WO2018006512A1 - 多轴外周缩进往复弯曲数控矫圆机 - Google Patents

多轴外周缩进往复弯曲数控矫圆机 Download PDF

Info

Publication number
WO2018006512A1
WO2018006512A1 PCT/CN2016/103339 CN2016103339W WO2018006512A1 WO 2018006512 A1 WO2018006512 A1 WO 2018006512A1 CN 2016103339 W CN2016103339 W CN 2016103339W WO 2018006512 A1 WO2018006512 A1 WO 2018006512A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronous
roller shaft
roller
shafts
rounding machine
Prior art date
Application number
PCT/CN2016/103339
Other languages
English (en)
French (fr)
Inventor
赵非平
李森林
赵军
赵长财
高学海
张连洪
朱为国
金霞
于高潮
高林
李明
Original Assignee
南通超力卷板机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通超力卷板机制造有限公司 filed Critical 南通超力卷板机制造有限公司
Priority to DE212016000144.2U priority Critical patent/DE212016000144U1/de
Publication of WO2018006512A1 publication Critical patent/WO2018006512A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D3/00Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts
    • B21D3/02Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts by rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D3/00Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts
    • B21D3/14Recontouring

Definitions

  • the invention relates to a rounding technology of a cylinder body and a pipe body, and a technical field of sheet metal forming, in particular to a small diameter pipe body suitable for a long diameter and a large straight section of a rolling machine which is retained by a rolling machine.
  • the multi-axis peripheral retracting reciprocating bending CNC rounding machine for roundness correction of the cylindrical workpiece.
  • Chinese patent CN103658247A discloses a high-precision numerical control rounding machine, which comprises an upper roller, a lower roller, a lower roller transmission mechanism, a lower roller driving mechanism and a PLC controller, characterized in that it further comprises a screw drive mechanism and a displacement sensor; The two sides of the upper roller are respectively connected with the screw drive mechanism, one side of the lower roller is provided with a displacement sensor, and the displacement sensor is connected with the PLC controller.
  • the rounding process of the technical solution disclosed in the present invention adopts the following process: the rounding process Divided into N passes, firstly, the lower roller of each pass drives the workpiece to be reversed for 1-2 weeks, and the distance between the upper roller and the center line of the two lower rollers is gradually decreased by 1-N passes, and then N is pressed.
  • the -1 pass gradually increases, and the residual stress in the workpiece passes through the process from small to large and then from large to small.
  • the upper roller is successively pressed down, and the one-way continuous operation of the lower roller is changed into a positive and negative alternating manner.
  • the force of the workpiece in all directions is more balanced, which effectively improves the precision of the rounding.
  • Another example is the Chinese patent CN104107848A, which discloses the rounding process of the numerical control rounding machine.
  • a high-precision sensor is installed on the numerical control rounding machine to accurately measure the position of the upper roller of the rounding machine, and the sensor is connected with the PLC controller; PLC controller built-in program to calculate each rounding parameter, feedback operating state, transfer each process action command, achieve high-precision rounding of cylinder workpiece by numerical control method; easy to operate, input workpiece data through cylinder, CNC rounding machine Basic parameters and material basic performance parameters, the program can accurately calculate the correction amount in real time, generate relevant data, and control the various action steps of the rounding machine to ensure accurate rounding, improve work efficiency, reduce labor intensity, and improve product qualification rate. Also reduces the generation this.
  • the method for correcting the technical solutions disclosed in the above two inventions still has certain constraints and disadvantages, in particular, the roundness correction of a small-diameter cylinder having a relatively large length, and the cylinder body rolled out by the winder
  • the straight edge section that is retained (the cylindrical body that is rolled out by any type of coiling machine will produce the straight edge of the plate end), it is difficult to achieve rounding, even if it is corrected, the roundness of correction is not very High, can not meet the market demand for high-precision CNC in aerospace, vehicle manufacturing, and other fields.
  • the main reasons are:
  • roller shaft acting on the small-diameter cylinder is easy to produce deflection deformation due to the limitation of the roller diameter
  • the correction will form the dead angle of the circumferential section of the cylinder.
  • the conventional three-roll rounding technique and process can no longer satisfy and realize the roundness correction of the large-sized cylindrical body and the large-sized cylindrical workpiece retained by the small-diameter cylinder and the rolling machine.
  • the present invention provides a multi-axis peripheral retracting reciprocating bending numerical control rounding machine, which is suitable for rounding of a cylinder and a pipe body, in particular, a small-diameter pipe body having a relatively large long diameter and
  • the roundness correction of the large cylindrical workpiece retained by the reeling barrel is improved, and the correction accuracy is improved, the production efficiency is improved, and the production cost is greatly reduced.
  • the multi-axis peripheral retracting reciprocating bending NC rounding machine provided by the invention is also for further implementing the "High-precision CNC rounding machine/project number (2013GH040478)" project of the National Torch Program.
  • the multi-axis peripheral retracting reciprocating bending numerical control rounding machine comprises: a multi-axis peripheral retracting reciprocating bending numerical control rounding machine, comprising: a rounding machine body and a PLC control system for controlling the operation of the rounding machine body, wherein
  • the rounding machine body comprises a plurality of roller shafts arranged in parallel, a fixing seat of the fixed roller shaft, a displacement driving mechanism for moving the driving roller shaft, and a roller shaft driving driving mechanism for driving the roller shaft to rotate, the roller shaft is at least a root, and the roller shaft is two
  • the end of the roller shaft is fixedly positioned in the axial direction by the fixing seat, and the center position surrounded by the plurality of roller shafts is a correction position, and the roller shaft is driven to move along the radial direction thereof by the displacement driving mechanism, and is retracted or retracted toward the circumferential surface of the workpiece.
  • the displacement drive mechanism and the roller shaft rotation drive mechanism are connected to the PLC control system.
  • the displacement drive mechanism is a synchronous displacement drive mechanism comprising two identical synchronous drive wheels, two identical synchronous drive wheels, two synchronous axes and two identical synchronous drive motors; It is located on both sides of the synchronous drive motor, and synchronously drives the two synchronous shafts to synchronously rotate; the two synchronous transmission wheels are respectively disposed at the ends of the two synchronous shafts away from the synchronous drive motor, and the synchronous transmission wheels are coaxially arranged with the synchronous shaft; The synchronous drive wheels are respectively meshed with the synchronous drive wheels, and the synchronous drive motor drives The synchronous axis is forward or reverse.
  • the synchronous driving wheel is formed in a ring shape, and the two ends of the roller shaft are respectively connected to the annular surfaces of the opposite surfaces of the two synchronous driving wheels through the roller shaft seat, and the roller shaft seat is rotatably connected with the roller shaft, and the roller shaft seat and the synchronous driving The torus of the wheel is connected by a helical thread.
  • the same first helical thread is respectively disposed on the annular surface of the two synchronous driving wheels, and the first helical thread is a T-shaped thread, and one side of each roller seat facing away from the connecting roller shaft is provided with
  • the first helical thread corresponds to a second helical thread, and the second helical thread is a T-shaped thread that mates with the first helical thread.
  • the annular surfaces of the two synchronous driving wheels are respectively provided with the same first helical thread, and the thread of the first helical thread has a cross section of "T" shape, and the roller shaft seats are connected back to each other.
  • One side of the roller shaft is provided with a second spiral thread corresponding to the first spiral thread, and the thread of the second spiral thread has a cross section of a "T" shape, the first spiral thread and the second spiral thread Interfit each other.
