WO2018004110A1 - 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지 - Google Patents

리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지 Download PDF

Info

Publication number
WO2018004110A1
WO2018004110A1 PCT/KR2017/002607 KR2017002607W WO2018004110A1 WO 2018004110 A1 WO2018004110 A1 WO 2018004110A1 KR 2017002607 W KR2017002607 W KR 2017002607W WO 2018004110 A1 WO2018004110 A1 WO 2018004110A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
ether
electrolyte
sulfur battery
group
Prior art date
Application number
PCT/KR2017/002607
Other languages
English (en)
French (fr)
Inventor
박인태
홍성원
송기석
옥유화
양두경
이창훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170028616A external-priority patent/KR20180002000A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780026038.8A priority Critical patent/CN109075393B/zh
Priority to EP17820387.3A priority patent/EP3422460B1/en
Priority to JP2018545612A priority patent/JP6699877B2/ja
Priority to US16/082,400 priority patent/US10923759B2/en
Publication of WO2018004110A1 publication Critical patent/WO2018004110A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a three-component lithium-sulfur battery electrolyte and a lithium-sulfur battery comprising the same.
  • Lithium-sulfur battery is a secondary battery that uses a sulfur-based material having an SS bond (Sulfur-sulfur bond) as a positive electrode active material and a lithium metal as a negative electrode active material.
  • Sulfur the main material of the positive electrode active material, is very rich in resources and toxic. This has the advantage of having a low weight per atom.
  • the theoretical discharge capacity of the lithium-sulfur battery is 1672mAh / g-sulfur, and the theoretical energy density is 2,600 Wh / kg, and the theoretical energy density of other battery systems currently being studied (Ni-MH battery: 450 Wh / kg, Li- FeS cells: 480 Wh / kg, Li-MnO 2 batteries: 1,000 Wh / kg, Na-S cells: 800 Wh / kg) is very high compared to the attention has been attracting attention as a battery having a high energy density characteristics.
  • the lithium-sulfur battery has not been commercialized yet. This is because, when sulfur is used as an active material, the ratio (sulfur utilization rate) used for the electrochemical reaction is low, so that a sufficient capacity as the theoretical capacity is not obtained. In order to overcome this problem, development of an anode material having an increased sulfur impregnation amount and an electrolyte solution capable of increasing sulfur utilization rate has been made.
  • 1,3-dioxolane (DOL) and 1,2-dimethoxyethane (DME), which show excellent sulfur utilization, are used as electrolyte solvents of lithium-sulfur batteries. These are used alone or in combination, and Korean Patent Laid-Open Publication No. 10-2009-0086575 uses a polymer to separate 1,3-dioxolane in an anode and 1,2-dimethoxyethane in an unbalanced manner in a positive electrode. Lithium-sulfur batteries are disclosed.
  • the solvent has a disadvantage in that it is easy to decompose during battery operation.
  • gases such as hydrogen, methane, and ethene are generated, which causes swelling and eventually shortens the life of the battery.
  • the present inventors studied the electrolyte solvent composition of the lithium-sulfur battery to solve the above problems, and as a result, the present invention was completed.
  • an object of the present invention is to provide an electrolyte solution for lithium-sulfur batteries with excellent stability.
  • Another object of the present invention to provide a lithium-sulfur battery comprising the electrolyte.
  • the non-aqueous solvent is N-aqueous solvent
  • the cyclic ether may be a 5 to 7 membered cyclic ether unsubstituted or substituted with a C1 to C4 alkyl or alkoxy group.
  • the cyclic ether may be dioxolane or dioxane substituted or unsubstituted with an alkyl or alkoxy group of C1 to C4, and specifically, the cyclic ether may be 1,3-dioxolane, 4,5-diethyl -1,3-dioxolane, 4,5-dimethyl-1,3-dioxolane, 4-methyl-1,3-dioxolane, 4-ethyl-1,3-dioxolane, 1,3-dioxane, It may be one selected from the group consisting of 1,4-dioxane, 4-methyl-1,3-dioxane, and 2-methyl-1,3-dioxane.
  • the glycol ether may be one selected from the group consisting of 1,2-dimethoxyethane, ethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, and tetraethylene glycol dimethyl ether.
  • the linear ether may be one selected from the group consisting of ethylene glycol ethyl methyl ether, ethylene glycol diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, and diisobutyl ether.
  • the cyclic ether may be included in 10 to 40% by volume of the total weight of the non-aqueous solvent.
  • glycol ether and the linear ether may be included in a volume ratio of 1: 3 to 3: 1.
  • the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiC 4 BO 8 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) 2 NLi, (SO 2 F) 2 NLi, (CF 3 SO 2 ) 3 CLi, Chloro It may be one selected from the group consisting of lithium borane, lower aliphatic lithium carbonate, lithium 4-phenyl borate, lithium imide, and combinations thereof.
  • the lithium salt may be included in a concentration of 0.1 to 4.0 M.
  • the electrolyte may further include an additive having an intramolecular N-O bond.
  • the additive is lithium nitrate, potassium nitrate, cesium nitrate, barium nitrate, ammonium nitrate, lithium nitrite, potassium nitrite, cesium nitrite, ammonium nitrite, methyl nitrate, dialkyl imidazolium nitrate, guanidine nitrate, imide Dazolium nitrate, pyridinium nitrate, ethyl nitrite, propyl nitrite, butyl nitrite, pentyl nitrite, octyl nitrite, nitromethane, nitropropane, nitrobutane, nitrobenzene, dinitrobenzene, nitro pyridine, di It may be one or more selected from the group consisting of nitropyridine, nitrotoluene, dinitrotolu
  • the additive may be included in 0.01 to 10% by weight relative to 100% by weight of the electrolyte.
  • the present invention also provides a lithium-sulfur battery comprising the electrolyte solution.
  • the electrolyte solution for lithium-sulfur batteries according to the present invention shows excellent sulfur utilization when applied to lithium-sulfur batteries, and shows excellent stability. Therefore, the electrolyte solution for a lithium-sulfur battery according to the present invention can ensure the capacity characteristics of the lithium-sulfur battery and at the same time improve the life characteristics.
  • FIG. 1 is a graph showing specific discharge capacities of batteries of Examples 1, 2 and Comparative Example 1.
  • FIG. 2 is a graph showing specific discharge capacities of batteries of Examples 3 to 6 and Comparative Example 2.
  • the most commonly used solvent for the electrolyte of lithium-sulfur batteries is a mixed solvent of 1,3-dioxolane (DOL) and 1,2-dimethoxyethane (DME).
  • DOL 1,3-dioxolane
  • DME 1,2-dimethoxyethane
  • the electrolyte according to the present invention exhibits excellent solvent stability compared to conventional electrolytes, including cyclic ethers, glycol ethers, and linear ethers, and exhibits improved life characteristics.
  • the present invention includes a lithium salt and a non-aqueous solvent in order to improve the battery life degradation due to decomposition of the electrolyte generated when driving the lithium-sulfur battery, the non-aqueous solvent is
  • R 1 to R 4 are the same as or different from each other, and each independently an alkyl group of C1 to C6, an aryl group of C6 to C12, or an arylalkyl group of C7 to C13,
  • x is an integer from 1 to 4,
  • y is an integer from 0 to 4,
  • the ether of Formula 1 is different from the ether of Formula 2)
  • the alkyl group of C1 to C6 referred to herein is a linear or branched alkyl group, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, t-butyl group, pen Tyl group, hexyl group, etc. can be mentioned, It is not limited to these.
  • C6 to C12 aryl group referred to herein may be, for example, a phenyl group unsubstituted or substituted with a C1 to C6 alkyl group, or a naphthyl group.
  • the C7 to C13 arylalkyl group mentioned herein may be, for example, a benzyl group, a phenylethyl group, a phenylpropyl group, or a phenylbutyl group unsubstituted or substituted with a C1 to C6 alkyl group.
  • R 1 and R 2 may be the same as or different from each other, and preferably may be a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group, and more preferably, a methyl group, an ethyl group, or a propyl group.
  • R 3 and R 4 are the same as or different from each other, preferably methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, hexyl, phenyl or benzyl.
  • the electrolyte according to the present invention contains a cyclic ether containing two oxygens in the ring structure as the first solvent.
  • the cyclic ether is a 5- or more-membered cyclic ether unsubstituted or substituted with an alkyl group, preferably a 5- to 7-membered cyclic ether unsubstituted or substituted with an alkyl group or an alkoxy group of C1 to C4, and more preferably C1.
  • Dioxolane or dioxane unsubstituted or substituted with an alkyl group or an alkoxy group of C4.
  • Non-limiting examples of the cyclic ethers include 1,3-dioxolane, 1,3-dioxolane, 4,5-diethyl-dioxolane, 4,5-dimethyl-dioxolane, 4-methyl-1, 3-dioxolane, 4-ethyl-1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, 4-methyl-1,3-dioxane, 2-methyl-1,3-di Oxane etc. can be mentioned, Preferably 1, 3- dioxolane can be used.
  • the cyclic ether has a low viscosity, good ion mobility, and high reduction stability, thus showing high stability even for long-term operation of the battery.
  • the first solvent is preferably included in 10 to 40% by volume, more preferably in 10 to 30% by volume relative to the total volume of the non-aqueous solvent. If the above range is exceeded, there may be a problem in that electrolyte stability is lowered, thereby making it difficult to secure an effect of improving battery life characteristics.
  • the electrolyte according to the present invention includes a glycol ether represented by Chemical Formula 1 as the second solvent.
  • the glycol ether is, for example, 1,2-dimethoxyethane, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl Ether, triethylene glycol diethyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, and the like, and preferably, 1,2-dimethoxyethane, ethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether, Triethylene glycol dimethyl ether, and tetraethylene glycol dimethyl ether.
  • Such glycol ethers may have high solubility of sulfur-based materials to increase sulfur utilization.
  • the third solvent of the electrolyte according to the present invention may be a linear ether represented by Formula 2, a glycol ether as described above, or an ether including one oxygen in a molecule.
  • the third solvent is a glycol ether, this is a different compound from the second solvent.
  • Non-limiting examples of ethers containing one oxygen in the molecular structure include dimethyl ether, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dipentyl ether, dihexyl ether, ethyl methyl ether, methyl Propyl ether, butyl methyl ether, ethyl propyl ether, butyl propyl ether, phenyl methyl ether, diphenyl ether, dibenzyl ether and the like.
  • the third solvent is preferably ethylene glycol ethyl methyl ether, ethylene glycol diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether or diisobutyl ether.
  • Such linear ethers exhibit dissolution and solvent degradation inhibitory effects of polysulfides, contributing to electrolyte stability.
  • the 1,2-dimethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether and the like are excellent in solubility of sulfur-based materials and contribute to improving capacity characteristics of the battery by increasing sulfur utilization.
  • ethylene glycol ethyl methyl ether, ethylene glycol diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, diisobutyl ether and the like are excellent in stability and do not easily decompose during battery operation. Therefore, when the solvent is used in a suitable mixture, there is an advantage in that the sulfur utilization and the stability of the electrolyte can be secured at the same time.
  • the second solvent and the third solvent is preferably included at least 60% by volume relative to the total volume of the non-aqueous solvent.
  • the relative ratio of the second solvent and the third solvent may be appropriately adjusted according to the type of the electrode used, the battery capacity, etc., each of which is at least 10% by volume based on the total weight of the non-aqueous solvent, It is preferable in terms of stability.
  • the second solvent and the third solvent are preferably mixed in a volume ratio of 1: 3 to 3: 1, and more preferably in a volume ratio of 1: 2 to 2: 1.
  • the non-aqueous solvent of the electrolyte solution is 1,3-dioxolane as the first solvent, 1,2-dimethoxyethane as the second solvent, and as the third solvent.
  • Ethylene glycol ethylmethyl ether or dipropyl ether, and the volume ratio thereof may be 1: 1: 1 to 1: 2: 2.
  • the sulfur utilization rate of the lithium-sulfur battery can be increased, thereby ensuring the capacity characteristics of the battery and improving the battery life. Therefore, it is advantageous for a battery including a high capacity, high loading electrode.
  • 1,3-dioxolane as the first solvent ethylene glycol ethyl methyl ether as the second solvent, ethylene glycol diethyl ether, dipropyl ether, or diisobutyl ether as the third solvent is 1 It may be included in a volume ratio of 1: 1 to 1: 2: 2.
