WO2018006437A1 - 一种从萃取镧的废水中除放射性的方法 - Google Patents

一种从萃取镧的废水中除放射性的方法 Download PDF

Info

Publication number
WO2018006437A1
WO2018006437A1 PCT/CN2016/090151 CN2016090151W WO2018006437A1 WO 2018006437 A1 WO2018006437 A1 WO 2018006437A1 CN 2016090151 W CN2016090151 W CN 2016090151W WO 2018006437 A1 WO2018006437 A1 WO 2018006437A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
waste water
total
wastewater
lanthanum
Prior art date
Application number
PCT/CN2016/090151
Other languages
English (en)
French (fr)
Inventor
刘志强
邱显扬
张魁芳
曹洪杨
Original Assignee
广东省稀有金属研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省稀有金属研究所 filed Critical 广东省稀有金属研究所
Publication of WO2018006437A1 publication Critical patent/WO2018006437A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • G21F9/125Processing by absorption; by adsorption; by ion-exchange by solvent extraction

Definitions

  • the present invention relates to a method of removing radioactivity from wastewater extracted from hydrazine.
  • Rare earth minerals contain a certain amount of radioactive materials, and the content of radioactive elements of different rare earth minerals is quite different.
  • people's research on rare earth radioactivity mainly focused on monazite, bastnasite and its mixed minerals.
  • China's ionic rare earth ore also contains some radioactive elements. Since the ionic rare earth ore contains some radioactive element 227 Ac, 227 Ac is located below La in the periodic table, and its chemical properties are similar to those of La. After the extraction and separation of the hydrazine, 227 Ac enters the wastewater, and 227 Ac in the wastewater causes the wastewater to be highly radioactive and pollute the environment.
  • 227 Ac belongs to the extremely toxic natural radionuclide, which is harmful to the human body, especially the inhalation of its alpha radiator, and the relative risk is much higher than 226 Ra. Therefore, it is necessary to remove radioactive elements from the perspective of radiation health protection or environmental protection, which is conducive to improving the ecological environment.
  • the wastewater for extracting cerium is a raffinate after extracting cerium in the southern ion-type rare earth ore, wherein the calcium ion concentration is 500-5000 mg/L, the total ⁇ concentration is 30-70000 Bq/L, and the total ⁇ concentration is 30-8000 Bq/L.
  • the pH is 2-5.
  • the method for removing radioactivity of the present invention is as follows: sodium carbonate is added to the wastewater for extracting hydrazine, the pH is adjusted to 7 to 10, and after stirring for 1 to 4 hours, the mixture is allowed to stand, and the supernatant is aspirated and filtered, and the precipitate is radioactive waste residue.
  • the liquid is waste water after radioactivity.
  • the invention adopts the addition of sodium carbonate and 227 Ac in the wastewater to form a precipitate, and the calcium ion in the wastewater also forms a precipitate with the carbonate, adsorbs the 227 Ac precipitate, and reduces the floating 227 Ac precipitate in the solution to improve the radioactive effect. .
  • the method for removing radioactivity from the wastewater for extracting ruthenium according to the present invention can remove the radioactive material from the waste water, and the removal is thorough, and the process is simple.
  • the wastewater of strontium was extracted, wherein the calcium ion concentration was 529 mg/L, the total ⁇ concentration was 88 Bq/L, the total ⁇ concentration was 67.7 Bq/L, and the pH was 3.
  • Sodium carbonate was added to adjust the pH to 8.5, and after stirring for 1 hour, it was allowed to stand, and the supernatant was aspirated and filtered.
  • the precipitate is a radioactive waste residue, and the clear liquid is waste water after radioactivity.
  • the total ⁇ concentration in the wastewater was 20.6 Bq/L, and the total ⁇ concentration was 9.4 Bq/L.
  • the wastewater of strontium was extracted, wherein the calcium ion concentration was 529 mg/L, the total ⁇ concentration was 88 Bq/L, the total ⁇ concentration was 67.7 Bq/L, and the pH was 3.
  • Sodium carbonate was added to adjust the pH to 9.5, and after stirring for 4 hours, it was allowed to stand, and the supernatant was aspirated and filtered.
  • the precipitate is a radioactive waste residue, and the clear liquid is waste water after radioactivity.
  • the total ⁇ concentration in the wastewater was measured to be 0.5 Bq/L, and the total ⁇ concentration was 0.68 Bq/L.
  • the wastewater of strontium was extracted, wherein the calcium ion concentration was 529 mg/L, the total ⁇ concentration was 88 Bq/L, the total ⁇ concentration was 67.7 Bq/L, and the pH was 3.
  • Sodium carbonate was added to adjust the pH to 10, and after stirring for 3 hours, it was allowed to stand, and the supernatant was aspirated and filtered.
  • the precipitate is a radioactive waste residue, and the clear liquid is waste water after radioactivity.
  • the total ⁇ concentration in the wastewater was determined to be 22.4 Bq/L, and the total ⁇ concentration was 9 Bq/L.
  • the wastewater of strontium was extracted, wherein the calcium ion concentration was 7542 mg/L, the total ⁇ concentration was 30514 Bq/L, the total ⁇ concentration was 6041 Bq/L, and the pH was 2.5.
  • Sodium carbonate was added to adjust the pH to 8, and after stirring for 2 hours, it was allowed to stand, and the supernatant was aspirated and filtered.
  • the precipitate is a radioactive waste residue, and the clear liquid is waste water after radioactivity.
  • the total ⁇ concentration in the wastewater was measured to be 167 Bq/L, and the total ⁇ concentration was 13.9 Bq/L.
  • the total beta concentration was 6041 Bq/L and the pH was 2.5.
  • Sodium carbonate was added to adjust the pH to 7, and after stirring for 2 hours, it was allowed to stand, and the supernatant was aspirated and filtered.
  • the precipitate is a radioactive waste residue, and the clear liquid is waste water after radioactivity.
  • the total ⁇ concentration in the wastewater was measured to be 534 Bq/L, and the total ⁇ concentration was 69 Bq/L.
  • the wastewater of strontium was extracted, wherein the calcium ion concentration was 7542 mg/L, the total ⁇ concentration was 30514 Bq/L, the total ⁇ concentration was 6041 Bq/L, and the pH was 2.5.
  • Sodium carbonate was added to adjust the pH to 9, and after stirring for 2 hours, it was allowed to stand, and the supernatant was aspirated and filtered.
  • the precipitate is a radioactive waste residue, and the clear liquid is waste water after radioactivity.
  • the total ⁇ concentration in the wastewater was measured to be 131 Bq/L, and the total ⁇ concentration was 26.7 Bq/L.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