  • the two fixing seats are divided into two ends of the roller shaft, and the two synchronous driving wheels are located in the two fixing seats, and the opposite sides of the two fixing seats respectively open the displacement chute along the radial direction of the synchronous driving wheel.
  • the number of the displacement chutes is equal to the number of the roller shafts.
  • the roller shaft seat is embedded in the displacement chute and is screwed to the synchronous driving wheel, and the roller shaft seat and the fixing seat contact surface are connected by a guide rail.
  • the middle of the fixing seat is provided with a feeding through hole at a position corresponding to the central through hole of the synchronous driving wheel.
  • the base further includes two bases on the base, and the two fixed seats are respectively fixedly connected to the two brackets.
  • the roller shaft is located between the two brackets, and the synchronous shaft is connected between the brackets, and is rotatably connected with the two brackets.
  • a feed port corresponding to the feed through hole is formed in the bracket.
  • each pair of roller shaft seats is provided with a roller rotation driving mechanism for respectively driving the roller shafts connected thereto, each roller shaft rotation driving mechanism is connected to the hydraulic system, and the hydraulic system is connected to the PLC control system. .
  • each pair of roller housings is provided with a sensor that is coupled to the PLC control system.
  • the multi-axis peripheral retracting reciprocating bending numerically controlled rounding machine provided by the invention has the following advantages compared with the prior art:
  • the multi-axis peripheral retracting reciprocating bending numerical control rounding machine does not need to obtain the correction cylinder first
  • the initial roundness state does not need to measure and feedback the change of the circumferential curvature of the cylinder during the correction process.
  • the PLC can calculate the generated load according to known parameters such as diameter, plate thickness, plate width, material yield strength, etc.
  • the optimal indentation and unloading mode, automatic calculation and command action, through reciprocating bending, continuous uniform curvature, can achieve cylinder roundness correction. It not only improves the correction accuracy, but also improves the production efficiency and greatly reduces the production cost.
  • the multi-axis peripheral retracting reciprocating bending numerical control rounding machine adopts a progressive multi-axis retracting reciprocating bending method, adopts progressive loading and retracting, rounds the cylinder, and gradually achieves the optimal retracting amount. , to improve the accuracy of the cylindrical workpiece correction.
  • FIG. 1 is a schematic structural view of a multi-axis peripheral retracting reciprocating bending numerical control rounding machine according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural view of a displacement driving mechanism of the multi-axis peripheral retracting reciprocating bending numerically controlled rounding machine shown in FIG. 1;
  • Figure 3 is a schematic view showing the threaded connection of the synchronous drive wheel and the roller shaft seat in the multi-axis peripheral retracting reciprocating bending numerically controlled rounding machine shown in Figure 1;
  • Figure 4 is a cross-sectional view of the multi-axis peripheral retracting reciprocating bending numerical control rounding machine shown in Figure 1;
  • FIG. 5 is a schematic view showing a threaded connection between a synchronous drive wheel and a roller shaft seat in a multi-axis peripheral retracting reciprocating bending numerical control rounding machine according to a second embodiment of the present invention
  • FIG. 6 is a cross-sectional view of a multi-axis peripheral retracting reciprocating bending numerically controlled rounding machine according to a third embodiment of the present invention.
  • FIG. 1 to 4 schematically show a multi-axis peripheral retracting reciprocating bending numerically controlled rounding machine according to a first embodiment of the present invention.
  • the present invention discloses a multi-axis peripheral retracting reciprocating bending numerical control rounding machine, comprising: a rounding machine body 1, a PLC control system 6 for controlling the operation of the rounding machine body 1, and a connection with the PLC control system 6.
  • the console 5 and the PLC control system 6 are operated by the console 5 to control the operation of the scaler body 1.
  • the rounder body 1 includes a base 13 and two brackets 14 on the base 13 having a cross-sectional outer contour and an inverted U-shape.
  • the two brackets 14 are fixed to the base 13 by bolts. surface.
  • a plurality of roller shafts 11 are fixed between the two brackets 14.
  • three roller shafts 11 are included, but are not limited thereto. 3 roller shafts 11.
  • the three roller shafts 11 are arranged in parallel with each other, and the two end portions of the three roller shafts 11 are respectively connected between the two brackets 14 through the fixing base 12, and the three roller shafts 11 are used at both ends of the bracket 14 .
  • the fixing base 12 fixes the roller shaft 11 in the axial direction thereof.
  • the three roller shafts 11 are not in the same plane, and the cross-section of the axial center of the three roller shafts 11 is first-class.
  • the side triangles, the axes of the two roller shafts 11 located below are located in a horizontal plane.
  • the center position enclosed by the three roller shafts is the correction position 10.
  • the rounder body 1 further includes a displacement drive mechanism 2 for driving the roller shaft 11, and the three roller shafts 11 are each driven by the displacement drive mechanism 2 to move the roller shaft 11 in the radial direction thereof. Retract (close, squeeze) or retract (away, relax) toward the circumferential surface of the workpiece at the center correction position 10.
  • the displacement drive mechanism 2 is a synchronous displacement drive mechanism, that is, as shown in FIG. 2, including a synchronous drive wheel 21, a synchronous drive wheel 22, and a synchronous shaft 23.
  • the synchronous drive motor 24 as shown in FIG.
  • the synchronous drive motor 24 drives the two synchronizing shafts 23 to rotate synchronously, so that the two synchronizing transmission wheels 22 that are positioned and coupled with the synchronizing shaft 23 rotate synchronously with the synchronizing shaft 23, and then the synchronous driving wheels 21 that mesh with the gears of the two synchronizing transmission wheels 22 As the synchronous transmission wheel 22 rotates and the two synchronous drive wheels 21 move in the same direction, as a further preferred, the synchronous drive motor 24 drives the synchronous shaft 23 to rotate forward or reverse, achieving the workpiece circumference of the roller shaft 11 toward the center correction position 10. The face orientation is retracted or retracted.
  • the two synchronous driving wheels 21 are annular, and the opposite two spiral surfaces of the two synchronous driving wheels 21 are respectively provided with identical first helical threads 2101, as shown in FIG.
  • the thread of the helical thread 2101 has a "T" shape in cross section.
  • the two ends of the roller shaft 11 are respectively connected to the annular faces of the opposite faces of the two synchronous driving wheels 21 through the roller shaft seat 111, wherein the roller shaft seat 111 and The roller shaft 11 is rotatably connected, and the roller shaft seat 111 and the annular surface of the synchronous driving wheel 21 are connected by a helical thread.
  • FIG. 1 and FIG. 3 the two ends of the roller shaft 11 are respectively connected to the annular faces of the opposite faces of the two synchronous driving wheels 21 through the roller shaft seat 111, wherein the roller shaft seat 111 and The roller shaft 11 is rotatably connected, and the roller shaft seat 111 and the annular surface of the synchronous driving wheel 21 are connected by a helical thread.
  • each roller bearing base 111 is provided with a surface opposite to the connecting roller shaft 11 a helical thread 21101 corresponding to the second helical thread 1110, the thread of the second helical thread 1110 has a "T" cross section, and the first helical thread 2101 and the second helical thread 1110 are fitted to each other. That is, the "T"-shaped transverse portion of the second helical thread 1110 thread is embedded between the "T"-shaped transverse portions of the two helical threads 2101, thereby preventing the roller seat 111 from slipping off.
  • the two synchronous driving wheels 21 are respectively located in the two fixing bases 12.
  • the opposite sides of the two fixing bases 12 respectively open the displacement chute along the synchronous driving wheel 21, and the displacement
  • the number of the chutes is equal to the number of the rollers 11, and the roller seat 111 is embedded in the displacement chute and screwed to the synchronous drive wheel 21.
  • the contact faces of the roller seat 111 and the fixed seat 12 are connected by rails to reduce friction, thereby reducing drag and wear.