  • electrolyte stability is greatly improved, and the life characteristics of the battery can be significantly improved.
  • the electrolyte may be suitably used in high temperature operating batteries requiring high electrolyte stability.
  • the electrolyte solution of the present invention may be prepared to meet various characteristics required in a battery by appropriately selecting a solvent combination.
  • the electrolyte solution for lithium-sulfur batteries of the present invention includes a lithium salt added to the electrolyte to increase the ionic conductivity.
  • the lithium salt is not particularly limited in the present invention, and may be used without limitation as long as it is commonly used in a lithium secondary battery.
  • the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiC 4 BO 8 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) 2 NLi, (SO 2 F) 2 NLi, (CF 3 SO 2 ) 3 CLi,
  • lower aliphatic lithium carbonate lower aliphatic may mean, for example, aliphatic having 1 to 5 carbon atoms
  • 4-phenyl lithium borate lithium imide and combinations thereof
  • One selected may be possible, and preferably (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) 2 NLi, (SO 2 F) 2 NLi, or the like may be possible, and preferably (CF 3 SO 2 )
  • the concentration of the lithium salt may be determined in consideration of ionic conductivity and the like, and preferably, 0.1 to 4.0 M, or 0.5 to 2.0 M. If the concentration of the lithium salt is less than the above range it is difficult to secure the ionic conductivity suitable for driving the battery, if it exceeds the above range, the viscosity of the electrolyte may be increased to reduce the mobility of lithium ions and the decomposition reaction of the lithium salt itself increases to increase the battery Since the performance of may be degraded, it is appropriately adjusted within the above range.
  • the electrolyte solution for a lithium-sulfur battery of the present invention may further include an additive having an intramolecular NO bond.
  • the additive has an effect of forming a stable film on the lithium electrode and greatly improves the charge and discharge efficiency.
  • Such additives may be nitric acid or nitrous acid compounds, nitro compounds and the like.
  • Examples include lithium nitrate, potassium nitrate, cesium nitrate, barium nitrate, ammonium nitrate, lithium nitrite, potassium nitrite, cesium nitrite, ammonium nitrite, methyl nitrate, dialkyl imidazolium nitrate, guanidine nitrate, imidazolium nitrate , Pyridinium nitrate, ethyl nitrite, propyl nitrite, butyl nitrite, pentyl nitrite, octyl nitrite, nitromethane, nitropropane, nitrobutane, nitrobenzene, dinitrobenzene, nitropyridine, dinitropyridine, nitro One or more selected from the group consisting of toluene, dinitrotoluene, pyridine N-oxide, alkylpyridine N-oxide, and tetramethyl piperidinyloxy
  • the additive is used in the range of 0.01 to 10% by weight, preferably 0.1 to 5% by weight based on 100% by weight of the total electrolyte composition. If the content is less than the above range, the above-described effects cannot be secured. On the contrary, if the content exceeds the above range, the resistance may be increased by the film, so that the above-mentioned range is appropriately adjusted.
  • the lithium-sulfur battery electrolyte according to the present invention uses a mixed solvent of a cyclic ether and a linear ether as a solvent in order to secure electrolyte stability, thereby suppressing gas generation in the battery during charging and discharging of the battery.
  • the swelling phenomenon can be improved.
  • the preparation method of the electrolyte according to the present invention is not particularly limited in the present invention, and may be prepared by conventional methods known in the art.
  • the lithium-sulfur battery according to the present invention includes a positive electrode and a negative electrode and a separator and an electrolyte interposed therebetween, and use the electrolyte solution for a lithium-sulfur battery according to the present invention as an electrolyte.
  • the lithium-sulfur battery according to the present invention has improved electrolyte stability and shows excellent life characteristics.
  • the structure of the positive electrode, the negative electrode, and the separator of the lithium-sulfur battery is not particularly limited in the present invention, and is known in the art.
  • the positive electrode according to the present invention includes a positive electrode active material formed on a positive electrode current collector.
  • any one that can be used as a current collector in the technical field is possible, and specifically, it may be preferable to use foamed aluminum, foamed nickel, and the like having excellent conductivity.
  • the cathode active material may include elemental sulfur (S8), a sulfur-based compound, or a mixture thereof.
  • the conductive material may be porous. Therefore, the conductive material may be used without limitation as long as it has porosity and conductivity, and for example, a carbon-based material having porosity may be used. As such a carbon-based material, carbon black, graphite, graphene, activated carbon, carbon fiber, or the like can be used. Moreover, metallic fibers, such as a metal mesh; Metallic powders such as copper, silver, nickel and aluminum; Or organic conductive materials, such as a polyphenylene derivative, can also be used. The conductive materials may be used alone or in combination.
  • the positive electrode may further include a binder for coupling the positive electrode active material and the conductive material and the current collector.
  • the binder may include a thermoplastic resin or a thermosetting resin.
  • polyethylene polyethylene oxide, polypropylene, polytetrafluoro ethylene (PTFE), polyvinylidene fluoride (PVDF), styrene-butadiene rubber, tetrafluoroethylene-perfluoro alkylvinyl ether copolymer, vinyl fluoride Liden-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride-pentafluoro propylene copolymer, propylene Tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-he
  • the positive electrode as described above may be manufactured according to a conventional method. Specifically, a positive electrode active material layer-forming composition prepared by mixing a positive electrode active material, a conductive material, and a binder on an organic solvent is applied and dried on a current collector, and optionally In order to improve the electrode density, the current collector may be manufactured by compression molding.
  • the organic solvent may uniformly disperse the positive electrode active material, the binder, and the conductive material, and preferably evaporates easily. Specifically, acetonitrile, methanol, ethanol, tetrahydrofuran, water, isopropyl alcohol, etc. are mentioned.
  • the negative electrode according to the present invention includes a negative electrode active material formed on the negative electrode current collector.
  • the negative electrode current collector may be specifically selected from the group consisting of copper, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof.
  • the stainless steel may be surface treated with carbon, nickel, titanium, or silver, and an aluminum-cadmium alloy may be used as the alloy.
  • calcined carbon, a nonconductive polymer surface-treated with a conductive material, or a conductive polymer may be used.
  • a material capable of reversibly intercalating or deintercalating lithium ions (Li + ), a material capable of reacting with lithium ions to form a reversibly lithium-containing compound, a lithium metal or a lithium alloy can be used.
  • the material capable of reversibly occluding or releasing the lithium ions (Li + ) may be, for example, crystalline carbon, amorphous carbon or a mixture thereof.
  • the material capable of reacting with the lithium ions (Li + ) to form a lithium-containing compound reversibly may be, for example, tin oxide, titanium nitrate or silicon.
  • the lithium alloy is, for example, lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( It may be an alloy of a metal selected from the group consisting of Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al) and tin (Sn).
  • the negative electrode may further include a binder for coupling the negative electrode active material and the conductive material and the current collector.
  • the binder is the same as described above for the binder of the positive electrode.
  • a conventional separator may be interposed between the positive electrode and the negative electrode.
  • the separator is a physical separator having a function of physically separating the electrode, and can be used without particular limitation as long as it is used as a conventional separator, and in particular, it is preferable that the separator has a low resistance to electrolyte migration and excellent electrolyte-moisture capability.
  • the separator enables the transport of lithium ions between the positive electrode and the negative electrode while separating or insulating the positive electrode and the negative electrode from each other.
  • a separator may be made of a porous and nonconductive or insulating material.
  • the separator may be an independent member such as a film or a coating layer added to the anode and / or the cathode.
  • a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer may be used alone. It may be used as a lamination or or a conventional porous non-woven fabric, for example, a non-woven fabric made of glass fibers, polyethylene terephthalate fibers of high melting point, etc. may be used, but is not limited thereto.
  • the positive electrode, the negative electrode, and the separator included in the lithium-sulfur battery may be prepared according to conventional components and manufacturing methods, respectively, and the appearance of the lithium-sulfur battery is not particularly limited, but may be cylindrical, rectangular, or pouch using a can. It may be a pouch type or a coin type.
  • LiTFSI (CF 3 SO 2 ) 2 NLi) was added to the mixed solvent having the composition shown in Table 1 at a concentration of 1.0 M, and 1% by weight of LiNO 3 was added based on 100% by weight of the electrolyte.
  • a non-aqueous electrolyte solution of Example 1 was prepared. The solvent used at this time is as follows.
  • EGEME Ethyleneglycol ethylmethyl ether
  • a positive electrode active material slurry was prepared by mixing 65 wt% sulfur, 25 wt% carbon black, and 10 wt% polyethylene oxide with acetonitrile.
  • the positive electrode active material slurry was coated on an aluminum current collector and dried to prepare a positive electrode having a loading amount of 5 mAh / cm 2 having a size of 30 ⁇ 50 mm 2 .
  • a lithium metal having a thickness of 150 ⁇ m was used as the negative electrode.
  • the positive electrode and the negative electrode prepared above were disposed to face each other, and a polyethylene separator having a thickness of 20 ⁇ m was interposed therebetween, followed by filling with the electrolyte solutions of Examples and Comparative Examples.
  • the battery of Comparative Example 1 can be seen that the discharge capacity drops sharply after 10 cycles. However, it can be seen that the batteries of Examples 1 and 2 are stably maintained in the discharge capacity even up to 20 cycles. In addition, in the battery of Comparative Example 1, a swelling phenomenon was observed due to gas generation as the battery was driven, but the swelling phenomenon was not observed in the batteries of Examples 1 and 2.
  • EGEME Ethyleneglycol ethylmethyl ether
  • EGDEE Ethyleneglycol diethyl ether
  • a positive electrode active material slurry was prepared by mixing 60 wt% sulfur, 30 wt% carbon black, and 10 wt% polyethylene oxide with acetonitrile.
  • the positive electrode active material slurry was coated on an aluminum current collector and dried to prepare a positive electrode having a loading amount of 5 mAh / cm 2 having a size of 30 ⁇ 50 mm 2 .
  • a lithium metal having a thickness of 150 ⁇ m was used as the negative electrode.
  • the positive electrode and the negative electrode prepared above were disposed to face each other, and a polyethylene separator having a thickness of 20 ⁇ m was interposed therebetween, followed by filling with the electrolyte solutions of Examples and Comparative Examples.
  • the battery of Comparative Example 2 showed a tendency that the initial capacity greatly decreased after about 15 charge / discharge cycles. This result is considered to be due to the decomposition of the electrolyte during battery operation due to the low stability of the solvent itself.
  • the electrolyte composition of the three-component combination of the present invention increases the retention rate of the initial charge and discharge capacity of the battery, and also improves the life characteristics of the battery compared to the electrolyte of the existing combination.
  • the electrolyte of the present invention exhibits better battery life improvement when the content of the cyclic ether is 40% or less of the total weight of the solvent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 3성분계 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지에 관한 것이다. 본 발명에 따른 리튬-설퍼 전지용 전해액은 리튬-설퍼 전지에 적용 시 우수한 황 이용률을 나타내며, 뛰어난 안정성을 나타낸다. 따라서, 본 발명에 따른 리튬-설퍼 전지용 전해액은 리튬-설퍼 전지의 용량 특성을 확보하는 동시에 수명 특성을 향상시킬 수 있다.

