WO2018004136A1 - 패치 안테나 - Google Patents

패치 안테나 Download PDF

Info

Publication number
WO2018004136A1
WO2018004136A1 PCT/KR2017/005760 KR2017005760W WO2018004136A1 WO 2018004136 A1 WO2018004136 A1 WO 2018004136A1 KR 2017005760 W KR2017005760 W KR 2017005760W WO 2018004136 A1 WO2018004136 A1 WO 2018004136A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric layer
patch
patch antenna
air gap
substrate
Prior art date
Application number
PCT/KR2017/005760
Other languages
English (en)
French (fr)
Inventor
황철
정인조
김상오
오현우
고동환
이원희
박태병
강기조
백근호
Original Assignee
주식회사 아모텍
위너콤 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모텍, 위너콤 주식회사 filed Critical 주식회사 아모텍
Priority to US16/311,092 priority Critical patent/US10923823B2/en
Publication of WO2018004136A1 publication Critical patent/WO2018004136A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means

Definitions

  • the present invention relates to a patch antenna, and more particularly, to a patch antenna for receiving frequency band signals such as GPS, GNSS and SDARS.
  • patch antennas are installed in vehicles, drones, information communication terminals, and the like to transmit and receive signals in frequency bands such as Global Positioning System (GPS), Global Navigation Satellite System (GNSS), and Satellite Digital Audio Radio Services (SDARS).
  • GPS Global Positioning System
  • GNSS Global Navigation Satellite System
  • SDARS Satellite Digital Audio Radio Services
  • a conventional patch antenna includes a dielectric layer 30 having a predetermined thickness, and a planar upper patch 10 and a dielectric layer stacked on one surface (top surface) of the dielectric layer 30 to serve as an antenna. It consists of the lower patch 20 laminated
  • the dielectric layer 30 is also referred to as a ceramic patch antenna because the ceramic, which is frequently used as a high frequency component because of excellent characteristics such as high dielectric constant and low thermal expansion coefficient, is used.
  • the shape of the upper patch 10 and the lower patch 20 is formed in a variety of shapes, such as rectangular, circular, oval, triangular, annular, mainly square or circular is used.
  • the upper patch 10 and the lower patch 20 are formed of a conductive material having high conductivity with the ceramic dielectric layer 30.
  • the structures of the upper patch 10 and the lower patch 20 include a multilayer, a bulk type, and the like.
  • the patch antenna is formed of a material having a high dielectric constant and a dielectric layer is formed, the patch antenna can be reduced in size and weight, but there is a problem in that antenna characteristics (eg, gain) are deteriorated.
  • the present invention has been proposed to solve the above-described problems, and the antenna has improved performance while reducing weight by forming an air gap by forming the upper surface of the dielectric layer to have a larger area than the lower surface and mounting the printed circuit board. It is an object to provide a patch antenna to maximize.
  • a patch antenna is a patch antenna mounted on a substrate and includes a dielectric layer, a radiation patch formed on an upper surface of the dielectric layer, and a lower patch formed on the lower surface of the dielectric layer.
  • the area of is wider than the area of the lower surface.
  • the lower surface of the dielectric layer may face the substrate, and the lower patch may be formed on the entire lower surface of the dielectric layer.
  • the patch antenna according to the embodiment of the present invention may further include an air gap formed in the region between the dielectric layer and the substrate.
  • the air gap may be formed in a shape surrounding the lower patch.
  • the dielectric layer may have a stepped portion formed on the outer periphery of the lower surface, and may form an air gap in a region formed between the substrate and the stepped portion.
  • the cross section of the air gap may be formed in a rectangular shape.
  • the dielectric layer may include an upper dielectric layer in which a radiation patch is formed on an upper surface and a lower dielectric layer in a lower portion of an upper dielectric layer, and a lower dielectric layer in which a lower patch is formed on a lower surface, and the upper dielectric layer may be formed in a larger area than the lower dielectric layer.
  • a portion of the lower surface of the upper dielectric layer may be exposed in the direction of the substrate, and an air gap may be formed in an area formed between the lower surface of the upper dielectric layer and the outer periphery of the lower dielectric layer and the substrate.
  • the air gap may be formed in a ring shape having a cross section of a rectangular shape.
  • the upper dielectric layer and the lower dielectric layer may be integrally formed.
  • the patch antenna is formed by the air gap between the dielectric layer and the printed circuit board, it is possible to realize the weight reduction while maximizing the antenna performance.
  • the air gap has a low dielectric constant and a loss
  • the patch antenna can realize weight reduction by reducing the volume of the dielectric layer while improving antenna performance.
  • the power density in the radio wave reception region increases as compared with the conventional patch antenna, thereby improving reception.
  • the patch antenna has a lighter air gap than the material used as the dielectric layer is formed, there is an effect that can be reduced in weight and light weight.
  • 1 is a view for explaining a conventional patch antenna.
  • FIG. 2 is a view for explaining a patch antenna according to an embodiment of the present invention.
  • 3 to 11 are views for explaining the dielectric layer of FIG.
  • FIGS. 12 and 13 are diagrams for explaining the antenna characteristics of a patch antenna according to an embodiment of the present invention.
  • the patch antenna includes a dielectric patch 100, a radiation patch 200 bonded to an upper surface of the dielectric layer 100, and a lower patch 300 bonded to a lower surface of the dielectric layer 100. It is configured to include.
  • Dielectric layer 100 is composed of a dielectric or magnetic material having a dielectric constant. That is, the dielectric layer 100 is formed of a dielectric substrate composed of a ceramic having characteristics such as high dielectric constant and low thermal expansion coefficient, or is formed of a magnetic substrate composed of a magnetic body such as ferrite. In this case, the dielectric layer 100 may have a feeding hole 110 into which a feeding pin for feeding the spinning patch 200 is inserted.
  • the dielectric layer 100 is mounted so that the bottom surface thereof faces the printed circuit board when the patch antenna is mounted on the printed circuit board.
  • the dielectric layer 100 is formed such that an area of an upper surface on which the radiation patch 200 is stacked is larger than an area of a lower surface on which the lower patch 300 is stacked. At this time, the dielectric layer 100 is formed such that the ratio of the upper surface area and the lower surface area is maintained within a set ratio range.
  • the upper surface area and the lower surface area are formed so that the ratio between the lower surface area and the upper surface area is equal to or greater than the minimum setting ratio and less than or equal to the maximum setting ratio.