  • the synchronous drive wheel 21 is screw-fitted to the roller holder 111, and the roller holder 111 is circumferentially fixed along the synchronous drive wheel 21, the synchronous drive wheel 21 is fixed in its own radial direction, and therefore, in two synchronizations During the synchronous rotation of the drive wheel 21 by the synchronous drive motor 24, a circumferential stroke displacement occurs between the synchronous drive wheel 21 and the thread of the roller seat 111. As the circumferential stroke shifts, the roller seat 111 is placed along the chute.
  • the synchronous drive wheel 21 moves radially, and as the synchronous drive motor 24 drives the synchronous drive wheel 21 to rotate forward or reverse, the roller base 111 is moved radially along the synchronous drive wheel 21, and therefore, the roller rotatably coupled to the roller base 111
  • the shaft 11 is retracted or retracted toward the circumferential surface of the workpiece at its center correction position 10 with the roller seat.
  • the synchronizing shaft 23 is connected between the two brackets 14 and is rotatably connected to the bracket 14, and the synchronizing shaft 23 and the synchronous driving motor 24 are located under the three roller shafts 11, and are located at the uppermost roller shaft 11 Just below.
  • the rounder body 1 further includes a roller shaft rotation driving mechanism 3 for driving the roller shaft 11 to rotate, and in this embodiment of the invention, includes three roller shaft rotation driving mechanisms 3, 3
  • the roller shaft rotation driving mechanism 3 is respectively provided with a roller shaft seat 111 at one end of each roller shaft 11, the roller shaft rotation driving mechanism 3 is located outside the roller shaft 11, and the roller shaft 11 and the roller shaft on the same roller shaft seat 111 are rotationally driven.
  • the mechanism 3 is connected, and the roller shaft rotation driving mechanism 3 drives the roller shafts 11 connected to the same roller shaft holder 111 to rotate.
  • each of the roller rotation drive mechanisms 3 is coupled to the hydraulic system 4, and the hydraulic system 4 drives the roller rotation drive mechanism 3 to perform forward rotation and reverse rotation operations.
  • the roller shaft rotation driving mechanism 3 drives the roller shaft 11 to rotate forward or reverse, which is advantageous for eliminating the load stress of the cylinder being pressed.
  • a sensor 1111 is connected to each roller seat 111 to measure the amount of displacement of the roller shaft 11 in and out.
  • the purpose of the roller shaft 11 is to control and feedback the roller.
  • the amount of displacement of the shaft 11; the second is to achieve automatic leveling with the same roller shaft 11 indented and retracted.
  • a feeding through hole 1201 is defined in a position corresponding to a central through hole of the synchronous driving wheel 21 in the middle of the fixing base 12, and the two brackets 14 also have a matching with the feeding through hole 1201.
  • Feed port 141 facilitates the insertion and withdrawal of the corrected cylinder.
  • the displacement drive mechanism 2, the roller shaft rotation drive mechanism 3 hydraulic system 4, and the sensor 1111 are all connected to the PLC control system 6, and are controlled by the PLC control system 6.
  • the PLC control system 6 primarily performs operational determinations on the following important parameters:
  • the form of loading indentation can be divided into three types. One is a one-time loading indentation to the optimal indentation; the second is multi-pass loading indentation; the third is progressive loading indentation. If deformation hardening, Bauschinger effect, cyclic softening or hardening are not considered, the influence of the material on the material, the form of optimal loading and indentation is progressive loading and indentation, which is beneficial to improve the correction accuracy. Thus, in this embodiment of the invention, a progressive loading indentation is employed.
  • Multi-axis peripheral retracting reciprocating bending and torturing has an optimal retracting amount.
  • the optimal retracting amount refers to the loading of n roller shafts to a certain value H. After the loading is withdrawn, the cylinder is plastically deformed and rebounded. After reaching the standard curvature, we call this value H the optimal indentation. If the indentation value does not reach the optimal retraction amount, the cylinder cannot be fully corrected, and if the retraction exceeds the optimal retraction amount, the over-correction is unfavorable, which is not conducive to improving the accuracy of the cylindrical workpiece correction.
  • Uninstallation method A reasonable unloading load can compensate for the influence of overcorrection.
  • the progressive unloading is used to improve the precision of the rounding.
  • the small diameter cylindrical workpiece with a relatively long diameter is required to be corrected, and is placed in the center correction position 10 of the roller shaft 11 from the feeding port 141, and the power of the operating table 5 is turned on, and the PLC control system 6 is operated.
  • the PLC control system 6 calculates and commands the operation, starts the synchronous drive motor 24, and instructs the synchronous drive motor 24 to rotate forwardly, and drives the left and right synchronous transmission wheels 22 and the synchronous drive wheel 21 to rotate by the synchronous shaft 23, respectively.
  • 111 moves radially in the direction of its center along the synchronous drive wheel 21, causing the roller shaft 11 to be retracted from the outside to the inside.
  • the PLC program of the PLC control system 6 determines and instructs the form of the indented loading, the amount of retraction, and the optimal amount of retraction.
  • the circumferential direction of the cylinder is subjected to the force of the roller shaft 11, and the circumferential direction of the cylinder forms a plurality of positively curved regions and a plurality of reverse bending regions which are constantly changing, and the driving mechanism 3 is continuously loaded and retracted. Reverse the alternating action to make the cylinder form a reciprocating curve in the circumferential direction.
  • the PLC control system 6 instructs the synchronous synchronous drive motor 24 to rotate in the reverse direction, and the roller shaft 11 is retracted away from the cylindrical workpiece.
  • the multi-axis peripheral retracting reciprocating bending numerically controlled rounding machine provided in Embodiment 2 of the present invention has substantially the same structure as that in Embodiment 1, and is different in the structure of the first helical thread 2101 and the second helical thread 1110.
  • the same first spiral thread 2101 is respectively disposed on the annular surface of the two synchronous driving wheels 21 , and the first helical thread 2101 is a T-shaped thread, and each roller shaft A side of the seat 111 facing away from the connecting roller shaft 11 is provided with a second helical thread 1110 corresponding to the first helical thread 2101, and the second helical thread 1110 is a T-shaped thread that cooperates with the first helical thread 2101. .
  • the synchronous driving wheel 21 and the roller seat 111 are connected by a T-shaped thread, and the T-shaped thread is a thread having the same width between the tooth tip and the root, which improves the transmission precision.
  • the multi-axis peripheral retracting reciprocating bending numerically controlled rounding machine provided in Embodiment 3 of the present invention has the same structure as that in Embodiment 2, and is different in that it includes three roller shafts 11 and four.
  • the line connecting the central axis of the root roller 11 has a square cross section, and the two diagonal lines of the formed square are respectively located in a vertical plane and a horizontal plane.
  • the multi-axis peripheral retracting reciprocating bending numerical control rounding machine provided by the invention adopts a plurality of roller shafts 11 to simultaneously act on the outer cylinder along the outer circumference of the cylinder to be corrected, and the more the number of the roller shafts 11, the higher the precision of the correction cylinder.
  • the multi-axis peripheral retracting reciprocating bending numerically controlled rounding machine provided in Embodiment 4 of the present invention has substantially the same structure as that in Embodiment 2, and is different in the structure of the displacement driving mechanism.
  • the displacement driving mechanism is a hydraulic driving structure
  • each of the four hydraulic driving structures is respectively fixed on the outer side of the fixed seat, and the four hydraulic driving structures are respectively corresponding to the positions of the four roller shaft seats, and the hydraulic driving structure is respectively.
  • the fixing seat and the roller shaft seat are connected, and the contact surface body of the roller shaft seat and the fixing seat is slidably connected through the guide rail, and the hydraulic driving structure telescopic driving roller shaft is radially retracted or retracted along the correction position.
  • the four hydraulic driving units are respectively Connected to the PLC control system, and the PLC control system controls synchronous expansion and contraction.