Description

리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
본 출원은 2016년 6월 28일자 한국 특허 출원 제10-2016-0080646호 및 2017년 3월 7일자 한국 특허 출원 제10-2017-0028616호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
본 발명은 3성분계 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지에 관한 것이다.
최근 휴대용 전자기기, 전기자동차 및 대용량 전력저장 시스템 등이 발전함에 따라 대용량 전지의 필요성이 대두되고 있다. 리튬-설퍼 전지는 S-S 결합(Sulfur - sulfur bond)을 갖는 황 계열 물질을 양극 활물질로 사용하고, 리튬 금속을 음극 활물질로 사용하는 이차전지로, 양극 활물질의 주재료인 황은 자원이 매우 풍부하고, 독성이 없으며, 낮은 원자당 무게를 가지고 있는 장점이 있다.
또한 리튬-설퍼 전지의 이론 방전용량은 1672mAh/g-sulfur이며, 이론 에너지밀도가 2,600Wh/kg로서, 현재 연구되고 있는 다른 전지시스템의 이론 에너지밀도(Ni-MH 전지: 450Wh/kg, Li-FeS 전지: 480Wh/kg, Li-MnO2 전지: 1,000Wh/kg, Na-S 전지: 800Wh/kg)에 비하여 매우 높기 때문에 고에너지 밀도 특성을 갖는 전지로서 주목 받고 있다.
그러나 아직까지 리튬-설퍼 전지는 상용화되고 있지 못한 실정이다. 이는 황을 활물질로 사용 시 전기화학 반응에 이용되는 비율(황 이용률)이 낮아 이론 용량만큼 충분한 용량이 확보되지 않기 때문이다. 이러한 문제점을 극복하기 위하여 황 함침량을 높인 양극 재료, 황 이용률을 높일 수 있는 전해액의 개발 등이 이루어지고 있다.
현재 리튬-설퍼 전지의 전해액 용매로는 우수한 황 이용률을 나타내는 1,3-디옥솔란(DOL) 및 1,2-디메톡시에탄(DME)이 가장 많이 사용되고 있다. 이들은 단독 또는 혼합되어 사용되며, 대한민국 공개특허공보 제10-2009-0086575호는 고분자를 이용하여 1,3-디옥솔란을 음극에, 1,2-디메톡시에탄을 양극에 불균형하게 존재하도록 분리시킨 리튬-설퍼 전지를 개시하고 있다.
그러나, 상기 용매는 전지 구동 중 분해되기 쉽다는 단점이 있다. 용매가 분해되면 수소, 메탄, 에텐 등의 가스가 발생되며, 이는 스웰링(swelling) 현상을 일으키고 결국 전지의 수명 단축을 초래한다.
따라서, 리튬-설퍼 전지에 있어서 안정적인 수명 특성을 얻기 위해서는 전지 전지 구동 중 분해를 일으키지 않는 안정한 전해액의 개발이 필요한 실정이다.
[선행기술문헌]
대한민국 공개특허 제10-2009-0086575호, 전해질의 분리
본 발명자들은 상기 문제를 해결하기 위해 리튬-설퍼 전지의 전해액 용매 조성에 관하여 연구하였고, 그 결과 본 발명을 완성하였다.
따라서, 본 발명의 목적은 안정성이 우수한 리튬-설퍼 전지용 전해액을 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 상기 전해액을 포함하는 리튬-설퍼 전지를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은
리튬염 및 비수계 용매를 포함하고,
상기 비수계 용매는
i) 고리구조 내 두 개의 산소를 포함하는 고리형 에테르;
ii) 하기 화학식 1로 표시되는 글리콜 에테르; 및
iii) 하기 화학식 2로 표시되는 선형 에테르; 를 포함하는 것을 특징으로 하는 리튬-설퍼 전지용 전해액을 제공한다:
[화학식 1]
R1-O-(CH2CH2O)x-R2
[화학식 2]
R3-O-(CH2CH2O)y-R4
(상기 화학식 1 및 2에서, R1 내지 R4, x, 및 y는 명세서 내에서 설명한 바와 같다)
이때, 상기 고리형 에테르는 C1 내지 C4의 알킬기 또는 알콕시기로 치환 또는 비치환된 5 내지 7원 고리형 에테르일 수 있다.
이때, 상기 고리형 에테르는 C1 내지 C4의 알킬기 또는 알콕시기로 치환 또는 비치환된 디옥솔란, 또는 디옥산일 수 있으며, 구체적으로 상기 고리형 에테르는 1,3-디옥솔란, 4,5-디에틸-1,3-디옥솔란, 4,5-디메틸-1,3-디옥솔란, 4-메틸-1,3-디옥솔란, 4-에틸-1,3-디옥솔란, 1,3-디옥산, 1,4-디옥산, 4-메틸-1,3-디옥산, 및 2-메틸-1,3-디옥산으로 이루어진 군에서 선택되는 1종일 수 있다.
이때, 상기 글리콜 에테르는 1,2-디메톡시에탄, 에틸렌글리콜 에틸메틸에테르, 디에틸렌글리콜 디메틸에테르, 트리에틸렌글리콜 디메틸에테르, 및 테트라에틸렌글리콜 디메틸에테르로 이루어지는 군에서 선택되는 1종일 수 있다.
이때, 상기 선형 에테르는 에틸렌글리콜 에틸메틸에테르, 에틸렌글리콜 디에틸에테르, 디프로필에테르, 디이소프로필에테르, 디부틸에테르, 및 디이소부틸에테르로 이루어지는 군에서 선택되는 1종일 수 있다.
이때, 상기 고리형 에테르는 비수계 용매 총 중량의 10 내지 40 부피%로 포함될 수 있다.
이때, 상기 글리콜 에테르 및 선형 에테르는 1:3 내지 3:1 의 부피비로 포함될 수 있다.
이때, 상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiC4BO8, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, (C2F5SO2)2NLi, (SO2F)2NLi, (CF3SO2)3CLi, 클로로 보란 리튬, 저급지방족 카르본산 리튬, 4-페닐 붕산 리튬, 리튬 이미드 및 이들의 조합으로 이루어진 군에서 선택된 1종일 수 있다. 상기 리튬염은 0.1 내지 4.0 M 농도로 포함될 수 있다.
이때, 상기 전해액은 분자 내 N-O 결합을 갖는 첨가물을 더 포함할 수 있다. 구체적으로, 상기 첨가물은 질산리튬, 질산칼륨, 질산세슘, 질산바륨, 질산암모늄, 아질산리튬, 아질산칼륨, 아질산세슘, 아질산암모늄, 메틸 니트레이트, 디알킬 이미다졸륨 니트레이트, 구아니딘 니트레이트, 이미다졸륨 니트레이트, 피리디늄 니트레이트, 에틸 니트라이트, 프로필 니트라이트, 부틸 니트라이트, 펜틸 니트라이트, 옥틸 니트라이트, 니트로메탄, 니트로프로판, 니트로부탄, 니트로벤젠, 디니트로벤젠, 니트로 피리딘, 디니트로피리딘, 니트로톨루엔, 디니트로톨루엔, 피리딘 N-옥사이드, 알킬피리딘 N-옥사이드, 및 테트라메틸 피페리디닐옥실로 이루어지는 군에서 선택되는 1종 이상일 수 있다.
이때, 상기 첨가물은 전해액 100 중량% 에 대하여 0.01 내지 10 중량% 로 포함될 수 있다.
또한, 본 발명은 상기 전해액을 포함하는 리튬-설퍼 전지를 제공한다.
본 발명에 따른 리튬-설퍼 전지용 전해액은 리튬-설퍼 전지에 적용 시 우수한 황 이용률을 나타내며, 뛰어난 안정성을 나타낸다. 따라서, 본 발명에 따른 리튬-설퍼 전지용 전해액은 리튬-설퍼 전지의 용량 특성을 확보하는 동시에 수명 특성을 향상시킬 수 있다.
도 1은 실시예 1, 2 및 비교예 1의 전지의 비 방전용량을 나타낸 그래프이다.
도 2는 실시예 3 내지 6 및 비교예 2의 전지의 비 방전용량을 나타낸 그래프이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 여기에서 설명하는 실시예에 한정되지 않는다.
리튬- 설퍼 전지용 전해액
현재 리튬-설퍼 전지의 전해액 용매로 가장 많이 사용되고 있는 것은 1,3-디옥솔란(DOL) 및 1,2-디메톡시에탄(DME)의 혼합용매이다. DOL 및 DME의 혼합 용매를 사용할 경우 황 이용률이 향상되어 전지 용량 측면에서 우수한 결과를 나타낸다.