  • the weight reduction efficiency is improved when the lower surface area is less than 30% of the upper surface area.
  • the antenna performance is degraded and the lower surface area exceeds 80% of the upper surface area, the antenna performance is improved, but the weight reduction efficiency is reduced.
  • the upper surface area and the lower surface area are set so that the ratio of the upper surface area and the lower surface area is maintained within a ratio range of approximately 30% or more and 80% or less.
  • the stepped portion 120 is formed on the outer circumference of the lower surface.
  • the stepped part 120 may be formed at right angles based on the cross section of the dielectric layer 100 cut vertically (see FIG. 5), or may be formed in a curved shape (see FIG. 6).
  • the dielectric layer 100 forms an air gap 500 in the stepped portion 120 as the patch antenna is mounted on the printed circuit board 400. That is, in the dielectric layer 100, as the patch antenna is mounted on the printed circuit board 400, an air gap 500 is formed between the stepped part 120 and the printed circuit board 400.
  • the air gap 500 is formed along the outer circumference of the stepped part 120, and is formed in a ring shape having a cross section of a predetermined shape.
  • the air gap 500 may have various shapes of cross sections according to the shape of the stepped part 120. In this case, as the air gap 500 is formed along the outer circumference of the stepped part 120, the air gap 500 may be formed in a shape surrounding the circumference (the outer circumference) of the lower patch 300.
  • the air gap 500 is formed to have a rectangular cross section when the stepped part 120 is formed at a right angle.
  • the air gap 500 is formed so that the stepped portion 120 is formed in a curved shape has a cross section of a rectangular shape with one rounded corner.
  • the dielectric layer 100 may include an upper dielectric layer 140 and a lower dielectric layer 160.
  • the upper dielectric layer 140 is bonded to the radiation patch 200 on the upper surface.
  • the upper dielectric layer 140 is formed in various shapes such as a quadrangle, a circle, and a quadrangle having at least one rounded corner.
  • the upper dielectric layer 140 is formed to have a larger first area than the lower dielectric layer 160.
  • the upper dielectric layer 140 may be formed with a feeding hole 142 into which a feeding pin for feeding the spinning patch 200 is inserted.
  • the lower dielectric layer 160 As the lower dielectric layer 160 is bonded to the lower dielectric layer 140, a portion of the lower dielectric layer 140 is exposed in the direction of the printed circuit board 400 on which the patch antenna is mounted. That is, a portion of the lower surface of the upper dielectric layer 140 is exposed as the lower dielectric layer 160 having a relatively narrow area is bonded.
  • the air gap 500 is formed along the outer circumference of the lower dielectric layer 160 and is formed in a ring shape having a predetermined cross section.
  • the cross section of the air gap 500 may be formed in various shapes according to the shape of the portion where the upper dielectric layer 140 and the lower dielectric layer 160 are bonded.
  • the cross section of the air gap 500 is formed in various shapes such as a quadrangle, a square with one side rounded, and a square with one rounded corner.
  • the lower dielectric layer 160 is bonded to the lower surface of the upper dielectric layer 140.
  • the lower patch 300 is bonded to the lower dielectric layer 160.
  • the lower dielectric layer 160 is formed in various shapes such as a rectangle, a circle, a rectangle having at least one rounded corner, and the like.
  • the lower dielectric layer 160 is formed to have a narrower second area than the upper dielectric layer 140.
  • the lower dielectric layer 160 may have a feeding hole 162 into which a feeding pin for feeding the spinning patch 200 is inserted.
  • the upper dielectric layer 140 and the lower dielectric layer 160 may be formed of a different material and bonded, or may be formed of the same material and bonded. In this case, the upper dielectric layer 140 and the lower dielectric layer 160 may be formed of the same material and integrally formed.
  • the patch antenna includes an upper dielectric layer 140 and a lower dielectric layer 160 having different areas, and when the dielectric layer 100 is mounted on the printed circuit board 400, a portion of the lower surface of the upper dielectric layer 140 and the lower dielectric layer are provided.
  • the radiation patch 200 is formed on the top surface of the dielectric layer 100. That is, the radiation patch 200 is a thin plate of a conductive material having high electrical conductivity, such as copper, aluminum, gold, silver, and the like, and is formed on the upper surface of the dielectric layer 100. At this time, the radiation patch 200 is formed in a polygonal shape such as square, triangle, circle, octagon.
  • the radiation patch 200 is connected to the feed point and coupled to the feed point, or connected to and driven by a feed pin connected through the dielectric layer 100, and receives a GPS signal, a Glonass signal, a SDARS signal, and the like.
  • the lower patch 300 is formed on the bottom surface of the dielectric layer 100. That is, the lower patch 300 is a thin plate made of a conductive material having high electrical conductivity such as copper, aluminum, gold, silver, and the like, and is formed on the bottom surface of the dielectric layer 100. In this case, the lower patch 300 may be formed on the entire lower surface of the dielectric layer 100 because it is necessary to secure a predetermined area or more to form the ground.
  • the lower patch 300 may have a feed groove 320 in which a feed point or a feed pin is inserted.
  • 12 and 13 illustrate a conventional patch antenna having the same size (35 ⁇ 35, 5T) at frequencies included in the SDARS band (ie, 2320 MHz, 2326 MHz, 2332 MHz, 2338 MHz, and 2345 MHz).
  • the antenna characteristics of the patch antenna according to the embodiment are measured.
  • the patch antenna according to the embodiment of the present invention has an average loss of left hand circular polarization (LHCP) than the conventional patch antenna at frequencies of the SDARS band as the air gap 500 having a low loss is formed. It can be seen that the average gain is increased by approximately 1 dB.
  • LHCP left hand circular polarization
  • a conventional patch is measured as a result of measuring a maximum gain according to a change in elevation angle. It can be seen that about 1dBic increase compared to the antenna.
  • the gain of the patch antenna according to the embodiment of the present invention increases, the power density in the radio wave reception region is increased as compared with the conventional patch antenna, thereby improving reception.
  • the patch antenna according to the embodiment of the present invention has an effect that can be reduced in weight by reducing the weight by forming an air gap lighter than the material used as the dielectric layer.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

