where the switch state indicates that Q1 and Q2 are in pulse width modulation or pulse frequency.
  • the switch state indicates that Q1 and Q2 are in pulse width modulation or pulse frequency.
  • Q1 and Q2 are cut off, and D1 and D2 are turned on.
  • the switching transistor may be composed of one or two switching devices, and the switching device may be one of the following: a power semiconductor device such as a triode, a MOS transistor, an IGBT, a GAN, or an SIC.
  • a power semiconductor device such as a triode, a MOS transistor, an IGBT, a GAN, or an SIC.
  • the number of the parallel topologies may also be three or more; the parallel topology circuit may also be a circuit topology such as FIG. 4, FIG. 5 or FIG.
  • the method may further include: acquiring a mapping relationship between the input information and the control signal;
  • the generating a control signal corresponding to the input information may include:
  • a control signal corresponding to the input information is generated according to the mapping relationship.
  • the control signal corresponding thereto can be quickly found, and the control signal is sent to improve the transmission efficiency.
  • an apparatus 80 for input adaptive control including:
  • a sampling module 81 configured to detect input information
  • the control module 82 is configured to identify the input information and generate a control signal corresponding to the input information
  • the PFC conversion module 83 is configured to transmit the control signal to the PFC conversion unit to control the PFC conversion unit to be in a conduction state or a switch state corresponding to the input information, wherein the switch state represents every other pre- Set a time to perform a switching action.
  • the sampling module 81 may be further configured to detect a voltage system and a voltage amplitude of the input voltage signal.
  • control module 82 may also be configured to:
  • control module 82 may also be configured to:
  • the input voltage signal is AC or a low-voltage high-voltage DC, generating a control signal for controlling the PFC conversion unit to operate in a switch state;
  • the input voltage signal is a high voltage direct current having a higher amplitude
  • a control signal for controlling the PFC conversion unit to operate in an on state is generated.
  • control module 82 may also be configured to:
  • the control module 82 may be configured to generate a control signal corresponding to the input information by generating a control signal corresponding to the input information according to the mapping relationship.
  • the foregoing apparatus can implement the processes in the method embodiments of FIG. 1 to FIG. 7 and achieve the same beneficial effects. To avoid repetition, details are not described herein again.
  • the detecting input information may include:
  • the voltage system and voltage amplitude of the input voltage signal are detected.
  • the identifying the input information and generating a control signal corresponding to the input information may include:
  • a control signal is generated to control the PFC conversion unit to operate in an on state.
  • the identifying the input information and generating a control signal corresponding to the input information may include:
  • the input voltage signal is AC or a low-voltage high-voltage DC, generating a control signal for controlling the PFC conversion unit to operate in a switch state;
  • the input voltage signal is a high voltage direct current having a higher amplitude
  • a control signal for controlling the PFC conversion unit to operate in an on state is generated.
  • the method before the generating the control signal corresponding to the input information, the method further includes: acquiring a mapping relationship between the input information and the control signal;
  • the generating a control signal corresponding to the input information may include:
  • a control signal corresponding to the input information is generated according to the mapping relationship.
  • the machine-readable storage medium includes a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • Such software may be distributed on a machine-readable medium, such as a computer-readable medium, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • a machine-readable medium such as a computer-readable medium, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage medium includes the volatility embodied in any method or technique for storing information, such as computer readable instructions, data structures, program modules, or other data. And non-volatile, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • the embodiment of the present application provides a method and device for input adaptive control, which can ensure optimal efficiency under different inputs when the area and cost are substantially unchanged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种输入自适应控制的方法和装置。该方法包括:检测输入信息(S201);识别输入信息,并生成与该输入信息对应的控制信号(S202);向功率因素校正PFC变换单元传输该控制信号,以控制PFC变换单元处于与输入信息对应的导通状态或者开关状态,其中,开关状态表示每隔一个预设时间执行一个开关动作(S203)。该方法和装置可以保证面积和成本基本不变的情况下,实现不同输入下的最优效率。

Description

一种输入自适应控制的方法和装置 技术领域
本申请涉及但不限于电子技术领域,尤其涉及一种输入自适应控制的方法和装置。
背景技术
单输入接口的交流电源兼容高压直流输入,不仅可以应用在交流(Alternating Current,AC)供电的机房设备中,也可以应用在高压直流(High Voltage Direct Current,HVDC)输入机房中,拓展了交流电源的应用范围。
针对上述需求,可以分别针对AC输入和HVDC输入,在电源内部设计两者变换方案,AC输入下采用隔离AC/DC变换,HVDC输入下采用隔离DC/DC变换实现,从而实现不同制式下的最优效率,但这种方案面积大,成本高。
交流电源兼容高压直流输入,虽然拓展了交流电源的应用范围,但在保证面积和成本不变的情况下,难以实现不同输入下的最优效率。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种输入自适应控制的方法和装置,解决了在面积和成本基本不变的情况下,实现多种输入下最优效率的问题。
本发明实施例提供一种输入自适应控制的方法,包括:
检测输入信息;
识别所述输入信息,并生成与所述输入信息对应的控制信号;
向功率因素校正(Power Factor Correction,PFC)变换单元传输所述控制信号,以控制所述PFC变换单元处于与所述输入信息对应的导通状态或者 开关状态,其中,所述开关状态表示每隔一个预设时间执行一个开关动作。
本发明实施例还提供一种输入自适应控制的装置,包括:
采样模块,配置为检测输入信息;
控制模块,配置为识别所述输入信息,并生成与所述输入信息对应的控制信号;
PFC变换模块,配置为向PFC变换单元传输所述控制信号,以控制所述PFC变换单元处于与所述输入信息对应的导通状态或者开关状态,其中,所述开关状态表示每隔一个预设时间执行一个开关动作。
本发明实施例还提供一种机器可读介质,所述机器可读介质中存储有计算机可执行的一个或多个程序,所述一个或多个程序被所述计算机执行时使所述计算机执行如上述提供的一种输入自适应控制的方法。
上述技术方案中,检测输入信息;识别所述输入信息,并生成与所述输入信息对应的控制信号;向PFC变换单元传输所述控制信号,以控制所述PFC变换单元处于与所述输入信息对应的导通状态或者开关状态,其中,开关状态表示每隔一个预设时间执行一个开关动作。这样可以保证面积和成本基本不变的情况下,实现不同输入下的最优效率。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是本发明实施例提供的一种应用电源的功能结构示意图;
图2是本发明实施例提供的一种输入自适应控制的方法的流程示意图;
图3是本发明实施例提供的另一种应用电源的电路示意图;
图4是本发明实施例提供的另一种应用电源的电路示意图;
图5是本发明实施例提供的另一种应用电源的电路示意图;
图6是本发明实施例提供的另一种应用电源的电路示意图;
图7是本发明实施例提供的另一种应用电源的电路示意图;
图8是本发明实施例提供的一种输入自适应控制的装置的结构示意图。
详述
下面将结合附图及实施例进行详细描述。
如图1所示,本发明实施例的应用电源包括:输入接口、防护滤波、输入整流、PFC变换单元、DC/DC变换、采样单元和控制单元。
如图2所示,本发明实施例提供一种输入自适应控制的方法,包括:
S201、检测输入信息。
S202、识别所述输入信息,并生成与所述输入信息对应的控制信号。
S203、向PFC变换单元传输所述控制信号,以控制所述PFC变换单元处于与所述输入信息对应的导通状态或者开关状态,其中,所述开关状态表示每隔一个预设时间执行一个开关动作。
在本发明实施例中,上述步骤S201至S203可以由图1所示的电源中的控制单元来实现,或者上述步骤S201可以是控制单元通过采集单元来实现,步骤S202和S203由控制单元直接来实现。
本发明实施例中,所述检测输入信息,还可以包括:检测输入电压信号的电压制式和电压幅值。本实施例中,通过对电压信号的电压制式和电压幅值的识别,来生成相对应的控制信号,并控制上述PFC变换单元。
本发明实施例中,所述识别所述输入信息,并生成与所述输入信息对应的控制信号,还可以包括:
识别所述输入电压信号的电压制式和电压幅值;
若所述输入电压信号为交流,则生成控制所述PFC变换单元工作在开关状态的控制信号;
若所述输入电压信号为高压直流,则生成控制所述PFC变换单元工作在导通状态的控制信号。
本发明实施例中,所述识别所述输入信息,并生成与所述输入信息对应的控制信号,还可以包括:
识别所述输入电压信号的电压制式和电压幅值;
若所述输入电压信号为交流或者幅值较低的高压直流,则生成控制所述PFC变换单元工作在开关状态的控制信号;
若所述输入电压信号为幅值较高的高压直流,则生成控制所述PFC变换单元工作在导通状态的控制信号。
本实施例中,通过检查判断电压的输入电压信息,并根据不同输入控制PFC变换单元工作在开关状态或者导通状态。在AC输入或幅值较低的高压直流输入时,控制PFC变换单元工作在开关状态;在高压直流输入或幅值较高的高压直流输入时,控制PFC变换单元工作在导通状态,提高了高压直流输入或幅值较高的高压直流输入下的效率。本申请通过改进控制方案,就可以实现多种输入下的最优效率。
下面通过一些示例性实施方案分别说明如下。
如图3所示,本发明实施例提供的另一种应用电源,其中,PFC变换的拓扑结构包括输入电感L1、开关管Q1、二极管D1和输出电容C1。
采样单元,配置为检测输入信息,包括电压制式和电压幅值等。
控制单元,配置为识别上述输入信息,并生成与上述输入信息对应的控制信号。
在该应用电源中,当输入为AC时,Q1工作在开关状态,此处开关状态表示Q1在脉冲宽度调制或者脉冲频率调制的控制下工作;当输入为高压直流时,Q1截止,D1导通工作。
在该应用电源中,当输入为AC或输入幅值较低的高压直流时,Q1工作在开关状态,此处开关状态表示Q1在脉冲宽度调制或者脉冲频率调制的控制下工作;当输入为幅值较高的高压直流时,Q1截止,D1导通工作。
所述开关管,可以是一个或两个开关器件组成的,所述开关器件可以是以下一种:三极管、金属氧化物半导体场效晶体管(Metal Oxide Semiconductor Transistor,MOS管)、绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)、氧化镓(Gallium Nitride,GAN)、碳化硅(Silicon Carbide,SIC)等功率半导体器件。
如图4所示,本发明实施例提供的另一种应用电源,其中,PFC变换的 拓扑结构包括输入电感L1、开关管Q1、开关管Q2和输出电容C1。
采样单元,配置为检测输入信息,包括电压制式和电压幅值等。
控制单元,配置为识别上述输入信息,并生成与上述输入信息对应的控制信号。
在该应用电源中,当输入为AC时,Q1、Q2工作在开关状态,此处开关状态表示Q1、Q2在脉冲宽度调制或者脉冲频率调制的控制下工作;当输入为高压直流时,Q1截止、Q2导通工作。
在该应用电源中,当输入为AC或幅值较低的高压直流时,Q1、Q2工作在开关状态,此处开关状态表示Q1、Q2在脉冲宽度调制或者脉冲频率调制的控制下工作;当输入为幅值较高的高压直流时,Q1截止,Q2导通工作。
所述开关管,可以是一个或两个开关器件组成的,所述开关器件可以是以下一种:三极管、MOS管、IGBT、GAN、SIC等功率半导体器件。
如图5所示,本发明实施例提供的另一种应用电源,其中,PFC变换的拓扑结构包括输入电感L1、开关管Q1、开关管Q2、开关管Q3、开关管Q4和输出电容C1。
采样单元,配置为检测输入信息,包括电压制式和电压幅值等。
控制单元,配置为识别上述输入信息,并生成与上述输入信息对应的控制信号。
在该应用电源中,当输入为AC时,Q1、Q2、Q3、Q4工作在开关状态,此处开关状态表示Q1、Q2、Q3、Q4在脉冲宽度调制或者脉冲频率调制的控制下工作;当输入为高压直流时,Q1、Q4截止,Q2、Q3导通工作(当输入高压直流反向时,Q2、Q3截止,Q1、Q4导通工作)。
所述控制方法还包括:当输入为AC或幅值较低的高压直流时,Q1、Q2、Q3、Q4工作在开关状态,此处开关状态表示Q1、Q2、Q3、Q4在脉冲宽度调制或者脉冲频率调制的控制下工作;当输入为幅值较高的高压直流时,Q1、Q4截止,Q2、Q3导通工作(当输入高压直流反向时,Q2、Q3截止,Q1、Q4导通工作)。
所述开关管,可以是一个或两个开关器件组成的,所述开关器件可以是 以下一种:三极管、MOS管、IGBT、GAN、SIC等功率半导体器件。
如图6所示,本发明实施例提供的另一种应用电源,其中,PFC变换的拓扑结构包括输入电感L1、开关管Q1、二极管D1、D2和输出电容C1。
采样单元,配置为检测输入信息,包括电压制式和电压幅值等。
控制单元,配置为识别上述输入信息,并生成与上述输入信息对应的控制信号。
在该应用电源中,当输入为AC时,Q1工作在开关状态,此处开关状态表示Q1在脉冲宽度调制或者脉冲频率调制的控制下工作;当输入为高压直流时,Q1截止,D1、D2导通工作。
在该应用电源中,当输入为AC或输入幅值较低的高压直流时,Q1工作在开关状态,此处开关状态表示Q1在脉冲宽度调制或者脉冲频率调制的控制下工作;当输入为幅值较高的高压直流时,Q1截止,D1、D2导通工作。
所述开关管,可以是一个或两个开关器件组成的,所述开关器件可以是以下一种:三极管、MOS管、IGBT、GAN、SIC等功率半导体器件。
所述二极管D2,也可以配置在图4或图5等电路中,该二极管也可以采用整流桥替代。
如图7所示,本发明实施例提供的另一种应用电源,其中,PFC变换的拓扑结构包括两个拓扑并联,拓扑一包括输入电感L1、开关管Q1、二极管D1和输出电容C1;拓扑二包括电感L2、开关管Q2、二极管D2和输出电容C2。
采样单元,配置为检测输入信息,包括电压制式和电压幅值等。
控制单元,配置为识别上述输入信息,并生成与上述输入信息对应的控制信号。
在该应用电源中,当输入为AC时,Q1、Q2工作在开关状态,此处开关状态表示Q1、Q2在脉冲宽度调制或者脉冲频率调制的控制下工作;当输入为高压直流时,Q1、Q2截止,D1、D2导通工作。
在该应用电源中,当输入为AC或输入幅值较低的高压直流时,Q1、Q2工作在开关状态,此处开关状态表示Q1、Q2在脉冲宽度调制或者脉冲频率 调制的控制下工作;当输入为幅值较高的高压直流时,Q1、Q2截止,D1、D2导通工作。
所述开关管,可以是一个或两个开关器件组成的,所述开关器件可以是以下一种:三极管、MOS管、IGBT、GAN、SIC等功率半导体器件。
所述并联拓扑的数量,也可以是三个或三个以上;并联的拓扑电路,也可以是图4、图5或图6等电路拓扑。
本发明实施例中,在所述生成与所述输入信息对应的控制信号之前,所述方法还可以包括:获取所述输入信息与控制信号的映射关系;
所述生成与所述输入信息对应的控制信号,可以包括:
根据所述映射关系生成与所述输入信息对应的控制信号。
本实施例中,通过将上述输入信息与上述控制信号预设对应的映射关系,在识别上述输入信息后,可以快速地找到与之对应的控制信号,并发出上述控制信号,提升传输效率。
如图8所示,本发明实施例提供一种输入自适应控制的装置80,包括:
采样模块81,配置为检测输入信息;
控制模块82,配置为识别所述输入信息,并生成与所述输入信息对应的控制信号;
PFC变换模块83,配置为向PFC变换单元传输所述控制信号,以控制所述PFC变换单元处于与所述输入信息对应的导通状态或者开关状态,其中,所述开关状态表示每隔一个预设时间执行一个开关动作。
在示例性实施方式中,所述采样模块81还可以配置为检测输入电压信号的电压制式和电压幅值。
在示例性实施方式中,所述控制模块82还可以配置为:
识别所述输入电压信号的电压制式和电压幅值;
若所述输入电压信号为交流,则生成控制所述PFC变换单元工作在开关状态的控制信号;
若所述输入电压信号为高压直流,则生成控制所述PFC变换单元工作在 导通状态的控制信号。
在示例性实施方式中,所述控制模块82还可以配置为:
识别所述输入电压信号的电压制式和电压幅值;
若所述输入电压信号为交流或者幅值较低的高压直流,则生成控制所述PFC变换单元工作在开关状态的控制信号;
若所述输入电压信号为幅值较高的高压直流,则生成控制所述PFC变换单元工作在导通状态的控制信号。
在示例性实施方式中,所述控制模块82还可以配置为:
获取所述输入信息与控制信号的映射关系;
所述控制模块82可以配置为通过以下方式生成与所述输入信息对应的控制信号:根据所述映射关系生成与所述输入信息对应的控制信号。
上述装置能够实现图1至图7的方法实施例中的过程,以及能达到相同的有益效果,为避免重复,这里不再赘述。
本领域普通技术人员可以理解实现上述实施例方法的全部或者部分步骤是可以通过程序指令相关的硬件来完成,所述的程序可以存储于一机器可读取介质中,该程序在执行时,包括以下步骤:
检测输入信息;
识别所述输入信息,并生成与所述输入信息对应的控制信号;
向PFC变换单元传输所述控制信号,以控制所述PFC变换单元处于与所述输入信息对应的导通状态或者开关状态,其中,所述开关状态表示每隔一个预设时间执行一个开关动作。
在示例性实施方式中,所述检测输入信息,可以包括:
检测输入电压信号的电压制式和电压幅值。
在示例性实施方式中,所述识别所述输入信息,并生成与所述输入信息对应的控制信号,可以包括:
识别所述输入电压信号的电压制式和电压幅值;
若所述输入电压信号为交流,则生成控制所述PFC变换单元工作在开关 状态的控制信号;
若所述输入电压信号为高压直流,则生成控制所述PFC变换单元工作在导通状态的控制信号。
在示例性实施方式中,所述识别所述输入信息,并生成与所述输入信息对应的控制信号,可以包括:
识别所述输入电压信号的电压制式和电压幅值;
若所述输入电压信号为交流或者幅值较低的高压直流,则生成控制所述PFC变换单元工作在开关状态的控制信号;
若所述输入电压信号为幅值较高的高压直流,则生成控制所述PFC变换单元工作在导通状态的控制信号。
在示例性实施方式中,在所述生成与所述输入信息对应的控制信号之前,还包括:获取所述输入信息与控制信号的映射关系;
所述生成与所述输入信息对应的控制信号,可以包括:
根据所述映射关系生成与所述输入信息对应的控制信号。
所述机器可读存储介质,包括只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在机器可读介质(比如,计算机可读介质)上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性 和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上所述是本申请的示例性实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。
工业实用性
本申请实施例提供一种输入自适应控制的方法和装置,可以保证面积和成本基本不变的情况下,实现不同输入下的最优效率。

Claims (11)

  1. 一种输入自适应控制的方法,包括:
    检测输入信息;
    识别所述输入信息,并生成与所述输入信息对应的控制信号;
    向功率因素校正PFC变换单元传输所述控制信号,以控制所述PFC变换单元处于与所述输入信息对应的导通状态或者开关状态,其中,所述开关状态表示每隔一个预设时间执行一个开关动作。
  2. 根据权利要求1所述的方法,其中,所述检测输入信息,包括:检测输入电压信号的电压制式和电压幅值。
  3. 根据权利要求2所述的方法,其中,所述识别所述输入信息,并生成与所述输入信息对应的控制信号,包括:
    识别所述输入电压信号的电压制式和电压幅值;
    若所述输入电压信号为交流,则生成控制所述PFC变换单元工作在开关状态的控制信号;
    若所述输入电压信号为高压直流,则生成控制所述PFC变换单元工作在导通状态的控制信号。
  4. 根据权利要求2所述的方法,其中,所述识别所述输入信息,并生成与所述输入信息对应的控制信号,包括:
    识别所述输入电压信号的电压制式和电压幅值;
    若所述输入电压信号为交流或者幅值较低的高压直流,则生成控制所述PFC变换单元工作在开关状态的控制信号;
    若所述输入电压信号为幅值较高的高压直流,则生成控制所述PFC变换单元工作在导通状态的控制信号。
  5. 根据权利要求1或2所述的方法,在所述生成与所述输入信息对应的控制信号之前,所述方法还包括:获取所述输入信息与控制信号的映射关系;其中,所述生成与所述输入信息对应的控制信号,包括:根据所述映射关系生成与所述输入信息对应的控制信号。
  6. 一种输入自适应控制的装置,包括:
    采样模块,配置为检测输入信息;
    控制模块,配置为识别所述输入信息,并生成与所述输入信息对应的控制信号;
    功率因素校正PFC变换模块,配置为向PFC变换单元传输所述控制信号,以控制所述PFC变换单元处于与所述输入信息对应的导通状态或者开关状态,其中,所述开关状态表示每隔一个预设时间执行一个开关动作。
  7. 根据权利要求6所述的装置,其中,所述采样模块还配置为检测输入电压信号的电压制式和电压幅值。
  8. 根据权利要求7所述的装置,其中,所述控制模块还配置为:识别所述输入电压信号的电压制式和电压幅值;若所述输入电压信号为交流,则生成控制所述PFC变换单元工作在开关状态的控制信号;若所述输入电压信号为高压直流,则生成控制所述PFC变换单元工作在导通状态的控制信号。
  9. 根据权利要求7所述的装置,其中,所述控制模块还配置为:识别所述输入电压信号的电压制式和电压幅值;若所述输入电压信号为交流或者幅值较低的高压直流,则生成控制所述PFC变换单元工作在开关状态的控制信号;若所述输入电压信号为幅值较高的高压直流,则生成控制所述PFC变换单元工作在导通状态的控制信号。
  10. 根据权利要求6或7所述的装置,其中,所述控制模块还配置为:获取所述输入信息与控制信号的映射关系;
    所述控制模块配置为通过以下方式生成与所述输入信息对应的控制信号:根据所述映射关系生成与所述输入信息对应的控制信号。
  11. 一种机器可读介质,存储有一个或多个程序,所述一个或多个程序被计算机执行时实现如权利要求1至5中任一项所述的输入自适应控制的方法。
PCT/CN2017/085933 2016-07-06 2017-05-25 一种输入自适应控制的方法和装置 WO2018006664A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610525890.7A CN107592001A (zh) 2016-07-06 2016-07-06 一种输入自适应控制的方法和装置
CN201610525890.7 2016-07-06

Publications (1)

Publication Number Publication Date
WO2018006664A1 true WO2018006664A1 (zh) 2018-01-11

Family

ID=60901388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085933 WO2018006664A1 (zh) 2016-07-06 2017-05-25 一种输入自适应控制的方法和装置

Country Status (2)

Country Link
CN (1) CN107592001A (zh)
WO (1) WO2018006664A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120001599A1 (en) * 2010-06-30 2012-01-05 Masayasu Tanaka Power Supply Circuit Capable of Handling Direct Current and Alternating Current and Power Supply Control Method
CN105226735A (zh) * 2014-06-13 2016-01-06 国家电网公司 一种交直流兼容型车载充电机前级电路和车载充电机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202535261U (zh) * 2012-04-18 2012-11-14 南京博兰得电子科技有限公司 一种防浪涌电流的通用输入通信电源
CN203104332U (zh) * 2013-01-10 2013-07-31 浙江中碳科技有限公司 一种交直流通用的交流适配器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120001599A1 (en) * 2010-06-30 2012-01-05 Masayasu Tanaka Power Supply Circuit Capable of Handling Direct Current and Alternating Current and Power Supply Control Method
CN105226735A (zh) * 2014-06-13 2016-01-06 国家电网公司 一种交直流兼容型车载充电机前级电路和车载充电机

Also Published As

Publication number Publication date
CN107592001A (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
EP3108580B1 (en) Multi-stage gate turn-off with dynamic timing
CN106301030B (zh) 同步整流器及其控制电路
JP6563729B2 (ja) 絶縁同期整流型dc/dcコンバータ、それを用いた電源装置、電源アダプタおよび電子機器
US20120294053A1 (en) Method for protecting a converter and a converter implementing the method
US9083241B2 (en) Power factor correction circuit for providing protection against overvoltage
JP6541280B2 (ja) 同期整流器駆動方法、同期整流器回路及びスイッチング電源
RU2016121672A (ru) Схема обратноходового драйвера быстрого пуска и способ возбуждения
WO2016103328A1 (ja) スイッチング装置、モータ駆動装置、電力変換装置およびスイッチング方法
US9787189B1 (en) Multiphase DC power supply with high switching frequency
US20170170715A1 (en) Method of controlling an inverter
JPWO2018193527A1 (ja) 過電流検出回路及び電力変換装置
US9825536B2 (en) Flyback converter with dynamic limits based upon duty cycle and power processing method
WO2018006664A1 (zh) 一种输入自适应控制的方法和装置
JP2014204354A (ja) 駆動回路、半導体集積回路、及び駆動回路の制御方法
JP6332763B2 (ja) アクティブフィルタ制御装置、アクティブフィルタ装置、電力変換装置、制御方法及びプログラム
US9093897B1 (en) Inverter and control method thereof
JP6162639B2 (ja) 温度算出装置
KR102197271B1 (ko) 동기 정류기 구동 회로 및 이를 포함하는 전원 공급 장치
US9985514B2 (en) Damper and an electrical energy converting device using the same
US20180302007A1 (en) Bidirectional conversion circuit and bidirectional converter
AU2019204890A1 (en) Control method, apparatus, device, and medium for power factor correction PFC circuit
US9391526B2 (en) Power supply apparatus with auxiliary winding switching circuit
JP6148551B2 (ja) 整流装置
US10014781B2 (en) Gate drive systems and methods using wide bandgap devices
JP2016111729A (ja) インバータ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17823476

Country of ref document: EP

Kind code of ref document: A1