그러나, 상기의 조합을 높은 에너지 밀도를 갖는 대형 전지에 적용 시, 수명 특성이 현저히 떨어지는 문제점을 가지고 있다. 본 발명자들의 실험 결과, DOL 및 DME의 혼합 용매를 사용한 대용량 전지의 경우 용량 유지율이 매우 빠른 속도로 떨어지는 것이 확인되었다. 또한, 상기 전지는 구동 중 용매가 분해되며 상당량의 가스가 발생한다. 이러한 용매 분해 현상은 전해액 고갈을 일으키며, 전지를 부풀게 하고 전극 탈리를 야기하는 등 전지의 변형을 일으켜 결국 전지의 수명을 단축시키는 요인이 된다.
본 발명에 따른 전해액은 고리형 에테르, 글리콜 에테르, 및 선형 에테르를 포함하여 기존 전해액에 비하여 우수한 용매 안정성을 나타내며, 향상된 수명 특성을 나타낸다.
구체적으로 본 발명은, 리튬-설퍼 전지의 구동 시 발생하는 전해액 분해로 인한 전지 수명 저하를 개선하기 위하여, 리튬염 및 비수계 용매를 포함하고, 상기 비수계 용매는
i) 고리구조 내 두 개의 산소를 포함하는 고리형 에테르;
ii) 하기 화학식 1로 표시되는 글리콜 에테르; 및
iii) 하기 화학식 2로 표시되는 선형 에테르; 를 포함하는 것을 특징으로 하는 리튬-설퍼 전지용 전해액을 제공한다:
[화학식 1]
R1-O-(CH2CH2O)x-R2
[화학식 2]
R3-O-(CH2CH2O)y-R4
(상기 화학식 1 및 2에서,
R1 내지 R4는 서로 같거나 다르며, 각각 독립적으로 C1 내지 C6의 알킬기, 또는 C6 내지 C12의 아릴기이고, 또는 C7 내지 C13의 아릴알킬기이고,
x는 1 내지 4의 정수이고,
y는 0 내지 4의 정수이며,
상기 화학식 1의 에테르는 상기 화학식 2의 에테르와 상이하다)
본 명세서에서 언급하는 C1 내지 C6의 알킬기는 선형 또는 분지형 알킬기로서, 예를 들어 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, sec-부틸기, t-부틸기, 펜틸기, 또는 헥실기 등을 들 수 있으나 이들로 제한되는 것은 아니다.
또한, 본 명세서에서 언급하는 C6 내지 C12의 아릴기는 예를 들어 C1 내지 C6의 알킬기로 치환 또는 비치환된 페닐기, 또는 나프틸기일 수 있다.
또한, 본 명세서에서 언급하는 C7 내지 C13의 아릴알킬기는 예를 들어 C1 내지 C6의 알킬기로 치환 또는 비치환된 벤질기, 페닐에틸기, 페닐프로필기, 또는 페닐부틸기일 수 있다.
상기 화학식 1에서, R1 및 R2는 서로 같거나 다르며, 바람직하기로 메틸기, 에틸기, 프로필기, 이소프로필기, 또는 부틸기일 수 있고, 보다 바람직하기로 메틸기, 에틸기, 또는 프로필기일 수 있다.
상기 화학식 2에서, R3 및 R4는 서로 같거나 다르며, 바람직하기로 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, 펜틸기, 헥실기, 페닐기 또는 벤질기이다.
본 발명에 따른 전해액은 제1용매로서 고리구조 내 두 개의 산소를 포함하는 고리형 에테르를 포함한다. 상기 고리형 에테르는 알킬기로 치환 또는 비치환된 5원 이상의 고리형 에테르로서, 바람직하게는 C1 내지 C4의 알킬기 또는 알콕시기로 치환 또는 비치환된 5 내지 7원 고리형 에테르이며, 더욱 바람직하게는 C1 내지 C4의 알킬기 또는 알콕시기로 치환 또는 비치환된 디옥솔란(dioxolane) 또는 디옥산(dioxane)이다. 상기 고리형 에테르의 비제한적인 예로는, 1,3-디옥솔란, 1,3-디옥솔란, 4,5-디에틸-디옥솔란, 4,5-디메틸-디옥솔란, 4-메틸-1,3-디옥솔란, 4-에틸-1,3-디옥솔란, 1,3-디옥산, 1,4-디옥산, 4-메틸-1,3-디옥산, 2-메틸-1,3-디옥산 등을 들 수 있으며, 바람직하기로 1,3-디옥솔란을 사용할 수 있다. 상기 고리형 에테르는 점도가 낮아 이온 이동성이 좋으며, 높은 환원 안정성을 가지므로 전지의 장기 구동에도 높은 안정성을 보인다.
상기 제1용매는 비수계 용매 총 부피에 대하여 10 내지 40 부피%로 포함되는 것이 바람직하며, 10 내지 30 부피% 로 포함되는 것이 보다 바람직하다. 만일 상기 범위를 초과하면 전해액 안정성이 저하되어 전지의 수명 특성 향상 효과가 확보되기 어려운 문제가 있을 수 있다.
본 발명에 따른 전해액은 제2용매로서 상기 화학식 1로 표시되는 글리콜 에테르를 포함한다. 상기 글리콜 에테르는 예를 들어 1,2-디메톡시에탄, 에틸렌글리콜 디에틸에테르, 에틸렌글리콜 디프로필에테르, 에틸렌글리콜 에틸메틸에테르, 디에틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디에틸에테르, 트리에틸렌글리콜 디메틸에테르, 트리에틸렌글리콜 디에틸에테르, 테트라에틸렌글리콜 디메틸에테르, 테트라에틸렌글리콜 디에틸에테르 등을 들 수 있으며, 바람직하기로 1,2-디메톡시에탄, 에틸렌글리콜 에틸메틸에테르, 디에틸렌글리콜 디메틸에테르, 트리에틸렌글리콜 디메틸에테르, 및 테트라에틸렌글리콜 디메틸에테르이다. 이러한 글리콜 에테르는 황계 물질의 용해도가 우수하여 황 이용률을 높일 수 있다.
본 발명에 따른 전해액의 제3용매는 상기 화학식 2로 표시되는 선형 에테르로서, 상기한 바와 같은 글리콜 에테르, 또는 분자 내 하나의 산소를 포함하는 에테르일 수 있다. 단, 제3용매가 글리콜 에테르일 경우, 이는 제2용매와는 상이한 화합물이다.
상기 분자 구조 내 하나의 산소를 포함하는 에테르의 비제한적인 예로는 디메틸에테르, 디에틸에테르, 디프로필에테르, 디이소프로필에테르, 디부틸에테르, 디펜틸에테르, 디헥실에테르, 에틸메틸에테르, 메틸프로필에테르, 부틸메틸에테르, 에틸프로필에테르, 부틸프로필에테르, 페닐메틸에테르, 디페닐에테르, 디벤질에테르 등을 들 수 있다.
상기 제3용매는 바람직하기로 에틸렌글리콜 에틸메틸에테르, 에틸렌글리콜 디에틸에테르, 디프로필에테르, 디이소프로필에테르, 디부틸에테르 또는 디이소부틸에테르이다. 이러한 선형 에테르는 폴리설파이드의 용해 및 용매 분해 억제 효과를 나타내어 전해액 안정성에 기여한다.
상기 1,2-디메톡시에탄, 디에틸렌글리콜 디메틸에테르, 트리에틸렌글리콜 디메틸에테르, 및 테트라에틸렌글리콜 디메틸에테르 등은 황계 물질의 용해도가 우수하여 황의 이용률을 높임으로써 전지의 용량 특성 향상에 기여한다. 한편, 에틸렌글리콜 에틸메틸에테르, 에틸렌글리콜 디에틸에테르, 디프로필에테르, 디이소프로필에테르, 디부틸에테르, 및 디이소부틸에테르 등은 안정성이 우수하여 전지 구동 중 분해가 잘 일어나지 않는다. 따라서, 이들 용매를 적절히 혼합하여 사용하게 되면 황 이용률 및 전해액의 안정성을 동시에 확보할 수 있는 장점이 있다.
상기 제2용매 및 제3용매는 비수계 용매 총 부피에 대하여 60 부피% 이상 포함되는 것이 바람직하다. 이때, 제2용매 및 제3용매의 상대적 비율은 사용되는 전극의 종류, 전지 용량 등에 따라 적절히 조절될 수 있으나, 각각이 적어도 비수계 용매 총 중량에 대하여 10 부피% 이상 포함되는 것이 전지 용량 확보 및 안정성 측면에서 바람직하다. 구체적으로, 제2용매 및 제3용매는 1:3 내지 3:1 의 부피비로 혼합되는 것이 바람직하며, 보다 바람직하기로 1:2 내지 2:1 의 부피비로 혼합된다.
본 발명에 따른 리튬-설퍼 전지용 전해액의 바람직한 일 구현예에 따르면, 전해액의 비수계 용매는 제1용매로서 1,3-디옥솔란, 제2용매로서 1,2-디메톡시에탄, 제3용매로서 에틸렌글리콜 에틸메틸에테르 또는 디프로필 에테르를 포함하며, 이들의 부피비는 1:1:1 내지 1:2:2 인 것일 수 있다. 이 경우, 리튬-설퍼 전지의 황 이용률을 높일 수 있어 전지의 용량 특성을 확보하는 동시에 전지의 수명을 향상시킬 수 있다. 따라서, 고용량, 고로딩 전극을 포함하는 전지에 유리하다.