유전체층의 상면이 하면보다 넓은 면적으로 갖도록 형성하여 인쇄회로기판에 실장함으로써 에어 갭(Air Gap)을 형성하여 경량화를 구현하면서 안테나 성능을 최대화하도록 한 패치 안테나를 제시한다. 제시된 패치 안테나는 유전체층, 유전체층의 상면에 형성되는 방사 패치 및 유전체층의 하면에 형성되는 하부 패치를 포함하고, 유전체층은 상면의 면적이 하면의 면적보다 넓게 형성되어, 인쇄회로기판과 유전체층 사이에 에어 갭을 형성한다.

Description

패치 안테나
본 발명은 패치 안테나에 관한 것으로, 더욱 상세하게는 GPS, GNSS 및 SDARS 등의 주파수 대역 신호를 수신하는 패치 안테나(PATCH ANTENNA)에 관한 것이다.
일반적으로, 패치 안테나는 차량, 드론, 정보통신 단말기 등에 설치되어 GPS(Global Positioning System), GNSS(Global Navigation Satellite System) 및 SDARS(Satellite Digital Audio Radio Services) 등의 주파수 대역에서 신호를 송수신한다.
도 1을 참조하면, 종래의 패치 안테나는 소정의 두께로 형성되는 유전체층(30)과, 유전체층(30)의 일면(상면)에 적층되어 안테나의 역할을 하는 평면 형상의 상부 패치(10) 및 유전체층(30)의 타면(하면)에 적층되는 하부 패치(20)로 구성된다.
여기에서, 유전체층(30)은 고유전율 및 낮은 열팽창계수 등의 특성이 우수하여 고주파용 부품으로 많이 사용되는 세라믹이 주로 사용되기 때문에 세라믹 패치 안테나라고도 한다.
상부 패치(10) 및 하부 패치(20)의 형상은 사각형, 원형, 타원형, 삼각형, 고리형 등 다양한 형상으로 형성되는데, 주로 사각형 또는 원형이 사용된다. 이때, 상부 패치(10) 및 하부 패치(20)는 세라믹 유전체층(30)과의 도전율이 높은 도전성 재질로 형성된다. 상부 패치(10) 및 하부 패치(20)의 구조로는 멀티레이어(multilayer), 벌크 타입(bulk type) 등이 있다.
최근에는, 자동차, 드론 등의 경량화 추세에 따라 패치 안테나의 경량화가 요구되고 있어, 유전체층을 고유전율을 갖는 재질로 형성하는 패치 안테나가 개발되고 있다.
하지만, 패치 안테나는 고유전율을 갖는 재질로 유전체층을 형성하면 소형화 및 경량화가 가능하지만 안테나 특성(예를 들면, 이득(Gain))이 저하되는 문제점이 있다.
본 발명은 상기한 종래의 문제점을 해결하기 위해 제안된 것으로, 유전체층의 상면이 하면보다 넓은 면적으로 갖도록 형성하여 인쇄회로기판에 실장함으로써 에어 갭(Air Gap)을 형성하여 경량화를 구현하면서 안테나 성능을 최대화하도록 한 패치 안테나를 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위하여 본 발명의 실시예에 따른 패치 안테나는 기판에 실장되는 패치 안테나로 유전체층, 유전체층의 상면에 형성되는 방사 패치 및 유전체층의 하면에 형성되는 하부 패치를 포함하고, 유전체층은 상면의 면적이 하면의 면적보다 넓게 형성된다.
이때, 패치 안테나가 기판에 실장될 때 유전체층의 하면이 기판과 대향되고, 하부 패치는 유전체층의 하면 전체에 형성될 수 있다.
본 발명의 실시예에 따른 패치 안테나는 유전체층과 기판 사이의 영역에 형성되는 에어 갭을 더 포함할 수도 있다. 이때, 에어 갭은 하부 패치 주위를 둘러싸는 형상으로 형성될 수 있다.
한편, 유전체층은 하면 외주에 단차부가 형성되고, 기판과 단차부 사이에 형성되는 영역에서 에어 갭을 형성할 수 있다. 이때, 에어 갭의 단면은 사각형 형상으로 형성될 수 있다.