Abstract

多轴外周缩进往复弯曲数控矫圆机,包括矫圆机本体(1)及PLC控制系统(6),其中,矫圆机本体(1)包括多根平行设置的辊轴(11)、固定辊轴(11)的固定座(12)、驱动辊轴(11)移动的位移驱动机构(2),及驱动辊轴(11)自转的辊轴旋转驱动机构(3),辊轴(11)为至少3根,辊轴(11)两端通过固定座(12)将辊轴(11)在其轴向固定定位,多根辊轴(11)包围起的中心位置为矫正位,辊轴(11)通过位移驱动机构(2)驱动沿其径向移动,向工件周围方向缩进或松退,位移驱动机构(2)及辊轴旋转驱动机构(3)与PLC控制系统(6)连接。该矫圆机适于筒体及管体的矫圆,特别是长径比较大的小直径管体及卷板机滚出筒体所保留的直边段较大的筒体工件的圆度矫正,提高了矫正精度,同时提高了生产效率,降低了生产成本。

Description

多轴外周缩进往复弯曲数控矫圆机 技术领域
本发明涉及筒体、管体的矫圆技术及板材成型的技术领域,尤其涉及一种适用于长径比较大的小直径管体及卷板机滚出筒体所保留的直边段较大的筒体工件的圆度矫正的多轴外周缩进往复弯曲数控矫圆机。
背景技术
随着国防与民用工业的快速发展,企业的转型升及和产品的更新换代,各类圆筒体的需求量越来越大,同时对其精度要求也越来越高,特别是小直径,且长度比较大的筒体。因此,为满足市场需求,筒体圆度的矫正显的尤为重要。
传统的圆筒体矫正,大多采用三辊矫圆技术与工艺,其主要依据“三点成圆”原理对筒体的圆度矫正。
如中国专利CN103658247A公开了一种高精度数控矫圆机,包含上辊、下辊、下辊传动机构、下辊驱动机构、PLC控制器,其特征在于,还包含丝杠传动机构和位移传感器;上辊两侧分别与丝杠传动机构连接,下辊的一侧设置有位移传感器,且位移传感器与PLC控制器连接,本发明披露的技术方案的矫圆过程是采用以下过程:将矫圆过程分成N个道次,首先每个道次下辊带动工件正反转各1-2周,所述的上辊与两下辊中心线的间距按1-N道次逐渐减小,然后按N-1道次逐渐增大,工件中的剩余应力经过由小到大、再由大到小的过程,在上辊逐次下压的同时,改下辊单向连续运转为正反交替的方式,使得工件在各个方向的受力更加均衡,有效提高了矫圆精度。
又如中国专利CN104107848A公开了数控矫圆机的矫圆工艺,采用在数控矫圆机上安装一个高精度传感器,用以精确测量矫圆机的上辊的位置,传感器与PLC控制器相连接;由PLC控制器内置程序来计算各矫圆参数,反馈运行状态,传输各工艺动作指令,达到数控方式进行筒体工件的高精度矫圆;具有操作简便,通过输入筒体工件数据、数控矫圆机基本参数和材料基本性能参数,程序能够实时精确计算矫正量,生成相关数据,并控制矫圆机各个动作步骤,从而保证矫圆精确,提高了工作效率,降低劳动强度,提高产品的合格率,同时也降低了生成 本。
上述两个发明公开的技术方案的矫正方法,仍存在一定的制约和缺点,特别是对小直径,且长度比较大的筒体的圆度矫正,以及通过卷板机滚弯出的筒体所保留的直边段(任何结构形式的卷板机滚弯出的圆筒体,均会产生板端直边段的现象),很难实现矫圆,即使矫正后,其矫正圆度也不是很高,不能满足航空航天、车辆制造、等领域的高精度数控的市场需求。其主要原因是:
一、作用在小直径筒体内的辊轴,由于其辊径的限制,很容易产生挠度形变;
二、依据“三点成圆”原理,矫正中会形成筒体周向梁段的作用死角。
因而传统的三辊矫圆技术与工艺,已经不能满足和实现长度比较大的小直径筒体和卷板机滚弯出筒体所保留的直边段较大的筒体工件的圆度矫正。
发明内容
为克服现有技术中存在的问题,本发明提供了的多轴外周缩进往复弯曲数控矫圆机,适用于筒体及管体的矫圆,特别是长径比较大的小直径管体及卷板机滚出筒体所保留的直边段较大的筒体工件的圆度矫正,提高了矫正精度,同时提高了生产效率、大大降低了生产成本。同时,本发明提供的多轴外周缩进往复弯曲数控矫圆机也是为了进一步实施国家火炬计划“高精度数控矫圆机/项目编号(2013GH040478)”项目。
本发明提供的多轴外周缩进往复弯曲数控矫圆机,包括:多轴外周缩进往复弯曲数控矫圆机,包括:矫圆机本体及控制矫圆机本体运作的PLC控制系统,其中,矫圆机本体包括多根平行设置的辊轴、固定辊轴的固定座、驱动辊轴移动的位移驱动机构,及驱动辊轴自转的辊轴旋转驱动机构,辊轴为至少根,辊轴两端通过固定座将辊轴在其轴向固定定位,多根辊轴包围起的中心位置为矫正位,辊轴通过位移驱动机构驱动沿其径向移动,向工件周面方向缩进或松退,位移驱动机构及辊轴旋转驱动机构与PLC控制系统连接。
在一些实施方式中,位移驱动机构为同步位移驱动机构,包括两个相同的同步驱动轮、两个相同的同步传动轮,两根同步轴及两个相同的同步驱动马达;两根同步轴分别位于同步驱动马达两侧,通过同步驱动马达驱动两同步轴同步自转;两个同步传动轮分别设于两根同步轴远离同步驱动马达的端部,同步传动轮与同步轴同轴设置;两个同步驱动轮分别与同步传动轮啮合,同步驱动马达驱动 同步轴正转或反转。
在一些实施方式中,同步驱动轮成环形,辊轴两端分别通过辊轴座连接于两个同步驱动轮相对面的环面上,辊轴座与辊轴转动连接,辊轴座与同步驱动轮的环面通过螺旋状的螺纹相连接。
在一些实施方式中,两同步驱动轮的环面上分别设有相同的第一螺旋状螺纹,第一螺旋状螺纹为T型螺纹,各辊轴座上背对连接辊轴的一面设有与第一螺旋状螺纹相对应的第二螺旋状螺纹,第二螺旋状螺纹为与第一螺旋状螺纹相配合的T型螺纹。
在一些实施方式中,两同步驱动轮的环面上分别设有相同的第一螺旋状螺纹,第一螺旋状螺纹的螺纹牙的横截面成“T”形,各辊轴座上背对连接辊轴的一面设有与第一螺旋状螺纹相对应的的第二螺旋状螺纹,第二螺旋状螺纹的螺纹牙的横截面成“T”形,第一螺旋状螺纹与第二螺旋状螺纹相互嵌合。
在一些实施方式中,包括两个固定座,分为位于辊轴两端,两个同步驱动轮位于两个固定座内,两个固定座相对的一面分别沿同步驱动轮径向开设位移滑槽,位移滑槽的个数与辊轴根数相等,辊轴座嵌设于位移滑槽内与同步驱动轮螺纹连接,辊轴座与固定座接触面间通过导轨连接。