또 다른 바람직한 일 구현예는, 제1용매로서 1,3-디옥솔란, 제2용매로서 에틸렌글리콜 에틸메틸에테르, 제3용매로서 에틸렌글리콜 디에틸에테르, 디프로필 에테르, 또는 디이소부틸에테르를 1:1:1 내지 1:2:2의 부피비로 포함하는 것일 수 있다. 이 경우, 전해액 안정성이 크게 향상되어 전지의 수명 특성을 현저히 개선시킬 수 있다. 이에, 상기 전해액은 높은 전해액 안정성을 요하는 고온 작동 전지에 적합하게 사용될 수 있다.
이와 같이, 본 발명의 전해액은 용매 조합을 적절히 선정함으로써 전지에서 요구되는 다양한 특성에 부합하도록 제조될 수 있다.
본 발명의 리튬-설퍼 전지용 전해액은 이온 전도성을 증가시키기 위해 전해질에 첨가되는 리튬염을 포함한다. 상기 리튬염은 본 발명에서 특별히 한정하지 않으며, 리튬 이차 전지에서 통상적으로 사용 가능한 것이라면 제한 없이 사용될 수 있다. 구체적으로, 상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiC4BO8, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, (C2F5SO2)2NLi, (SO2F)2NLi, (CF3SO2)3CLi, 클로로 보란 리튬, 저급지방족 카르본산 리튬(이때, 저급지방족은 예를 들어 탄소수 1 내지 5의 지방족을 의미하는 것일 수 있다.), 4-페닐 붕산 리튬, 리튬 이미드 및 이들의 조합으로 이루어진 군에서 선택된 1종이 가능하며, 바람직하기로 (CF3SO2)2NLi, (C2F5SO2)2NLi, (SO2F)2NLi 등이 사용될 수 있다.
상기 리튬염의 농도는 이온 전도도 등을 고려하여 결정될 수 있으며, 바람직하게는 0.1 내지 4.0 M, 또는 0.5 내지 2.0 M 일 수 있다. 만약 리튬염의 농도가 상기 범위 미만이면 전지의 구동에 적합한 이온 전도도의 확보가 어려우며, 상기 범위를 초과하면 전해액의 점도가 증가하여 리튬 이온의 이동성이 떨어질 수 있고 리튬염 자체의 분해 반응이 증가하여 전지의 성능이 저하될 수 있으므로 상기 범위 내에서 적절히 조절한다.
본 발명의 리튬-설퍼 전지용 전해액은 분자 내 N-O 결합을 갖는 첨가물을 더 포함할 수 있다. 상기 첨가물은 리튬 전극에 안정적인 피막을 형성하고 충ㆍ방전 효율을 크게 향상시키는 효과가 있다. 이러한 첨가물은 질산 또는 아질산계 화합물, 니트로 화합물 등일 수 있다. 일례로 질산리튬, 질산칼륨, 질산세슘, 질산바륨, 질산암모늄, 아질산리튬, 아질산칼륨, 아질산세슘, 아질산암모늄, 메틸 니트레이트, 디알킬 이미다졸륨 니트레이트, 구아니딘 니트레이트, 이미다졸륨 니트레이트, 피리디늄 니트레이트, 에틸 니트라이트, 프로필 니트라이트, 부틸 니트라이트, 펜틸 니트라이트, 옥틸 니트라이트, 니트로메탄, 니트로프로판, 니트로부탄, 니트로벤젠, 디니트로벤젠, 니트로 피리딘, 디니트로피리딘, 니트로톨루엔, 디니트로톨루엔, 피리딘 N-옥사이드, 알킬피리딘 N-옥사이드, 및 테트라메틸 피페리디닐옥실로 이루어지는 군에서 선택되는 1종 이상이 사용될 수 있다. 본 발명의 일 실시예에 따르면 질산리튬(LiNO3)을 사용할 수 있다.
상기 첨가물은 전체 전해액 조성 100 중량%에 대하여 0.01 내지 10 중량% 범위 내에서, 바람직하게는 0.1 내지 5 중량%로 사용한다. 만약 그 함량이 상기 범위 미만이면 상기한 효과를 확보할 수 없고, 이와 반대로 상기 범위를 초과하게 되면 피막에 의해 오히려 저항이 증가할 우려가 있으므로, 상기 범위 내에서 적절히 조절한다.
전술한 바와 같이 본 발명에 따른 리튬-설퍼 전지용 전해액은 전해액 안정성을 확보하기 위하여 용매로 고리형 에테르 및 선형 에테르의 혼합 용매를 이용하며, 이에 따라 전지의 충ㆍ방전 중 전지 내 기체 발생을 억제하고, 스웰링 현상을 개선할 수 있다.
본 발명에 따른 상기 전해액의 제조방법은 본 발명에서 특별히 한정하지 않으며, 당업계에 공지된 통상적인 방법에 의해 제조될 수 있다.
리튬- 설퍼 전지
본 발명에 따른 리튬-설퍼 전지는 양극 및 음극과 이들 사이에 개재되는 분리막 및 전해액을 포함하고, 전해액으로서 본 발명에 따른 리튬-설퍼 전지용 전해액을 사용한다.
본 발명에 따른 리튬-설퍼 전지는 전해액 안정성이 개선되어 우수한 수명 특성을 나타낸다.
상기 리튬-설퍼 전지의 양극, 음극 및 분리막의 구성은 본 발명에서 특별히 한정하지 않으며, 이 분야에서 공지된 바를 따른다.
양극
본 발명에 따른 양극은 양극 집전체 상에 형성된 양극 활물질을 포함한다.
상기 양극 집전체로는 기술분야에서 집전체로 사용될 수 있는 것이라면 모두 가능하고, 구체적으로 우수한 도전성을 갖는 발포 알루미늄, 발포 니켈 등을 사용하는 것이 바람직할 수 있다.
상기 양극 활물질은 황 원소(Elemental sulfur, S8), 황 계열 화합물 또는 이들의 혼합물을 포함할 수 있다. 상기 황 계열 화합물은 구체적으로, Li2Sn(n≥≥1), 유기황 화합물 또는 탄소-황 폴리머((C2Sx)n: x=2.5 ~ 50, n≥≥2) 등일 수 있다. 이들은 황 물질 단독으로는 전기전도성이 없기 때문에 도전재와 복합하여 적용될 수 있다.
상기 도전재는 다공성일 수 있다. 따라서, 상기 도전재로는 다공성 및 도전성을 갖는 것이라면 제한 없이 사용할 수 있으며, 예를 들어 다공성을 갖는 탄소계 물질을 사용할 수 있다. 이와 같은 탄소계 물질로는 카본 블랙, 그라파이트, 그래핀, 활성탄, 탄소 섬유 등을 사용할 수 있다. 또한, 금속 메쉬 등의 금속성 섬유; 구리, 은, 니켈, 알루미늄 등의 금속성 분말; 또는 폴리페닐렌 유도체 등의 유기 도전성 재료도 사용할 수 있다. 상기 도전성 재료들은 단독 또는 혼합하여 사용될 수 있다.
상기 양극은 양극 활물질과 도전재의 결합과 집전체에 대한 결합을 위하여 바인더를 더 포함할 수 있다. 상기 바인더는 열가소성 수지 또는 열경화성 수지를 포함할 수 있다. 예를 들어, 폴리에틸렌, 폴리에틸렌옥사이드, 폴리프로필렌, 폴리테트라플루오로 에틸렌(PTFE), 폴리불화비닐리덴(PVDF), 스티렌-부타디엔 고무, 테트라플루오로에틸렌-퍼플루오로 알킬비닐에테르 공중합체, 불화비닐리덴-헥사 플루오로프로필렌 공중합체, 불화비닐리덴-클로로트리플루오로에틸렌 공중합체, 에틸렌-테트라플루오로에틸렌 공중합체, 폴리클로로트리플루오로에틸렌, 불화비니리덴-펜타프루오로 프로필렌 공중합체, 프로필렌-테트라플루오로에틸렌 공중합체, 에틸렌-클로로트리플루오로에틸렌 공중합체, 불화비닐리덴-헥사플루오로프로필렌-테트라 플루오로에틸렌 공중합체, 불화비닐리덴-퍼플루오로메틸비닐에테르-테트라플루오로 에틸렌 공중합체, 에틸렌-아크릴산 공중합체 등을 단독 또는 혼합하여 사용할 수 있으나, 반드시 이들로 한정되지 않으며 당해 기술분야에서 바인더로 사용될 수 있는 것이라면 모두 가능하다.
상기와 같은 양극은 통상의 방법에 따라 제조될 수 있으며, 구체적으로는 양극 활물질과 도전재 및 바인더를 유기 용매 상에서 혼합하여 제조한 양극 활물질층 형성용 조성물을 집전체 위에 도포 및 건조하고, 선택적으로 전극 밀도의 향상을 위하여 집전체에 압축 성형하여 제조할 수 있다. 이때 상기 유기 용매로는 양극 활물질, 바인더 및 도전재를 균일하게 분산시킬 수 있으며, 쉽게 증발되는 것을 사용하는 것이 바람직하다. 구체적으로는 아세토니트릴, 메탄올, 에탄올, 테트라히드로퓨란, 물, 이소프로필알코올 등을 들 수 있다.
음극
본 발명에 따른 음극은 음극 집전체 상에 형성된 음극 활물질을 포함한다.