또한, 유전체층은 상면에 방사 패치가 형성되는 상부 유전체층 및 상부 유전체층의 하부에 위치하고, 하면에 하부 패치가 형성되는 하부 유전체층을 포함하고, 상부 유전체층은 하부 유전체층보다 넓은 면적으로 형성될 수도 있다. 이때, 상부 유전체층은 하면 일부가 기판 방향으로 노출되고, 상부 유전체층의 하면과 하부 유전체층의 외주 및 기판 사이에 형성되는 영역에 에어 갭이 형성될 수 있다. 여기서, 에어 갭은 사각형 형상의 단면을 갖는 링 형상으로 형성될 수 있다.
본 발명의 실시예에 따른 패치 안테나는 상부 유전체층 및 하부 유전체층은 일체로 형성될 수도 있다.
본 발명에 의하면, 패치 안테나는 유전체층과 인쇄회로기판 사이에 에어 갭이 형성함으로써, 안테나 성능을 최대화하면서, 경량화를 구현할 수 있다. 즉, 에어 갭은 낮은 유전율 및 손실을 갖기 때문에, 패치 안테나는 안테나 성능이 향상되면서, 유전체층의 부피를 감소시킴으로써 경량화를 구현할 수 있다.
또한, 패치 안테나는 이득이 증가함에 따라 종래의 패치 안테나에 비해 전파 수신 영역에서의 전력 밀도가 증가하여 수신율이 향상되는 효과가 있다.
또한, 패치 안테나는 유전체층으로 사용되는 재질들보다 가벼운 에어 갭이 형성됨으로써, 무게를 감소시켜 경량화할 수 있는 효과가 있다.
도 1은 종래의 패치 안테나를 설명하기 위한 도면.
도 2는 본 발명의 실시예에 따른 패치 안테나를 설명하기 위한 도면.
도 3 내지 도 11은 도 2의 유전체층을 설명하기 위한 도면.
도 12 및 도 13은 본 발명의 실시예에 따른 패치 안테나의 안테나 특성을 설명하기 위한 도면.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
도 2를 참조하면, 본 발명의 실시예에 따른 패치 안테나는 유전체층(100), 유전체층(100)의 상면에 접합되는 방사 패치(200) 및 유전체층(100)의 하면에 접합되는 하부 패치(300)를 포함하여 구성된다.
유전체층(100)은 유전율을 갖는 유전체 또는 자성체로 구성된다. 즉, 유전체층(100)은 고유전율 및 낮은 열팽창계수 등의 특성을 갖는 세라믹으로 구성되는 유전체 기판으로 형성되거나, 페라이트 등의 자성체로 구성되는 자성체 기판으로 형성된다. 이때, 유전체층(100)은 방사 패치(200)의 급전을 위한 급전핀이 삽입되는 급전홀(110)이 형성될 수 있다.
유전체층(100)은 패치 안테나가 인쇄회로기판에 실장될 때 하면이 인쇄회로기판과 대향되도록 실장된다.
도 3 및 도 4를 참조하면, 유전체층(100)은 방사 패치(200)가 적층되는 상면의 면적이 하부 패치(300)가 적층되는 하면의 면적보다 큰 면적을 갖도록 형성된다. 이때, 유전체층(100)은 상면 면적과 하면 면적의 비율이 설정 비율 범위를 유지하도록 형성된다. 여기서, 유전체층(100)은 하면 면적과 상면 면적의 비율이 최소 설정 비율 이상이고, 최대 설정 비율 이하로 유지하도록 상면 면적과 하면 면적이 형성된다.
일례로, 유전체층(100)은 상면 면적과 하면 면적의 비율이 최소 설정 비율이 대략 30%이고, 최대 설정 비율이 80% 이하로 설정된 경우, 하면 면적이 상면 면적의 30% 미만인 경우 경량화 효율이 향상되지만 안테나 성능이 저하되고, 하면 면적이 상면 면적의 80%를 초과하는 경우 안테나 성능을 향상되지만 경량화 효율이 감소한다.
따라서, 유전체층(100)은 상면 면적과 하면 면적의 비율이 대략 30% 이상 80% 이하의 비율 범위 내에서 유지되도록 상면 면적과 하면 면적이 설정된다.
도 5 및 도 6을 참조하면, 유전체층(100)은 상면의 면적이 하면의 면적보다 큰 면적을 갖도록 형성됨에 따라 하면 외주에 단차부(120)가 형성된다. 이때, 단차부(120)는 유전체층(100)을 수직으로 절단한 단면을 기준으로 직각으로 형성되거나(도 5 참조), 곡선 형태로 형성될 수 있다(도 6 참조).
