CN106057265B - 一种从萃取镧的废水中除放射性的方法 - Google Patents

一种从萃取镧的废水中除放射性的方法 Download PDF

Info

Publication number
CN106057265B
CN106057265B CN201610533712.9A CN201610533712A CN106057265B CN 106057265 B CN106057265 B CN 106057265B CN 201610533712 A CN201610533712 A CN 201610533712A CN 106057265 B CN106057265 B CN 106057265B
Authority
CN
China
Prior art keywords
waste water
concentration
lanthanum
total
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610533712.9A
Other languages
English (en)
Other versions
CN106057265A (zh
Inventor
刘志强
邱显扬
张魁芳
曹洪杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Resource Utilization and Rare Earth Development of Guangdong Academy of Sciences
Original Assignee
Guangdong Institute of Rare Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Institute of Rare Metals filed Critical Guangdong Institute of Rare Metals
Priority to CN201610533712.9A priority Critical patent/CN106057265B/zh
Priority to PCT/CN2016/090151 priority patent/WO2018006437A1/zh
Publication of CN106057265A publication Critical patent/CN106057265A/zh
Application granted granted Critical
Publication of CN106057265B publication Critical patent/CN106057265B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

一种从萃取镧的废水中除放射性的方法,所述萃取镧的废水为南方离子型稀土矿中萃取镧后的萃余液,其中钙离子浓度为500~5000mg/L,总α浓度为30~70000Bq/L、总β浓度30~8000Bq/L,pH为2~5,其特征是步骤如下:将碳酸钠添加到萃取镧的废水中,调整pH为7~10,搅拌1~4小时后,静置,吸出清液后过滤,沉淀即为放射性废渣,清液为除放射性后的废水。本发明的从萃取镧的废水中除放射性的方法能将放射性物质从废水中除去,除去彻底,工艺简单。

Description

一种从萃取镧的废水中除放射性的方法
技术领域
本发明涉及一种从萃取镧的废水中除放射性的方法。
背景技术
稀土矿物均含有一定数量的放射性物质,且不同的稀土矿物的放射性元素含量有较大差别。过去人们对稀土放射性的研究主要集中于独居石、氟碳铈矿及其混合矿方面,然而我国的离子型稀土矿也含有一些放射性元素。由于离子型稀土矿中含有一些放射性元素227Ac,227Ac在元素周期表中位于La的下面,其化学性质与La系相似。在镧的萃取分离后,227Ac进入废水,废水之中的227Ac导致废水放射性高,污染环境。227Ac属于极毒类天然放射性核素,对人体的危害较大,尤其是吸入其α辐射体,相对危险度远甚于226Ra。因此,需从放射卫生防护或环境保护角度深度脱除放射性元素,有利于改善生态环境。
目前,还未有从南方离子型稀土矿萃取镧的废水中除放射性方法的报道。因此,需要寻找一种合适的、选择性好的除放射性的方法。
发明内容
本发明的目的在于提供一种除去彻底,工艺简单,选择性好的从萃取镧的废水中除放射性的方法。
所述萃取镧的废水为南方离子型稀土矿中萃取镧后的萃余液,其中钙离子浓度为500~5000mg/L,总α浓度为30~70000Bq/L、总β浓度30~8000Bq/L,pH为2~5。
本发明的除放射性的方法如下:将碳酸钠添加到萃取镧的废水中,调整pH为7~10,搅拌1~4小时后,静置,吸出清液后过滤,沉淀即为放射性废渣,清液为除放射性后的废水。
本发明采用添加碳酸钠与废水中的227Ac生成沉淀,同时废水中的钙离子也与碳酸根形成沉淀,吸附227Ac沉淀物,减少溶液中漂浮的227Ac沉淀物从而提高除放射性效果的目的。
本发明的从萃取镧的废水中除放射性的方法能将放射性物质从废水中除去,除去彻底,工艺简单。
具体实施方式
实施例1
萃取镧的废水,其中钙离子浓度为529mg/L,总α浓度为88Bq/L、总β浓度为67.7Bq/L,pH为3。加入碳酸钠调整pH为8.5,搅拌1小时后;静置,吸出清液后过滤。沉淀即为放射性废渣,清液为除放射性后的废水。按照GB/T5750-2006分析方法测得废水中总α浓度为20.6Bq/L、总β浓度为9.4Bq/L。
实施例2
萃取镧的废水,其中钙离子浓度为529mg/L,总α浓度为88Bq/L、总β浓度为67.7Bq/L,pH为3。加入碳酸钠调整pH为9.5,搅拌4小时后;静置,吸出清液后过滤。沉淀即为放射性废渣,清液为除放射性后的废水。测得废水中总α浓度为0.5Bq/L、总β浓度为0.68Bq/L。
实施例3
萃取镧的废水,其中钙离子浓度为529mg/L,总α浓度为88Bq/L、总β浓度为67.7Bq/L,pH为3。加入碳酸钠调整pH为10,搅拌3小时后;静置,吸出清液后过滤。沉淀即为放射性废渣,清液为除放射性后的废水。测得废水中总α浓度为22.4Bq/L、总β浓度为9Bq/L。
实施例4
萃取镧的废水,其中钙离子浓度为7542mg/L,总α浓度为30514Bq/L、总β浓度为6041Bq/L,pH为2.5。加入碳酸钠调整pH为8,搅拌2小时后;静置,吸出清液后过滤。沉淀即为放射性废渣,清液为除放射性后的废水。测得废水中总α浓度为167Bq/L、总β浓度为13.9Bq/L。
实施例5
萃取镧的废水,其中钙离子浓度为7542mg/L,总α浓度为30514Bq/L、总β浓度为6041Bq/L,pH为2.5。加入碳酸钠调整pH为7,搅拌2小时后;静置,吸出清液后过滤。沉淀即为放射性废渣,清液为除放射性后的废水。测得废水中总α浓度为534Bq/L、总β浓度为69Bq/L。
实施例6
萃取镧的废水,其中钙离子浓度为7542mg/L,总α浓度为30514Bq/L、总β浓度为6041Bq/L,pH为2.5。加入碳酸钠调整pH为9,搅拌2小时后;静置,吸出清液后过滤。沉淀即为放射性废渣,清液为除放射性后的废水。测得废水中总α浓度为131Bq/L、总β浓度为26.7Bq/L。

Claims (1)

1.一种从萃取镧的废水中除放射性的方法,所述萃取镧的废水为南方离子型稀土矿中萃取镧后的萃余液,其中钙离子浓度为500~5000mg/L,总α浓度为30~70000Bq/L、总β浓度30~8000Bq/L,pH为2~5,其特征是步骤如下:将碳酸钠添加到萃取镧的废水中沉淀227Ac,调整pH为7~10,搅拌1~4小时后,静置,吸出清液后过滤,沉淀即为含227Ac沉淀物放射性废渣,清液为除放射性后的废水。
CN201610533712.9A 2016-07-08 2016-07-08 一种从萃取镧的废水中除放射性的方法 Active CN106057265B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610533712.9A CN106057265B (zh) 2016-07-08 2016-07-08 一种从萃取镧的废水中除放射性的方法
PCT/CN2016/090151 WO2018006437A1 (zh) 2016-07-08 2016-07-15 一种从萃取镧的废水中除放射性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610533712.9A CN106057265B (zh) 2016-07-08 2016-07-08 一种从萃取镧的废水中除放射性的方法

Publications (2)

Publication Number Publication Date
CN106057265A CN106057265A (zh) 2016-10-26
CN106057265B true CN106057265B (zh) 2017-11-17

Family

ID=57185600

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610533712.9A Active CN106057265B (zh) 2016-07-08 2016-07-08 一种从萃取镧的废水中除放射性的方法

Country Status (2)

Country Link
CN (1) CN106057265B (zh)
WO (1) WO2018006437A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110412640B (zh) * 2019-08-05 2020-11-13 广东省稀有金属研究所 检测氯化镧中放射性分离程度的方法及其应用
CN113702564B (zh) * 2021-08-19 2024-07-02 广东省科学院资源利用与稀土开发研究所 一种检测稀土废水中锕-227分离程度的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100148B (zh) * 1985-04-01 1987-08-26 清华大学 取法生产荧光级氧化镧的工艺方法
US20080035564A1 (en) * 2006-08-09 2008-02-14 Solmetex, Inc. Sorbent For Selective Removal Of Contaminants From Fluids
CN101240377A (zh) * 2007-02-09 2008-08-13 北京大学 一种从离子液体萃取体系中分离核燃料的方法
CN104862477B (zh) * 2009-07-07 2017-11-28 塞特克技术公司 从水溶液中回收金属的方法
CN102115820A (zh) * 2010-12-23 2011-07-06 核工业北京化工冶金研究院 分步反萃取分离有机相中铀钛的方法
CN102943183B (zh) * 2012-12-04 2013-09-18 广州有色金属研究院 一种从南方离子型稀土浸出液中萃取铀和钍的方法
CN103173617B (zh) * 2013-03-05 2014-07-09 广州有色金属研究院 一种从南方离子型稀土浸出液中除镭的方法
CN104294063B (zh) * 2013-07-18 2017-10-13 北京有色金属研究总院 低浓度稀土溶液萃取回收稀土的方法
CN104328290B (zh) * 2013-07-22 2018-06-01 北京有色金属研究总院 一种离子型稀土精矿酸浸工艺

Also Published As

Publication number Publication date
WO2018006437A1 (zh) 2018-01-11
CN106057265A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
Cánovas et al. Valorization of wastes from the fertilizer industry: Current status and future trends
Alfaro et al. Rare-earth-element geochemistry in soils developed in different geological settings of Cuba
Huang et al. The recovery of rare earth elements from coal combustion products by ionic liquids
US10105714B2 (en) Method for the radioactive decontamination of soil by dispersed air flotation foam and said foam
CN103920705B (zh) 一种全方位联合技术修复铀污染土壤的装置和方法
Ou et al. Redistribution and chemical speciation of rare earth elements in an ion–adsorption rare earth tailing, Southern China
CN106057265B (zh) 一种从萃取镧的废水中除放射性的方法
Mohsin et al. Phytoextraction and recovery of rare earth elements using willow (Salix spp.)
CN103173617B (zh) 一种从南方离子型稀土浸出液中除镭的方法
Rai et al. Sequestration of carbon dioxide in red mud
CN102943183A (zh) 一种从南方离子型稀土浸出液中萃取铀和钍的方法
Grawunder et al. Rare earth elements in acidic systems–biotic and abiotic impacts
Jiménez-Ballesta et al. Rare Earths in Soils
Torium Digestion study of water leach purification (WLP) residue for possibility of thorium extraction
Feng et al. Uranium mobility in waste materials generated by uranium mining and hydrometallurgy: implications for its in situ immobilization
US10610912B2 (en) Method for decontaminating soil, and installation for implementing same
Rychkov et al. Scandium recovery from red mud by carbonate assist
CN106148696A (zh) 一种从氯化镧溶液中除放射性的方法
Zeng et al. Element enrichment and U-series isotopic characteristics of the hydrothermal sulfides at Jade site in the Okinawa Trough
Levett et al. Water-soluble rare earth elements (REEs) recovered from uranium tailings
Alex et al. Processing of rare earth concentrates
Li et al. Effect of pH on the desorption of trace metals by different LMWOAs from a field soil
Deutsch et al. In situ arsenic remediation complicated by carbonate
Findeiß Effects of radioactive by-products along the extraction of rare earth elements on aquatic and terrestrial organisms
Georgescu et al. Sources of TENORM—Inventory of phosphate fertilizer and aluminium industry

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 510651 No. 363, Changxin Road, Guangzhou, Guangdong, Tianhe District

Patentee after: Institute of rare metals, Guangdong Academy of Sciences

Address before: 510651 No. 363, Changxin Road, Guangzhou, Guangdong, Tianhe District

Patentee before: GUANGDONG INSTITUTE OF RARE METALS

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230329

Address after: 510651 No. 363, Changxin Road, Guangzhou, Guangdong, Tianhe District

Patentee after: Institute of resource utilization and rare earth development, Guangdong Academy of Sciences

Address before: 510651 No. 363, Changxin Road, Guangzhou, Guangdong, Tianhe District

Patentee before: Institute of rare metals, Guangdong Academy of Sciences