상기 음극 집전체는 구체적으로 구리, 스테인리스스틸, 티타늄, 은, 팔라듐, 니켈, 이들의 합금 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있다. 상기 스테인리스스틸은 카본, 니켈, 티탄 또는 은으로 표면 처리될 수 있으며, 상기 합금으로는 알루미늄-카드뮴 합금이 사용될 수 있다. 그 외에도 소성 탄소, 도전재로 표면 처리된 비전도성 고분자, 또는 전도성 고분자 등이 사용될 수도 있다.
상기 음극 활물질로는 리튬 이온(Li+)을 가역적으로 흡장(Intercalation) 또는 방출(Deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 사용할 수 있다. 상기 리튬 이온(Li+)을 가역적으로 흡장 또는 방출할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.
상기 음극은 음극 활물질과 도전재의 결합과 집전체에 대한 결합을 위하여 바인더를 더 포함할 수 있으며, 구체적으로 상기 바인더는 앞서 양극의 바인더에서 설명한 바와 동일하다.
분리막
양극과 음극 사이는 통상적인 분리막이 개재될 수 있다. 상기 분리막은 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서, 통상의 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해액의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다.
또한, 상기 분리막은 양극과 음극을 서로 분리 또는 절연시키면서 양극과 음극 사이에 리튬 이온의 수송을 가능하게 한다. 이러한 분리막은 다공성이고 비전도성 또는 절연성인 물질로 이루어질 수 있다. 상기 분리막은 필름과 같은 독립적인 부재이거나, 또는 양극 및/또는 음극에 부가된 코팅층일 수 있다.
구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 리튬-설퍼 전지에 포함되는 상기 양극, 음극 및 분리막은 각각 통상적인 성분과 제조 방법에 따라 준비될 수 있으며, 또한 리튬-설퍼 전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(Pouch)형 또는 코인(Coin)형 등이 될 수 있다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
실시예 1 내지 2 및 비교예 1
(1) 전해액의 제조
하기 표 1의 조성을 갖는 혼합 용매에 1.0 M 농도로 LiTFSI((CF3SO2)2NLi)를 첨가하고, 전해액 100 중량% 기준으로 1 중량%의 LiNO3를 첨가하여 실시예 1 내지 2 및 비교예 1의 비수계 전해액을 제조하였다. 이때 사용된 용매는 다음과 같다.
DOL: 1,3-디옥솔란 (1,3-Dioxolane)
DME: 1,2-디메톡시에탄 (1,2-Dimethoxyethane)
EGEME: 에틸렌글리콜 에틸메틸에테르 (Ethyleneglycol ethylmethyl ether)
DPE: 디프로필에테르 (Dipropyl ether)
Figure PCTKR2017002607-appb-T000001
(2) 리튬-설퍼 전지의 제조
황 65 중량%, 카본 블랙 25 중량%, 및 폴리에틸렌 옥사이드 10 중량%를 아세토니트릴과 혼합하여 양극 활물질 슬러리를 준비하였다. 상기 양극 활물질 슬러리를 알루미늄 집전체 상에 코팅하고 이를 건조하여 30 × 50 ㎟ 크기를 가진, 로딩량 5 mAh/cm2의 양극을 제조하였다. 또, 두께 150㎛의 리튬 금속을 음극으로 하였다.
상기 제조한 양극과 음극을 대면하도록 위치시키고 그 사이에 두께 20 ㎛의 폴리에틸렌 분리막을 개재한 후, 상기 제조한 실시예 및 비교예의 전해액으로 충전하였다.
실험예 1: 전지 성능 평가
상기 실시예 1 내지 2 및 비교예 1의 각 리튬-설퍼 전지에 대하여 하기 조건으로 20 사이클을 진행하면서 비 방전 용량(Specific Discharge Capacity)을 측정하였으며, 그 결과를 도 1에 나타내었다.
충전: 율속 0.1C, 전압 2.8V, CC/CV (5% current cut at 0.1C)
방전: 율속 0.1C, 전압 1.5V, CC
도 1에 나타난 바와 같이, 비교예 1의 전지는 10 사이클 이후 방전 용량이 급격하게 떨어지는 것을 확인할 수 있다. 그러나, 실시예 1 및 2의 전지는 20 사이클까지도 안정적으로 방전 용량이 유지됨을 알 수 있다. 또한, 비교예 1의 전지는 전지 구동에 따라 가스가 발생하여 스웰링 현상이 관찰되었으나, 실시예 1 및 2의 전지는 스웰링 현상이 관찰되지 않았다.
실시예 3 내지 6 및 비교예 2
(1) 전해액의 제조
하기 표 2의 조성을 갖는 혼합 용매에 1.0 M 농도로 LiTFSI((CF3SO2)2NLi)를 첨가하고, 전해액 100 중량% 기준으로 1 중량%의 LiNO3를 첨가하여 실시예 3 내지 6 및 비교예 2의 비수계 전해액을 제조하였다. 이때 사용된 용매는 다음과 같다.
DOL: 1,3-디옥솔란 (1,3-Dioxolane)
DME: 1,2-디메톡시에탄 (1,2-Dimethoxyethane)
EGEME: 에틸렌글리콜 에틸메틸에테르 (Ethyleneglycol ethylmethyl ether)
EGDEE: 에틸렌글리콜 디에틸에테르 (Ethyleneglycol diethyl ether)
DPE: 디프로필에테르 (Dipropyl ether)
DIBE: 디이소부틸에테르 (Diisobutyl ether)
Figure PCTKR2017002607-appb-T000002
(2) 리튬-설퍼 전지의 제조
황 60 중량%, 카본 블랙 30 중량%, 및 폴리에틸렌 옥사이드 10 중량%를 아세토니트릴과 혼합하여 양극 활물질 슬러리를 준비하였다. 상기 양극 활물질 슬러리를 알루미늄 집전체 상에 코팅하고 이를 건조하여 30 × 50 ㎟ 크기를 가진, 로딩량 5 mAh/cm2의 양극을 제조하였다. 또, 두께 150㎛의 리튬 금속을 음극으로 하였다.
상기 제조한 양극과 음극을 대면하도록 위치시키고 그 사이에 두께 20 ㎛의 폴리에틸렌 분리막을 개재한 후, 상기 제조한 실시예 및 비교예의 전해액으로 충전하였다.
실험예 2: 전지 성능 평가
상기 실시예 3 내지 6 및 비교예 2의 각 리튬-설퍼 전지에 대하여 하기 조건으로 충전 및 방전을 반복하면서 비 방전 용량(Specific Discharge Capacity)을 측정하였으며, 그 결과를 도 2에 나타내었다.
충전: 율속 0.1C, 전압 2.8V, CC/CV (5% current cut at 0.1C)
방전: 율속 0.1C, 전압 1.5V, CC
도 2에 나타난 바와 같이, 본 발명의 전해액을 사용한 리튬-설퍼 전지의 경우, 수십 회 사이클이 반복되는 동안 높은 초기 충방전 용량을 유지함을 알 수 있다. 한편, 고리형 에테르가 용매 총 부피의 50%를 차지하는 실시예 6의 전지는 다른 실시예 전지들에 비하여 전지 수명 특성의 향상 효과가 다소 낮게 나타나는 것으로 확인되었다.
이와 비교하여, 비교예 2의 전지는 약 15회 충방전 이후 초기 용량이 크게 저하되는 경향을 나타내었다. 이러한 결과는 용매 자체의 낮은 안정성으로 인해 전지 구동 중 전해액 분해가 발생하였기 때문으로 생각된다.
상기 결과로부터, 본 발명의 3성분계 조합의 전해액 조성이 전지의 초기 충방전 용량의 유지율을 높이고, 기존 조합의 전해액 대비 전지의 수명 특성 또한 향상시킬 수 있음을 알 수 있다. 또한, 본 발명의 전해액은 고리형 에테르의 함량이 용매 총 중량의 40 % 이하인 경우에 보다 우수한 전지 수명 향상 효과를 나타냄을 알 수 있다.