유전체층(100)은 패치 안테나가 인쇄회로기판(400)에 실장 됨에 따라 단차부(120)에서 에어 갭(500; Air Gap)을 형성한다. 즉, 유전체층(100)은 패치 안테나가 인쇄회로기판(400)에 실장 됨에 따라 단차부(120)와 인쇄회로기판(400) 사이에 에어 갭(500)이 형성된다.
에어 갭(500)은 단차부(120)의 외주를 따라 형성되어, 소정 형상의 단면을 갖는 링 형상으로 형성된다. 에어 갭(500)은 단차부(120)의 형상에 따라 다양한 형상의 단면이 형성될 수 있다. 이때, 에어 갭(500)은 단차부(120)의 외주를 따라 형성됨에 따라 하부 패치(300)의 주위(외주)를 둘러싸는 형상으로 형성될 수 있다.
예를 들어, 도 7에 도시된 바와 같이, 에어 갭(500)은 단차부(120)가 직각으로 형성되면 사각형 형상의 단면을 갖도록 형성된다. 도 8에 도시된 바와 같이, 에어 갭(500)은 단차부(120)가 곡선 형태로 형성되면 일측 모서리가 둥근 사각형 형상의 단면을 갖도록 형성된다.
이처럼, 패치 안테나는 유전체층(100)과 인쇄회로기판(400) 사이에 에어 갭(500)이 형성함으로써, 안테나 성능을 최대화하면서, 경량화를 구현할 수 있다. 즉, 에어 갭(500)은 유전체층(100)보다 낮은 유전율(대략 1.03 정도) 및 손실(즉, Loss Tangent=0)을 갖기 때문에, 패치 안테나는 안테나 성능(즉, 이득(gain))이 향상되면서, 유전체층(100)의 부피를 감소시킴으로써 경량화를 구현할 수 있다.
도 9 및 도 10을 참조하면, 유전체층(100)은 상부 유전체층(140) 및 하부 유전체층(160)을 포함하여 구성될 수도 있다.
상부 유전체층(140)은 상면에 방사 패치(200)가 접합된다. 상부 유전체층(140)은 사각형, 원형, 적어도 하나의 모서리가 둥근 사각형 등과 같이 다양한 형상으로 형성된다. 상부 유전체층(140)은 하부 유전체층(160)보다 넓은 제1면적을 갖도록 형성된다. 이때, 상부 유전체층(140)은 방사 패치(200)의 급전을 위한 급전핀이 삽입되는 급전홀(142)이 형성될 수 있다.
상부 유전체층(140)은 하면에 하부 유전체층(160)이 접합됨에 따라 하면의 일부가 패치 안테나가 실장되는 인쇄회로기판(400) 방향으로 노출된다. 즉, 상부 유전체층(140)은 상대적으로 좁은 면적을 갖는 하부 유전체층(160)이 접합됨에 따라 하면의 일부가 노출된다.
이때, 도 11에 도시된 바와 같이, 상부 유전체층(140)의 하면이 노출됨에 따라, 상부 유전체층(140)의 하면 일부와 하부 유전체층(160)의 외주 및 인쇄회로기판(400)(즉, 패치 안테나가 실장되는 인쇄회로기판(400)) 사이에 에어 갭(500)이 형성된다.
에어 갭(500)은 하부 유전체층(160)의 외주를 따라 형성되어, 소정 형상의 단면을 갖는 링 형상으로 형성된다. 이때, 에어 갭(500)의 단면은 상부 유전체층(140)과 하부 유전체층(160)이 접합되는 부분의 형상에 따라 다양한 형상으로 형성될 수 있다. 예를 들면, 에어 갭(500)의 단면은 사각형, 일측 변이 둥근 사각형, 일측 모서리가 둥근 사각형 등과 같이 다양한 형상으로 형성된다.
하부 유전체층(160)은 상부 유전체층(140)의 하면에 접합된다. 하부 유전체층(160)은 하면에 하부 패치(300)가 접합된다. 하부 유전체층(160)은 사각형, 원형, 적어도 하나의 모서리가 둥근 사각형 등과 같이 다양한 형상으로 형성된다. 하부 유전체층(160)은 상부 유전체층(140)보다 좁은 제2면적을 갖도록 형성된다.
이때, 하부 유전체층(160)은 방사 패치(200)의 급전을 위한 급전핀이 삽입되는 급전홀(162)이 형성될 수 있다.
상부 유전체층(140)과 하부 유전체층(160)은 서로 다른 재질의 형성되어 접합되거나, 동일한 재질로 형성되어 접합될 수 있다. 이때, 상부 유전체층(140)과 하부 유전체층(160)은 동일한 재질로 형성되어 일체로 형성될 수 있다.
이처럼, 패치 안테나는 서로 다른 면적을 갖는 상부 유전체층(140)과 하부 유전체층(160)로 구성하여 인쇄회로기판(400)에 유전체층(100)이 실장되는 경우 상부 유전체층(140)의 하면 일부와 하부 유전체층(160)의 외주 및 인쇄회로기판(400) 사이의 영역에서 에어 갭(500)을 형성함으로써, 안테나 성능을 최대화하면서, 경량화를 구현할 수 있다. 즉, 에어 갭(500)은 낮은 유전율(대략 1.03 정도) 및 손실(즉, Loss Tangent=0)을 갖기 때문에, 패치 안테나는 안테나 성능(즉, 이득(gain))이 향상되면서, 유전체층(100)의 부피를 감소시킴으로써 경량화를 구현할 수 있다.
방사 패치(200)는 유전체층(100)의 상면에 형성된다. 즉, 방사 패치(200)는 구리, 알루미늄, 금, 은 등과 같이 전기전도도가 높은 도전성 재질의 박판으로서, 유전체층(100)의 상면에 형성된다. 이때, 방사 패치(200)는 사각형, 삼각형, 원형, 팔각형 등의 다각형 형상으로 형성된다. 방사 패치(200)는 급전점과 커플링으로 연결되거나, 유전체층(100)을 관통하여 연결되는 급전핀과 연결되어 구동하며, GPS 신호, 글로나스 신호, SDARS 신호 등을 수신한다.
하부 패치(300)는 유전체층(100)의 하면에 형성된다. 즉, 하부 패치(300)는 구리, 알루미늄, 금, 은 등과 같이 전기전도도가 높은 도전성 재질의 박판으로서, 유전체층(100)의 하면에 형성된다. 이때, 하부 패치(300)는 그라운드를 형성하기 위해 일정 이상의 면적 확보가 필요하기 때문에 유전체층(100)의 하면 전체에 형성될 수 있다. 하부 패치(300)는 급전점 또는 급전핀이 삽입되는 급전홈(320)이 형성될 수도 있다.
도 12 및 도 13은 SDARS 대역에 포함된 주파수들(즉, 2320㎒, 2326㎒, 2332㎒, 2338㎒, 2345㎒)에서 동일한 크기(35×35, 5T)를 갖는 종래의 패치 안테나와 본 발명의 실시예에 따른 패치 안테나의 안테나 특성을 측정한 결과이다.
도 12를 참조하면, 본 발명의 실시예에 따른 패치 안테나는 손실이 적은 에어 갭(500)이 형성됨에 따라, SDARS 대역의 주파수들에서 종래의 패치 안테나보다 LHCP(Left Hand Circular Polarization)의 평균 이득과 HP(horizontal polarization) 평균 이득이 대략 1 dB 정도 증가함을 알 수 있다.
도 13을 참조하면, 본 발명의 실시예에 따른 패치 안테나는 손실이 적은 에어 갭(500)이 형성됨에 따라, 앙각(Elevation angle) 변화에 따른 최대 이득(Peak Gain)을 측정한 결과 종래의 패치 안테나에 비해 대략 1dBic 정도 증가함을 알 수 있다.
본 발명의 실시예에 따른 패치 안테나는 이득이 증가함에 따라 종래의 패치 안테나에 비해 전파 수신 영역에서의 전력 밀도가 증가하여 수신율이 향상되는 효과가 있다.
또한, 본 발명의 실시예에 따른 패치 안테나는 유전체층으로 사용되는 재질들보다 가벼운 에어 갭이 형성됨으로써, 무게를 감소시켜 경량화할 수 있는 효과가 있다.
이상에서 본 발명에 따른 바람직한 실시예에 대해 설명하였으나, 다양한 형태로 변형이 가능하며, 본 기술분야에서 통상의 지식을 가진자라면 본 발명의 특허청구범위를 벗어남이 없이 다양한 변형예 및 수정예를 실시할 수 있을 것으로 이해된다.

Claims (13)

  1. 기판에 실장되는 패치 안테나에 있어서,
    유전체층;
    상기 유전체층의 상면에 형성되는 방사 패치; 및
    상기 유전체층의 하면에 형성되는 하부 패치를 포함하고,
    상기 유전체층은 상면의 면적이 하면의 면적보다 넓게 형성되는 패치 안테나.
  2. 제1항에 있어서,
    상기 패치 안테나가 상기 기판에 실장될 때 상기 유전체층의 하면이 상기 기판과 대향하는 패치 안테나.
  3. 제1항에 있어서,
    상기 하부 패치는 상기 유전체층의 하면 전체에 형성되는 패치 안테나.
  4. 제1항에 있어서,
    상기 유전체층과 상기 기판 사이의 영역에 형성되는 에어 갭을 더 포함하는 패치 안테나.
  5. 제4항에 있어서,
    상기 에어 갭은 상기 하부 패치 주위를 둘러싸는 형상으로 형성되는 패치 안테나.
  6. 제1항에 있어서,
    상기 유전체층은 하면 외주에 단차부가 형성되는 패치 안테나.
  7. 제6항에 있어서,
    상기 기판과 상기 단차부 사이에 형성되는 영역에서 에어 갭을 형성하는 패치 안테나.
  8. 제7항에 있어서,
    상기 에어 갭의 단면은 사각형 형상으로 형성되는 패치 안테나.
  9. 제1항에 있어서,
    상기 유전체층은,
    상면에 상기 방사 패치가 형성되는 상부 유전체층; 및
    상기 상부 유전체층의 하부에 위치하고, 하면에 상기 하부 패치가 형성되는 하부 유전체층을 포함하고,
    상기 상부 유전체층은 상기 하부 유전체층보다 넓은 면적으로 형성되는 패치 안테나.
  10. 제9항에 있어서,
    상기 상부 유전체층은 하면 일부가 상기 기판 방향으로 노출되는 패치 안테나.
  11. 제9항에 있어서,
    상기 상부 유전체층의 하면과 상기 하부 유전체층의 외주 및 상기 기판 사이에 형성되는 영역에 에어 갭이 형성되는 패치 안테나.
  12. 제11항에 있어서,
    상기 에어 갭은 사각형 형상의 단면을 갖는 링 형상으로 형성되는 패치 안테나.
  13. 제9항에 있어서,
    상기 상부 유전체층 및 하부 유전체층은 일체로 형성되는 패치 안테나.
PCT/KR2017/005760 2016-06-29 2017-06-02 패치 안테나 WO2018004136A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/311,092 US10923823B2 (en) 2016-06-29 2017-06-02 Patch antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160081829A KR101779593B1 (ko) 2016-06-29 2016-06-29 패치 안테나
KR10-2016-0081829 2016-06-29

Publications (1)

Publication Number Publication Date
WO2018004136A1 true WO2018004136A1 (ko) 2018-01-04

Family

ID=60033397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005760 WO2018004136A1 (ko) 2016-06-29 2017-06-02 패치 안테나

Country Status (3)

Country Link
US (1) US10923823B2 (ko)
KR (1) KR101779593B1 (ko)
WO (1) WO2018004136A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019245212A1 (ko) 2018-06-21 2019-12-26 삼성전자 주식회사 캐비티를 포함하는 안테나 모듈
KR102008915B1 (ko) * 2018-08-01 2019-08-08 국방과학연구소 형상 적응형 위상배열 안테나의 타일 구조
US11539137B2 (en) * 2019-08-27 2022-12-27 2J Antennas Usa, Corporation Socket antenna module and related transceiver assembly
KR102487335B1 (ko) * 2020-06-30 2023-01-11 주식회사 아모텍 경량 패치 안테나

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080204324A1 (en) * 2004-07-28 2008-08-28 Osaka University Patch Antenna and Method for Producing a Patch Antenna
KR20100083550A (ko) * 2009-01-14 2010-07-22 주식회사 아모텍 패치 안테나
KR20110104844A (ko) * 2010-03-17 2011-09-23 서울통신기술 주식회사 마이크로스트립 패치 안테나
KR20140095131A (ko) * 2013-01-23 2014-08-01 주식회사 아모텍 초광대역 패치 안테나
JP2016005178A (ja) * 2014-06-18 2016-01-12 株式会社東芝 アンテナ装置、情報処理装置及び記憶装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9417401D0 (en) * 1994-08-30 1994-10-19 Pilkington Plc Patch antenna assembly
JP2002118417A (ja) * 2000-10-10 2002-04-19 Alps Electric Co Ltd 平面パッチアンテナ
AU2003228322A1 (en) * 2002-03-15 2003-09-29 The Board Of Trustees Of The Leland Stanford Junior University Dual-element microstrip patch antenna for mitigating radio frequency interference
US10193231B2 (en) * 2015-03-02 2019-01-29 Trimble Inc. Dual-frequency patch antennas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080204324A1 (en) * 2004-07-28 2008-08-28 Osaka University Patch Antenna and Method for Producing a Patch Antenna
KR20100083550A (ko) * 2009-01-14 2010-07-22 주식회사 아모텍 패치 안테나
KR20110104844A (ko) * 2010-03-17 2011-09-23 서울통신기술 주식회사 마이크로스트립 패치 안테나
KR20140095131A (ko) * 2013-01-23 2014-08-01 주식회사 아모텍 초광대역 패치 안테나
JP2016005178A (ja) * 2014-06-18 2016-01-12 株式会社東芝 アンテナ装置、情報処理装置及び記憶装置

Also Published As

Publication number Publication date
US10923823B2 (en) 2021-02-16
KR101779593B1 (ko) 2017-09-19
US20200313298A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
EP3563453B1 (en) Circularly polarized connected-slot antennas
US6140968A (en) Surface mount type circularly polarized wave antenna and communication apparatus using the same
WO2018004136A1 (ko) 패치 안테나
US9590314B2 (en) Circularly polarized connected-slot antenna
US5923303A (en) Combined space and polarization diversity antennas
US6897813B2 (en) Combined antenna with antenna combining circularly polarized wave antenna and vertical antenna
US7403171B2 (en) System for isolating an auxiliary antenna from a main antenna mounted in a common antenna assembly
US5444452A (en) Dual frequency antenna
EP0892461A1 (en) An antenna assembly
TW541764B (en) Microstrip antenna with improved low angle performance
US20180331428A1 (en) Composite patch antenna device
CN110137652B (zh) 包括多个基片层的信号处理设备
CN109314310A (zh) 车载天线
US8106841B2 (en) Antenna structure
WO2013094692A1 (ja) アンテナ装置
KR102154226B1 (ko) 패치 안테나
KR102487335B1 (ko) 경량 패치 안테나
WO2022203280A1 (ko) 다중 대역 패치 안테나
CN211605400U (zh) 一种十字型全向辐射轻量化天线
JP2005318438A (ja) アンテナ装置
CN218101685U (zh) 一种圆极化微带天线
CN217281200U (zh) 一种四卫星宽带gnss天线及通信设备
CN111146577B (zh) 天线单元
JP6539360B1 (ja) 両偏波送受用アンテナ
JPH1188038A (ja) アンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820413

Country of ref document: EP

Kind code of ref document: A1