一种从萃取镧的废水中除放射性的方法,所述萃取镧的废水为南方离子型稀土矿中萃取镧后的萃余液,其中钙离子浓度为500~5000mg/L,总α浓度为30~70000Bq/L、总β浓度30~8000Bq/L,pH为2~5,其特征是步骤如下:将碳酸钠添加到萃取镧的废水中,调整pH为7~10,搅拌1~4小时后,静置,吸出清液后过滤,沉淀即为放射性废渣,清液为除放射性后的废水。该方法能将放射性物质从废水中除去,除去彻底,工艺简单。

Description

一种从萃取镧的废水中除放射性的方法 技术领域
本发明涉及一种从萃取镧的废水中除放射性的方法。
背景技术
稀土矿物均含有一定数量的放射性物质,且不同的稀土矿物的放射性元素含量有较大差别。过去人们对稀土放射性的研究主要集中于独居石、氟碳铈矿及其混合矿方面,然而我国的离子型稀土矿也含有一些放射性元素。由于离子型稀土矿中含有一些放射性元素227Ac,227Ac在元素周期表中位于La的下面,其化学性质与La系相似。在镧的萃取分离后,227Ac进入废水,废水之中的227Ac导致废水放射性高,污染环境。227Ac属于极毒类天然放射性核素,对人体的危害较大,尤其是吸入其α辐射体,相对危险度远甚于226Ra。因此,需从放射卫生防护或环境保护角度深度脱除放射性元素,有利于改善生态环境。
目前,还未有从南方离子型稀土矿萃取镧的废水中除放射性方法的报道。因此,需要寻找一种合适的、选择性好的除放射性的方法。
发明内容
本发明的目的在于提供一种除去彻底,工艺简单,选择性好的从萃取镧的废水中除放射性的方法。
所述萃取镧的废水为南方离子型稀土矿中萃取镧后的萃余液,其中钙离子浓度为500~5000mg/L,总α浓度为30~70000Bq/L、总β浓度30~8000Bq/L,pH为2~5。
本发明的除放射性的方法如下:将碳酸钠添加到萃取镧的废水中,调整pH为7~10,搅拌1~4小时后,静置,吸出清液后过滤,沉淀即为放射性废渣,清液为除放射性后的废水。
本发明采用添加碳酸钠与废水中的227Ac生成沉淀,同时废水中的钙离 子也与碳酸根形成沉淀,吸附227Ac沉淀物,减少溶液中漂浮的227Ac沉淀物从而提高除放射性效果的目的。
本发明的从萃取镧的废水中除放射性的方法能将放射性物质从废水中除去,除去彻底,工艺简单。
具体实施方式
实施例1
萃取镧的废水,其中钙离子浓度为529mg/L,总α浓度为88Bq/L、总β浓度为67.7Bq/L,pH为3。加入碳酸钠调整pH为8.5,搅拌1小时后;静置,吸出清液后过滤。沉淀即为放射性废渣,清液为除放射性后的废水。按照GB/T5750-2006分析方法测得废水中总α浓度为20.6Bq/L、总β浓度为9.4Bq/L。
实施例2
萃取镧的废水,其中钙离子浓度为529mg/L,总α浓度为88Bq/L、总β浓度为67.7Bq/L,pH为3。加入碳酸钠调整pH为9.5,搅拌4小时后;静置,吸出清液后过滤。沉淀即为放射性废渣,清液为除放射性后的废水。测得废水中总α浓度为0.5Bq/L、总β浓度为0.68Bq/L。
实施例3
萃取镧的废水,其中钙离子浓度为529mg/L,总α浓度为88Bq/L、总β浓度为67.7Bq/L,pH为3。加入碳酸钠调整pH为10,搅拌3小时后;静置,吸出清液后过滤。沉淀即为放射性废渣,清液为除放射性后的废水。测得废水中总α浓度为22.4Bq/L、总β浓度为9Bq/L。
实施例4
萃取镧的废水,其中钙离子浓度为7542mg/L,总α浓度为30514Bq/L、总β浓度为6041Bq/L,pH为2.5。加入碳酸钠调整pH为8,搅拌2小时后;静置,吸出清液后过滤。沉淀即为放射性废渣,清液为除放射性后的废水。测得废水中总α浓度为167Bq/L、总β浓度为13.9Bq/L。
实施例5
萃取镧的废水,其中钙离子浓度为7542mg/L,总α浓度为30514Bq/L、 总β浓度为6041Bq/L,pH为2.5。加入碳酸钠调整pH为7,搅拌2小时后;静置,吸出清液后过滤。沉淀即为放射性废渣,清液为除放射性后的废水。测得废水中总α浓度为534Bq/L、总β浓度为69Bq/L。
实施例6
萃取镧的废水,其中钙离子浓度为7542mg/L,总α浓度为30514Bq/L、总β浓度为6041Bq/L,pH为2.5。加入碳酸钠调整pH为9,搅拌2小时后;静置,吸出清液后过滤。沉淀即为放射性废渣,清液为除放射性后的废水。测得废水中总α浓度为131Bq/L、总β浓度为26.7Bq/L。

Claims (1)

  1. 一种从萃取镧的废水中除放射性的方法,所述萃取镧的废水为南方离子型稀土矿中萃取镧后的萃余液,其中钙离子浓度为500~5000mg/L,总α浓度为30~70000Bq/L、总β浓度30~8000Bq/L,pH为2~5,其特征是步骤如下:将碳酸钠添加到萃取镧的废水中,调整pH为7~10,搅拌1~4小时后,静置,吸出清液后过滤,沉淀即为放射性废渣,清液为除放射性后的废水。
PCT/CN2016/090151 2016-07-08 2016-07-15 一种从萃取镧的废水中除放射性的方法 WO2018006437A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610533712.9A CN106057265B (zh) 2016-07-08 2016-07-08 一种从萃取镧的废水中除放射性的方法
CN201610533712.9 2016-07-08

Publications (1)

Publication Number Publication Date
WO2018006437A1 true WO2018006437A1 (zh) 2018-01-11

Family

ID=57185600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090151 WO2018006437A1 (zh) 2016-07-08 2016-07-15 一种从萃取镧的废水中除放射性的方法

Country Status (2)

Country Link
CN (1) CN106057265B (zh)
WO (1) WO2018006437A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110412640B (zh) * 2019-08-05 2020-11-13 广东省稀有金属研究所 检测氯化镧中放射性分离程度的方法及其应用
CN113702564B (zh) * 2021-08-19 2024-07-02 广东省科学院资源利用与稀土开发研究所 一种检测稀土废水中锕-227分离程度的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101240377A (zh) * 2007-02-09 2008-08-13 北京大学 一种从离子液体萃取体系中分离核燃料的方法
WO2011005736A2 (en) * 2009-07-07 2011-01-13 Cytec Technology Corp. Processes for recovering metals from aqueous solutions
CN102115820A (zh) * 2010-12-23 2011-07-06 核工业北京化工冶金研究院 分步反萃取分离有机相中铀钛的方法
CN102943183A (zh) * 2012-12-04 2013-02-27 广州有色金属研究院 一种从南方离子型稀土浸出液中萃取铀和钍的方法
CN103173617A (zh) * 2013-03-05 2013-06-26 广州有色金属研究院 一种从南方离子型稀土浸出液中除镭的方法
CN104328290A (zh) * 2013-07-22 2015-02-04 北京有色金属研究总院 一种离子型稀土精矿酸浸工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100148B (zh) * 1985-04-01 1987-08-26 清华大学 取法生产荧光级氧化镧的工艺方法
US20080035564A1 (en) * 2006-08-09 2008-02-14 Solmetex, Inc. Sorbent For Selective Removal Of Contaminants From Fluids
CN104294063B (zh) * 2013-07-18 2017-10-13 北京有色金属研究总院 低浓度稀土溶液萃取回收稀土的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101240377A (zh) * 2007-02-09 2008-08-13 北京大学 一种从离子液体萃取体系中分离核燃料的方法
WO2011005736A2 (en) * 2009-07-07 2011-01-13 Cytec Technology Corp. Processes for recovering metals from aqueous solutions
CN102115820A (zh) * 2010-12-23 2011-07-06 核工业北京化工冶金研究院 分步反萃取分离有机相中铀钛的方法
CN102943183A (zh) * 2012-12-04 2013-02-27 广州有色金属研究院 一种从南方离子型稀土浸出液中萃取铀和钍的方法
CN103173617A (zh) * 2013-03-05 2013-06-26 广州有色金属研究院 一种从南方离子型稀土浸出液中除镭的方法
CN104328290A (zh) * 2013-07-22 2015-02-04 北京有色金属研究总院 一种离子型稀土精矿酸浸工艺

Also Published As

Publication number Publication date
CN106057265A (zh) 2016-10-26
CN106057265B (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
Gwenzi et al. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants
CN107116097B (zh) 一种修复砷污染土壤的方法
CN110423624B (zh) 一种土壤污染的稳定修复剂及制备和应用
KR101743263B1 (ko) 우라늄 폐기물 처리방법
CN102634678A (zh) 一种回收重金属离子废水中钴离子的方法
WO2018006437A1 (zh) 一种从萃取镧的废水中除放射性的方法
CN101274264A (zh) 高效除砷复合吸附剂的制备和应用方法
CN102872831A (zh) 一种去除天然水体中镉离子的复合吸附材料及其制备方法
JP6302634B2 (ja) 排水から分離した放射性セシウムを高度に濃縮する方法
CN102689935A (zh) 一种矿山酸性废水的处理方法
CN109482611A (zh) 含砷硫化渣的无公害处理方法
CN109065205A (zh) 一种组合式氡及子体气载放射性污染净化处理系统及处理方法
Lauderdale Treatment of radioactive water by phosphate precipitation
JP2013040910A (ja) 土壌からのセシウムの脱離方法及び土壌の処理方法
Nishizaki et al. New technologies for decontamination of radioactive substances scattered by nuclear accident
CN107346670B (zh) 一种高盐废水中去除90Sr的沉淀方法
KR101589905B1 (ko) 액상 견운모 용액 및 이것을 이용한 세슘 제거방법
CN110302747A (zh) 一种采矿剥离废石同步净化工业废水中砷离子和氟离子的方法
CN109289784A (zh) 利用大蒜秸秆废弃物制作除氟复配吸附材料及应用方法
Gautam et al. Groundwater quality assessment of Nawa Tehsil in Nagaur district (Rajasthan) with special reference to fluoride
TWI468349B (zh) 高濃度含氟廢水處理劑及其處理方法
CN104944501B (zh) 一种耦合吸附处理高含氟地下水的方法
CN107442090B (zh) 一种Y-Zr-Al三元金属复合纳米氟离子吸附的制备方法
JP2005218982A (ja) 水中リン除去方法
CN106582553A (zh) 一种用于重金属废液处理的吸附剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907941

Country of ref document: EP

Kind code of ref document: A1