Claims (14)

  1. 리튬염 및 비수계 용매를 포함하고,
    상기 비수계 용매는
    i) 고리구조 내 두 개의 산소를 포함하는 고리형 에테르;
    ii) 하기 화학식 1로 표시되는 글리콜 에테르; 및
    iii) 하기 화학식 2로 표시되는 선형 에테르; 를 포함하는 것을 특징으로 하는 리튬-설퍼 전지용 전해액.
    [화학식 1]
    R1-O-(CH2CH2O)x-R2
    [화학식 2]
    R3-O-(CH2CH2O)y-R4
    (상기 화학식 1 및 2에서,
    R1 내지 R4는 서로 같거나 다르며, 각각 독립적으로 C1 내지 C6의 알킬기, 또는 C6 내지 C12의 아릴기이고, 또는 C7 내지 C13의 아릴알킬기이고,
    x는 1 내지 4의 정수이고,
    y는 0 내지 4의 정수이며,
    상기 화학식 1의 에테르는 상기 화학식 2의 에테르와 상이하다)
  2. 제1항에 있어서,
    상기 고리형 에테르는 C1 내지 C4의 알킬기 또는 알콕시기로 치환 또는 비치환된 5 내지 7원 고리형 에테르인 것을 특징으로 하는 리튬-설퍼 전지용 전해액.
  3. 제1항에 있어서,
    상기 고리형 에테르는 C1 내지 C4의 알킬기 또는 알콕시기로 치환 또는 비치환된 디옥솔란, 또는 디옥산인 것을 특징으로 하는 리튬-설퍼 전지용 전해액.
  4. 제1항에 있어서,
    상기 고리형 에테르는 1,3-디옥솔란, 4,5-디에틸-1,3-디옥솔란, 4,5-디메틸-1,3-디옥솔란, 4-메틸-1,3-디옥솔란, 4-에틸-1,3-디옥솔란, 1,3-디옥산, 1,4-디옥산, 4-메틸-1,3-디옥산, 및 2-메틸-1,3-디옥산으로 이루어진 군에서 선택되는 1종인 것을 특징으로 하는 리튬-설퍼 전지용 전해액.
  5. 제1항에 있어서,
    상기 글리콜 에테르는 1,2-디메톡시에탄, 에틸렌글리콜 에틸메틸에테르, 디에틸렌글리콜 디메틸에테르, 트리에틸렌글리콜 디메틸에테르, 및 테트라에틸렌글리콜 디메틸에테르로 이루어지는 군에서 선택되는 1종인 것을 특징으로 하는 리튬-설퍼 전지용 전해액.
  6. 제1항에 있어서,
    상기 선형 에테르는 에틸렌글리콜 에틸메틸에테르, 에틸렌글리콜 디에틸에테르, 디프로필에테르, 디이소프로필에테르, 디부틸에테르, 및 디이소부틸에테르 에테르로 이루어지는 군에서 선택되는 1종인 것을 특징으로 하는 리튬-설퍼 전지용 전해액.
  7. 제1항에 있어서,
    상기 고리형 에테르는 비수계 용매 총 중량의 10 내지 40 부피%로 포함되는 것을 특징으로 하는 리튬-설퍼 전지용 전해액.
  8. 제1항에 있어서,
    상기 글리콜 에테르 및 선형 에테르는 1:3 내지 3:1 의 부피비로 포함되는 것을 특징으로 하는 리튬-설퍼 전지용 전해액.
  9. 제1항에 있어서,
    상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiC4BO8, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, (C2F5SO2)2NLi, (SO2F)2NLi, (CF3SO2)3CLi, 클로로 보란 리튬, 저급지방족 카르본산 리튬, 4-페닐 붕산 리튬, 리튬 이미드 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함하는 것을 특징으로 하는 리튬-설퍼 전지용 전해액.
  10. 제1항에 있어서,
    상기 리튬염은 0.1 내지 4.0 M 농도로 포함되는 것을 특징으로 하는 리튬-설퍼 전지용 전해액.
  11. 제1항에 있어서,
    상기 전해액은 분자 내 N-O 결합을 갖는 첨가물을 더 포함하는 것을 특징으로 하는 리튬-설퍼 전지용 전해액.
  12. 제11항에 있어서,
    상기 첨가물은 질산리튬, 질산칼륨, 질산세슘, 질산바륨, 질산암모늄, 아질산리튬, 아질산칼륨, 아질산세슘, 아질산암모늄, 메틸 니트레이트, 디알킬 이미다졸륨 니트레이트, 구아니딘 니트레이트, 이미다졸륨 니트레이트, 피리디늄 니트레이트, 에틸 니트라이트, 프로필 니트라이트, 부틸 니트라이트, 펜틸 니트라이트, 옥틸 니트라이트, 니트로메탄, 니트로프로판, 니트로부탄, 니트로벤젠, 디니트로벤젠, 니트로 피리딘, 디니트로피리딘, 니트로톨루엔, 디니트로톨루엔, 피리딘 N-옥사이드, 알킬피리딘 N-옥사이드, 및 테트라메틸 피페리디닐옥실로 이루어지는 군에서 선택되는 1종 이상인 것을 특징으로 하는 리튬-설퍼 전지용 전해액.
  13. 제11항에 있어서,
    상기 첨가물은 전해액 100 중량% 에 대하여 0.01 내지 10 중량% 로 포함되는 것을 특징으로 하는 리튬-설퍼 전지용 전해액.
  14. 제1항 내지 제13항 중 어느 한 항의 전해액을 포함하는 리튬-설퍼 전지.
PCT/KR2017/002607 2016-06-28 2017-03-10 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지 WO2018004110A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780026038.8A CN109075393B (zh) 2016-06-28 2017-03-10 锂硫电池用电解液和包含所述电解液的锂硫电池
EP17820387.3A EP3422460B1 (en) 2016-06-28 2017-03-10 Electrolyte solution for lithium-sulfur battery and lithium-sulfur battery comprising same
JP2018545612A JP6699877B2 (ja) 2016-06-28 2017-03-10 リチウム−硫黄電池用電解液及びこれを含むリチウム−硫黄電池
US16/082,400 US10923759B2 (en) 2016-06-28 2017-03-10 Electrolyte solution for lithium-sulfur battery and lithium-sulfur battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160080646 2016-06-28
KR10-2016-0080646 2016-06-28
KR1020170028616A KR20180002000A (ko) 2016-06-28 2017-03-07 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
KR10-2017-0028616 2017-03-07