在一些实施方式中,固定座中部与同步驱动轮中心通孔对应位置处开设有进料通孔。
在一些实施方式中,还包括底座及位于底座上的两支架,两固定座分别与两支架固定连接,辊轴位于两支架之间,同步轴连接于支架之间,与两支架转动连接,两支架上开设与进料通孔相一致的进料口。
在一些实施方式中,每对辊轴座上均设有一辊轴旋转驱动机构,分别驱动与其连接的辊轴转动,每个辊轴旋转驱动机构均连接至液压系统,液压系统连接于PLC控制系统。
在一些实施方式中,每对辊轴座上均设有一传感器,传感器连接于PLC控制系统。
与现有技术相比,本发明提供的多轴外周缩进往复弯曲数控矫圆机与现有技术相比具有以下优点:
一、本发明提供的多轴外周缩进往复弯曲数控矫圆机,无需获得矫正筒体初 始圆度状态,也无需测量和反馈矫正过程中筒体周向曲率变化的情况,只要通过PLC根据已知参数,比如直径、板厚、板宽、材料屈服强度等,即可运算生成加载载荷、最佳缩进量以及卸载方式,自动运算并指令动作,通过往复弯曲,不断统一曲率,即可实现筒体圆度矫正。不但提高了矫正精度,也提高了生产效率、大大降低了生产成本。
二、本发明提供的多轴外周缩进往复弯曲数控矫圆机,通过多轴外周缩进往复弯曲的方法,采用渐进式加载缩进,对筒体进行矫圆,渐进达到最佳缩进量,最提高筒体工件矫正的精度。
附图说明
图1为本发明第一种实施方式提供的多轴外周缩进往复弯曲数控矫圆机的结构示意图;
图2为图1所示的多轴外周缩进往复弯曲数控矫圆机中位移驱动机构的结构示意图;
图3位图1所示的多轴外周缩进往复弯曲数控矫圆机中同步驱动轮与辊轴座螺纹连接示意图;
图4为图1所示的多轴外周缩进往复弯曲数控矫圆机的剖视图;
图5为本发明第二种实施方式提供的多轴外周缩进往复弯曲数控矫圆机中同步驱动轮与辊轴座螺纹连接示意图;
图6为本发明第三种实施方式提供的多轴外周缩进往复弯曲数控矫圆机的剖视图。
具体实施方式
以下结合附图和实施例,对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
图1至图4示意性地显示了根据本发明第一种实施方式的多轴外周缩进往复弯曲数控矫圆机。
如图1所示,本发明披露了多轴外周缩进往复弯曲数控矫圆机,包括:矫圆机本体1、控制矫圆机本体1运作的PLC控制系统6及与PLC控制系统6连接的操作台5,PLC控制系统6通过操作台5操作,控制控制矫圆机本体1运作。
如图1和图4所示,矫圆机本体1包括底座13及位于底座13上的横截面外轮廓成倒“U”形的两个支架14,两个支架14通过螺栓固定于底座13上表面。如图1所示,两支架14之间固定有多根辊轴11,作为优选的,如图4所示,在本发明的此优选实施方案中,包括3根辊轴11,但并不仅限于3根辊轴11。如图1所示,3根辊轴11间相互平行设置,3根辊轴11两端端部分别通过固定座12连接于两个支架14之间,3根辊轴11两端用过支架14及固定座12将辊轴11在其轴向固定定位,如图1和图4所示,3根辊轴11不在同一平面内,且三根辊轴11的轴心的连线的截面为一等边三角形,位于下方的两根辊轴11的轴心位于一水平面内。3根辊轴包围起的中心位置即为矫正位10。
如图1和图2所示,矫圆机本体1还包括驱动辊轴11移动的位移驱动机构2,3根辊轴11均通过位移驱动机构2驱动,使辊轴11沿其径向移动,向中心矫正位10上的工件周面方向缩进(靠近,挤压)或松退(远离,放松)。如图3所示,作为优选的,在本发明的此实施方式中,位移驱动机构2为同步位移驱动机构,即如图2所示,包括同步驱动轮21、同步传动轮22,同步轴23及同步驱动马达24,如图2所示,包括两根同步轴23,两根同步轴23分别固定于同步驱动马达24两侧,通过同步驱动马达24驱动两同步轴23同步自转;包括两个相同规格的同步传动轮22,两个同步传动轮22分别套设在两根同步轴23上,且位于同步轴23上远离同步驱动马达24的端部,同步传动轮22与同步轴23同轴设置,且与同步轴23定位连接;包括两个规格相同的同步驱动轮21,如图2所示,同步传动轮22及同步驱动轮21均为齿轮,且两个同步驱动轮21分别与两个同步传动轮22啮合。由此,同步驱动马达24驱动两同步轴23同步自转,因此与同步轴23定位连接的两同步传动轮22随同步轴23同步转动,继而,与两同步传动轮22齿轮啮合的同步驱动轮21随同步传动轮22转动,且两同步驱动轮21同步同方向运动,作为进一步优选的,同步驱动马达24驱动同步轴23正转或反转,实现辊轴11向中心矫正位10上的工件周面方向缩进或松退。
如图1至图3所示,两同步驱动轮21成环形,两同步驱动轮21相对的两个环面上分别设有完全相同的第一螺旋状螺纹2101,如图3所示,第一螺旋状螺纹2101的螺纹牙的横截面成“T”形。如图1和图3所示,辊轴11两端分别通过辊轴座111连接于两个同步驱动轮21相对面的环面上,其中,辊轴座111与 辊轴11转动连接,辊轴座111与同步驱动轮21的环面通过螺旋状的螺纹相连接,如图3所示,各辊轴座111上背对连接辊轴11的一面设有与第一螺旋状螺纹2101相对应的第二螺旋状螺纹1110,第二螺旋状螺纹1110的螺纹牙的横截面成“T”形,且第一螺旋状螺纹2101与第二螺旋状螺纹1110相互嵌合,即第二螺旋状螺纹1110螺纹牙的“T”形横部嵌设于第一螺旋状螺纹2101两螺纹牙“T”形横部之间,由此,可防止辊轴座111滑脱。
如图1和图4所示,两个同步驱动轮21分别位于两个固定座12内,作为优选的,两个固定座12相对的一面分别沿同步驱动轮21径向开设位移滑槽,位移滑槽的个数与辊轴11根数相等,辊轴座111嵌设于位移滑槽内,与同步驱动轮21螺纹连接。作为进一步优选的,辊轴座111与固定座12的接触面间通过导轨连接,以减小摩擦,从而减小阻力及磨损。
通过上述结构,由于同步驱动轮21与辊轴座111螺纹嵌合,且辊轴座111沿同步驱动轮21周向固定,而同步驱动轮21沿其自身径向固定,因此,在两个同步驱动轮21分别由同步驱动马达24驱动同步转动的过程中,同步驱动轮21与辊轴座111的螺纹间发生周向行程位移,随着周向行程位移,使辊轴座111沿滑槽在同步驱动轮21径向上移动,随着同步驱动马达24驱动同步驱动轮21正转或反转,实现辊轴座111沿同步驱动轮21径向移动,因此,与辊轴座111转动连接的辊轴11随辊轴座向其中心矫正位10上的工件周面方向缩进或松退。
如图1所示,作为优选的,同步轴23连接于两支架14之间,与支架14转动连接,同步轴23及同步驱动马达24位于3根辊轴11下方,且位于最上方辊轴11的正下方。
如图1和图4所示,矫圆机本体1还包括驱动辊轴11自转的辊轴旋转驱动机构3,在本发明的此实施方式中,包括3个辊轴旋转驱动机构3,3个辊轴旋转驱动机构3分别设有每个辊轴11其中一端的辊轴座111上,辊轴旋转驱动机构3位于辊轴11外侧,同一辊轴座111上的辊轴11及辊轴旋转驱动机构3相连,辊轴旋转驱动机构3分别驱动连接于同一辊轴座111上的辊轴11自转。作为优选的,每个辊轴旋转驱动机构3均连接至液压系统4,由液压系统4驱动辊轴旋转驱动机构3执行正转与反转动作。辊轴旋转驱动机构3驱动辊轴11正转或反转,有利于消除被矫圆筒体的加载应力。
作为进一步优选的,如图1和图4所示,每个辊轴座111上均连接有一传感器1111,以测量辊轴11缩进及松退的位移量,其目的:一是控制和反馈辊轴11的位移量;二是实现用同一根辊轴11缩进与松退的自动调平。
另外,如图1和图4所示,固定座12中部与同步驱动轮21中心通孔对应位置处开设有进料通孔1201,两支架14上也开设与进料通孔1201相一致的进料口141。进料口141方便被矫正筒体的放进和退出。
作为更进一步优选的,在本发明的此实施方式中,位移驱动机构2、辊轴旋转驱动机构3液压系统4及传感器1111均与PLC控制系统6连接,由PLC控制系统6控制。
在本发明的此实施方式中,PLC控制系统6主要对以下重要参数进行运算确定:
1)加载载荷的大小。加载力计算,需要考虑闭合被矫圆筒体加载时,筒体周向各梁段受力情况复杂因素,周向形成了若干个正弯区和若干个反弯区,挤压拉伸并存,和处于超静定结构状态。
2)加载缩进的形式。加载缩进的形式可分为三种。一是一次性加载缩进到最佳缩进量;二是多道次加载缩进;三是渐进式加载缩进。如果不考虑形变硬化、Bauschinger效应、循环软化或硬化等,对材料的影响因素,最佳加载缩进的形式为渐进加载缩进,有利于提高矫正精度。因此,在本发明的此实施方式中,采用渐进式加载缩进形式。
3)缩进量的大小。多轴外周缩进往复弯曲矫圆存在一个最佳缩进量,最佳缩进量是指n根辊轴加载缩进到一定数值H,在撤回载荷后,矫正筒体发生塑性形变以及回弹后达到标准曲率,我们将该数值H称为最佳缩进量。缩进值达不到最佳缩进量,筒体不能充分矫正,反之缩进超过最佳缩进量,则过度矫正,这两种情形均不利于提高筒体工件矫正的精度。
4)卸载方式。合理的撤销载荷,可以弥补过度矫正产生的影响,在本发明此实施方式中,采用渐式卸载,更有利于提高矫圆精度。
进行筒体矫圆作业时,将需要矫正的长径比较大的小直径筒体工件,从进料口141置于辊轴11中心矫正位10中,打开操作台5电源,PLC控制系统6运行, PLC控制系统6程序运算并指令动作,启动同步驱动马达24,并指令同步驱动马达24正转,通过同步轴23分别带动左右两个同步传动轮22及同步驱动轮21转动,此时辊轴座111沿同步驱动轮21径向向其圆心方向运动,使辊轴11由外向内缩进运动。根据已知筒体直径等参数,结合每根辊轴11两端的传感器1111的测量参数,由PLC控制系统6的PLC程序确定并指令缩进加载的形式、缩进量以至最佳缩进量,此时,筒体周向受到辊轴11的作用力,筒体周向则形成不断变化的若干个正弯区和若干个反弯区,通过不断加载缩进、和辊轴旋转驱动机构3正反转交替动作,使筒体周向形成往复弯曲,当缩进到最佳缩进量,筒体周向曲率将驱于一致,达到统一,从而实现矫正筒体的目的。最终,PLC控制系统6指令同步同步驱动马达24反向转动,辊轴11松退,远离筒体工件。
实施例2
本发明实施例2提供的多轴外周缩进往复弯曲数控矫圆机,其结构与实施例1中基本相同,其不同之处在于第一螺旋状螺纹2101及第二螺旋状螺纹1110的结构。
如图6所示,在本发明的此实施方式中,两同步驱动轮21的环面上分别设有相同的第一螺旋状螺纹2101,第一螺旋状螺纹2101为T型螺纹,各辊轴座111上背对连接辊轴11的一面设有与第一螺旋状螺纹2101相对应的第二螺旋状螺纹1110,第二螺旋状螺纹1110为与第一螺旋状螺纹2101相配合的T型螺纹。同步驱动轮21及滚轴座111间采用T型螺纹连接,T型螺纹为齿尖与齿根间的宽度相等的螺纹,其提高了传动精度。
实施例3
如图6所示,本发明实施例3提供的多轴外周缩进往复弯曲数控矫圆机,其结构与实施例2中基本相同,其不同之处在于,包括3根辊轴11,且四根辊轴11的中心轴线的连线截面为一正方形,组成的正方形的两个对角连线分别位于竖直平面及水平平面内。
本发明提供的多轴外周缩进往复弯曲数控矫圆机,采用多根辊轴11沿被矫正圆筒体外周同时作用于筒体,辊轴11数量越多,矫正圆筒体精度越高。
实施例4
本发明实施例4提供的多轴外周缩进往复弯曲数控矫圆机,其结构与实施例2中基本相同,其不同之处在于位移驱动机构的结构。
在本发明实施例4中,位移驱动机构为液压驱动结构,分别包括4个液压驱动结构分别固定于固定座外侧,4个液压驱动结构分别与4个辊轴座位置一一对应,液压驱动结构连接固定座及辊轴座,且辊轴座与固定座的接触面体通过导轨滑动连接,液压驱动结构伸缩驱动辊轴沿矫正位径向缩进或松退,作为优选的,4个液压驱动均连接于PLC控制系统,又PLC控制系统控制同步伸缩。
上述说明示出并描述了本发明的优选实施例,如前所述,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述发明构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。

Claims (10)

  1. 多轴外周缩进往复弯曲数控矫圆机,包括:矫圆机本体(1)及控制所述矫圆机本体(1)运作的PLC控制系统(6),其特征在于,所述矫圆机本体(1)包括多根平行设置的辊轴(11)、固定所述辊轴(11)的固定座(12)、驱动所述辊轴(11)移动的位移驱动机构(2),及驱动所述辊轴(11)自转的辊轴旋转驱动机构(3),所述辊轴(11)为至少3根,所述辊轴(11)两端通过所述固定座(12)将所述辊轴(11)在其轴向固定定位,多根所述辊轴(11)包围起的中心位置为矫正位(10),所述辊轴(11)通过所述位移驱动机构(2)驱动沿其径向移动,向工件周面方向缩进或松退,所述位移驱动机构(2)及所述辊轴旋转驱动机构(3)与所述PLC控制系统(6)连接。
  2. 根据权利要求1所述的多轴外周缩进往复弯曲数控矫圆机,其特征在于,所述位移驱动机构(2)为同步位移驱动机构,包括两个相同的同步驱动轮(21)、两个相同的同步传动轮(22),两根同步轴(23)及一同步驱动马达(24);两根所述同步轴(23)分别位于所述同步驱动马达(24)两侧,通过所述同步驱动马达(24)驱动两所述同步轴(23)同步转动;两个所述同步传动轮(22)分别设于两根所述同步轴(23)远离所述同步驱动马达(24)的端部,所述同步传动轮(22)与所述同步轴(23)同轴设置;两个所述同步驱动轮(21)分别与所述同步传动轮(22)啮合,所述同步驱动马达(24)驱动所述同步轴(23)正转或反转。
  3. 根据权利要求2所述的多轴外周缩进往复弯曲数控矫圆机,其特征在于,所述同步驱动轮(21)成环形,所述辊轴(11)两端分别通过辊轴座(111)连接于两个所述同步驱动轮(21)相对面的环面上,所述辊轴座(111)与所述辊轴(11)转动连接,所述辊轴座(111)与所述同步驱动轮(21)的环面通过螺旋状的螺纹相连接。
  4. 根据权利要求3所述的多轴外周缩进往复弯曲数控矫圆机,其特征在于,两所述同步驱动轮(21)的环面上分别设有相同的第一螺旋状螺纹(2101),所述第一螺旋状螺纹(2101)为T型螺纹,各所述辊轴座(111)上背对连接所述 辊轴(11)的一面设有与所述第一螺旋状螺纹(2101)相对应的第二螺旋状螺纹(1110),所述第二螺旋状螺纹(1110)为与所述第一螺旋状螺纹(2101)相配合的T型螺纹。
  5. 根据权利要求3所述的多轴外周缩进往复弯曲数控矫圆机,其特征在于,两所述同步驱动轮(21)的环面上分别设有相同的第一螺旋状螺纹(2101),所述第一螺旋状螺纹(2101)的螺纹牙的横截面成“T”形,各所述辊轴座(111)上背对连接所述辊轴(11)的一面设有与所述第一螺旋状螺纹(2101)相对应的的第二螺旋状螺纹(1110),所述第二螺旋状螺纹(1110)的螺纹牙的横截面成“T”形,所述第一螺旋状螺纹(2101)与所述第二螺旋状螺纹(1110)相互嵌合。
  6. 根据权利要求4或5所述的多轴外周缩进往复弯曲数控矫圆机,其特征在于,包括两个所述固定座(12),分为位于所述辊轴(11)两端,两个所述同步驱动轮(21)位于两个所述固定座(12)内,两个所述固定座(12)相对的一面分别沿所述同步驱动轮(21)径向开设位移滑槽,所述位移滑槽的个数与所述辊轴(11)根数相等,所述辊轴座(111)嵌设于所述位移滑槽内与所述同步驱动轮(21)螺纹连接,所述辊轴座(111)与所述固定座(12)接触面间通过导轨连接。
  7. 根据权利要求6所述的多轴外周缩进往复弯曲数控矫圆机,其特征在于,所述固定座(12)中部与所述同步驱动轮(21)中心通孔对应位置处开设有进料通孔(1201)。
  8. 根据权利要求6所述的多轴外周缩进往复弯曲数控矫圆机,其特征在于,还包括底座(13)及位于所述底座(13)上的两支架(14),两所述固定座(12)分别与所述两支架(14)固定连接,所述辊轴(11)位于所述两支架(14)之间,所述同步轴(23)连接于所述支架(14)之间,与所述两支架(14)转动连接,所述两支架(14)上开设与所述进料通孔(1201)相一致的进料口(141)。
  9. 根据权利要求6所述的多轴外周缩进往复弯曲数控矫圆机,其特征在于,每对所述辊轴座(111)上均设有一所述辊轴旋转驱动机构(3),分别驱动与其连接的所述辊轴(11)转动,每个所述辊轴旋转驱动机构(3)均连接至液压系统(4),所述液压系统(4)连接于所述PLC控制系统(6)。
  10. 根据权利要求6所述的多轴外周缩进往复弯曲数控矫圆机,其特征在于,每对所述辊轴座(111)上均设有一传感器(1111),所述传感器(1111)连接于所述PLC控制系统(6)。
PCT/CN2016/103339 2016-07-07 2016-10-26 多轴外周缩进往复弯曲数控矫圆机 WO2018006512A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE212016000144.2U DE212016000144U1 (de) 2016-07-07 2016-10-26 Nummerisch gesteuerte Rundheitskorrekturmaschine mit Einfahren am Außenumfang und Wechselbiegung mittels mehrerer Rollen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610532890.XA CN106001183B (zh) 2016-07-07 2016-07-07 多轴外周缩进往复弯曲数控矫圆机
CN201610532890.X 2016-07-07

Publications (1)

Publication Number Publication Date
WO2018006512A1 true WO2018006512A1 (zh) 2018-01-11

Family

ID=57108489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103339 WO2018006512A1 (zh) 2016-07-07 2016-10-26 多轴外周缩进往复弯曲数控矫圆机

Country Status (3)

Country Link
CN (1) CN106001183B (zh)
DE (1) DE212016000144U1 (zh)
WO (1) WO2018006512A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116550812A (zh) * 2023-07-07 2023-08-08 江苏龙胜机床制造有限公司 一种可调节缩扩口卷板机

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106001183B (zh) * 2016-07-07 2017-09-15 南通超力卷板机制造有限公司 多轴外周缩进往复弯曲数控矫圆机
CN109226364A (zh) * 2018-10-15 2019-01-18 珠海市格努科技有限公司 一种外圆辊装置
CN110303071A (zh) * 2019-08-07 2019-10-08 包头威丰新材料有限公司 一种cb线内罩圆度重新矫正的设备
CN111251587B (zh) * 2020-01-17 2022-02-25 山东方特管业有限公司 一种改性聚丙烯管的椭圆变形纠正装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899911A (en) * 1974-03-27 1975-08-19 Anvar Sheetmetal rolling machine
US6308547B1 (en) * 1999-04-03 2001-10-30 Karl Heess Gmbh & Co. Maschinenbau Shaft straightening and hardening machine and workpiece holder therefor
CN101733312A (zh) * 2009-12-24 2010-06-16 太原通泽重工有限公司 三辊矫直机
CN202779295U (zh) * 2012-09-14 2013-03-13 邬宏海 钢管整形校直机
CN103658247A (zh) * 2012-09-20 2014-03-26 南通超力卷板机制造有限公司 高精度数控矫圆机
CN104107848A (zh) * 2013-09-09 2014-10-22 南通超力卷板机制造有限公司 数控矫圆机的矫圆工艺
CN105598214A (zh) * 2015-12-21 2016-05-25 太原重工股份有限公司 一种直辊式管材矫直机及矫直方法
CN106001183A (zh) * 2016-07-07 2016-10-12 南通超力卷板机制造有限公司 多轴外周缩进往复弯曲数控矫圆机
CN205851605U (zh) * 2016-07-07 2017-01-04 南通超力卷板机制造有限公司 多轴外周缩进往复弯曲数控矫圆机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6854310B2 (en) * 2000-11-09 2005-02-15 Honda Giken Kogyo Kabushiki Kaisha Device for correcting circumferential length of metal ring
JP3785998B2 (ja) * 2001-12-10 2006-06-14 Jfeスチール株式会社 鋼管端部の矯正方法および矯正装置
CN202570881U (zh) * 2011-12-28 2012-12-05 长春汇凯科技有限公司 自动矫圆机
CN103624114B (zh) * 2013-11-15 2015-09-30 新兴铸管股份有限公司 一种金属管自动校圆系统及其处理方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899911A (en) * 1974-03-27 1975-08-19 Anvar Sheetmetal rolling machine
US6308547B1 (en) * 1999-04-03 2001-10-30 Karl Heess Gmbh & Co. Maschinenbau Shaft straightening and hardening machine and workpiece holder therefor
CN101733312A (zh) * 2009-12-24 2010-06-16 太原通泽重工有限公司 三辊矫直机
CN202779295U (zh) * 2012-09-14 2013-03-13 邬宏海 钢管整形校直机
CN103658247A (zh) * 2012-09-20 2014-03-26 南通超力卷板机制造有限公司 高精度数控矫圆机
CN104107848A (zh) * 2013-09-09 2014-10-22 南通超力卷板机制造有限公司 数控矫圆机的矫圆工艺
CN105598214A (zh) * 2015-12-21 2016-05-25 太原重工股份有限公司 一种直辊式管材矫直机及矫直方法
CN106001183A (zh) * 2016-07-07 2016-10-12 南通超力卷板机制造有限公司 多轴外周缩进往复弯曲数控矫圆机
CN205851605U (zh) * 2016-07-07 2017-01-04 南通超力卷板机制造有限公司 多轴外周缩进往复弯曲数控矫圆机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116550812A (zh) * 2023-07-07 2023-08-08 江苏龙胜机床制造有限公司 一种可调节缩扩口卷板机
CN116550812B (zh) * 2023-07-07 2023-09-22 江苏龙胜机床制造有限公司 一种可调节缩扩口卷板机

Also Published As

Publication number Publication date
CN106001183B (zh) 2017-09-15
CN106001183A (zh) 2016-10-12
DE212016000144U1 (de) 2018-02-23

Similar Documents

Publication Publication Date Title
WO2018006512A1 (zh) 多轴外周缩进往复弯曲数控矫圆机
JP5791599B2 (ja) 延伸フローフォーミング成形の方法及び装置
CN104858285B (zh) 一种旋压方法
JP2022513235A (ja) 縮径率の大きい多可変中空軸のコアレススピニング加工方法
WO2018099403A1 (zh) 一种毛胚滚压送料、缩径、校直与除锈方法、设备及产品
JP6555498B2 (ja) 管雄ネジローリング加工方法、モジュール及び設備と管雄ネジ生産線
JPS63121B2 (zh)
CN110899526B (zh) 一种钢管加工用扩径装置的工作方法
CN109174970B (zh) 一种基于液压成形的金属异形管材的轧制成形方法及装置
EP1651364B1 (en) Apparatus for rectifing round pipe and tubing
RU2552206C2 (ru) Способ термосиловой обработки длинномерных осесимметричных деталей и устройство для его осуществления
CN110842063A (zh) 一种型材零件滚弯成形机床的进料侧滚轮组件
CN105710132A (zh) 一种分传动直驱式三辊y型轧机
EP2736660B1 (en) Roll-holder cartridge for a rolling mill
CN205851605U (zh) 多轴外周缩进往复弯曲数控矫圆机
JPH02284707A (ja) ピルガーミルとその再装填法並びにピルガー製管法
CN207357842U (zh) 一种弯管机及其模具组件
CN103752953A (zh) 一种离散式滚压齿轮加工方法
CN114309183B (zh) 一种矩形管空间弯曲可变径成形装置
CN211965511U (zh) 一种加强圈煨弯装置
CN115090739B (zh) 一种内向旋压制备薄壁无缝管的装置
CN114011932B (zh) 薄壁管件波纹成型工装
CN111842754B (zh) 圆弧齿底非渐开线齿形四锤头渐进径向锻造装置及工艺
CN113751606B (zh) 一种厚壁金属直缝焊管连续渐进式扩径整圆装置及方法
CN214488387U (zh) C型内开口薄壁金属环形件制作设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 212016000144

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908016

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16908016

Country of ref document: EP

Kind code of ref document: A1