Publications (1)

Publication Number Publication Date
WO2018004110A1 true WO2018004110A1 (ko) 2018-01-04

Family

ID=60786432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002607 WO2018004110A1 (ko) 2016-06-28 2017-03-10 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지

Country Status (1)

Country Link
WO (1) WO2018004110A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416613A (zh) * 2019-08-02 2019-11-05 湖州昆仑动力电池材料有限公司 一种提升锂离子电池循环性能和安全性能的电解液
WO2020148285A1 (en) 2019-01-17 2020-07-23 Sceye Sàrl Lis battery with low solvating electrolyte
WO2021069894A1 (en) * 2019-10-09 2021-04-15 Mexichem Fluor S.A. De C.V. Non-aqueous electrolytic composition and use therefor
EP4120422A4 (en) * 2020-11-26 2024-01-10 LG Energy Solution, Ltd. ELECTROLYTE FOR LITHIUM-SULFUR BATTERY AND LITHIUM-SULFUR BATTERY THEREOF

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441514B1 (ko) * 2001-10-15 2004-07-23 삼성에스디아이 주식회사 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
KR20050038895A (ko) * 2003-10-23 2005-04-29 삼성에스디아이 주식회사 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
KR101167334B1 (ko) * 2004-01-06 2012-07-19 싸이언 파워 코포레이션 리튬 황 전지를 위한 전해질
KR20140034087A (ko) * 2012-09-10 2014-03-19 한양대학교 산학협력단 리튬 황 전지용 전해질 및 이를 포함하는 리튬 황 전지
KR20160042525A (ko) * 2014-10-10 2016-04-20 주식회사 엘지화학 리튬-설퍼 전지용 유기 전해액 및 이를 포함하는 리튬-설퍼 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441514B1 (ko) * 2001-10-15 2004-07-23 삼성에스디아이 주식회사 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
KR20050038895A (ko) * 2003-10-23 2005-04-29 삼성에스디아이 주식회사 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
KR101167334B1 (ko) * 2004-01-06 2012-07-19 싸이언 파워 코포레이션 리튬 황 전지를 위한 전해질
KR20140034087A (ko) * 2012-09-10 2014-03-19 한양대학교 산학협력단 리튬 황 전지용 전해질 및 이를 포함하는 리튬 황 전지
KR20160042525A (ko) * 2014-10-10 2016-04-20 주식회사 엘지화학 리튬-설퍼 전지용 유기 전해액 및 이를 포함하는 리튬-설퍼 전지

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020148285A1 (en) 2019-01-17 2020-07-23 Sceye Sàrl Lis battery with low solvating electrolyte
US11961970B2 (en) 2019-01-17 2024-04-16 Sceye Sa LiS battery with low solvating electrolyte
CN110416613A (zh) * 2019-08-02 2019-11-05 湖州昆仑动力电池材料有限公司 一种提升锂离子电池循环性能和安全性能的电解液
WO2021069894A1 (en) * 2019-10-09 2021-04-15 Mexichem Fluor S.A. De C.V. Non-aqueous electrolytic composition and use therefor
EP4120422A4 (en) * 2020-11-26 2024-01-10 LG Energy Solution, Ltd. ELECTROLYTE FOR LITHIUM-SULFUR BATTERY AND LITHIUM-SULFUR BATTERY THEREOF

Similar Documents

Publication Publication Date Title
WO2018062719A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
KR102050837B1 (ko) 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
WO2016159702A1 (ko) 비수 전해액 및 이를 구비한 리튬 이차전지
WO2018080071A1 (ko) 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
WO2015065102A1 (ko) 리튬 이차전지
KR20180001997A (ko) 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
WO2017099420A1 (ko) 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지
WO2013191476A1 (ko) 첨가제를 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2017183810A1 (ko) 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
WO2018212429A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019156434A1 (ko) 전해액 조성물 및 이를 이용한 이차전지
WO2020153822A1 (ko) 리튬 이차 전지
WO2018004110A1 (ko) 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
WO2019103434A1 (ko) 첨가제, 이를 포함하는 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차 전지
KR20180002000A (ko) 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
WO2019027137A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2018021746A1 (ko) 리튬 전지 전해질용 첨가제, 이를 포함하는 리튬 전지용 전해질 및 상기 전해질을 채용한 리튬 전지
WO2016052996A1 (ko) 비수 전해액 리튬 이차전지
WO2020105981A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
WO2015093885A1 (ko) 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
WO2020197278A1 (ko) 리튬 이차 전지
KR20200047365A (ko) 리튬-황 이차전지
WO2022092688A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019078526A2 (ko) 리튬 금속 전지용 전해질 및 이를 포함하는 리튬 금속 전지
WO2018004103A1 (ko) 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545612

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017820387

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017820387

Country of ref document: EP

Effective date: 20180927

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE