WO2018003645A2 - 基地局装置、端末装置およびその通信方法 - Google Patents

基地局装置、端末装置およびその通信方法 Download PDF

Info

Publication number
WO2018003645A2
WO2018003645A2 PCT/JP2017/022957 JP2017022957W WO2018003645A2 WO 2018003645 A2 WO2018003645 A2 WO 2018003645A2 JP 2017022957 W JP2017022957 W JP 2017022957W WO 2018003645 A2 WO2018003645 A2 WO 2018003645A2
Authority
WO
WIPO (PCT)
Prior art keywords
uplink data
base station
nack
transmission
uplink
Prior art date
Application number
PCT/JP2017/022957
Other languages
English (en)
French (fr)
Other versions
WO2018003645A3 (ja
Inventor
貴司 吉本
淳悟 後藤
中村 理
泰弘 浜口
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016126321A external-priority patent/JP2019145852A/ja
Priority claimed from JP2016126322A external-priority patent/JP2019145853A/ja
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/313,040 priority Critical patent/US10660122B2/en
Publication of WO2018003645A2 publication Critical patent/WO2018003645A2/ja
Publication of WO2018003645A3 publication Critical patent/WO2018003645A3/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1816Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of the same, encoded, message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the present invention relates to a base station device, a terminal device, and a communication method thereof.
  • the terminal device In communication systems such as LTE (Long Term Evolution) and LTE-A (LTE-Advanced), which are specified in 3GPP (Third Generation Partnership Project), the terminal device (UE: User User Equipment) has a scheduling request (SR: Scheduling). Request) and buffer status report (BSR: Buffer Status Report) are used to request radio resources for transmitting uplink data from the base station apparatus (eNodeB: evolved Node B).
  • the base station apparatus gives an uplink transmission permission (UL Grant) to each terminal apparatus based on SR and BSR.
  • UL Grant uplink transmission permission
  • the terminal apparatus transmits uplink data using a predetermined radio resource based on the uplink transmission parameter included in the UL Grant.
  • the base station apparatus When the base station apparatus correctly receives the uplink data, the base station apparatus transmits an acknowledgment (ACK: Acknowledgement) to the terminal apparatus in the downlink after a predetermined time from the reception of the uplink data. On the other hand, when the uplink data cannot be correctly received, the base station apparatus transmits a negative response (NACK: Negative Acknowledgement) to the terminal device after a predetermined time from the reception of the uplink data. The terminal apparatus that has received the NACK retransmits data related to the uplink data. Thus, the base station apparatus controls all uplink data transmission (data transmission from the terminal apparatus to the base station apparatus). The base station apparatus controls uplink radio resources, thereby realizing orthogonal multiple access (OMA: Orthogonal Multiple Access).
  • OMA orthogonal Multiple Access
  • Non-patent Document 1 a radio access technology that realizes mass machine type communication
  • NOMA Non-Orthogonal Multiple Access
  • Grant-free non-orthogonal multiple access allows data transmitted from a terminal device exceeding the number of receiving antennas of the base station device to be non-orthogonal multiplexed in space.
  • the terminal device transmits uplink data to the base station device without performing SR transmission or UL Grant reception. For this reason, in grant-free non-orthogonal multiple access, an increase in overhead due to control information can be suppressed even when a large number of devices transmit and receive small-size data. Furthermore, in grant-free non-orthogonal multiple access, since UL Grant reception is not performed, the time from generation of transmission data to transmission can be shortened.
  • the present invention has been made in view of such circumstances, and an object thereof is to efficiently perform retransmission control for small-size data in grant-free multiple access in which a base station apparatus accommodates a large number of terminal apparatuses.
  • An object of the present invention is to provide a possible base station apparatus, terminal apparatus and communication method.
  • the configurations of the base station apparatus, terminal apparatus, and communication method according to the present invention are as follows.
  • One aspect of the present invention is a base station device that communicates with a terminal device, the transmitting unit transmitting an uplink grant that instructs the terminal device to transmit uplink data, and the uplink A reception unit that receives uplink data transmitted from the terminal device based on a grant and uplink data transmitted from the terminal device regardless of the uplink ground, and the reception unit includes the uplink grant.
  • the transmission unit transmits a transmission confirmation signal for the uplink data using one control channel including a transmission confirmation signal for only the uplink data.
  • the receiving unit receives uplink data from the terminal device regardless of the uplink grant.
  • the transmission unit using a single control channel including a transmission acknowledgment signal for a plurality of terminals including the terminal device, transmitting a transmission confirmation signal for said uplink link data, and wherein.
  • the transmission unit uses a parameter common to the plurality of terminal devices for one control channel including transmission confirmation signals for the plurality of terminal devices including the terminal device.
  • a cyclic redundancy check scrambled with the generated sequence is added, and a cyclic scrambled with a parameter specific to the terminal device that has transmitted the uplink data to one control channel including a transmission confirmation signal for only the uplink data It is characterized by adding a redundancy check.
  • the reception unit receives an identification signal that identifies a terminal device that has transmitted the uplink data regardless of an uplink ground, and is a parameter common to the plurality of terminal devices. Includes a slot number in which the identification signal is transmitted.
  • the reception unit receives an identification signal that identifies a terminal device that has transmitted the uplink data regardless of an uplink ground, and is a parameter common to the plurality of terminal devices. Includes a slot number in which the uplink data is transmitted.
  • a communication method for a base station apparatus that communicates with a terminal apparatus, wherein a transmission step of transmitting an uplink grant instructing the terminal apparatus to transmit uplink data is provided.
  • the terminal Using one control channel including a transmission acknowledgment signal for a plurality of terminal devices including the device, to transmit the transmission confirmation signal for said uplink link data, and wherein.
  • a terminal device that communicates with a base station device, a receiving unit that receives an uplink grant instructing a resource for transmitting uplink data, and the uplink grant.
  • a transmission unit that transmits uplink data to the base station apparatus based on the uplink ground and transmits the uplink data to the base station apparatus regardless of the uplink ground, and the transmission unit is based on the uplink grant.
  • the reception unit receives a transmission confirmation signal for the uplink data using one control channel including a transmission confirmation signal for only the uplink data, and transmits the transmission data.
  • the receiving unit When the unit transmits uplink data to the base station apparatus regardless of the uplink grant, the receiving unit Using one control channel including a transmission acknowledgment signal for a plurality of terminal devices including the device that receives the transmission confirmation signal for said uplink link data, and wherein.
  • a communication method for a terminal apparatus that communicates with a base station apparatus, the reception step for receiving an uplink grant indicating a resource for transmitting uplink data, Transmitting uplink data to the base station apparatus based on a link grant, and transmitting uplink data to the base station apparatus regardless of the uplink ground, and an uplink based on the uplink grant
  • link data is transmitted to the base station apparatus
  • a transmission confirmation signal for the uplink data is received using one control channel including a transmission confirmation signal for only the uplink data, regardless of the uplink grant.
  • a plurality of terminal apparatuses including its own terminal apparatus are Using one control channel including a transmission confirmation signal that, receiving a transmission confirmation signal for said uplink link data, and wherein.
  • the communication system includes a base station device (cell, small cell, serving cell, component carrier, eNodeB, Home eNodeB) and a terminal device (terminal, mobile terminal, UE: User Equipment).
  • the base station apparatus in the case of downlink, the base station apparatus is a transmission apparatus (transmission point, transmission antenna group, transmission antenna port group), and the terminal apparatus is a reception apparatus (reception point, reception terminal, reception antenna group, reception antenna port). Group).
  • the base station apparatus becomes a receiving apparatus and the terminal apparatus becomes a transmitting apparatus.
  • the communication system can also be applied to D2D (Device-to-Device) communication. In that case, both the transmitting device and the receiving device are terminal devices.
  • D2D Device-to-Device
  • the communication system is not limited to data communication between a terminal device and a base station device in which a human intervenes, but MTC (Machine Type Communication), M2M communication (Machine-to-Machine Communication), IoT (Internet of Things). ) Communication, NB-IoT (Narrow Band-IoT), etc. (hereinafter referred to as MTC) can be applied to data communication forms that do not require human intervention.
  • the terminal device is an MTC terminal.
  • DFTS-OFDM also called Discrete-Fourier-Transform-Spread---Orthogonal-Frequency-Division-Multiplexing, SC-FDMA
  • SC-FDMA Discrete-Fourier-Transform-Spread---Orthogonal-Frequency-Division-Multiplexing
  • the base station apparatus and the terminal apparatus in the present embodiment are a frequency band called a licensed band (licensed band) obtained from a country or region where a wireless provider provides a service (license), and / or Communication is possible in a so-called unlicensed band that does not require a license from the country or region.
  • a licensed band obtained from a country or region where a wireless provider provides a service (license)
  • / or Communication is possible in a so-called unlicensed band that does not require a license from the country or region.
  • X / Y includes the meaning of “X or Y”. In the present embodiment, “X / Y” includes the meanings of “X and Y”. In the present embodiment, “X / Y” includes the meaning of “X and / or Y”.
  • FIG. 1 is a diagram illustrating a configuration example of a communication system according to the present embodiment.
  • the communication system in the present embodiment includes a base station device 10 and terminal devices 20-1 to 20-n (n is a natural number).
  • the terminal devices 20-1 to 20-n are also collectively referred to as the terminal device 20.
  • the coverage 10a is a range (communication area) in which the base station device 10 can be connected to the terminal device 20 (also referred to as a cell).
  • the base station device 10 and the terminal device 20 support grant-free (also called grant-less, contention base) multiple access in the uplink.
  • grant-free multiple access the terminal device 20 does not receive uplink transmission permission (also called UL grant, also called scheduling grant) from the base station device 10 (without receiving UL grant), and receives uplink data.
  • Grant-free multiple access allows uplink data transmitted by a plurality of terminal apparatuses to overlap (collision) in time / frequency / space resources.
  • Grant-free multiple access allows the terminal device 20 to be non-orthogonal multiple access in addition to orthogonal multiple access when the terminal device 20 transmits uplink data at the same time and frequency (for this reason, grant Free uplink non-orthogonal multiple access (also called UL-NOMA: UpLink Non-Orthogonal Multiple Access).
  • grant Free uplink non-orthogonal multiple access also called UL-NOMA: UpLink Non-Orthogonal Multiple Access
  • uplink data signals transmitted from terminal devices exceeding the number of reception antennas of the base station device are non-orthogonal multiplexed in space.
  • the base station apparatus 10 and the terminal apparatus 20 may also support multiple access in which the terminal apparatus transmits uplink data based on the scheduling grant.
  • the base station apparatus 10 detects an uplink data signal transmitted by each terminal apparatus connected in grant-free multiple access.
  • the base station apparatus 10 uses SLIC (Symbol Level Interference Cancellation) for canceling interference based on the demodulation result of the interference signal, and CWIC (Codeword Level Interference for canceling interference based on the decoding result of the interference signal.
  • Cancellation turbo equalization
  • maximum likelihood detection ML: maximum likelihood, R-ML: Reduced complexity maximum likelihood
  • EMMSE-IRC that suppresses interference signals by linear operation (Enhanced-Minimum-Mean-Square-Error-Interference-Rejection-Combining) may be provided.
  • the transmission power of each uplink data signal may be set so that a reception power difference occurs in the base station apparatus.
  • grant-free multiple access a case will be described in which the base station apparatus detects a non-orthogonal multiplexed uplink data signal by applying an advanced receiving apparatus (Advanced Receiver) such as turbo equalization.
  • Advanced Receiver Advanced Receiver
  • the present invention is not limited to this as long as the uplink data signal can be detected.
  • grant-free multiple access may be performed using multiple access based on interleaving, such as IDMA (Interleaved Division Multiple Access).
  • IDMA Interleaved Division Multiple Access
  • the base station apparatus detects the uplink data signal transmitted by each terminal apparatus based on the interleave pattern applied to the uplink data signal (performs deinterleaving processing).
  • grant-free multiple access may be performed using code-based multiple access. In this case, the base station apparatus detects the uplink data signal transmitted by each terminal apparatus based on the code sequence (spread code) multiplied by the uplink data signal.
  • uplink wireless communication includes the following uplink physical channels.
  • the uplink physical channel is used for transmitting information output from an upper layer.
  • ⁇ Physical uplink control channel ⁇ Physical uplink shared channel ⁇ Physical random access channel
  • the physical uplink control channel is a physical channel used for transmitting uplink control information (UCI: “Uplink” Control “Information”).
  • the uplink control information includes a positive response (positive acknowledgement, ACK) / negative response (negative acknowledgement, NACK) for downlink data (downlink transport block, DL-SCH: Downlink-Shared Channel).
  • ACK / NACK is also referred to as a signal indicating delivery confirmation, HARQ-ACK, and HARQ feedback.
  • the uplink control information includes downlink channel state information (CSI: “Channel State Information”).
  • the channel state information specifies a rank index (RI: Rank Indicator) indicating a suitable spatial multiplexing number (number of layers), a precoding matrix index (PMI: Precoding Matrix Indicator) indicating a suitable precoder, and a suitable transmission rate.
  • RI rank index
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality indicator
  • the PMI indicates a code book determined by the terminal device.
  • the codebook is related to precoding of the physical downlink shared channel.
  • the CQI may be a suitable modulation scheme (for example, QPSK, 16QAM, 64QAM, 256QAM, etc.) and a coding rate in a predetermined band.
  • the physical uplink shared channel is a physical channel used for transmitting uplink data (uplink transport block, UL-SCH).
  • the physical uplink shared channel may be used to transmit ACK / NACK and / or channel state information for downlink data.
  • the physical uplink shared channel may be used for transmitting uplink control information.
  • the physical uplink shared channel may be generated by adding a cyclic redundancy check (CRC: Cyclic Redundancy Check) to the uplink data.
  • CRC Cyclic Redundancy Check
  • the physical uplink shared channel is used to transmit a radio resource control (RRC: Radio Resource Control) message.
  • RRC Radio Resource Control
  • the RRC message is information / signal processed in the radio resource control layer.
  • the physical uplink shared channel is used to transmit a MAC CE (Control Element).
  • the MAC CE is information / signal processed (transmitted) in the medium access control (MAC) layer.
  • the power headroom may be included in the MAC CE and reported via the physical uplink shared channel. That is, the MAC CE field is used to indicate the power headroom level.
  • the uplink data can include an RRC message and a MAC CE.
  • the physical random access channel is used to transmit a preamble used for random access.
  • an uplink reference signal (Uplink Signal: UL RS) is used as an uplink physical signal.
  • the uplink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer.
  • the uplink reference signal includes a demodulation reference signal (DMRS: “Demodulation Reference Signal”) and a sounding reference signal (SRS: “Sounding Reference Signal”).
  • DMRS is related to transmission of a physical uplink shared channel or a physical uplink control channel.
  • the base station apparatus 10 uses DMRS to perform channel correction when demodulating a physical uplink shared channel or a physical uplink control channel.
  • SRS is not related to transmission of a physical uplink shared channel or a physical uplink control channel.
  • the base station apparatus 10 uses SRS in order to measure the uplink channel state (CSI Measurement).
  • the downlink physical channel is used for transmitting information output from an upper layer.
  • ⁇ Physical broadcast channel ⁇ Physical downlink control channel ⁇ Physical downlink shared channel
  • the physical broadcast channel is used to broadcast a master information block (Master Information Block: MIB, B Broadcast Channel: BCH) commonly used by terminal devices. MIB is system information.
  • the physical broadcast channel includes system control information to be broadcast. For example, the physical broadcast channel includes information such as a downlink system band, a system frame number (SFN: System Frame number), and the number of transmission antennas used by the eNB.
  • the physical broadcast channel may include setting information of a channel including a retransmission request instruction (including a hybrid automatic retransmission request instruction).
  • the channel setting information including the retransmission request instruction indicates information regarding transmission resources of the channel, information regarding transmission sections, information regarding types of ACK / NACK, information regarding transmission timing of ACK / NACK, information regarding retransmission timing, and identification signal. Information etc. can be included.
  • the physical downlink control channel is used for transmitting downlink control information (DCI: Downlink Control Information).
  • DCI Downlink Control Information
  • the downlink control information defines a plurality of formats (also referred to as DCI formats) based on usage. Each format is used according to the application.
  • the downlink control information includes control information for downlink data transmission and control information for uplink data transmission.
  • the downlink control information can include information related to retransmission of uplink data (physical uplink shared channel).
  • the DCI format for downlink data transmission is used for physical downlink shared channel scheduling.
  • a DCI format for downlink data transmission is also referred to as a downlink grant (or downlink assignment).
  • the DCI format for downlink data transmission includes downlink control information such as information related to resource allocation of the physical downlink shared channel and information related to MCS (Modulation & Coding? Scheme) for the physical downlink shared channel.
  • the DCI format for downlink data transmission may include a transmission power control (TPC: Transmission Power Control) command for a physical uplink channel (for example, physical uplink control channel, physical uplink shared channel).
  • TPC Transmission Power Control
  • the DCI format for downlink data transmission may include information related to retransmission for uplink data (transport block, codeword).
  • Information regarding retransmission of uplink data includes information indicating ACK / NACK (new data index (NDI: New Date Indicator)), information indicating retransmission timing, information indicating frequency resources for retransmission, information regarding the type of ACK / NACK, Information regarding transmission timing of ACK / NACK, information indicating an identification signal, and the like can be included.
  • the DCI format for uplink data transmission is used to notify the terminal device of control information related to transmission of the physical uplink shared channel.
  • the DCI format for uplink data transmission includes information on MCS of the physical uplink shared channel, information on retransmission of uplink data (physical uplink shared channel), information on cyclic shift for DMRS, physical uplink sharing Uplink control information such as a TPC command for a channel, downlink channel state information (CSI: Channel Information, also called reception quality information) request (CSICrequest), and the like can be included.
  • Information related to retransmission of uplink data includes information indicating ACK / NACK (new data index (NDI: New Date Indicator)), information related to physical uplink shared channel RV (Redundancy ⁇ Version), information indicating retransmission timing, retransmission information Information indicating a frequency resource, information regarding the type of ACK / NACK, information regarding the transmission timing of ACK / NACK, information indicating an identification signal (for example, an identification signal used during retransmission), and the like can be included.
  • the transmission timing of the ACK / NACK can be set differently for scheduling grant transmission and grant-free transmission.
  • the DCI format for uplink data transmission can include information related to resource allocation of the physical uplink shared channel.
  • the physical downlink control channel is generated by adding a cyclic redundancy check (CRC: “Cyclic” Redundancy ”Check) to the downlink control information.
  • CRC cyclic redundancy check
  • the CRC parity bit is scrambled (also called an exclusive OR operation or mask) using a predetermined identifier.
  • the CRC parity bit is scrambled using a cell radio network temporary identifier (C-RNTI: “Cell- Radio Network Temporary Identifier)” as an identifier.
  • C-RNTI cell radio network temporary identifier
  • an identifier unique to grant-free transmission that is distinguished from an identifier for scheduling grant may be defined.
  • the identifier may be associated with a signal for identifying a terminal device or a signal for identifying an uplink data signal in grant-free transmission.
  • the downlink physical channel includes a physical channel including a retransmission request instruction such as ACK / NACK transmission (also referred to as a physical retransmission request instruction channel, a physical ACK / NACK channel, and a physical delivery confirmation channel).
  • a retransmission request instruction such as ACK / NACK transmission
  • the physical retransmission request instruction channel is a physical channel used for transmitting ACK / NACK (acknowledgment confirmation) for uplink data (transport block, codeword) received by the base station apparatus.
  • the physical retransmission request instruction channel can be used to transmit a HARQ indicator (HARQ feedback, a signal indicating delivery confirmation) indicating ACK / NACK for uplink data.
  • HARQ indicator HARQ feedback, a signal indicating delivery confirmation
  • the terminal device notifies the received ACK / NACK to the upper layer.
  • the HARQ indicator may include an ACK indicating that it has been correctly received (detected), a NACK indicating that it has not been correctly received, and a DTX indicating that there is no corresponding data.
  • the physical retransmission request instruction channel can include information related to retransmission such as information indicating retransmission timing, information indicating frequency resources for retransmission, information indicating identification signals, and the like.
  • the physical retransmission request instruction channel can associate a bit sequence indicating ACK / NACK and information regarding retransmission with an identifier unique to grant-free transmission.
  • the physical retransmission request instruction channel may be generated by adding a cyclic redundancy check (CRC) to a bit sequence indicating information about ACK / NACK or retransmission.
  • CRC cyclic redundancy check
  • the CRC parity bits are scrambled (also called an exclusive OR operation or mask) using a sequence associated with an identifier unique to grant-free transmission.
  • the physical retransmission request instruction channel can be generated by multiplying a bit sequence indicating information related to ACK / NACK and retransmission by a sequence associated with an identifier unique to grant-free transmission.
  • a bit sequence indicating information on ACK / NACK and retransmission is spread by a sequence associated with an identifier unique to grant-free transmission.
  • An identifier unique to grant-free transmission can be associated with a resource to which uplink data is transmitted. For example, an identifier unique to grant-free transmission is associated with a subframe number / slot number / symbol number / system frame number in which uplink data is transmitted. An identifier unique to grant-free transmission is associated with a frequency resource in which uplink data is transmitted. A sequence associated with an identifier unique to grant-free transmission is generated (as a generation parameter) using a subframe number / slot number / symbol number / frequency resource in which uplink data is transmitted. The base station apparatus and the terminal apparatus calculate an identifier unique to grant-free transmission using the subframe number / slot number / symbol number / frequency resource in which uplink data is transmitted.
  • the base station apparatus receives the subframe number that has received the uplink data.
  • an index indicating a frequency resource to which uplink data is transmitted may be included in a calculation formula for a sequence associated with an identifier unique to grant-free transmission.
  • An identifier unique to grant-free transmission may be associated with a subframe number / slot number / symbol number / system frame number in which ACK / NACK is transmitted.
  • the grant-free transmission specific identifier may be associated with a frequency resource in which ACK / NACK is transmitted.
  • An identifier unique to grant-free transmission can be associated with the resource to which the identification signal is transmitted.
  • the identifier unique to grant-free transmission is associated with the subframe number / slot number / system frame number in which the identification signal is transmitted.
  • the identifier unique to grant-free transmission may be associated with the frequency resource to which the upper identification signal is transmitted.
  • the sequence associated with the identifier unique to grant-free transmission is generated (as a generation parameter) using the subframe number / slot number / frequency resource in which the identification signal is transmitted.
  • the base station apparatus and the terminal apparatus calculate an identifier specific to grant-free transmission using the subframe number / slot number / frequency resource in which the identification signal is transmitted.
  • the base station apparatus determines the subframe number that received the identification signal.
  • an identifier unique to grant-free transmission can be calculated.
  • the identifier unique to grant-free transmission uses a parameter common to the multiplexed terminal apparatuses as a parameter for generating the identifier. It should be noted that an index indicating the frequency resource at which the identification signal is transmitted may be included in the calculation formula of the sequence associated with the identifier unique to the grant-free transmission.
  • the identifier unique to grant-free transmission may be shared by both devices by the base station device notifying the terminal device.
  • the base station device transmits an identifier (or a parameter for calculating the identifier) unique to grant-free transmission to the terminal device in S201 / S203 of FIG.
  • the base station apparatus may transmit an identifier (or a parameter for calculating the identifier) unique to grant-free transmission to the terminal apparatus using downlink control information.
  • the resource to which the physical retransmission request instruction channel is transmitted may be associated with the resource to which uplink data is transmitted in grant-free multiple access.
  • a resource to which a physical retransmission request instruction channel is transmitted is associated with a subframe number / slot number / symbol number / system frame number in which uplink data is transmitted in the frequency domain of the resource.
  • the resource to which the physical retransmission request instruction channel is transmitted may be associated with the frequency resource to which uplink data is transmitted in the frequency domain of the resource.
  • the base station apparatus and the terminal apparatus use the subframe number / slot number / symbol number / frequency resource index in which uplink data is transmitted to calculate a resource for transmitting a physical retransmission request instruction channel.
  • the resource to which the physical retransmission request instruction channel is transmitted may be associated with the downlink system bandwidth (for example, the number of resource blocks in the system bandwidth) in the frequency domain of the resource.
  • the resource to which the physical retransmission request instruction channel is transmitted is calculated by performing a modulo operation on the smallest frequency resource block index among the frequency resource blocks to which uplink data is transmitted by the number of resource blocks in the downlink system bandwidth.
  • the base station apparatus can calculate the resource for transmitting the physical retransmission request instruction channel by recognizing the frequency resource that has received the uplink data.
  • the resource to which the physical retransmission request instruction channel is transmitted may be associated with a signal (identification signal) for identifying the terminal device in grant-free multiple access.
  • the resource to which the physical retransmission request instruction channel is transmitted is associated with the subframe number / slot number / system frame number in which the identification signal is transmitted in the frequency domain of the resource.
  • the resource to which the physical retransmission request instruction channel is transmitted may be associated with the frequency resource to which the identification signal is transmitted in the frequency domain of the resource.
  • the base station apparatus and the terminal apparatus use the subframe number / slot number / frequency resource index in which the identification signal is transmitted to calculate a resource for transmitting the physical retransmission request instruction channel.
  • the resource to which the physical retransmission request instruction channel is transmitted may be associated with the downlink system bandwidth (for example, the number of resource blocks in the system bandwidth) in the frequency domain of the resource.
  • the resource to which the physical retransmission request instruction channel is transmitted is calculated by performing a modulo operation on the smallest frequency resource block index among the frequency resource blocks to which the identification signal is transmitted by the number of resource blocks in the downlink system bandwidth.
  • the base station apparatus can calculate the resource for transmitting the physical retransmission request instruction channel by recognizing the frequency resource that has received the identification signal.
  • a terminal device that multiplexes resources allocated to a sequence to be multiplied by a physical retransmission request indication channel / a sequence to be scrambled (masked) to a physical retransmission request indication channel / a physical retransmission request indication channel
  • the base station apparatus and the terminal apparatus can efficiently share the settings regarding the physical retransmission request instruction channel by associating with the identification signal and the parameter regarding the uplink data.
  • the physical retransmission request instruction channel can be used to transmit a delivery confirmation for uplink data transmitted based on a delivery confirmation / scheduling grant for uplink data of grant-free transmission.
  • the physical retransmission request instruction channel can be set differently depending on whether it is a delivery confirmation for grant-free transmission uplink data or a delivery confirmation for uplink data transmitted based on the scheduling grant.
  • the base station apparatus uses a physical retransmission request instruction channel that transmits a plurality of ACK / NACKs by multiplying one of the acknowledgments by a spreading code sequence, and the other acknowledgment is generated by adding CRC. You may set so that the physical retransmission request instruction
  • the physical retransmission request instruction channel may be included in one DCI format of the physical downlink control channel.
  • the physical downlink shared channel is used for transmitting downlink data (downlink transport block, DL-SCH).
  • the physical downlink shared channel is used for transmitting a system information message.
  • the system information message may include a system information block specific to grant-free transmission.
  • the system information block unique to grant-free transmission may include setting information such as an uplink resource (frequency band or the like) that performs grant-free transmission, an uplink resource that transmits ACK / NACK, and the type of ACK / NACK. it can. Part or all of the system information message can be included in the RRC message.
  • the physical downlink shared channel is used for transmitting the RRC message.
  • the RRC message can include a message for setting information related to grant-free transmission (also referred to as grant-free transmission setting assist information).
  • the RRC message transmitted from the base station apparatus may be common (cell specific) to a plurality of terminal apparatuses in the cell. That is, information common to user apparatuses in the cell is transmitted using a cell-specific RRC message.
  • the RRC message transmitted from the base station device may be a message dedicated to a certain terminal device (also referred to as dedicated signaling). That is, user device specific (user device specific) information is transmitted to a certain terminal device using a dedicated message.
  • the RRC message transmitted from the base station apparatus may be a message dedicated to grant-free transmission. That is, information unique to grant-free transmission may be transmitted using a message dedicated to grant-free transmission.
  • the physical downlink shared channel is used to transmit MAC CE.
  • the RRC message and / or MAC CE is also referred to as higher layer signaling.
  • a synchronization signal (Synchronization signal: SS) and a downlink reference signal (Downlink Signal: DL RS) are used as downlink physical signals.
  • the downlink physical signal is not used to transmit information output from the upper layer, but is used by the physical layer.
  • the synchronization signal is used for the terminal device to synchronize the downlink frequency domain and time domain.
  • the downlink reference signal is used by the terminal device for channel propagation correction of the downlink physical channel.
  • the downlink reference signal is used to demodulate a physical broadcast channel, a physical downlink shared channel, and a physical downlink control channel.
  • the downlink reference signal can also be used by the terminal apparatus to calculate (measurement) downlink channel state information.
  • the reference signal used for demodulating various channels may be different from the reference signal used for measurement (for example, DMRS: [Demodulation] Reference [Signal], CRS: [Cell-specific] Reference [Signal] in LTE).
  • the downlink physical channel and the downlink physical signal are collectively referred to as a downlink signal.
  • the uplink physical channel and the uplink physical signal are collectively referred to as an uplink signal.
  • the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel.
  • the downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
  • BCH, UL-SCH and DL-SCH are transport channels.
  • a channel used in the MAC layer is referred to as a transport channel.
  • a transport channel unit used in the MAC layer is also referred to as a transport block (TB: Transport Block) or a MAC PDU (Protocol Data Unit).
  • the transport block is a unit of data that is delivered (delivered) by the MAC layer to the physical layer. In the physical layer, the transport block is mapped to a code word, and an encoding process or the like is performed for each code word.
  • FIG. 2 is a diagram illustrating a sequence example between the base station apparatus and the communication apparatus in the multiple access using the scheduling grant according to the present embodiment.
  • the base station apparatus periodically transmits a synchronization signal and a broadcast channel according to a predetermined radio frame format.
  • the terminal device performs initial connection using a synchronization signal, a broadcast channel, and the like (S101).
  • the terminal apparatus performs frame synchronization and symbol synchronization in the downlink using the synchronization signal.
  • the terminal device uses the broadcast channel to specify system information such as a downlink system bandwidth, a system frame number (SFN: System Frame Number), the number of antenna ports, and settings related to a channel including a physical retransmission request.
  • system information such as a downlink system bandwidth, a system frame number (SFN: System Frame Number), the number of antenna ports, and settings related to a channel including a physical retransmission request.
  • SFN System Frame Number
  • the terminal device transmits UE Capability (S102).
  • the UE capability is information for notifying the base station device of functions supported by the terminal device. For example, the UE Capability is transmitted using an RRC message or the like.
  • the base station apparatus transmits setting information related to radio resource control to the terminal apparatus (S103). In S101 to S103, the terminal device can transmit a physical random access channel in order to acquire resources for uplink synchronization and RRC connection request.
  • the terminal device When the uplink data is generated, the terminal device transmits a scheduling request (SR) and a buffer status report (BSR) (S104).
  • the base station apparatus allocates radio resources for uplink data transmission to each terminal apparatus in consideration of the BSR and the like.
  • the base station apparatus transmits uplink transmission permission (UL Grant) to the terminal apparatus using the downlink control information (S105).
  • the terminal device transmits uplink data using a predetermined radio resource based on uplink transmission parameters (uplink resource allocation, etc.) included in the UL Grant (S106).
  • the base station apparatus transmits ACK / NACK for the uplink data (S107).
  • S107 in FIG. 2 is a case where NACK is transmitted.
  • the terminal device transmits again the data related to the uplink data (S108).
  • the data related to the uplink data may be the same as the uplink data (data bit and parity bit transmitted in the initial transmission) transmitted in the initial transmission, or the data not transmitted in the initial transmission (transmitted in the initial transmission). No data bits and parity bits). Further, the data related to the uplink data may be data including both the uplink data transmitted by the initial transmission and the data not transmitted by the initial transmission.
  • the terminal device transmits (initial transmission) new uplink data.
  • the base station apparatus performs signal detection processing using the uplink data (initial transmission) received in S106 and the downlink data (retransmission) received in S108.
  • the base station apparatus can use Chase combining and IR (Incremental Redundancy).
  • the base station apparatus transmits ACK / NACK (S109).
  • S109 of FIG. 2 is a case where ACK is transmitted.
  • FIG. 3 is a diagram illustrating a sequence example between the base station apparatus and the communication apparatus in multiple access using grant-free according to the present embodiment.
  • the base station apparatus 10 periodically transmits a synchronization signal according to a predetermined radio frame format.
  • the base station apparatus 10 transmits a broadcast channel.
  • the terminal device performs initial connection using a synchronization signal, a broadcast channel, etc. (S201).
  • the terminal apparatus performs frame synchronization and symbol synchronization in the downlink using the synchronization signal.
  • the terminal device uses the broadcast channel to specify system information such as a downlink system bandwidth, a system frame number, the number of antenna ports, and settings related to a channel including a physical retransmission request.
  • the terminal device When the broadcast channel includes setting information for grant-free transmission, the terminal device specifies the setting for grant-free transmission in the connected cell.
  • Setting information related to grant-free transmission includes information indicating that the base station device supports grant-free transmission, an area where grant-free transmission is possible, information related to terminal device identification (information indicating an identification signal, etc.), etc. Can do.
  • the terminal device transmits UE Capability (S202).
  • the base station apparatus can specify whether the terminal apparatus supports grant-free multiple access by using the UE capability.
  • the UE Capability is transmitted using an RRC message or the like.
  • the terminal device can transmit a physical random access channel in order to acquire resources for uplink synchronization and RRC connection request.
  • the base station device transmits setting information related to radio resource control to the terminal device (S203).
  • the setting information for radio resource control is transmitted using an RRC message or the like.
  • the setting information related to the radio resource control may include setting information related to grant-free transmission.
  • the setting information related to grant-free transmission includes grant-free transmittable area, information related to terminal device identification, information indicating retransmission timing, information indicating frequency resources for retransmission, information indicating ACK / NACK transmission timing, and type of ACK / NACK , Information indicating an identification signal, and the like can be included.
  • the terminal device specifies grant-free transmission setting information using the setting information related to the radio resource control. Part or all of the setting information related to the grant-free transmission may be notified by downlink control information.
  • the terminal device that supports grant-free transmission transmits the uplink data without obtaining UL Grant from the base station device (S204).
  • the terminal apparatus can transmit the identification signal assigned to itself and the uplink data.
  • the base station apparatus identifies the terminal apparatus using the identification signal, and detects the uplink data transmitted by the terminal apparatus.
  • the base station apparatus transmits ACK / NACK for the uplink data based on the ACK / NACK transmission timing (S205).
  • the base station apparatus can use the physical downlink control channel / physical retransmission request instruction channel for the ACK / NACK transmission.
  • the base station apparatus correctly detects the uplink data, the base station apparatus transmits ACK to the terminal apparatus.
  • the base station apparatus when the base station apparatus cannot correctly detect the uplink data, the base station apparatus transmits a NACK to the terminal apparatus (S205 in FIG. 3 is a case where the base station apparatus transmits a NACK).
  • the base station apparatus may transmit information regarding retransmission such as information indicating retransmission timing and information indicating frequency resources for retransmission.
  • the terminal apparatus multiplexed with the same time resource and frequency resource in S204 may transmit the retransmission using a time resource / frequency resource different from the initial transmission.
  • the terminal device When receiving the NACK in S205, the terminal device transmits again the same data as the uplink data (data bits and parity bits transmitted in the initial transmission) (S206).
  • the retransmitted uplink data may be data including both the data bit transmitted in the initial transmission, the parity bit, the data bit not transmitted in the initial transmission, and the parity bit.
  • the terminal apparatus when receiving the ACK, transmits (initial transmission) new uplink data.
  • the base station apparatus performs detection processing using the uplink data (retransmission) received in S206.
  • the base station apparatus transmits ACK / NACK based on the detection processing result (S207).
  • S207 in FIG. 2 is a case where ACK is transmitted.
  • the base station apparatus may perform detection processing (Chase combining) using the uplink data (initial transmission) received in S204 and the uplink data (retransmission) received in S206.
  • the communication system is configured so that uplink data transmitted based on a scheduling grant and uplink data transmitted in grant-free transmission are different in uplink data transmitted by retransmission.
  • a non-adaptive retransmission scheme a scheme in which the uplink data coding rate and modulation scheme are not changed between initial transmission and retransmission.
  • an adaptive retransmission scheme (a scheme in which the coding rate and modulation scheme of uplink data can be changed between initial transmission and retransmission) can be used.
  • FIG. 4 is a diagram illustrating an ACK / NACK transmission example for each terminal device for uplink data transmission according to the present embodiment.
  • the ACK / NACK transmission is used for scheduling grant transmission.
  • UE1 to UE5 in FIG. 4 correspond to the uplink data of the terminal devices 20-1 to 20-5.
  • ACK / NACK # mn indicates ACK / NACK for UE # n received in subframe #m.
  • ACK / NACK # 0-1 indicates ACK / NACK for UE1 received in subframe # 0.
  • the subframe is a time unit to which the terminal device allocates uplink data.
  • the base station apparatus 10 has two reception antennas and the terminal apparatus 20 has one transmission antenna.
  • UE1 and UE2 are transmitting uplink data according to UL Grant.
  • UE3 and UE4 are transmitting uplink data according to UL Grant.
  • UE5 and UE6 are transmitting uplink data according to UL Grant.
  • subframe # 3 UE3 and UE4 transmit uplink data according to UL Grant.
  • the base station apparatus 10 detects the uplink data of each terminal apparatus received in subframes # 0 to # 3.
  • the base station apparatus transmits ACK / NACK for each terminal apparatus at a predetermined transmission timing based on the detection result of the uplink data.
  • the transmission timing of ACK / NACK # 3-7 and ACK / NACK # 3-8 is set to 1 ⁇ 2 of the transmission timing of ACK / NACK # 1-3 and ACK / NACK # 1-4. Shows the case.
  • the ACK / NACK transmission for each terminal apparatus for uplink data using the scheduling grant has been described.
  • the present invention can also be applied to the ACK / NACK transmission for each terminal apparatus for uplink data using grant free. .
  • FIG. 5 is a diagram showing an example of collective ACK / NACK transmission for uplink data according to the present embodiment.
  • the ACK / NACK transmission is used for grant-free transmission.
  • UE1 to UE14 in FIG. 5 correspond to the uplink data of terminal apparatuses 20-1 to 20-14 in FIG.
  • ACK / NACK # 0 to ACK / NACK # 3 are ACK / NACK for each subframe with respect to uplink data of subframes # 0 to # 3 (batch ACK / NACK).
  • the base station apparatus 10 has two reception antennas and the terminal apparatus 20 has one transmission antenna.
  • subframe # 0 (same frequency / same time)
  • UE1 to UE8 transmit uplink data grant-free.
  • UE9 to UE12 transmit uplink data grant-free.
  • subframe # 2 the terminal apparatus accommodated in base station apparatus 10 does not transmit uplink data.
  • subframe # 3 UE13 to UE14 transmit uplink data grant-free.
  • the base station apparatus 10 receives uplink data from terminal apparatuses exceeding the number of reception antennas (non-orthogonal multiple access).
  • the base station apparatus 10 detects the uplink data of each UE received in subframe # 0.
  • the base station apparatus correctly detects all the uplink data of UE1 to UE8, the base station apparatus transmits ACK at a predetermined transmission timing (ACK / NACK # 0) in the downlink (transmits collective ACK).
  • the base station apparatus transmits NACK at a predetermined transmission timing (ACK / NACK # 0) in the downlink (collective NACK is transmitted). Send).
  • the base station apparatus 10 detects each uplink data received in the subframe # 1.
  • the base station apparatus correctly detects all the uplink data of UE9 to UE12
  • the base station apparatus transmits a batch ACK at a predetermined transmission timing (ACK / NACK # 1) in the downlink.
  • the base station apparatus transmits a batch NACK at a predetermined transmission timing (ACK / NACK # 1) in the downlink. Since base station apparatus 10 did not detect the identification signal / uplink data in subframe # 2, it does not transmit ACK / NACK.
  • the base station apparatus 10 detects each uplink data received in the subframe # 3.
  • the base station apparatus correctly detects all the uplink data of UE13 to UE14
  • the base station apparatus transmits a batch ACK at a predetermined transmission timing (ACK / NACK # 3) in the downlink.
  • the base station apparatus transmits a batch NACK at a predetermined transmission timing (ACK / NACK # 3) in the downlink.
  • FIG. 5 shows a case where the transmission timing of ACK / NACK # 3 is set to 1 ⁇ 2 of the transmission timing of ACK / NACK # 1.
  • the communication system groups uplink data received in predetermined time units, and transmits a batch ACK / NACK for each group to uplink data transmission using a scheduling grant. It may be used.
  • the collective ACK / NACK transmission may also be applied when uplink data transmitted based on grant-free transmission uplink data and scheduling grant is transmitted using overlapping time resources and frequency resources. For example, in FIG. 5, when UE1 and UE2 are uplink data transmitted based on a scheduling grant, and UE3 to UE8 are uplink data for grant-free transmission, the base station apparatus performs subframe # 0, A batch ACK / NACK is transmitted.
  • a terminal device group that transmits uplink data multiplexed within a predetermined time unit is defined as one terminal device group.
  • the base station apparatus transmits collective ACK / NACK to the group.
  • NACK for uplink data for grant-free transmission is expected to be either a terminal device identification error or an uplink data detection error. For this reason, the base station apparatus and the terminal apparatus can efficiently perform retransmission control by using collective ACK / NACK in grant-free multiple access in which the base station apparatus cannot schedule resources for transmitting uplink data in advance. it can.
  • the base station apparatus transmits information indicating the retransmission timing of the uplink data in the system information / RRC message / downlink control information to the terminal apparatus (S203 in FIG. 3).
  • the base station apparatus can also transmit information indicating the retransmission timing to the terminal apparatus using the physical retransmission request instruction channel (S205 in FIG. 3).
  • the information indicating the retransmission timing is a transmission interval (subframe interval, slot interval, frame interval) based on the uplink data transmission time in S204 (eg, subframe end to which the physical uplink shared channel is allocated). Is set.
  • Information indicating the retransmission timing is set by a transmission interval (subframe interval, slot interval, frame interval) based on the ACK / NACK transmission time of S205 (for example, the end of the subframe to which the physical retransmission request instruction channel is allocated). May be.
  • the terminal apparatus that has received the NACK selects one of transmission intervals from the retransmission timing group.
  • the terminal apparatus retransmits the uplink data at the selected retransmission interval (S206).
  • information indicating the retransmission timing of uplink data is set by a reference time and an offset value with respect to the reference time.
  • the reference value / offset value with respect to the reference time is notified to the terminal device through system information / RRC message / downlink control information / physical retransmission request instruction channel.
  • the base station apparatus may transmit the reference time and the offset value with respect to the reference time on the same channel or on different channels.
  • the reference time is transmitted by the system information / RRC message
  • the offset value is transmitted by the downlink control information / physical retransmission request instruction channel.
  • the terminal apparatus that has received the NACK selects one of the offset values.
  • the terminal apparatus retransmits the uplink data at a retransmission interval obtained from the reference time + the selected offset value (S206).
  • the selection of the offset value may be selected randomly by the terminal device or may be instructed by the base station device.
  • the base station apparatus notifies each terminal apparatus of a retransmission timing group (transmission interval / reference time and offset value) using an RRC message or the like.
  • the transmission interval / reference time and the offset value may be linked to a retransmission timing index.
  • the base station apparatus notifies each terminal apparatus of a retransmission timing index.
  • the terminal apparatus that has received the NACK retransmits the uplink data based on the transmission interval / offset value selected from the retransmission timing group.
  • the base station apparatus When the base station apparatus is set to instruct the retransmission timing, the base station apparatus that notifies the terminal apparatus of NACK indicates one or a plurality of transmission intervals / offset values in the retransmission timing group, and the physical retransmission request instruction channel. And transmit to each terminal device.
  • the terminal device that has received the transmission interval / offset value retransmits the uplink data based on the transmission interval / offset value.
  • the base station apparatus can notify different transmission intervals / offset values between terminal apparatuses that notify NACK.
  • the terminal device that has received the retransmission timing index retransmits the uplink data based on the transmission interval / offset value linked to the retransmission timing index.
  • the base station apparatus can set different retransmission timings for each terminal apparatus. For example, the base station apparatus sets different retransmission timing groups for each terminal apparatus. The base station apparatus sets different reference times and offset values for the reference times for each terminal apparatus.
  • the communication system can vary the range of the retransmission timing group according to the number of retransmissions.
  • the base station apparatus can widen the range of the retransmission timing group as the number of retransmissions increases.
  • the base station apparatus can widen the range of the offset value as the number of retransmissions increases.
  • the base station apparatus transmits different transmission power / spreading code / interleave pattern / demodulation among the terminal apparatuses in retransmission of the terminal apparatus.
  • the uplink data may be transmitted using the reference signal for transmission.
  • the transmission power / spreading code / interleave pattern / demodulation reference signal maintain orthogonality between terminal apparatuses that retransmit uplink data.
  • the physical retransmission request instruction channel can include the transmission power / spreading code / interleave pattern / demodulation reference signal.
  • the base station apparatus may include information indicating retransmission timing in the physical retransmission request instruction channel. Thereby, the base station apparatus can update the retransmission timing for the terminal apparatus for uplink data (initial transmission) to be transmitted next.
  • FIG. 6 is a diagram showing an example of an uplink radio frame format in multiple access using grant-free according to the present embodiment.
  • the radio frame is composed of 10 subframes.
  • Each subframe consists of two slots.
  • Each slot consists of seven SC-FDMA symbols. That is, each subframe consists of 14 SC-FDMA symbols.
  • an identification signal is arranged for each SC-FDMA symbol in the first slot.
  • Uplink data is arranged in the second slot.
  • the uplink data of each terminal device is allocated in slot units (the uplink data of each terminal device is transmitted over the second slot). That is, the communication system according to the present embodiment allows the uplink data of the terminal apparatus assigned identification signals 0 to 6 in the first slot to be non-orthogonal multiplexed in the second slot.
  • the identification signal is used by the base station apparatus to identify (specify) the terminal apparatus that transmitted the uplink data.
  • the terminal apparatus can notify the base station apparatus that the uplink data has been transmitted and the resource (time resource / frequency resource) that has transmitted the uplink data by using the identification signal.
  • a known sequence predetermined in the base station apparatus and the terminal apparatus is used. For example, in FIG. 3, when different known sequences are assigned to the SC-FDMA symbols as identification signals, seven terminal devices can be identified.
  • the known sequence may be further subjected to predetermined phase rotation, cyclic delay, interleaving, OCC (Orthogonal Cover Code), and the like.
  • the base station apparatus can identify the terminal apparatus by a known sequence pattern, a phase rotation pattern, a cyclic delay pattern (Cyclic shift pattern), an interleave pattern, and an OCC pattern. As a result, the number of terminal devices that can be identified can be increased.
  • the base station apparatus identifies which terminal apparatus has transmitted uplink data in the first slot. For example, the base station apparatus performs identification processing by correlation processing using an identification signal sequence for each symbol. Each terminal device is associated with an identification signal sequence (for example, notification is made using the radio resource setting information in S203 of FIG. 3). If the base station apparatus determines that there is a terminal apparatus that has transmitted the uplink data, the base station apparatus performs uplink data detection processing for the terminal apparatus in the second slot.
  • the uplink data can be associated with an identification signal. For example, a CRC scrambled (also called an exclusive OR operation or mask) using an identification signal is added to uplink data. Note that a reference signal can be arranged in any SC-FDMA symbol in each of the subframes.
  • the reference signal may be multiplied by any one of the identification signals to a basic known sequence.
  • the base station apparatus estimates a propagation path between the base station apparatus and the transmission terminal apparatus using the reference signal.
  • the base station apparatus can perform signal detection such as turbo equalization of uplink data using the propagation path estimation value.
  • FIG. 7 is a schematic block diagram showing the configuration of the base station apparatus 10 in the present embodiment.
  • the base station apparatus 10 includes an upper layer processing unit (upper layer processing step) 101, a control unit (control step) 102, a transmission unit (transmission step) 103, a reception unit (reception step) 104, a transmission antenna 105, and a reception antenna 106. Consists of including.
  • the transmission unit 103 generates a transmission signal (physical downlink channel) to the terminal device 20 according to the logical channel input from the higher layer processing unit 101.
  • the transmission unit 103 includes an encoding unit (encoding step) 1031, a modulation unit (modulation step) 1032, a downlink reference signal generation unit (downlink reference signal generation step) 1033, a multiplexing unit (multiplexing step) 1034, and radio transmission Unit (wireless transmission step) 1035.
  • the receiving unit 104 detects a physical uplink channel and inputs the content to the higher layer processing unit 101.
  • the reception unit 104 includes a radio reception unit (radio reception step) 1041, a demultiplexing unit (demultiplexing step) 1042, a signal detection unit (signal detection step) 1043, a propagation path estimation unit (propagation path estimation step) 1044, and an identification unit ( (Identification step) 1045.
  • the upper layer processing unit 101 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (PDCP: Packet Data Convergence Protocol) layer, a radio link control (RLC: Radio Link Control) layer, and a radio resource control (RRC). : Processes higher layers than the physical layer such as the (Radio Resource Control) layer.
  • Upper layer processing section 101 generates information necessary for controlling transmission section 103 and reception section 104 and outputs the information to control section 102.
  • Upper layer processing section 101 outputs uplink data (for example, DL-SCH), broadcast information (for example, BCH), a hybrid automatic retransmission request (Hybrid Automatic Request) indicator (HARQ indicator), and the like to transmission section 103.
  • the upper layer processing unit 101 receives information on the terminal device such as the function of the terminal device (UE capability) from the terminal device 20 (via the receiving unit 104).
  • the terminal device transmits its function to the base station device using a higher layer signal.
  • the information regarding the terminal device includes information indicating whether or not the terminal device supports a predetermined function, or information indicating that the terminal device is introduced into the predetermined function and the test is completed. Whether or not to support a predetermined function includes whether or not the installation and test for the predetermined function have been completed.
  • the terminal device when a terminal device supports a predetermined function, the terminal device transmits information (parameters) indicating whether the predetermined function is supported. When a terminal device does not support a predetermined function, the terminal device may not transmit information (parameter) indicating whether or not the predetermined device is supported. That is, whether or not to support the predetermined function is notified by whether or not information (parameter) indicating whether or not to support the predetermined function is transmitted. Note that information (parameter) indicating whether or not to support a predetermined function may be notified using 1 bit of 1 or 0.
  • the information regarding the terminal device includes information indicating that grant-free transmission (grant-free communication) is supported.
  • grant-free transmission grant-free communication
  • the terminal device can transmit information indicating whether to support each function.
  • the functions corresponding to grant-free transmission correspond to the ability to support multiple tables indicating antenna ports, scrambling identities and the number of layers, the ability to support a predetermined number of antenna ports, and a predetermined transmission mode. Some or all of the abilities you have.
  • the transmission mode is determined by the number of antenna ports, transmission diversity, the number of layers, support for grant-free transmission, and the like.
  • the ability to support a predetermined transmission mode can include, for example, being able to support grant-free transmission in the FDD format, being able to support grant-free transmission in the TDD format, and the like.
  • the terminal device can transmit information indicating which FDD / TDD format is supported as information on the terminal device.
  • the upper layer processing unit 101 acquires the detection result of the physical uplink shared channel (the decoded uplink data (including CRC)) from the receiving unit 104. Based on the detection, the upper layer processing unit 101 performs error detection on the uplink data transmitted by each terminal apparatus. For example, the error detection is performed at the MAC layer.
  • the upper layer processing unit 101 generates a HARQ indicator (bit sequence indicating ACK / NACK) based on the error detection result.
  • the HARQ indicator for the uplink data is output for each terminal apparatus (FIG. 4) / subframe (FIG. 5).
  • Upper layer processing section 101 outputs a HARQ indicator to transmitting section 103. For example, one bit of “1” is output in the case of ACK and “0” in the case of NACK.
  • the HARQ indicator is used to generate a physical retransmission request instruction channel.
  • the upper layer processing unit 101 generates system control information to be broadcast or acquires it from an upper node.
  • the upper layer processing unit 101 outputs the broadcast system control information to the transmission unit 103.
  • the broadcast system control information may include information indicating that the base station device supports grant-free transmission.
  • the system control information to be broadcast is arranged in the physical broadcast channel / physical downlink shared channel in the transmission unit 103.
  • the upper layer processing unit 101 generates or obtains downlink data (transport block), system information (SIB: System Information Block), RRC message, MAC CE, etc. arranged in the physical downlink shared channel from the upper node. And output to the transmission unit 103.
  • the upper layer processing unit 101 can include a parameter indicating setup and release of grant-free transmission in these upper layer signals.
  • the upper layer processing unit 101 manages various setting information of the terminal device 20.
  • the various setting information may include parameters indicating setup and release of grant-free transmission.
  • the higher layer processing unit 101 can also determine the assignment of the identification signal to each terminal device with respect to the terminal device that supports grant-free transmission.
  • the upper layer processing unit 101 can include information on assignment of an identification signal to each terminal device in the RRC message.
  • Information relating to identification signal allocation may include parameters necessary for generating an identification signal sequence (phase rotation multiplied by the identification signal, cyclic delay, interleaving, OCC, etc.).
  • Upper layer processing section 101 outputs information related to identification signal allocation to control section 102 / transmitting section 103. Part of the radio resource control function may be performed in the MAC layer or the physical layer.
  • the upper layer processing unit 101 sets a cell radio network temporary identifier (C-RNTI: “Cell Radio Network Temporary Identifier”) for each terminal device.
  • the cell radio network temporary identifier includes an identifier unique to grant-free transmission.
  • the identifier is used for encryption (scrambling) of a downlink control channel, a downlink data channel, and a physical retransmission request instruction channel.
  • the identifier can also be used for a sequence to be multiplied by the physical retransmission request instruction channel.
  • the identifier can be used for encryption (scrambling) of an identification signal, an uplink data channel, and an uplink control channel.
  • the upper layer processing unit 101 outputs the setting information regarding the identifier to the control unit 102 / transmission unit 103 / reception unit 104.
  • the upper layer processing unit 101 includes a coding rate of a physical channel (physical downlink shared channel, physical uplink shared channel), modulation scheme (or MCS), and transmission power (power ratio between an identification signal and a physical uplink shared channel, a reference signal) And the identification signal power ratio, etc.).
  • the upper layer processing unit 101 outputs the coding rate / modulation method / transmission power ratio to the control unit 102 / transmission unit 103 / reception unit 104.
  • the upper layer processing unit 101 can include the coding rate / modulation scheme / transmission power ratio in an upper layer signal.
  • the control unit 102 generates a control signal for controlling the transmission unit 103 and the reception unit 104 based on various setting information input from the higher layer processing unit 101.
  • the control unit 102 generates downlink control information (DCI) based on the information input from the higher layer processing unit 101 and outputs the downlink control information (DCI) to the transmission unit 103.
  • the control unit 102 can include information related to retransmission of uplink data in the downlink control information.
  • the downlink control information includes a physical downlink shared channel / physical uplink shared channel resource allocation field.
  • a CRC Cyclic Redundancy Check
  • the CRC is encrypted (scrambled) with an identifier (for example, C-RNTI (Cell-Radio Network Temporary Identifier)).
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the encrypted CRC is added to the DCI format.
  • the signal generated as the DCI format is arranged on the PDCCH.
  • the function of the control unit 102 can be included in the upper layer processing unit 101.
  • the transmission unit 103 generates a downlink reference signal according to the control signal input from the control unit 102.
  • the transmission unit 103 encodes and modulates broadcast information, downlink control information, downlink data, HARQ indicator, and the like input from the higher layer processing unit 101 for each terminal device, and transmits a physical broadcast channel and a physical retransmission request.
  • An instruction channel, a physical downlink control channel, and a physical downlink shared channel are generated.
  • the transmission unit 103 multiplexes the physical broadcast channel, the physical retransmission request instruction channel, the physical downlink control channel, the physical downlink shared channel, and the downlink reference signal, and transmits them to the terminal device via the transmission antenna 105.
  • the encoding unit 1031 uses broadcast encoding information, downlink control information, downlink data, and HARQ indicator input from the upper layer processing unit 101, using a predetermined encoding method determined by the upper layer processing unit 101. Then, encoding (including repetition) such as block encoding, convolutional encoding, and turbo encoding is performed.
  • the modulation unit 1032 converts the coded bits input from the coding unit 1031 into predetermined BPSK (Binary Phase Shift Keying), QPSK (quadrature Phase Shift Keying), 16 QAM (quadrature Amplitude Modulation), 64 QAM, 256 QAM, etc. Modulation is performed by the modulation method determined by the upper layer processing unit 101.
  • the downlink reference signal generation unit 1033 generates a sequence known by the terminal device as a downlink reference signal.
  • the known sequence is determined by a predetermined rule based on a physical cell identifier or the like for identifying the base station device 10.
  • the multiplexing unit 1034 multiplexes the modulated modulation symbol of each channel, the generated downlink reference signal, and downlink control information. That is, multiplexing section 1034 arranges the modulated modulation symbol of each channel, the generated downlink reference signal, and downlink control information in the resource element. Based on the set frequency resource and time resource (ACK / NACK transmission timing), multiplexing section 1034 maps the output signal of modulation section 1032 to the resource to which the physical retransmission request instruction channel is transmitted. Note that the HARQ indicator / information on uplink data retransmission including the HARQ indicator may be one piece of downlink control information. In this case, a specific DCI format for notifying information about HARQ indicator / uplink data retransmission including the HARQ indicator may be defined.
  • the radio transmission unit 1035 generates an OFDM symbol by performing inverse fast Fourier transform (Inverse Fourier Transform: IFFT) on the multiplexed modulation symbols and the like.
  • the radio transmission unit 1035 generates a baseband digital signal by adding a cyclic prefix (CP) to the OFDM symbol.
  • the wireless transmission unit 1035 converts the digital signal into an analog signal, removes excess frequency components by filtering, up-converts the carrier signal to a carrier frequency, amplifies the power, and outputs to the transmission antenna 105 for transmission.
  • n is determined by the unit for transmitting the HARQ indicator.
  • ACK / NACK is transmitted for each terminal device
  • n is ACK / NACK for the uplink data of the terminal device 20-n.
  • n is ACK / NACK for the uplink data transmitted in subframe n.
  • the encoding unit 1031 may repeat the HARQ indicator. For example, when repeating three times, NACK “0” and ACK “1” are repeated as “000” and “111”, respectively.
  • Modulation section 1032 performs data modulation (for example, BPSK modulation) on the output data of encoding section 1031. Furthermore, modulation section 1032 multiplies the data-modulated data by a predetermined sequence (spreading sequence) (the data-modulated data is spread by a predetermined sequence). As the sequence, an orthogonal sequence (or a quasi-orthogonal sequence) can be used.
  • the sequence can be associated with a grant-free transmission unique identifier.
  • an identifier unique to grant-free transmission is a generation parameter of the orthogonal sequence.
  • the orthogonal sequence is cyclically shifted based on an identifier unique to grant-free transmission.
  • multiplexing section 1034 maps the output signal of modulation section 1032 to the resource to which the physical retransmission request instruction channel is transmitted.
  • Multiplexer 1034 can code multiplex a plurality of physical retransmission request indication channels in the same frequency resource and time resource.
  • Upper layer processing section 101 adds a CRC parity bit to a bit sequence of information related to uplink data retransmission including a HARQ indicator.
  • Upper layer processing section 101 may add a CRC parity bit to information related to retransmission of uplink data including a plurality of HARQ indicators.
  • the bit sequence after the CRC addition is indicated as “x 0 , x 1 ,... X q ⁇ 1 , p 0 , p 1 ,... P r ⁇ 1 ” (x is the bit sequence of the HARQ indicator, p Is the CRC parity bit sequence, q is the total number of ACK / NACK bits, and r is the number of CRC parity bits).
  • a CRC parity bit is added to multiple ACK / NACK at the same transmission timing.
  • ACK / NACK # 1 and ACK / NACK # 3 ACK / NACK bits (1 bit each) and uplink for ACK / NACK # 1 and ACK / NACK # 3 transmitted in subframe # 5
  • a CRC parity bit is added to a bit sequence of information regarding data retransmission.
  • Upper layer processing section 101 scrambles (masks) the CRC parity bits using an identifier unique to grant-free transmission.
  • the base station apparatus can set the bit sequence length (or the number of ACK / NACK storage fields) of the HARQ indicator x based on the number of uplink subframes.
  • the bit sequence length q of HARQ indicator x subframe number m ⁇ HARQ indicator bit number L.
  • sub-frame number m 10
  • the bit sequence after CRC attachment "x 0, x 1, x 2 , x 3, ⁇ , x q-1, p 0, q 1, ⁇ q r-1 Is “a 0 , a 1 , a 2 , a 3 ,..., A 9, p 0 , q 1 ,... Q r ⁇ 1 ”.
  • a m (m is an uplink data transmission subframe number) is an ACK / NACK bit (HARQ indicator bit) for the uplink data.
  • the HARQ indicator x has 10 ACK / NACK fields consisting of 1 bit.
  • ACK / NACK transmission in subframe # 5 of FIG. 5 ACK / NACK # 1 is stored in “a 1 ”.
  • ACK / NACK # 3 is stored in “a 3 ”.
  • Dummy bits may be stored in other bits (other than a 1 and a 3 ).
  • the terminal apparatus acquires ACK / NACK for the uplink data based on the subframe number that transmitted the uplink data.
  • the base station apparatus can also notify the terminal apparatus of the storage field index of ACK / NACK for each uplink data using an RRC message / downlink control channel or the like.
  • the encoding unit 1031 performs error correction encoding (including rate matching) on a plurality of ACK / NACK bit sequences to which the CRC parity bits are added.
  • Modulation section 1032 performs data modulation on the output signal of coding section 1031.
  • multiplexing section 1034 maps the output signal of modulation section 1032 to the resource to which the physical retransmission request instruction channel is transmitted.
  • the output data of the modulation unit 1032 may be further scrambled. This scramble pattern may be associated with an identifier unique to grant-free transmission.
  • the transmission based on the grant-free transmission / scheduling grant may use both physical retransmission request instruction channels generated by the above two modes.
  • ACK / NACK for uplink data in grant-free transmission is associated with an identifier or spreading sequence (orthogonal sequence or quasi-orthogonal sequence) unique to grant-free transmission generated with parameters common to the multiplexed terminal apparatuses. It is done.
  • ACK / NACK for uplink data transmitted based on the scheduling grant is associated with a spreading sequence generated with a terminal device-specific identifier or a terminal device-specific parameter.
  • the identifier unique to the terminal device includes C-RNTI assigned to each terminal device.
  • the parameters specific to the terminal device include cyclic delay for DMRS, OCC, and the like.
  • the receiving unit 104 detects (separates, demodulates, decodes) the received signal from the terminal device 20 via the receiving antenna 106 according to the control signal input from the control unit 102, and sends the decoded information to the upper layer processing unit 101. Output.
  • the control unit 102 acquires a terminal device identification result (such as an identifier applied to the identified terminal device) from the identification unit 1045 and outputs the result to the upper layer processing unit 101.
  • the control unit 102 acquires information regarding uplink data retransmission for the identified terminal device.
  • the control unit 102 controls the transmission unit 103 based on the information regarding the uplink data retransmission.
  • the radio reception unit 1041 converts an uplink signal received via the reception antenna 106 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so that the signal level is properly maintained. The level is controlled, quadrature demodulation is performed based on the in-phase component and the quadrature component of the received signal, and the analog signal that has been demodulated is converted into a digital signal. Radio receiving section 1041 removes a portion corresponding to CP from the converted digital signal. The radio reception unit 1041 performs fast Fourier transform (FFT) on the signal from which the CP has been removed, and extracts a frequency domain signal. The frequency domain signal is output to the demultiplexing unit 1042. Further, radio reception section 1041 outputs a signal from which CP has been removed to identification section 1045.
  • FFT fast Fourier transform
  • the identification unit 1045 extracts an identification signal from the received signal.
  • the identification unit 1045 identifies (identifies) the terminal device that has transmitted the uplink data grant-free using the identification signal.
  • Identification section 1045 outputs information related to the transmission terminal apparatus to propagation path estimation section 1044 and demultiplexing section 1042. For example, the transmission terminal apparatus is identified by blind detection using a correlation process between the identification signal sequence held by the base station apparatus 10 and the extracted identification signal sequence.
  • the demultiplexing unit 1042 demultiplexes the signal input from the radio receiving unit 1041 into signals such as an uplink data channel and an uplink control channel.
  • the demultiplexing unit 1042 uses the information related to the transmission terminal device identified by the identifying unit 1045 (eg, uplink data channel allocation information associated with the identification signal) to convert the frequency domain signal into the uplink data channel and the uplink control. Separate into channel and reference signal.
  • the separated reference signal is input to the propagation path estimation unit 1044.
  • the separated uplink data channel and uplink control channel are output to the signal detector 1043.
  • the demultiplexing unit 1042 determines the radio resources included in the uplink grant that the base station device 10 has determined in advance by the higher layer processing unit 101 and notified to each terminal device 20. Based on the allocation information, signal separation is performed.
  • the propagation path estimation unit 1044 receives information related to a transmission terminal device identified as a reference signal (for example, DMRS) transmitted time-multiplexed with a data signal.
  • the propagation path estimation unit 1044 estimates the frequency response using the reference signal, and outputs the frequency response estimated for demodulation to the signal detection unit 1043.
  • the propagation path estimation unit 1044 can estimate a frequency response used in uplink scheduling when SRS (Sounding ⁇ Reference ⁇ ⁇ Signal) is input. Note that the propagation path estimation unit 1044 can also use an identification signal for propagation path estimation.
  • FIG. 8 is a diagram illustrating an example of a signal detection unit according to the present embodiment.
  • the signal detection unit 1043 includes a cancellation unit 1501, an equalization unit 1502, IDFT units 1503-1 to 1503-u, demodulation units 1504-1 to 1504-u, decoding units 1505-1 to 1505-u, and replica generation unit 1506. (1 ⁇ u ⁇ U, U is the number of terminal devices identified by the identification unit 1045 and non-orthogonal multiplexed / orthogonal multiplexed at the same time and the same frequency).
  • the reception signal of each terminal apparatus extracted from the demultiplexing unit 1042 is input to the cancellation unit 1501.
  • the cancel unit 1501 performs a cancel process on each received signal using the soft replica input from the replica generation unit 1506.
  • the equalization unit 1502 generates equalization weights based on the MMSE standard from the frequency response input from the propagation path estimation unit 1044. Note that the equalization unit 1502 can use the frequency response calculated from the identification signal in the equalization weight generation.
  • the equalization unit 1502 multiplies the equalization weight by the signal after soft cancellation (input signal from the cancellation unit 1501).
  • the equalization unit 1502 outputs the signal for each terminal device after equalization to the IDFT units 1503-1 to 1503-u.
  • IDFT sections 1503-1 to 1503-u convert the received signal after frequency domain equalization into a time domain signal.
  • the terminal apparatus performs cyclic delay, phase rotation, and interleaving before or after DFT in transmission processing
  • the received signal or time domain signal after frequency domain equalization is subjected to cyclic delay, phase rotation, and interleaving. Processing to restore is performed.
  • the demodulation units 1504-1 to 1504-u receive information on modulation schemes that have been notified in advance or that have been determined in advance.
  • Demodulating sections 1504-1 to 1504-u perform demodulation processing on the time domain signal based on the modulation scheme information, and output a bit sequence LLR (Log Likelihood Ratio).
  • decoding unit 1505-1 to 1505-u receives information of a coding rate that has been notified in advance or determined in advance.
  • Decoding sections 1505-1 to 1505-u perform decoding processing on the LLR sequence output from the demodulation section.
  • decoding units 1505-1 to 1505-u output an external LLR or a posteriori LLR as a decoding unit output to replica generation unit 1506 To do.
  • the difference between the external LLR and the posterior LLR is whether or not the prior LLR input to the decoding units 1505-1 to 1505-u is subtracted from the decoded LLR.
  • the signal detection unit 1043 sends the decoding units 1505-1 to 1505-u to Depuncturing (inserting 0 into the LLR of the thinned bits), deinterleaving (reverting the rearrangement), and descrambling are performed on the input LLR sequence.
  • the replica generation unit 1506 generates a symbol replica according to the modulation scheme applied to the uplink data by each terminal apparatus using the LLR sequence input from each decoding unit. Further, the replica generation unit 1506 converts the symbol replica into a frequency domain signal by DFT, assigns a signal to a resource used by each terminal apparatus, and multiplies the frequency response input from the propagation path estimation unit 1044. Create a soft replica. When the number of SIC or turbo equalization iterations reaches a predetermined number, decoding sections 1505-1 to 1505-u make a hard decision on the decoded LLR sequence and input it to upper layer processing section 101.
  • the upper layer processing unit 101 determines the presence / absence of an error bit from a cyclic redundancy check (CRC: “Cyclic” Redundancy ”Check) included in the hard decision result.
  • CRC cyclic redundancy check
  • the upper layer processing unit 101 performs descrambling (exclusive OR operation) on the CRC using an identifier obtained by scrambling the CRC by the identified terminal device.
  • the upper layer processing unit 101 determines whether the uplink data of each terminal apparatus has been correctly received from the descrambling result.
  • signal detection using turbo equalization processing has been described, but maximum likelihood detection, EMMSE-IRC, or the like can also be used.
  • FIG. 9 is a schematic block diagram showing the configuration of the terminal device 20 in the present embodiment.
  • the terminal device 20 includes an upper layer processing unit (upper layer processing step) 201, a control unit (control step) 202, a transmission unit (transmission step) 203, a reception unit (reception step) 204, a transmission antenna 205, and a reception antenna 206. Consists of.
  • the transmission unit 203 includes an encoding unit (encoding step) 2031, a modulation unit (modulation step) 2032, an uplink reference signal generation unit (uplink reference signal generation step) 2033, a multiplexing unit (multiplexing step) 2034, and a radio transmission unit (Wireless transmission step) 2035 and an identification signal generation unit 2036 are included.
  • the reception unit 204 includes a wireless reception unit (wireless reception step) 2041, a demultiplexing unit (demultiplexing step) 2042, a demodulation unit (demodulation step) 2043, and a decoding unit (decoding step) 2044.
  • the upper layer processing unit 201 performs processing of a medium access control (MAC) layer, a packet data integration protocol (PDCP) layer, a radio link control (RLC) layer, and a radio resource control (RRC) layer.
  • Upper layer processing section 201 outputs information (UE Capability) indicating the function of the terminal apparatus supported by the terminal apparatus to transmitting section 203.
  • the information indicating the function of the terminal device supported by the terminal device includes information indicating that grant-free transmission is supported.
  • the upper layer processing unit 201 can transmit information indicating whether to support each function.
  • the upper layer processing unit 201 signals information indicating the function of the terminal device supported by the terminal device on the RRC layer.
  • the upper layer processing unit 101 interprets the downlink control information (DCI) received via the receiving unit 204.
  • the upper layer processing unit 101 can interpret information related to grant-free transmission included in the downlink control information.
  • Upper layer processing section 101 generates control information for controlling receiving section 204 and transmitting section 203 based on information related to grant-free transmission, and outputs the control information to control section 202.
  • the upper layer processing unit 201 manages various setting information of the own terminal device. A part of the various setting information is input to the control unit 202. Part of the various setting information is received from the base station apparatus 10 via the receiving unit 204.
  • the various setting information includes information indicating an uplink radio frame format.
  • the various setting information includes setting information related to grant-free transmission received from the base station apparatus 10.
  • Information related to grant-free transmission includes information related to allocation of identification signals to each terminal device, setting of grant-free transmission unique identifier, setup of grant-free transmission, parameter indicating release, and reception timing of ACK / NACK for uplink data signal , Uplink data signal retransmission timing, change of setting information regarding grant-free transmission, a signal indicating an identification signal, and the like.
  • the upper layer processing unit 201 manages radio resources for transmitting uplink data (transport blocks) in grant-free based on information related to grant-free transmission.
  • the upper layer processing unit 201 outputs uplink data generated by a user operation or the like to the transmission unit 203.
  • the higher layer processing unit 201 can also output uplink data generated without user operation (for example, data acquired by a sensor) to the transmission unit 203.
  • the upper layer processing unit 201 adds a CRC parity bit to the uplink data.
  • the CRC parity bit is generated using the uplink data.
  • the CRC parity bits are scrambled (also called an exclusive OR operation or mask) with a predetermined identifier.
  • a cell radio network temporary identifier may be used as the identifier.
  • the wireless network temporary identifier may be an identifier unique to a terminal device that is grant-free transmission.
  • an identification signal sequence assigned to the terminal device can be used.
  • a sequence generated using parameters (phase rotation amount, cyclic delay amount, OCC pattern, interleave pattern) related to the identification signal sequence assigned to the terminal device can be used.
  • the upper layer processing unit 201 acquires an ACK / NACK (HARQ indicator) for the uplink data included in the physical retransmission request instruction channel via the receiving unit 204. At this time, the upper layer processing unit 201 performs a descrambling process (exclusive OR operation) using an identifier masking the CRC added to the HARQ indicator. In acquiring ACK / NACK for uplink data, the upper layer processing unit 201 uses the subframe number or the like to which the uplink data / identification signal is transmitted, to use the ACK / NACK addressed to itself included in the physical retransmission request instruction channel. NACK can be specified. Upper layer processing section 201 can also identify ACK / NACK addressed to itself based on the ACK / NACK storage field index notified from the base station apparatus.
  • the higher layer processing unit 201 inputs control information for retransmitting the uplink data to the control unit 202.
  • the control information for retransmission includes information indicating retransmission timing, information indicating frequency resources for retransmission, information indicating identification signals for retransmission, information on RV (Redundancy Version) of the physical uplink shared channel, and the like. be able to.
  • the control unit 202 controls the transmission unit 203 based on the control information for retransmission.
  • the control unit 202 generates uplink control information (UCI) based on the information input from the higher layer processing unit 201 and outputs it to the transmission unit 203.
  • the control unit 202 can generate a CRC (Cyclic Redundancy Check) for the data sequence in the UCI format.
  • the CRC may be encrypted (scrambling) by C-RNTI (Cell-Radio Network Temporary Identifier).
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the C-RNTI can use a terminal-specific identifier for grant-free transmission.
  • the control unit 202 can also encrypt the CRC using an identification signal.
  • the encrypted CRC is added to the UCI format.
  • the receiving unit 204 separates, demodulates, and decodes the received signal received from the base station apparatus 10 via the receiving antenna 206.
  • the receiving unit 204 outputs the decrypted information to the upper layer processing unit 201.
  • the radio reception unit 2041 converts a downlink signal received via the reception antenna 206 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so that the signal level is appropriately maintained. , And quadrature demodulation based on the in-phase and quadrature components of the received signal, and converting the quadrature demodulated analog signal into a digital signal.
  • Radio receiving section 2041 removes a portion corresponding to CP from the converted digital signal, performs fast Fourier transform on the signal from which CP is removed, and extracts a frequency domain signal.
  • the demultiplexing unit 2042 separates the extracted frequency domain signals into downlink channels, that is, physical retransmission request instruction channels, physical downlink control channels, physical downlink shared channels, and downlink reference signals.
  • the demultiplexing unit 2042 performs downlink channel compensation based on the channel estimation value obtained from channel measurement using the downlink reference signal.
  • the demultiplexing unit outputs each downlink channel to the demodulation unit 2043.
  • the demodulation unit 2043 demodulates the received signal for each modulation symbol of each downlink channel using a predetermined modulation method such as BPSK, QPSK, 16QAM, 64QAM, and 256QAM, or notified in advance by a downlink grant. To do.
  • a predetermined modulation method such as BPSK, QPSK, 16QAM, 64QAM, and 256QAM, or notified in advance by a downlink grant.
  • the demodulation unit 2043 performs despreading processing using the identifier before demodulation processing.
  • the decoding unit 2044 decodes the demodulated coded bits of each downlink channel at a coding rate that is determined in advance according to a predetermined encoding method or notified in advance by a downlink grant.
  • the downlink data, the downlink control information, and the HARQ indicator are output to the higher layer processing unit 201.
  • the transmission unit 203 generates an uplink reference signal according to the control signal input from the control unit 202.
  • the transmission unit 203 encodes and modulates the uplink data (transport block) and the uplink control signal input from the higher layer processing unit 201 to generate a physical uplink control channel and a physical uplink shared channel.
  • the physical uplink control channel is encrypted using C-RNTI.
  • the physical uplink control channel that is grant-free transmitted can be encrypted (also referred to as scrambling, exclusive OR operation, or mask) using an identification signal.
  • the physical uplink data channel is associated with an identification signal or identifier unique to the terminal device.
  • the transmission unit 203 multiplexes the physical uplink control channel, the physical uplink shared channel, and the uplink reference signal, and transmits the multiplexed signal to the base station apparatus 10 via the transmission antenna 205.
  • the encoding unit 2031 performs encoding such as convolutional encoding, block encoding, and turbo encoding on the uplink control information and the uplink data input from the higher layer processing unit 201.
  • the modulation unit 2032 modulates the coded bits input from the coding unit 2031 using a modulation scheme notified by downlink control information such as BPSK, QPSK, 16QAM, 64QAM, or a modulation scheme predetermined for each channel. .
  • the uplink reference signal generation unit 2033 is a physical cell identifier for identifying the base station device 10 (referred to as physical cell ⁇ ⁇ identity: PCI, Cell ⁇ ID, etc.), a bandwidth for arranging the uplink reference signal, and a cyclic shift. Based on the parameter values for generating the DMRS sequence, a sequence determined by a predetermined rule (formula) is generated.
  • the upstream ink reference signal may be associated with an identification signal.
  • the uplink reference signal may be multiplied by an identification signal.
  • the predetermined rule (formula) may include an identification signal sequence generation parameter.
  • the identification signal generation unit 2036 generates a sequence determined by a predetermined rule (formula) based on setting information regarding grant-free transmission.
  • the identification signal sequence may be an orthogonal sequence such as an M sequence, a Zadoff Chu sequence, a Hadamard sequence, or a quasi-orthogonal sequence (pseudo-orthogonal sequence).
  • the identification signal generation unit 2036 performs phase rotation / cyclic delay / OCC / interleaving on the identification signal sequence based on setting information regarding grant-free transmission.
  • the multiplexing unit 2034 rearranges the modulation symbols of the uplink data channel in parallel and then performs a discrete Fourier transform (Discrete Fourier Transform: DFT).
  • the multiplexing unit 2034 multiplexes the uplink control channel, the uplink data channel, the identification signal, and the uplink reference signal for each transmission antenna port. That is, the multiplexing unit 2034 arranges the uplink control channel, the uplink data channel, the identification signal, and the uplink reference signal in the resource element for each transmission antenna port.
  • the radio transmission unit 2035 performs inverse fast Fourier transform (Inverse Fourier Transform: IFFT) on the multiplexed signal, performs SC-FDMA modulation, and generates an SC-FDMA symbol.
  • the radio transmission unit 2035 adds a CP to the SC-FDMA symbol to generate a baseband digital signal. Further, the radio transmission unit 2035 converts the baseband digital signal into an analog signal, removes an extra frequency component, converts it into a carrier frequency by up-conversion, amplifies the power, and transmits a base station via the transmission antenna 205. Transmit to device 10.
  • IFFT inverse fast Fourier transform
  • the uplink data is associated with the terminal device-specific identification signal and the terminal device-specific identifier related to grant-free transmission.
  • ACK / NACK for uplink data is associated with an identifier unique to grant-free transmission generated with parameters common to the terminal devices to be multiplexed.
  • ACK / NACK for each terminal device or batch ACK / NACK is applied to ACK / NACK for uplink data.
  • This embodiment is an example of a case where uplink data transmitted based on grant grant and scheduling grant are mixed.
  • the communication system according to the present embodiment can selectively use ACK / NACK for each terminal device and collective ACK / NACK depending on whether the uplink data is transmitted based on the scheduling grant or the uplink data is grant-free transmitted.
  • the communication system according to the present embodiment includes the base station apparatus 10 and the terminal apparatus 20 described with reference to FIGS. Hereinafter, differences / additional points from the first embodiment will be mainly described.
  • FIG. 10 is a diagram illustrating an ACK / NACK transmission example for uplink data according to the present embodiment. This is an example in which uplink data transmitted based on grant-free transmission uplink data and scheduling grant is transmitted using overlapping time resources and frequency resources.
  • UE1 to UE14 correspond to the uplink data of the terminal devices 20-1 to 20-14.
  • ACK / NACK # 0 to ACK / NACK # 3 are ACK / NACK for uplink data of subframes # 0 to # 3 (batch ACK / NACK in each subframe), respectively.
  • ACK / NACK # mn indicates ACK / NACK for UE # n received in subframe #m (ACK / NACK for each terminal device).
  • UE1, UE2, and UE14 are uplink data transmitted based on the scheduling grant (upward left slanted line).
  • UE3 to UE13 are uplink data for grant-free transmission.
  • subframe # 0 (same frequency / same time), UE1 to UE8 are transmitting uplink data.
  • UE9 to UE12 transmit uplink data.
  • subframe # 2 the terminal apparatus accommodated in base station apparatus 10 does not transmit uplink data.
  • subframe # 3 UE13 to UE14 are transmitting uplink data.
  • the base station apparatus 10 receives uplink data from terminal apparatuses exceeding the number of reception antennas (non-orthogonal multiple access).
  • the base station apparatus 10 detects the uplink data of each terminal apparatus received in subframe # 0.
  • the base station apparatus transmits ACK / NACK for each terminal apparatus at a predetermined transmission timing with respect to the uplink data of UE1 and UE2 transmitted based on the scheduling grant (ACK / NACK # 0-1, ACK). / NACK # 0-2).
  • the base station apparatus transmits collective ACK / NACK at a predetermined transmission timing to the uplink data of UE3 to UE8 for grant-free transmission.
  • ACK is transmitted at a predetermined transmission timing (ACK / NACK # 0) (batch ACK is transmitted) in the downlink.
  • the base station apparatus transmits a NACK at a predetermined transmission timing (ACK / NACK # 0) (transmits a batch NACK). ).
  • the base station apparatus 10 detects each uplink data received in the subframe # 1.
  • the uplink data of UE9 to UE12 is grant-free transmitted. Therefore, when the base station apparatus correctly detects all the uplink data of UE9 to UE12, the base station apparatus transmits a batch ACK at a predetermined transmission timing (ACK / NACK # 1) in the downlink. On the other hand, if even one of the uplink data of UE9 to UE12 cannot be detected correctly, the base station apparatus transmits a batch NACK at a predetermined transmission timing (ACK / NACK # 1) in the downlink. Since base station apparatus 10 did not detect the identification signal / uplink data in subframe # 2, it does not transmit ACK / NACK.
  • the base station apparatus 10 detects each uplink data received in the subframe # 3.
  • UE 13 is uplink data for grant-free transmission. Therefore, when the base station apparatus correctly detects the uplink data of the UE 13, the base station apparatus transmits a collective ACK at a predetermined transmission timing (ACK / NACK # 3) in the downlink.
  • the base station apparatus transmits a batch NACK at a predetermined transmission timing (ACK / NACK # 3) in the downlink.
  • the UE 14 is uplink data for transmission based on the scheduling grant. Therefore, the base station apparatus transmits ACK / NACK for each terminal apparatus at a predetermined transmission timing (ACK / NACK # 3-14) for the uplink data of UE14.
  • the higher layer processing unit 101 generates a HARQ indicator (bit sequence indicating ACK / NACK) based on the error detection result.
  • the HARQ indicator for the uplink data transmitted by the scheduling grant is output for each terminal device (FIG. 4).
  • the HARQ indicator for uplink data transmitted grant-free is output for each subframe (FIG. 5).
  • Upper layer processing section 101 and transmitting section 103 generate a physical retransmission request instruction channel for transmitting a plurality of ACK / NACKs by multiplying the spreading code sequence.
  • the transmission unit 103 In the generation of the physical retransmission request instruction channel, when the transmission unit 103 spreads the batch ACK / NACK bit sequence, the transmission unit 103 generates a grant-free transmission-specific signal generated using a parameter common to the multiplexed terminal apparatus. Associate with identifier. On the other hand, when transmitting section 103 spreads the ACK / NACK bit sequence for each terminal device, parameters related to the terminal device-specific identification signal related to grant-free transmission (cyclic shift value, OCC, etc.) Or an identifier unique to the terminal device.
  • upper layer processing section 101 and transmitting section 103 generate a physical retransmission request instruction channel by adding a CRC.
  • this physical retransmission request instruction channel when transmitting the collective ACK / NACK bit sequence, the transmission unit 103 generates a CRC parity bit, which is unique to the grant-free transmission generated with parameters common to the terminal devices to be multiplexed. Associate with an identifier.
  • the CRC parity bit is scrambled (also called an exclusive OR operation or mask) by an identifier unique to the grant-free transmission.
  • the transmission unit 103 scrambles the CRC parity bits with an identification signal unique to the terminal device related to grant-free transmission or an identifier unique to the terminal device.
  • the resource to which the physical retransmission request instruction channel is transmitted may be set using the cyclic shift value, OCC, or the like used for generating the identification signal in the frequency domain.
  • the resource to which the physical retransmission request instruction channel is transmitted may be set using the subframe / slot / symbol in which the identification signal is transmitted.
  • ACK / NACK for each terminal device or ACK / NACK is selected depending on whether uplink data is grant-free transmission or transmission based on a scheduling grant.
  • grant-free multiple access accommodating a large number of terminal devices, it is possible to suppress the tightness of downlink radio resources due to an increase in the number of ACK / NACK transmissions.
  • the base station apparatus since the base station apparatus can consider that uplink data in grant-free transmission includes an identification error of the terminal apparatus, the base station apparatus cannot grant a resource for transmitting uplink data in advance.
  • the base station apparatus and the terminal apparatus can efficiently perform retransmission control.
  • the communication system may use both a physical retransmission request instruction channel that transmits a plurality of ACK / NACKs by multiplying a spreading code sequence and a physical retransmission request instruction channel that is generated by CRC addition. good.
  • the base station apparatus uses a physical retransmission request instruction channel (the former) for transmitting a plurality of ACK / NACKs by multiplying the spreading code sequence for batch ACK / NACK transmission, and a physical retransmission request instruction channel ( The latter may be used for ACK / NACK transmission per UE.
  • This embodiment is an example in the case where collective ACK / NACK is applied to some uplink data.
  • batch ACK / NACK is applied according to the number of bits of uplink data.
  • the communication system according to the present embodiment includes the base station apparatus 10 and the terminal apparatus 20 described with reference to FIGS. Hereinafter, differences / additional points from the first embodiment will be mainly described.
  • FIG. 11 is a diagram illustrating an ACK / NACK transmission example for uplink data according to the present embodiment.
  • UE1 to UE14 correspond to the uplink data of the terminal devices 20-1 to 20-14.
  • ACK / NACK # 0 to ACK / NACK # 3 are ACK / NACK for uplink data of subframes # 0 to # 3 (batch ACK / NACK in each subframe), respectively.
  • ACK / NACK # mn indicates ACK / NACK for UE # n received in subframe #m (ACK / NACK for each terminal device).
  • UE1 to UE14 may be uplink data transmitted based on a scheduling grant, or may be uplink data for grant-free transmission. That is, uplink data transmitted based on the scheduling grant and uplink data for grant-free transmission are mixed.
  • the communication system of this embodiment applies batch ACK / NACK when the size of uplink data is equal to or less than a predetermined threshold.
  • the threshold value can be defined by the number of bits of uplink data transmitted by each terminal device / the number of resource blocks.
  • UE1, UE2, and UE14 are uplink data having a data size larger than the threshold set by the base station apparatus.
  • UE3 to UE13 are uplink data having a data size equal to or smaller than the threshold set by the base station apparatus.
  • the base station apparatus sets the threshold and notifies the terminal apparatus.
  • the base station apparatus can include the threshold in system information such as MIB and SIB.
  • the base station apparatus may include the threshold in the RRC message.
  • the base station apparatus may include the threshold value in downlink control information.
  • the terminal device can explicitly notify the size of the uplink transmission data to the base station device using UE Capability / RRC message / uplink control information and the like.
  • the size of the uplink transmission data can also be associated with parameters related to the identification signal (identification signal sequence length, cyclic delay amount, etc.). For example, the number of frequency domain resources (number of subcarriers) of uplink transmission data and the sequence length of the identification signal are set to be the same.
  • the base station apparatus implicitly recognizes the size of the uplink transmission data by identifying the terminal apparatus using the identification signal.
  • subframe # 0 (same frequency / same time), UE1 to UE8 are transmitting uplink data.
  • UE9 to UE12 transmit uplink data.
  • subframe # 2 the terminal apparatus accommodated in base station apparatus 10 does not transmit uplink data.
  • subframe # 3 UE13 to UE14 are transmitting uplink data.
  • the base station apparatus 10 receives uplink data from terminal apparatuses exceeding the number of reception antennas.
  • the base station apparatus 10 detects the uplink data of each terminal apparatus received in subframe # 0.
  • the base station apparatus 10 transmits ACK / NACK for each terminal apparatus at a predetermined transmission timing to the uplink data UE1 and UE2 having a data size exceeding the threshold (ACK / NACK # 0-1, ACK / NACK) # 0-2).
  • the base station apparatus transmits collective ACK / NACK to the uplink data UE3 to UE8 having a data size equal to or smaller than the threshold at a predetermined transmission timing.
  • ACK is transmitted at a predetermined transmission timing (ACK / NACK # 0) (batch ACK is transmitted) in the downlink.
  • the base station apparatus transmits a NACK at a predetermined transmission timing (ACK / NACK # 0) (transmits a batch NACK). ).
  • the base station apparatus 10 detects each uplink data received in the subframe # 1.
  • the data size of the uplink data UE9 to UE12 is less than or equal to the threshold value. Therefore, the base station apparatus transmits collective ACK / NACK at a predetermined transmission timing (ACK / NACK # 1) for the uplink data of UE9 to UE12.
  • the base station apparatus 10 detects each uplink data received in the subframe # 3.
  • the uplink data UE13 has a data size equal to or smaller than a threshold value. Therefore, the base station apparatus transmits collective ACK / NACK at a predetermined transmission timing (ACK / NACK # 3) in the downlink for the uplink data of UE13.
  • the uplink data UE14 has a data size greater than or equal to a threshold value. Therefore, the base station apparatus transmits ACK / NACK for each terminal apparatus at a predetermined transmission timing (ACK / NACK # 3-14) for the uplink data of UE14.
  • FIG. 11 illustrates a case where the transmission timing of ACK / NACK # 3 is set to 1 ⁇ 2 of the transmission timing of ACK / NACK # 1.
  • higher layer processing section 101 and transmission section 103 generate a physical retransmission request instruction channel for transmitting a plurality of ACK / NACKs by multiplying the spreading code sequence.
  • the transmission unit 103 when the transmission unit 103 spreads a batch ACK / NACK bit sequence, the transmission unit 103 associates the spread sequence with an identifier generated with a parameter common to the terminal devices to be multiplexed.
  • the parameters common to the terminal apparatus can include uplink data / subframe number in which identification signal is transmitted / slot number / symbol number / system frame number / frequency resource.
  • a parameter common to the terminal device is included in the generation parameter of the spreading sequence.
  • the transmission unit 103 associates the parameter with respect to the identification signal unique to the terminal device or the identifier unique to the terminal device.
  • the parameters related to the identification signal unique to the terminal device include an identification signal sequence (orthogonal sequence / quasi-orthogonal sequence), a cyclic delay amount applied to the identification signal sequence, OCC, and the like.
  • the identifier unique to the terminal device includes a C-RNTI assigned to each terminal device, an identifier unique to the terminal device to be transmitted grant-free, and the like.
  • upper layer processing section 101 and transmitting section 103 generate a physical retransmission request instruction channel by adding a CRC.
  • this physical retransmission request instruction channel when transmitting a batch ACK / NACK bit sequence, the transmission section 103 associates CRC parity bits with an identifier generated with parameters common to the terminal devices to be multiplexed. For example, the CRC parity bit is scrambled (also called an exclusive OR operation or mask) by the identifier.
  • the transmission unit 103 associates the CRC parity bit with a parameter related to an identification signal unique to the terminal device or an identifier unique to the terminal device.
  • the communication system according to the present embodiment includes the base station apparatus 10 and the terminal apparatus 20 described with reference to FIGS.
  • differences / additional points from the first to third embodiments will be mainly described.
  • NACK negative acknowledgment
  • the type of NACK is associated with the reason.
  • the reason for NACK is associated with information related to the number of terminal devices identified by the base station device in the resource for a predetermined time. For example, NACK is classified according to whether or not the number of terminal devices identified by the base station device is equal to or less than a threshold in a predetermined time resource.
  • the first NACK (first negative response) is transmitted when the number of terminal devices identified by the base station device in the resource for a predetermined time is equal to or smaller than a threshold value.
  • the predetermined time resource is set in units of subframes which are time units to which the terminal device allocates uplink data.
  • the predetermined time resource may be set in slot units / frame units.
  • the base station device can set the threshold value to the number of terminal devices that can be accommodated.
  • the base station apparatus can set the threshold using the number of reception antennas of the base station apparatus.
  • the base station apparatus can also set the threshold using the number of resource blocks of the multiplexed uplink data.
  • the base station apparatus can set the threshold using a parameter related to the identification signal.
  • the parameter related to the identification signal may include the number of orthogonal sequences (number of quasi-orthogonal sequences) / number of cyclic delay patterns / number of OCC patterns.
  • the threshold is the number of identification signals that can be generated by a parameter related to the identification signal.
  • the base station apparatus can set the threshold using the set number of physical retransmission request instruction channels.
  • the number of physical retransmission request instruction channels set can be the number of multiplexed physical retransmission request instruction channels.
  • the number of set physical retransmission request instruction channels is the number of terminal devices that can be included in one physical retransmission request instruction channel (number of ACK / NACK used for CRC generation). It can be.
  • the base station apparatus may set a coefficient according to the reception capability of the base station apparatus as the threshold value.
  • the second NACK (second negative response) is transmitted when the number of terminal devices identified by the base station device in the resource for a predetermined time exceeds the threshold value.
  • the base station apparatus can use the same standard as the first NACK for the predetermined time resource and the threshold. Note that the base station apparatus may transmit a third NACK transmitted when the base station apparatus does not identify the terminal apparatus in the resource for a predetermined time.
  • the reason for NACK can be associated with information on retransmission method / information on retransmission data.
  • NACK is classified according to the relationship between the uplink data for the first transmission and the retransmission uplink data.
  • the first NACK is transmitted when a retransmission request is made for data including data that has not been transmitted at the initial transmission.
  • the second NACK is retransmitted when a retransmission request is made with the data transmitted in the initial transmission.
  • the reason for NACK can be associated with information on retransmission resources / information on retransmission timing. For example, NACK is classified according to whether uplink data is retransmitted using the same time resource / frequency resource as the initial transmission. The first NACK is transmitted when requesting retransmission of uplink data with the same time resource / frequency resource as the initial transmission. The second NACK is transmitted when a retransmission request for uplink data is made with a time resource / frequency resource different from the initial transmission.
  • the reason for NACK can be associated with the degree of error detection of uplink data received with a predetermined time resource. For example, NACK is classified according to whether there is an error in part or all of the uplink data received using the same time resource and frequency resource. The first NACK is transmitted when there is an error in part of uplink data received using the same time resource and frequency resource. The second NACK is transmitted when there is an error in all the uplink data received using the same time resource and frequency resource.
  • NACK is classified according to whether signal detection processing has been performed on uplink data.
  • the first NACK is transmitted when an error is detected as a result of the signal detection process.
  • the second NACK is transmitted according to the result of the terminal identification process without performing the signal detection process.
  • NACK may be classified depending on whether signal detection processing is performed using advanced reception processing such as turbo equalization.
  • the type of NACK can be associated with batch NACK or NACK for each terminal device.
  • the first NACK means a NACK for each terminal device.
  • the second NACK means a batch NACK for uplink data received by a resource for a predetermined time.
  • ACK / NACK transmission including a plurality of types of NACK a case where the number of antennas and the reception capability of the terminal device are used in the setting related to the type of NACK will be described.
  • the threshold value for the number of terminal devices is 2 ⁇ ⁇ ( ⁇ is a coefficient set by the reception capability).
  • FIG. 12 is a diagram illustrating an ACK / NACK transmission example for uplink data according to the present embodiment.
  • UE1 to UE14 correspond to the uplink data of the terminal devices 20-1 to 20-14.
  • Each terminal device transmits uplink data grant-free.
  • ACK / NACK # 0 to ACK / NACK # 3 are batch ACK / NACK for uplink data of subframes # 0 to # 3, respectively.
  • FIG. 12 shows a case where both the first NACK and the second NACK are transmitted using batch ACK / NACK.
  • uplink data UE1 to UE8 are transmitted in subframe # 0 (same frequency / same time).
  • the base station apparatus uses the identification signal to identify the terminal apparatus that has transmitted the uplink data in subframe # 0.
  • the base station apparatus identifies eight terminal apparatuses UE1 to UE8 (the base station apparatus recognizes the number of multiplexed terminal apparatuses in subframe # 0 as eight).
  • uplink data UE9 to UE12 are transmitted.
  • the base station apparatus uses the identification signal to identify the terminal apparatus that has transmitted the uplink data in subframe # 0.
  • the base station apparatus identifies four terminal apparatuses UE9 to UE12 (the base station apparatus recognizes that the number of multiplexed terminal apparatuses in subframe # 1 is 4).
  • the base station apparatus When the base station apparatus correctly detects all the uplink data of UE9 to UE12, the base station apparatus transmits ACK at a predetermined transmission timing (ACK / NACK # 1) in the downlink. On the other hand, if even one of the uplink data of UE9 to UE12 cannot be detected correctly, the base station apparatus performs the first NACK (shading unit) at a predetermined transmission timing (ACK / NACK # 1) in the downlink. ).
  • the base station apparatus identifies the terminal apparatus using the identification signal in subframe # 3.
  • the base station apparatus performs signal detection processing on the uplink data UE13 and UE14 transmitted by the identified terminal apparatus.
  • the base station apparatus correctly detects all the uplink data of UE13 and UE14, the base station apparatus transmits ACK at a predetermined transmission timing (ACK / NACK # 3).
  • the base station apparatus transmits a first NACK (shaded part) at a predetermined transmission timing (ACK / NACK # 3).
  • FIG. 13 is a diagram showing another example of ACK / NACK transmission for uplink data according to the present embodiment.
  • ACK / NACK # 0 to ACK / NACK # 3 are batch ACK / NACK for uplink data of subframes # 0 to # 3, respectively.
  • ACK / NACK # mn is ACK / NACK for UE # n received in subframe #m.
  • FIG. 13 shows a case where the first NACK is transmitted using batch ACK / NACK, and the second NACK is transmitted using ACK / NACK for each terminal device.
  • batch ACK / NACK can be applied according to the threshold.
  • the base station device applies batch ACK / NACK.
  • the base station apparatus applies ACK / NACK for each terminal apparatus when the number of terminal apparatuses is equal to or less than the threshold value.
  • the base station apparatus identifies eight terminal apparatuses UE1 to UE8 in subframe # 0 (the base station apparatus recognizes the multiplexing number of the terminal apparatuses in subframe # 0 as eight).
  • the base station apparatus identifies the four terminal apparatuses UE9 to UE12 using the identification signal in subframe # 1 (the base station apparatus recognizes that the number of multiplexed terminal apparatuses in subframe # 1 is 4). .
  • the base station apparatus transmits ACK / NACK to each terminal apparatus based on the detection results of the uplink data UE9 to UE12 (ACK / NACK # 1-9 to ACK / NACK # 1-12). In this case, the base station apparatus transmits a first NACK (shaded part) to the uplink data in which the error is detected.
  • the base station apparatus identifies the terminal apparatus using the identification signal in subframe # 3.
  • the base station apparatus performs signal detection processing on the uplink data UE13 and UE14 transmitted by the identified terminal apparatus.
  • the base station apparatus transmits ACK / NACK for each terminal apparatus based on the detection results of the uplink data UE13 and UE14 (ACK / NACK # 1-13 to ACK / NACK # 1-14). In this case, the base station apparatus transmits a first NACK (shaded part) to the uplink data in which the error is detected.
  • the base station apparatus transmits NACK without performing signal detection processing. Thereby, even when there are a large number of terminal devices, the base station device can efficiently perform retransmission control.
  • FIG. 14 is a diagram showing another example of ACK / NACK transmission for uplink data according to the present embodiment.
  • ACK / NACK # mn is ACK / NACK for UE # n received in subframe #m.
  • FIG. 14 shows a case where both the first NACK and the second NACK are transmitted using ACK / NACK for each terminal device.
  • the base station apparatus transmits ACK / NACK for each terminal apparatus based on the detection results of the uplink data UE9 to UE14 (ACK / NACK # 1-9 to ACK / NACK # 1-12 and ACK / NACK). # 3-13 to ACK / NACK # 3-14). In this case, the base station apparatus transmits a first NACK (shaded part) to the uplink data in which the error is detected.
  • the base station apparatus Since the base station apparatus does not identify the terminal apparatus in subframe # 2, it does not transmit ACK / NACK.
  • the terminal apparatus that has transmitted the uplink data transmits the uplink data transmission time. After a predetermined time has elapsed, it is determined as NACK. In this case, the terminal apparatus considers that the second NACK has been transmitted, and transmits uplink data again.
  • the base station apparatus may transmit a NACK (for example, a third NACK) indicating that the uplink data has not been identified even for the subframe # 2 that does not identify the terminal apparatus.
  • a NACK for example, a third NACK
  • the terminal device that has transmitted the uplink data in the subframe can know that the terminal device has not been identified.
  • Upper layer processing section 101 inputs HARQ indicators (delivery confirmation, ACK / NACK) using a plurality of types of NACKs to transmission section 103.
  • HARQ indicators be a n0 , a n1 ,..., An nL .
  • n is determined by the unit for transmitting the HARQ indicator.
  • ACK / NACK is transmitted for each terminal device
  • n is ACK / NACK for the uplink data of the terminal device 20-n.
  • n is ACK / NACK for the uplink data transmitted in subframe n.
  • L is the number of bits of the HARQ indicator.
  • the HARQ indicators “a n0 , a n1 ” are “00” for the first NACK, “01” for the second NACK, and “11” for the ACK. ".
  • a n0 is a bit indicating ACK / NACK
  • a n1 is a bit indicating the type (or reason) of NACK.
  • the reason for NACK is associated with information regarding the number of terminal devices identified in the resource for a predetermined time
  • the first NACK “00” may include a NACK for uplink data transmitted based on the scheduling grant.
  • the encoding unit 1031 may repeat the HARQ indicator. For example, when the 2-bit HARQ indicator “a n0 , a n1 ” is repeated three times, the first NACK, the second NACK, and ACK are repeated as “000000”, “010101”, and “111111”, respectively.
  • the Modulation section 1032 performs data modulation on the output data of encoding section 1031. For example, data modulation is performed using QPSK.
  • the modulation unit 1032 multiplies the data-modulated data by a predetermined sequence (spreading sequence) (the data-modulated data is spread by the predetermined sequence).
  • a predetermined sequence spreading sequence
  • An orthogonal sequence or a quasi-orthogonal sequence
  • the spreading sequence can be associated with a common parameter in a terminal device to be multiplexed such as an identifier unique to grant-free transmission.
  • the spreading sequence is associated with an identifier generated with parameters common to the terminal devices to be multiplexed.
  • the parameters common to the terminal apparatus can include uplink data / subframe number in which identification signal is transmitted / slot number / symbol number / system frame number / frequency resource.
  • the spread sequence generation parameters include parameters common to the terminal devices.
  • the spreading sequence can be associated with a parameter related to an identification signal unique to the terminal device or an identifier unique to the terminal device.
  • the parameters related to the identification signal unique to the terminal device include an identification signal sequence (orthogonal sequence / quasi-orthogonal sequence), a phase rotation amount applied to the identification signal sequence, a cyclic delay amount, an interleave pattern, an OCC, and the like.
  • the identifier unique to the terminal device includes a C-RNTI assigned to each terminal device, an identifier unique to the terminal device to be transmitted grant-free, and the like.
  • ACK / NACK for each terminal device is spread with a sequence generated from parameters relating to an identification signal sequence / identification signal unique to the terminal device.
  • Upper layer processing section 101 can add a CRC parity bit to information on uplink data retransmission including a plurality of HARQ indicators. If x is the bit sequence of the HARQ indicator and p is the CRC parity bit sequence, the bit sequence after the CRC is added is “x 0 , x 1 ,... x q ⁇ 1 , p 0 , p 1 ,. r-1 "(q is the total number of ACK / NACK bits, and r is the number of CRC parity bits).
  • the bit sequence of the HARQ indicator is composed of an ACK / NACK field for each uplink data.
  • the ACK / NACK field for each uplink data can include a bit sequence of information related to uplink data retransmission.
  • a CRC parity bit is added to multiple ACK / NACK at the same transmission timing.
  • the base station apparatus can set the bit sequence length (or the number of ACK / NACK fields) of the HARQ indicator x based on the number of uplink subframes.
  • a ml is an ACK / NACK bit (HARQ indicator bit) for uplink data.
  • m is a transmission subframe number of the uplink data
  • l is a bit number constituting a batch ACK / NACK of each subframe.
  • the HARQ indicator x has 10 ACK / NACK fields consisting of 2 bits. In ACK / NACK transmission in subframe # 5 in FIG.
  • ACK / NACK # 1 is stored in “a 10 , a 11 ”.
  • ACK / NACK # 3 is stored in “a 30 , a 31 ”.
  • the other bits (a 10, a 11, a 30, except a 31), dummy bits may be stored.
  • the terminal apparatus acquires ACK / NACK for the uplink data based on the subframe number that transmitted the uplink data.
  • the base station apparatus may set the bit sequence length (or the number of ACK / NACK storage fields) of the HARQ indicator x according to the uplink system bandwidth or the like.
  • the base station apparatus can notify the terminal apparatus of the storage field index of ACK / NACK for each uplink data using an RRC message / downlink control channel or the like.
  • the base station apparatus stores ACK / NACK for each uplink data according to the storage field index notified in advance to each terminal apparatus. For example, in FIG. 13, it is assumed that 10 ACK / NACK storage fields (ACK / NACK storage fields # 1 to # 10) are set in the HARQ indicator x sequence.
  • the base station apparatus notifies (assigns) storage field indexes # 1 to # 6 of ACK / NACK to each of the terminal apparatuses 9 to 14. For example, in ACK / NACK transmission in subframe # 5 in FIG. 13, the base station apparatus stores ACK / NACK for each uplink data according to the storage field index notified in advance to each of terminal apparatuses 9-14. Further, the base station apparatus adds CRC parity bits to the sequence storing ACK / NACK for the terminal apparatuses 9-14. In this case, the terminal apparatus acquires ACK / NACK for the uplink data based on the storage field index notified from the base station apparatus.
  • the collective ACK / NACK may be scrambled using parameters different from the terminal device ACK / NACK.
  • upper layer processing section 101 scrambles (masks) the CRC parity bits using parameters common to terminal devices that are multiplexed such as an identifier unique to grant-free transmission.
  • upper layer processing section 101 scrambles the CRC parity bit using a parameter related to an identification signal unique to the terminal device or an identifier unique to the terminal device.
  • Bit sequence “x 0 , x 1 ,... X q ⁇ 1 , p 0 , p 1 ,... P r ⁇ 1 ” (q is the number of ACK / NACK bits for each uplink data, In r (the number of CRC parity bits), the CRC parity bits may be allocated for each ACK / NACK for the uplink data.
  • parity bits “p 0 , p 1 ,... P r ⁇ 1 ” are scrambled (masked) using parameters common to the multiplexed terminal devices such as a sequence associated with an identifier unique to grant-free transmission. Is done.
  • “p 0 , p 1 ,... P r ⁇ 1 ” is scrambled with the sequence “0000000000000101” generated from subframe # 4.
  • q r ⁇ 1 (“ a n0 , A n1 , a n2 , a n3 ,..., A n (q ⁇ 1) ”are ACK / NACK storage fields for uplink data of the terminal device 20-n and / or information on retransmission of the uplink data Consists of storage fields). That is, a CRC parity bit is added for each terminal device. Further, the parity bits “p 0 , p 1 ,... P r ⁇ 1 ” are scrambled (masked) using parameters specific to each terminal apparatus.
  • a bit sequence (ACK / NACK storage field or / and uplink data retransmission) after CRC addition of ACK / NACK (ACK / NACK # 1-9) for terminal apparatus 20-9
  • the parity bits “p 0 , p 1 ,..., P r ⁇ 1 ” are scrambled using the identification signal sequence of ACK / NACK # 1-9.
  • CRC parity bits are similarly added to each terminal device in ACK / NACK for terminal devices 20-10 to 20-14.
  • the communication system according to the present embodiment indicates a HARQ indicator using a plurality of types of NACK by 1 bit.
  • the first NACK and the second NACK are indicated by “0”, and the ACK is indicated by “1”.
  • the first NACK and the second NACK are distinguished by the multiplied spreading code sequences.
  • Modulator 1032 uses different spreading sequences for the first NACK and the second NACK.
  • the first NACK is spread using a spreading code sequence associated with a parameter related to an identification signal unique to the terminal device or an identifier unique to the terminal device.
  • the second NACK is spread using a spreading code associated with a parameter common to the terminal devices.
  • the first NACK and the second NACK are distinguished by an identifier for scrambling (exclusive OR operation, masking) the CRC parity bits.
  • the first NACK is scrambled using a parameter related to an identification signal unique to the terminal device or an identifier unique to the terminal device.
  • the second NACK is scrambled using a common parameter in the multiplexed terminal apparatus such as an identifier unique to grant-free transmission.
  • the physical retransmission request instruction channel uses a physical retransmission request instruction channel that transmits a plurality of ACKs / NACKs by multiplying the spreading code sequence by the first NACK and the second NACK, or a plurality of ACKs generated by CRC addition. Whether to use a physical retransmission request instruction channel for transmitting / NACK may be set.
  • the terminal apparatus receives ACK / NACK for the uplink data (initial transmission) (S205 in FIG. 3).
  • the terminal device again transmits data related to the uplink data (initial transmission) (S206 in FIG. 3).
  • the data related to the uplink data may be the same as the uplink data (data bit and parity bit transmitted in the initial transmission) transmitted in the initial transmission, or the data not transmitted in the initial transmission (transmitted in the initial transmission). No data bits and parity bits).
  • the data related to the uplink data may be data including both the uplink data transmitted by the initial transmission and the data not transmitted by the initial transmission.
  • the base station apparatus that has received the retransmission performs signal detection processing using uplink data (initial transmission) and uplink data (retransmission).
  • the base station apparatus can use Chase combining and IR (Incremental Redundancy).
  • the terminal device When receiving the second NACK, the terminal device transmits again the same data as the uplink data (data bits and parity bits transmitted in the initial transmission) (S206 in FIG. 3).
  • the uplink data (retransmission) may be data including both a data bit transmitted in the initial transmission, a parity bit, a data bit not transmitted in the initial transmission, and a parity bit.
  • the base station apparatus that has received the retransmission performs signal detection processing using uplink data (initial transmission).
  • the base station apparatus transmits information indicating the retransmission timing of the uplink data to the terminal apparatus as system information / RRC message / downlink control information (S203 in FIG. 3).
  • the base station apparatus can also transmit information indicating the retransmission timing to the terminal apparatus using the physical retransmission request instruction channel (S205 in FIG. 3). For example, information indicating uplink data retransmission timing is set as a reference time and an offset value with respect to the reference time.
  • the terminal apparatus that has received the second NACK retransmits the uplink data at a retransmission interval obtained from the reference time + the selected offset value (S206).
  • the selection of the offset value may be selected randomly by the terminal device or may be instructed by the base station device.
  • the communication system defines a plurality of types of NACK depending on the reason for transmitting the NACK.
  • the type of NACK is associated with the number of terminal devices that can be accommodated by the base station device.
  • This embodiment uses multiple types of negative acknowledgments (NACKs) when uplink data transmitted based on grant-free transmission uplink data and scheduling grants are transmitted using overlapping time resources and frequency resources. It is an example.
  • the communication system according to the present embodiment includes the base station device 10 and the terminal device 20 described with reference to FIGS. Hereinafter, differences / additional points from the first embodiment to the fourth embodiment will be mainly described.
  • FIG. 15 is a diagram illustrating an example of ACK / NACK transmission for uplink data according to the present embodiment.
  • UE1 to UE15 are uplink data transmitted by the terminal devices 20-1 to 20-15, respectively.
  • ACK / NACK # mn is ACK / NACK for UE # n received in subframe #m.
  • UE1 and UE9 are uplink data transmitted based on the scheduling grant (upward left hatched portion).
  • UE2 to UE8 and UE10 to UE15 are uplink data transmitted by grant free.
  • a case where the number of antennas and the reception capability of the terminal device are used in threshold setting regarding the type of NACK will be described.
  • the base station apparatus 10 has two reception antennas and the terminal apparatus 20 has one transmission antenna.
  • the threshold value for the number of terminal devices is 2 ⁇ ⁇ ( ⁇ is a coefficient set by the reception capability).
  • the base station apparatus receives UE1 transmitted based on the scheduling grant in subframe # 0. Further, the base station apparatus identifies seven terminal apparatuses UE2 to UE8 by the identification signal in subframe # 0 (the base station apparatus sets the number of grant-free transmission terminal apparatuses in subframe # 0). 7). Further, the base station apparatus performs signal detection processing on the uplink data UE1 to UE8 in the signal detection unit 1043. The base station apparatus transmits ACK / NACK for each terminal apparatus based on the detection results of the uplink data UE1 to UE8 (ACK / NACK # 0-1 to ACK / NACK # 0-8).
  • subframe # 1 seven uplink data of UE9 to UE15 are transmitted.
  • the base station apparatus receives UE 9 transmitted based on the scheduling grant in subframe # 1. Further, the base station apparatus identifies six terminal apparatuses UE10 to UE15 by the identification signal in subframe # 1 (the base station apparatus determines the number of multiplexed terminal apparatuses for grant-free transmission in subframe # 1. 6). Further, the base station apparatus performs signal detection processing in the signal detection section 1043 on the end uplink data UE9 to UE15. The base station apparatus transmits ACK / NACK for each terminal apparatus based on the detection results of the uplink data UE9 to UE15 (ACK / NACK # 1-9 to ACK / NACK # 1-15).
  • the base station apparatus When there is an error in the UE 9 transmitted based on the scheduling grant, the base station apparatus transmits a first NACK to the terminal apparatus (shaded part).
  • the communication system defines multiple types of NACKs in association with the number of terminal devices that can be accommodated by the base station device.
  • the base station apparatus receives the uplink data transmitted based on the grant-free transmission uplink data and the scheduling grant using the same time resource and the frequency resource, the base station apparatus is based on the number of transmission terminals of the grant-free transmission uplink data.
  • the type of NACK to be returned is determined. Thereby, the base station apparatus and the terminal apparatus can perform retransmission control efficiently in consideration of the multiplexing state of uplink data.
  • the base station apparatus can apply turbo equalization or the like using the uplink data transmitted based on the scheduling grant in the grant-free transmission uplink data detection process. Thereby, the detection accuracy of grant-free transmission data in which the base station apparatus cannot schedule uplink transmission resources in advance can be improved.
  • One aspect of the present invention is a base station device that communicates with a plurality of terminal devices, an identification signal that identifies a terminal device that has transmitted uplink data, and a receiving unit that receives the uplink data;
  • a transmission unit that transmits a signal indicating a delivery confirmation for the uplink data, and the signal indicating the delivery confirmation performs a delivery confirmation for the uplink data received using the same time resource and the same frequency resource collectively. It is a signal to show.
  • the reception unit receives uplink data transmitted based on a scheduling grant and uplink data transmitted grant-free using the same time resource and the same frequency resource.
  • the transmitting unit transmits a signal indicating delivery confirmation for each terminal device to the uplink data transmitted based on a scheduling grant, and collectively transmits the uplink data transmitted grant-free.
  • a signal indicating delivery confirmation is transmitted.
  • the receiving unit receives uplink data transmitted based on a scheduling grant and uplink data transmitted grant-free using the same time resource and the same frequency resource.
  • the transmitting unit transmits a signal indicating delivery confirmation to the uplink data transmitted based on a scheduling grant and the uplink data transmitted grant-free in a lump.
  • the signal indicating the delivery confirmation includes a bit indicating the reason for the negative response, and at least one of the bits indicating the reason for the negative response includes the same time resource and the same frequency. Meaning a negative response collectively for uplink data received by a resource.
  • the signal indicating the delivery confirmation includes a bit indicating the reason for the negative response, and the bit indicating the reason for the negative response is associated with information regarding the number of identified terminal devices. It is characterized by that.
  • the signal indicating the delivery confirmation includes a bit indicating the reason for the negative response, and the bit indicating the reason for the negative response uses the number of reception antennas of the base station apparatus as a parameter. It is characterized by being set.
  • the signal indicating the delivery confirmation includes a bit indicating the reason for the negative response, and the bit indicating the reason for the negative response is set with the number of bits of the uplink data as a parameter It is characterized by that.
  • one aspect of the present invention is characterized in that the signal indicating the delivery confirmation is associated with a subframe number in which the signal indicating the delivery confirmation is transmitted.
  • One aspect of the present invention is a terminal device that performs grant-free communication with a base station device, and transmits an identification signal indicating that the terminal device has transmitted uplink data and the uplink data. And a receiving unit that receives a signal indicating the delivery confirmation for the uplink data, and the transmitting unit includes a signal indicating the delivery confirmation in a lump and a negative response. In some cases, the data bits and parity bits constituting the uplink data are transmitted again.
  • a communication method for a base station apparatus that communicates with a plurality of terminal apparatuses, which receives an identification signal identifying a terminal apparatus that has transmitted uplink data and the uplink data. And a transmission step for transmitting a signal indicating delivery confirmation for the uplink data, and the signal indicating the delivery confirmation is for uplink data received with the same time resource and the same frequency resource. It is a signal which shows delivery confirmation collectively.
  • a communication method for a terminal apparatus that performs grant-free communication with a base station apparatus, the identification signal indicating that the terminal apparatus has transmitted uplink data, and the uplink A transmission step for transmitting data; and a reception step for receiving a signal indicating the delivery confirmation for the uplink data, wherein the signal indicating the delivery confirmation is a signal indicating a delivery confirmation and a negative response.
  • the method includes a step of transmitting again the data bits and the parity bits constituting the uplink data.
  • a base station device that communicates with a plurality of terminal devices, wherein the receiving unit receives an identification signal that identifies a terminal device that has transmitted uplink data and the uplink data. And a transmission unit for transmitting a signal indicating a delivery confirmation for the uplink data, the signal indicating the delivery confirmation indicating a first negative response associated with a parameter specific to the terminal device; It includes delivery confirmation including a second negative response associated with a parameter common to the terminal devices identified by the same time resource and the same frequency resource.
  • One aspect of the present invention is characterized in that the delivery confirmation indicating the first negative response is associated with the sequence of the identification signals.
  • one aspect of the present invention is characterized in that the delivery confirmation indicating the first negative response is associated with a cyclic shift amount applied to the series of the identification signals.
  • one aspect of the present invention is characterized in that the delivery confirmation indicating the second negative response is associated with a subframe number in which the identification signal is transmitted.
  • one aspect of the present invention is characterized in that the delivery confirmation indicating the second negative response is associated with a subframe number in which the uplink data is transmitted.
  • the signal indicating the delivery confirmation includes a bit indicating the reason for the negative response, and the delivery confirmation indicating the first negative response and the delivery indicating the second negative response. Confirmation is distinguished by a bit indicating the reason for the negative response.
  • one aspect of the present invention is characterized in that the bit indicating the reason for the negative response is set using the number of reception antennas of the base station apparatus as a parameter.
  • a terminal device that communicates with a base station device, wherein the transmitting unit transmits an identification signal indicating that the terminal device has transmitted uplink data and the uplink data. And a reception unit that receives the delivery confirmation signal for the uplink data, and the uplink confirms that the delivery confirmation signal is a delivery confirmation indicating a negative response associated with a parameter specific to the terminal device. Data bits and parity bits constituting the data are transmitted again.
  • a communication method for a base station apparatus that communicates with a plurality of terminal apparatuses, wherein an identification signal for identifying a terminal apparatus that has transmitted uplink data and the uplink data are received.
  • a terminal apparatus that communicates with a base station apparatus, and a transmission step of transmitting the identification signal indicating that the own terminal apparatus has transmitted uplink data and the uplink data. And receiving the acknowledgment signal for the uplink data, and when the acknowledgment signal is a delivery acknowledgment signal indicating a negative response associated with a parameter specific to the terminal device, The data bit and the parity bit constituting the uplink data are transmitted again.
  • the program that operates in the apparatus related to the present invention may be a program that controls the central processing unit (CPU) or the like to function the computer so as to realize the functions of the above-described embodiments related to the present invention.
  • the program or information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) during processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD).
  • volatile memory such as Random Access Memory (RAM) during processing
  • non-volatile memory such as flash memory or Hard Disk Drive (HDD).
  • HDD Hard Disk Drive
  • a program for realizing the functions of the embodiments may be recorded on a computer-readable recording medium.
  • the “computer system” here is a computer system built in the apparatus, and includes hardware such as an operating system and peripheral devices.
  • the “computer-readable recording medium” may be any of a semiconductor recording medium, an optical recording medium, a magnetic recording medium, and the like.
  • Computer-readable recording medium means a program that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory inside a computer system serving as a server or a client may be included, which holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • each functional block or various features of the apparatus used in the above-described embodiments can be implemented or executed by an electric circuit, that is, typically an integrated circuit or a plurality of integrated circuits.
  • Electrical circuits designed to perform the functions described herein can be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other Programmable logic devices, discrete gate or transistor logic, discrete hardware components, or combinations thereof.
  • a general purpose processor may be a microprocessor or a conventional processor, controller, microcontroller, or state machine.
  • the electric circuit described above may be configured with a digital circuit or an analog circuit.
  • an integrated circuit based on the technology can be used.
  • the present invention is not limited to the above-described embodiment.
  • an example of the apparatus has been described.
  • the present invention is not limited to this, and a stationary or non-movable electronic device installed indoors or outdoors, such as an AV device, a kitchen device, It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • the present invention is suitable for use in a base station device, a terminal device, and a communication method.

Abstract

基地局装置が多数端末装置を収容するグラントフリーの多元接続において、小サイズデータに対する再送制御を効率的に行なうことが可能な基地局装置、端末装置および通信方法を提供すること。端末装置と通信を行なう基地局装置であって、上りリンクデータを送信するリソースを前記端末装置に指示するアップリンクグラントを送信する送信部と、前記アップリンクグラントに基づいて前記端末装置から送信された上りリンクデータと前記アップリンクグランドによらず前記端末装置から送信された上りリンクデータを受信する受信部と、を備える。

Description

基地局装置、端末装置およびその通信方法
 本発明は、基地局装置、端末装置およびその通信方法に関する。
 3GPP(Third Generation Partnership Project)で仕様化されているLTE(Long Term Evolution)、LTE-A(LTE-Advanced)等の通信システムでは、端末装置(UE: User Equipment)は、スケジューリング要求(SR: Scheduling Request)やバッファステータスレポート(BSR: Buffer Status Report)を使用して、基地局装置(eNodeB: evolved Node B)に、上りリンクデータを送信するための無線リソースを要求する。基地局装置は、SRやBSRを基に、各端末装置に上り送信許可(UL Grant)を与える。端末装置は、基地局装置からUL Grantに関する制御情報を受信すると、そのUL Grantに含まれる上りリンク送信パラメータに基づき、所定の無線リソースで上りリンクデータを送信する。
 基地局装置は、前記上りリンクデータを正しく受信した場合、前記上りリンクデータ受信から所定の時間後に、下りリンクにおいて肯定応答(ACK: Acknowledgement)を端末装置に送信する。一方、前記上りリンクデータを正しく受信できなかった場合、基地局装置は、前記上りリンクデータ受信から所定の時間後に、否定応答(NACK: Negative Acknowledgement)を端末装置に送信する。NACKを受信した端末装置は、その上りリンクデータと関連するデータを再送する。このように、基地局装置は、全ての上りリンクデータ送信(端末装置から基地局装置へのデータ送信)を制御する。基地局装置が上りリンク無線リソースを制御することにより、直交多元接続(OMA: Orthogonal Multiple Access)が実現される。
 3GPPでは、第5世代移動通信方式(5G)として、大量マシン型通信(mMTC: Massive Machine Type Communications)を実現する無線アクセス技術の仕様化が進められている(非特許文献1)。mMTCでは、端末装置やセンサ等の多数デバイスが小さいデータを送受信することを想定している。上りリンクmMTCのために、グラントフリーの非直交多元接続(NOMA: Non-Orthogonal Multiple Access)が検討されている(非特許文献2)。グラントフリー非直交多元接続は、基地局装置の受信アンテナ数を超える端末装置から送信されたデータが空間で非直交多重されること、を許容する。グラントフリー非直交多元接続では、端末装置が、SR送信やUL Grant受信等を行なうことなく、基地局装置へ上りリンクデータを送信する。このため、グラントフリー非直交多元接続では、多数デバイスが小サイズデータの送受信を行なう場合でも、制御情報によるオーバーヘッドの増加を抑えることができる。さらに、グラントフリー非直交多元接続では、UL Grant受信等を行なわないため、送信データの発生から送信までの時間も短くできる。
 しかしながら、基地局装置が多数端末装置を収容するグラントフリー非直交多元接続では、多数の小サイズの上りリンクデータが送信されることに伴い、これらの上りリンクデータに対するACKおよびNACKの送信も増加する。このため、下りリンク無線リソースが逼迫する。また、グラントフリー非直交多元接続では、端末装置は、UL Grant受信することなく、上りリンクデータを送信する。このため、グラントフリー非直交多元接続の再送制御では、上りリンク無線リソースを制御する直交多元接続と異なり、基地局装置は、上りリンクリソース割当て等を制御していない上りリンクデータ(すなわち、いずれの上りリンクリソースで送信されるか把握していない上りリンクデータ)に対して、ACKまたはNACKの送信を行なう必要がある。
 本発明はこのような事情に鑑みてなされたものであり、その目的は、基地局装置が多数端末装置を収容するグラントフリーの多元接続において、小サイズデータに対する再送制御を効率的に行なうことが可能な基地局装置、端末装置および通信方法を提供することにある。
 上述した課題を解決するために本発明に係る基地局装置、端末装置および通信方法の構成は、次の通りである。
 (1)本発明の一態様は、端末装置と通信を行なう基地局装置であって、上りリンクデータを送信するリソースを前記端末装置に指示するアップリンクグラントを送信する送信部と、前記アップリンクグラントに基づいて前記端末装置から送信された上りリンクデータと前記アップリンクグランドによらず前記端末装置から送信された上りリンクデータを受信する受信部と、を備え、前記受信部が前記アップリンクグラントに基づいた上りリンクデータを前記端末装置から受信した場合、前記送信部は、該上りリンクデータのみに対する送信確認信号を含む1つの制御チャネルを用いて、該上りリンクデータに対する送信確認信号を送信し、前記受信部が前記アップリンクグラントによらず上りリンクデータを前記端末装置から受信した場合、前記送信部は、前記端末装置を含む複数の端末装置に対する送信確認信号を含む1つの制御チャネルを用いて、該上りリンクデータに対する送信確認信号を送信すること、を特徴とする。
 (2)また、本発明の一態様は、前記送信部は、前記端末装置を含む複数の端末装置に対する送信確認信号を含む1つの制御チャネルに、前記複数の端末装置に共通のパラメータを用いて生成された系列でスクランブルされた巡回冗長検査を付加し、前記上りリンクデータのみに対する送信確認信号を含む1つの制御チャネルに、前記上りリンクデータを送信した端末装置に固有のパラメータでスクランブルされた巡回冗長検査を付加すること、を特徴とする。
 (3)また、本発明の一態様は、前記受信部は、アップリンクグランドによらず前記上りリンクデータを送信した端末装置を識別する識別信号を受信し、前記複数の端末装置に共通のパラメータは、前記識別信号が送信されたスロット番号を含むこと、を特徴とする。
 (4)また、本発明の一態様は、前記受信部は、アップリンクグランドによらず前記上りリンクデータを送信した端末装置を識別する識別信号を受信し、前記複数の端末装置に共通のパラメータは、前記上りリンクデータが送信されたスロット番号を含むこと、を特徴とする。
 (5)また、本発明の一態様は、端末装置と通信を行なう基地局装置の通信方法であって、上りリンクデータを送信するリソースを前記端末装置に指示するアップリンクグラントを送信する送信ステップと、前記アップリンクグラントに基づいて前記端末装置から送信された上りリンクデータと前記アップリンクグランドによらず前記端末装置から送信された上りリンクデータを受信する受信ステップと、を有し、前記アップリンクグラントに基づいた上りリンクデータを前記端末装置から受信した場合、該上りリンクデータのみに対する送信確認信号を含む1つの制御チャネルを用いて、該上りリンクデータに対する送信確認信号を送信し、前記アップリンクグラントによらず上りリンクデータを前記端末装置から受信した場合、前記端末装置を含む複数の端末装置に対する送信確認信号を含む1つの制御チャネルを用いて、該上りリンクデータに対する送信確認信号を送信すること、を特徴とする。
 (6)また、本発明の一態様は、基地局装置と通信を行なう端末装置であって、上りリンクデータを送信するリソースを指示するアップリンクグラントを受信する受信部と、前記アップリンクグラントに基づいて前記基地局装置へ上りリンクデータ送信し、前記アップリンクグランドによらず前記基地局装置へ上りリンクデータを送信する送信部と、を備え、前記送信部が前記アップリンクグラントに基づいた上りリンクデータを前記基地局装置へ送信した場合、前記受信部は、該上りリンクデータのみに対する送信確認信号を含む1つの制御チャネルを用いて、該上りリンクデータに対する送信確認信号を受信し、前記送信部が前記アップリンクグラントによらず上りリンクデータを前記基地局装置へ送信した場合、前記受信部は、自端末装置を含む複数の端末装置に対する送信確認信号を含む1つの制御チャネルを用いて、該上りリンクデータに対する送信確認信号を受信すること、を特徴とする。
 (7)また、本発明の一態様は、基地局装置と通信を行なう端末装置の通信方法であって、上りリンクデータを送信するリソースを指示するアップリンクグラントを受信する受信ステップと、前記アップリンクグラントに基づいて前記基地局装置へ上りリンクデータ送信し、前記アップリンクグランドによらず前記基地局装置へ上りリンクデータを送信する送信ステップと、を有し、前記アップリンクグラントに基づいた上りリンクデータを前記基地局装置へ送信した場合、該上りリンクデータのみに対する送信確認信号を含む1つの制御チャネルを用いて、該上りリンクデータに対する送信確認信号を受信し、前記アップリンクグラントによらず上りリンクデータを前記基地局装置へ送信した場合、自端末装置を含む複数の端末装置に対する送信確認信号を含む1つの制御チャネルを用いて、該上りリンクデータに対する送信確認信号を受信すること、を特徴とする。
 本発明の一または複数の態様によれば、基地局装置が多数端末装置を収容するグラントフリーの多元接続において、上りリンクデータに対する再送制御を効率的に行なうことができる。
第1の実施形態に係る通信システムの例を示す図である。 第1の実施形態に係るスケジューリンググラントを用いた多元接続における基地局装置および通信装置間のシーケンス例を示す図である。 第1の実施形態に係るグラントフリーを用いた多元接続における基地局装置および通信装置間のシーケンス例を示す図である。 第1の実施形態に係る上りリンクデータ送信に対する端末装置毎のACK/NACK送信例を示す図である。 第1の実施形態に係る上りリンクデータに対する一括ACK/NACK送信例を示す図である。 第1の実施形態に係るグラントフリーを用いた多元接続における上りリンク無線フレームフォーマット例を示す図である。 第1の実施形態における基地局装置の構成を示す概略ブロック図である。 第1の実施形態に係る信号検出部の一例を示す図である。 第1の実施形態における端末装置の構成を示す概略ブロック図である。 第2の実施形態に係る上りリンクデータに対するACK/NACK送信例を示す図である。 第3の実施形態に係る上りリンクデータに対するACK/NACK送信例を示す図である。 第4の実施形態に係る上りリンクデータに対するACK/NACK送信例を示す図である。 第4の実施形態に係る上りリンクデータに対するACK/NACK送信の別例を示す図である。 第4の実施形態に係る上りリンクデータに対するACK/NACK送信の別例を示す図である。 第5の実施形態に係る上りリンクデータに対するACK/NACK送信の例を示す図である。
 本実施形態に係る通信システムは、基地局装置(セル、スモールセル、サービングセル、コンポーネントキャリア、eNodeB、Home eNodeB)および端末装置(端末、移動端末、UE: User Equipment)を備える。該通信システムにおいて、下りリンクの場合、基地局装置は送信装置(送信点、送信アンテナ群、送信アンテナポート群)となり、端末装置は受信装置(受信点、受信端末、受信アンテナ群、受信アンテナポート群)となる。上りリンクの場合、基地局装置は受信装置となり、端末装置は送信装置となる。前記通信システムは、D2D(Device-to-Device)通信にも適用可能である。その場合、送信装置も受信装置も共に端末装置になる。
 前記通信システムは、人間が介入する端末装置と基地局装置間のデータ通信に限定されるものではなく、MTC(Machine Type Communication)、M2M通信(Machine-to-Machine Communication)、IoT(Internet of Things)用通信、NB-IoT(Narrow Band-IoT)等(以下、MTCと呼ぶ)の人間の介入を必要としないデータ通信の形態にも、適用することができる。この場合、端末装置がMTC端末となる。なお、以下では、上りリンクはDFTS-OFDM(Discrete Fourier Transform Spread - Orthogonal Frequency Division Multiplexing、SC-FDMAとも称される)伝送を用い、下りリンクはOFDM伝送を用いた場合で説明するが、これに限らず、他の伝送方式を適用することができる。
 本実施形態における基地局装置および端末装置は、無線事業者がサービスを提供する国や地域から使用許可(免許)が得られた、いわゆるライセンスバンド(licensed band)と呼ばれる周波数バンド、および/または、国や地域からの使用許可(免許)を必要としない、いわゆるアンライセンスバンド(unlicensed band)と呼ばれる周波数バンドで通信することができる。
 本実施形態において、“X/Y”は、“XまたはY”の意味を含む。本実施形態において、“X/Y”は、“XおよびY”の意味を含む。本実施形態において、“X/Y”は、“Xおよび/またはY”の意味を含む。
 (第1の実施形態)
 図1は、本実施形態に係る通信システムの構成例を示す図である。本実施形態における通信システムは、基地局装置10、端末装置20-1~20-n(nは自然数)を備える。端末装置20-1~20-nを総称して端末装置20とも称する。カバレッジ10aは、基地局装置10が端末装置20と接続可能な範囲(通信エリア)である(セルとも呼ぶ)。
 図1において、基地局装置10および端末装置20は、上りリンクにおいて、グラントフリー(グラントレス、コンテンションベースとも呼ばれる)の多元接続をサポートする。グラントフリー多元接続において、端末装置20は、基地局装置10から上りリンク送信許可(UL Grant: アップリンクグラント、スケジューリンググラントとも呼ばれる)の受信によらず(UL Grantの受信なしで)、上りリンクデータを送信する。グラントフリー多元接続は、複数の端末装置が送信した上りリンクデータが、時間/周波数/空間リソースにおいて重複(衝突)することを許容する。グラントフリー多元接続は、端末装置20が同一時間および同一周波数で上りリンクデータを送信した場合、端末装置20が、直交多元接続に加え、非直交多元接続されることを許容する(このため、グラントフリー上りリンク非直交多元接続(UL-NOMA: UpLink Non-Orthogonal Multiple Access)とも称される)。例えば、非直交多元接続では、基地局装置の受信アンテナ数を超える端末装置から送信された上りリンクデータ信号が、空間で非直交多重される。なお、基地局装置10および端末装置20は、スケジューリンググラントに基づいて端末装置が上りリンクデータを送信する多元接続もサポートしても良い。
 基地局装置10は、グラントフリー多元接続された各端末装置が送信した上りリンクデータ信号を検出する。基地局装置10は、前記上りリンクデータ信号を検出するために、干渉信号の復調結果によって干渉除去を行なうSLIC(Symbol Level Interference Cancellation)、干渉信号の復号結果によって干渉除去を行なうCWIC(Codeword Level Interference Cancellation)、ターボ等化、送信信号候補の中から最もそれらしいものを探索する最尤検出(ML: maximum likelihood、R-ML: Reduced complexity maximum likelihood)、干渉信号を線形演算によって抑圧するEMMSE-IRC(Enhanced Minimum Mean Square Error-Interference Rejection Combining)などを備えても良い。前記各上りリンクデータ信号の送信電力は、基地局装置において受信電力差が生じるように、設定されても良い。
 なお、以下では、グラントフリー多元接続において、基地局装置が、ターボ等化等の高度な受信装置(Advanced Receiver)を適用して、非直交多重された上りリンクデータ信号を検出する場合で説明するが、上りリンクデータ信号を検出できれば、これに限らない。例えば、IDMA(Interleaved Division Multiple Access)等のインターリーブをベースとした多元接続を用いて、グラントフリー多元接続を行なっても良い。この場合、基地局装置は、上りリンクデータ信号に施されているインターリーブパターンを基に、各端末装置が送信した上りリンクデータ信号を検出する(デインタリーブ処理を行なう)。また、コードベースの多元接続を用いて、グラントフリー多元接続を行なっても良い。この場合、基地局装置は、上りリンクデータ信号に乗算されている符号系列(拡散符号)を基に、各端末装置が送信した上りリンクデータ信号を検出する。
 図1において、上りリンク無線通信では、以下の上りリンク物理チャネルが含まれる。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・物理上りリンク制御チャネル
・物理上りリンク共有チャネル
・物理ランダムアクセスチャネル
 物理上りリンク制御チャネルは、上りリンク制御情報(UCI: Uplink Control Information)を送信するために用いられる物理チャネルである。
 上りリンク制御情報は、下りリンクデータ(下りリンクトランスポートブロック、DL-SCH: Downlink-Shared Channel)に対する肯定応答(positive acknowledgement、ACK)/否定応答(negative acknowledgement、NACK)を含む。ACK/NACKは、送達確認を示す信号、HARQ-ACK、HARQフィードバックとも称される。
 上りリンク制御情報は、下りリンクのチャネル状態情報(CSI: Channel State Information)を含む。前記チャネル状態情報は、好適な空間多重数(レイヤ数)を示すランク指標(RI: Rank Indicator)、好適なプレコーダを示すプレコーディング行列指標(PMI: Precoding Matrix Indicator)、好適な伝送レートを指定するチャネル品質指標(CQI: Channel Quality Indicator)などを含む。前記PMIは、端末装置によって決定されるコードブックを示す。該コードブックは、物理下りリンク共有チャネルのプレコーディングに関連する。前記CQIは、所定の帯域における好適な変調方式(例えば、QPSK、16QAM、64QAM、256QAMなど)、符号化率(coding rate)とすることができる。
 物理上りリンク共有チャネルは、上りリンクデータ(上りリンクトランスポートブロック、UL-SCH)を送信するために用いられる物理チャネルである。物理上りリンク共有チャネルは、下りリンクデータに対するACK/NACKおよび/またはチャネル状態情報を送信するために用いられても良い。物理上りリンク共有チャネルは、上りリンク制御情報を送信するために用いられても良い。物理上りリンク共有チャネルは、上りリンクデータに巡回冗長検査(CRC: Cyclic Redundancy Check)を付加して生成しても良い。物理上りリンク共有チャネルは、グラントフリー/スケジューリンググラントに基づき、送信される。
 物理上りリンク共有チャネルは、無線リソース制御(RRC: Radio Resource Control)メッセージを送信するために用いられる。RRCメッセージは、無線リソース制御層において処理される情報/信号である。物理上りリンク共有チャネルは、MAC CE(Control Element)を送信するために用いられる。MAC CEは、媒体アクセス制御(MAC: Medium Access Control)層において処理(送信)される情報/信号である。例えば、パワーヘッドルームは、MAC CEに含まれ、物理上りリンク共有チャネルを経由して報告されても良い。すなわち、MAC CEのフィールドが、パワーヘッドルームのレベルを示すために用いられる。上りリンクデータは、RRCメッセージ、MAC CEを含むことができる。
 物理ランダムアクセスチャネルは、ランダムアクセスに用いるプリアンブルを送信するために用いられる。
 上りリンクの無線通信では、上りリンク物理信号として上りリンク参照信号(Uplink Reference Signal: UL RS)が用いられる。上りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。上りリンク参照信号には、復調用参照信号(DMRS: Demodulation Reference Signal)、サウンディング参照信号(SRS: Sounding Reference Signal)が含まれる。
 DMRSは、物理上りリンク共有チャネルまたは物理上りリンク制御チャネルの送信に関連する。例えば、基地局装置10は、物理上りリンク共有チャネルまたは物理上りリンク制御チャネルを復調する際の伝搬路補正を行なうためにDMRSを使用する。SRSは、物理上りリンク共有チャネルまたは物理上りリンク制御チャネルの送信に関連しない。例えば、基地局装置10は、上りリンクのチャネル状態を測定(CSI Measurement)するためにSRSを使用する。
 図1において、下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・物理報知チャネル
・物理下りリンク制御チャネル
・物理下りリンク共有チャネル
 物理報知チャネルは、端末装置で共通に用いられるマスターインフォメーションブロック(Master Information Block: MIB, Broadcast Channel: BCH)を報知するために用いられる。MIBは、システム情報である。物理報知チャネルは、ブロードキャストするシステム制御情報を含む。例えば、物理報知チャネルは、下りリンクシステム帯域、システムフレーム番号(SFN: System Frame number)、eNBによって使用される送信アンテナ数などの情報を含む。物理報知チャネルは、再送要求指示を含むチャネル(ハイブリッド自動再送要求指示を含む)の設定情報を含めても良い。再送要求指示を含むチャネルの設定情報は、該チャネルの送信リソースに関する情報、送信区間に関する情報、ACK/NACKの種類に関する情報、ACK/NACKの送信タイミングに関する情報、再送タイミングに関する情報、識別信号を示す情報等を含むことができる。
 物理下りリンク制御チャネルは、下りリンク制御情報(DCI: Downlink Control Information)を送信するために用いられる。下りリンク制御情報は、用途に基づいた複数のフォーマット(DCIフォーマットとも称する)が定義される。各フォーマットは、用途に応じて使われる。下りリンク制御情報は、下りリンクデータ送信のための制御情報と上りリンクデータ送信のための制御情報を含む。下りリンク制御情報は、上りリンクデータ(物理上りリンク共有チャネル)の再送に関する情報を含むことができる。
 下りリンクデータ送信のためのDCIフォーマットは、物理下りリンク共有チャネルのスケジューリングに用いられる。下りリンクデータ送信のためのDCIフォーマットを、下りリンクグラント(または、下りリンクアサインメント)とも称する。下りリンクデータ送信のためのDCIフォーマットには、物理下りリンク共有チャネルのリソース割当てに関する情報、物理下りリンク共有チャネルに対するMCS(Modulation and Coding Scheme)に関する情報などの下りリンク制御情報が含まれる。下りリンクデータ送信のためのDCIフォーマットは、物理上りリンクチャネル(例えば、物理上りリンク制御チャネル、物理上りリンク共有チャネル)に対する送信電力制御(TPC: Transmission Power Control)コマンドを含めても良い。
 下りリンクデータ送信のためのDCIフォーマットは、上りリンクデータ(トランスポートブロック、コードワード)に対する再送に関する情報を含めても良い。上りリンクデータの再送に関する情報は、ACK/NACKを示す情報(新規データ指標(NDI: New Date Indicator))、再送タイミングを示す情報、再送の周波数リソースを示す情報、ACK/NACKの種類に関する情報、ACK/NACKの送信タイミングに関する情報、識別信号を示す情報等を含むことができる。
 上りリンクデータ送信のためのDCIフォーマットは、物理上りリンク共有チャネルの送信に関する制御情報を端末装置に通知するために用いられる。上りリンクデータ送信のためのDCIフォーマットは、物理上りリンク共有チャネルのMCSに関する情報、上りリンクデータ(物理上りリンク共有チャネル)の再送に関する情報、DMRSのためのサイクリックシフトに関する情報、物理上りリンク共有チャネルに対するTPCコマンド、下りリンクのチャネル状態情報(CSI: Channel State Information、受信品質情報とも称する)要求(CSI request)、など上りリンク制御情報を含むことができる。上りリンクデータの再送に関する情報は、ACK/NACKを示す情報(新規データ指標(NDI: New Date Indicator))、物理上りリンク共有チャネルのRV(Redundancy Version)に関する情報、再送タイミングを示す情報、再送の周波数リソースを示す情報、ACK/NACKの種類に関する情報、ACK/NACKの送信タイミングに関する情報、識別信号を示す情報(例えば、再送時に用いる識別信号)等を含むことができる。前記ACK/NACKの送信タイミングは、スケジューリンググラント送信とグラントフリー送信で異なる設定をすることができる。なお、基地局装置が、端末装置にスケジューリンググラントに基づいて上りリンクデータを送信させる場合、上りリンクデータ送信のためのDCIフォーマットは、物理上りリンク共有チャネルのリソース割当てに関する情報を含むことができる。
 物理下りリンク制御チャネルは、下りリンク制御情報に巡回冗長検査(CRC: Cyclic Redundancy Check)を付加して生成される。物理下りリンク制御チャネルにおいて、CRCパリティビットは、所定の識別子を用いてスクランブル(排他的論理和演算、マスクとも呼ぶ)される。例えば、CRCパリティビットは、識別子として、セル無線ネットワーク一時的識別子(C-RNTI: Cell- Radio Network Temporary Identifier)を用いて、スクランブルされる。C-RNTIにおいて、スケジューリンググラントのための識別子と区別したグラントフリー送信固有の識別子が定義されても良い。前記識別子は、グラントフリー送信における端末装置を識別する信号や上りリンクデータ信号を識別する信号と関連付けても良い。
 図1の下りリンク無線通信において、下りリンク物理チャネルは、ACK/NACK送信等の再送要求指示を含む物理チャネル(物理再送要求指示チャネル、物理ACK/NACKチャネル、物理送達確認チャネルとも呼ぶ)を含めることができる。物理再送要求指示チャネルは、基地局装置が受信した上りリンクデータ(トランスポートブロック、コードワード)に対するACK/NACK(送達確認)を送信するために用いられる物理チャネルである。物理再送要求指示チャネルは、上りリンクデータに対するACK/NACKを示すHARQインジケータ(HARQフィードバック、送達確認を示す信号)を送信するために用いることができる。端末装置は、受信したACK/NACKを上位レイヤに通知する。HARQインジケータは、正しく受信(検出)されたことを示すACK、正しく受信しなかったことを示すNACK、対応するデータがなかったことを示すDTXを含むことができる。物理再送要求指示チャネルは、ACK/NACKを示す情報に加え、再送タイミングを示す情報、再送の周波数リソースを示す情報、識別信号を示す情報等の再送に関する情報を含むことができる。
 物理再送要求指示チャネルは、ACK/NACKを示すビット系列や再送に関する情報を、グラントフリー送信固有の識別子と関連付けることができる。例えば、物理再送要求指示チャネルは、ACK/NACKや再送に関する情報を示すビット系列等に、巡回冗長検査(CRC)を付加して生成されても良い。CRCパリティビットは、グラントフリー送信固有の識別子と関連付けた系列を用いてスクランブル(排他的論理和演算、マスクとも呼ぶ。)される。
 別の態様として、物理再送要求指示チャネルは、ACK/NACKや再送に関する情報を示すビット系列に、グラントフリー送信固有の識別子と関連付けた系列を乗算して生成することができる。ACK/NACKや再送に関する情報を示すビット系列は、グラントフリー送信固有の識別子と関連付けた系列によって拡散される。
 グラントフリー送信固有の識別子は、上りリンクデータが送信されたリソースと関連付けられうる。例えば、グラントフリー送信固有の識別子は、上りリンクデータが送信されたサブフレーム番号/スロット番号/シンボル番号/システムフレーム番号と関連付けられる。グラントフリー送信固有の識別子は、上りリンクデータが送信された周波数リソースと関連付けられる。グラントフリー送信固有の識別子と関連付けた系列は、上りリンクデータが送信されたサブフレーム番号/スロット番号/シンボル番号/周波数リソースを用いて(生成パラメータとして)、生成される。基地局装置および端末装置は、上りリンクデータが送信されたサブフレーム番号/スロット番号/シンボル番号/周波数リソースを用いて、グラントフリー送信固有の識別子を算出する。例えば、グラントフリー送信固有の識別子と関連付けた系列=1+上りリンクデータが送信されたサブフレーム番号(0≦サブフレーム番号<10)とすると、基地局装置は、上りリンクデータを受信したサブフレーム番号を認識することにより、グラントフリー送信固有の識別子を算出できる。なお、前記グラントフリー送信固有の識別子と関連付けた系列の算出式に、上りリンクデータが送信された周波数リソースを示すインデックスを含めることもできる。
 グラントフリー送信固有の識別子は、ACK/NACKが送信されるサブフレーム番号/スロット番号/シンボル番号/システムフレーム番号と関連付けられても良い。グラントフリー送信固有の識別子は、ACK/NACKが送信される周波数リソースと関連付けられても良い。グラントフリー送信固有の識別子と関連付けた系列はACK/NACKが送信されるサブフレーム番号/スロット番号/シンボル番号/周波数リソースを用いて、生成される。例えば、グラントフリー送信固有の識別子と関連付けた系列=1+ACK/NACKが送信されるサブフレーム番号(0≦サブフレーム番号<10)とすると、基地局装置は、ACK/NACKが送信されるサブフレーム番号を認識することにより、グラントフリー送信固有の識別子を算出できる。なお、前記グラントフリー送信固有の識別子と関連付けた系列の算出式に、ACK/NACKが送信される周波数リソースを示すインデックスを含めることもできる。
 グラントフリー送信固有の識別子は、識別信号が送信されたリソースと関連付けられうる。例えば、グラントフリー送信固有の識別子は、識別信号が送信されたサブフレーム番号/スロット番号/システムフレーム番号と関連付けられる。グラントフリー送信固有の識別子は、上識別信号が送信された周波数リソースと関連付けられても良い。グラントフリー送信固有の識別子と関連付けた系列は、識別信号が送信されたサブフレーム番号/スロット番号/周波数リソースを用いて(生成パラメータとして)、生成される。基地局装置および端末装置は、識別信号が送信されたサブフレーム番号/スロット番号/周波数リソースを用いて、グラントフリー送信固有の識別子を算出する。例えば、グラントフリー送信固有の識別子と関連付けた系列=1+識別信号が送信されたサブフレーム番号(0≦サブフレーム番号<10)、とすると、基地局装置は、識別信号を受信したサブフレーム番号を認識することにより、グラントフリー送信固有の識別子を算出できる。本実施形態に係る通信システムでは、グラントフリー送信固有の識別子は、多重される端末装置で共通のパラメータを、該識別子の生成パラメータとする。なお、前記グラントフリー送信固有の識別子と関連付けた系列の算出式に、識別信号が送信された周波数リソースを示すインデックスを含めることもできる。
 なお、グラントフリー送信固有の識別子は、基地局装置が端末装置に通知することによって、両装置で共有しても良い。例えば、基地局装置は、図3のS201/S203において、グラントフリー送信固有の識別子(または該識別子を算出するためのパラメータ)を端末装置に送信する。別の態様として、基地局装置は、下りリンク制御情報を用いて、グラントフリー送信固有の識別子(または該識別子を算出するためのパラメータ)を端末装置に送信しても良い。
 物理再送要求指示チャネルが送信されるリソースは、グラントフリー多元接続において、上りリンクデータが送信されたリソースと関連付けても良い。例えば、物理再送要求指示チャネルが送信されるリソースは、該リソースの周波数ドメインにおいて、上りリンクデータが送信されたサブフレーム番号/スロット番号/シンボル番号/システムフレーム番号と関連付けられる。物理再送要求指示チャネルが送信されるリソースは、該リソースの周波数ドメインにおいて、上りリンクデータが送信された周波数リソースと関連付けられても良い。基地局装置および端末装置は、上りリンクデータが送信されたサブフレーム番号/スロット番号/シンボル番号/周波数リソースインデックスを用いて、物理再送要求指示チャネルが送信されるリソースを算出する。さらに、物理再送要求指示チャネルが送信されるリソースは、該リソースの周波数ドメインにおいて、下りリンクシステム帯域幅(例えば、システム帯域幅のリソースブロック数)と関連付けられても良い。例えば、物理再送要求指示チャネルが送信されるリソースは、上りリンクデータが送信された周波数リソースブロックのうち最も小さい周波数リソースブロックインデックスを下りリンクシステム帯域幅のリソースブロック数でModulo演算することで算出される。基地局装置は、上りリンクデータを受信した周波数リソースを認識することにより、物理再送要求指示チャネルが送信されるリソースを算出できる。
 物理再送要求指示チャネルが送信されるリソースは、グラントフリー多元接続において、前記端末装置を識別する信号(識別信号)と関連付けても良い。例えば、物理再送要求指示チャネルが送信されるリソースは、該リソースの周波数ドメインにおいて、識別信号が送信されたサブフレーム番号/スロット番号/システムフレーム番号と関連付けられる。物理再送要求指示チャネルが送信されるリソースは、該リソースの周波数ドメインにおいて、識別信号が送信された周波数リソースと関連付けられても良い。基地局装置および端末装置は、識別信号が送信されたサブフレーム番号/スロット番号/周波数リソースインデックスを用いて、物理再送要求指示チャネルが送信されるリソースを算出する。さらに、物理再送要求指示チャネルが送信されるリソースは、該リソースの周波数ドメインにおいて、下りリンクシステム帯域幅(例えば、システム帯域幅のリソースブロック数)と関連付けられても良い。例えば、物理再送要求指示チャネルが送信されるリソースは、識別信号が送信された周波数リソースブロックのうち最も小さい周波数リソースブロックインデックスを下りリンクシステム帯域幅のリソースブロック数でModulo演算することで算出される。基地局装置は、識別信号を受信した周波数リソースを認識することにより、物理再送要求指示チャネルが送信されるリソースを算出できる。
 このように、グラントフリー多元接続において、物理再送要求指示チャネルに乗算される系列/物理再送要求指示チャネルにスクランブル(マスク)される系列/物理再送要求指示チャネルに割当てるリソースを、多重される端末装置の識別信号や上りリンクデータに関するパラメータと関連付けることで、基地局装置および端末装置は、物理再送要求指示チャネルに関する設定を効率的に共有することができる。
 物理再送要求指示チャネルは、グラントフリー送信の上りリンクデータに対する送達確認/スケジューリンググラントに基づいて送信された上りリンクデータに対する送達確認を送信するために用いることができる。物理再送要求指示チャネルは、グラントフリー送信の上りリンクデータに対する送達確認か、スケジューリンググラントに基づいて送信された上りリンクデータに対する送達確認かによって、異なる設定をすることができる。例えば、基地局装置は、いずれか一方の送達確認に拡散符号系列を乗算することで複数ACK/NACKを送信する物理再送要求指示チャネルを用い、他方の送達確認に、CRC付加により生成される複数ACK/NACKを送信する物理再送要求指示チャネルを用いるように設定をしても良い。なお、物理再送要求指示チャネルは、物理下りリンク制御チャネルの1つのDCIフォーマットに含めても良い。
 物理下りリンク共有チャネルは、下りリンクデータ(下りリンクトランスポートブロック、DL-SCH)を送信するために用いられる。物理下りリンク共有チャネルは、システムインフォメーションメッセージを送信するために用いられる。システムインフォメーションメッセージは、グラントフリー送信固有なシステムインフォメーションブロックを含めても良い。例えば、グラントフリー送信固有なシステムインフォメーションブロックには、グラントフリー送信を行なう上りリンクリソース(周波数帯域等)、ACK/NACKを送信する上りリンクリソース、ACK/NACKの種類等の設定情報を含めることができる。なお、システムインフォメーションメッセージの一部または全部は、RRCメッセージに含めることができる。
 物理下りリンク共有チャネルは、RRCメッセージを送信するために用いられる。RRCメッセージは、グラントフリー送信に関する設定情報のためのメッセージ(グラントフリー送信設定アシスト情報とも呼ばれる)を含めることができる。基地局装置から送信されるRRCメッセージは、セル内における複数の端末装置に対して共通(セル固有)であっても良い。すなわち、そのセル内のユーザ装置共通な情報は、セル固有のRRCメッセージを使用して送信される。基地局装置から送信されるRRCメッセージは、ある端末装置に対して専用のメッセージ(dedicated signalingとも称する)であっても良い。すなわち、ユーザ装置スペシフィック(ユーザ装置固有)な情報は、ある端末装置に対して専用のメッセージを使用して送信される。さらに、基地局装置から送信されるRRCメッセージは、グラントフリー送信専用のメッセージであっても良い。すなわち、グラントフリー送信固有な情報は、グラントフリー送信専用のメッセージを用いて送信されるようにしても良い。
 物理下りリンク共有チャネルは、MAC CEを送信するために用いられる。RRCメッセージおよび/またはMAC CEを、上位層の信号(higher layer signaling)とも称する。
 図1の下りリンクの無線通信では、下りリンク物理信号として同期信号(Synchronization signal: SS)、下りリンク参照信号(Downlink Reference Signal: DL RS)が用いられる。下りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。
 同期信号は、端末装置が、下りリンクの周波数領域および時間領域の同期を取るために用いられる。下りリンク参照信号は、端末装置が、下りリンク物理チャネルの伝搬路補正を行なうために用いられる。例えば、下りリンク参照信号は、物理報知チャネル、物理下りリンク共有チャネル、物理下りリンク制御チャネルを復調するために用いられる。下りリンク参照信号は、端末装置が、下りリンクのチャネル状態情報を算出(measurement)するために用いることもできる。また、各種チャネルを復調するために用いられる参照信号とmeasurementするために用いられる参照信号は異なっても良い(例えば、LTEにおけるDMRS: Demodulation Reference Signal、CRS: Cell-specific Reference Signal)。
 下りリンク物理チャネルおよび下りリンク物理信号を総称して、下りリンク信号とも称する。また、上りリンク物理チャネルおよび上りリンク物理信号を総称して、上りリンク信号とも称する。また、下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルとも称する。また、下りリンク物理信号および上りリンク物理信号を総称して、物理信号とも称する。
 BCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。MAC層で用いられるチャネルを、トランスポートチャネルと称する。MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(TB: Transport Block)、または、MAC PDU(Protocol Data Unit)とも称する。トランスポートブロックは、MAC層が物理層に渡す(deliverする)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理などが行なわれる。
 図2は、本実施形態に係るスケジューリンググラントを用いた多元接続における基地局装置および通信装置間のシーケンス例を示す図である。基地局装置は、下りリンクにおいて、同期信号、報知チャネルを所定の無線フレームフォーマットに従って、定期的に送信する。端末装置は、同期信号、報知チャネル等を用いて、初期接続を行なう(S101)。端末装置は、同期信号を用いて、下りリンクにおけるフレーム同期、シンボル同期を行なう。端末装置は、報知チャネルを用いて、下りリンクシステム帯域幅、システムフレーム番号(SFN: System Frame Number)、アンテナポート数、物理再送要求を含むチャネルに関する設定等のシステム情報を特定する。
 端末装置は、UE Capabilityを送信する(S102)。UE Capabilityは、端末装置がサポートする機能を基地局装置に通知する情報である。例えば、前記UE Capblityは、RRCメッセージ等を用いて、送信される。基地局装置は、無線リソース制御に関する設定情報を端末装置に送信する(S103)。なお、S101~S103において、端末装置は、上りリンク同期やRRC接続要求のためのリソースを取得するために、物理ランダムアクセスチャネルを送信することができる。
 端末装置は、上りリンクデータが発生した場合、スケジューリングリクエスト(SR)やバッファステータスレポート(BSR)を送信する(S104)。基地局装置は、前記BSR等を考慮して、各端末装置に上りリンクデータ送信のための無線リソース割当てを行なう。基地局装置は、下りリンク制御情報を用いて、端末装置に上りリンク送信許可(UL Grant)を送信する(S105)。端末装置は、前記UL Grantに含まれる上りリンクの送信パラメータ(上りリンクリソース割当てなど)に基づき、所定の無線リソースで上りリンクデータを送信する(S106)。基地局装置は、前記上りリンクデータに対して、ACK/NACKを送信する(S107)。図2のS107は、NACKを送信した場合である。端末装置は、NACKを受信した場合、その上りリンクデータに関連するデータを再度送信する(S108)。上りリンクデータに関連するデータは、初送で送信した上りリンクデータ(初送で送信したデータビットおよびパリティビット)と同一でも良いし、初送で送信していないデータ(初送で送信していないデータビットおよびパリティビット)でも良い。また、上りリンクデータに関連するデータは、初送で送信した上りリンクデータと初送で送信していないデータの両方を含むデータでも良い。S108において、ACKを受信した場合、端末装置は、新しい上りリンクデータを送信(初送)する。
 再送の場合、基地局装置は、S106で受信した上りリンクデータ(初送)とS108で受信した下りリンクデータ(再送)を用いて、信号検出処理を行なう。前記検出処理において、基地局装置は、Chase合成、IR(Incremental Redundancy)を用いることができる。基地局装置は、該検出処理に対して、ACK/NACKを送信する(S109)。図2のS109は、ACKを送信した場合である。
 図3は、本実施形態に係るグラントフリーを用いた多元接続における基地局装置および通信装置間のシーケンス例を示す図である。基地局装置10は、下りリンクにおいて、同期信号を所定の無線フレームフォーマットに従って、定期的に送信する。また、基地局装置10は、報知チャネルを送信する。端末装置は、同期信号、報知チャネル等を用いて、初期接続を行なう(S201)。端末装置は、同期信号を用いて、下りリンクにおけるフレーム同期、シンボル同期を行なう。端末装置は、報知チャネルを用いて、下りリンクシステム帯域幅、システムフレーム番号、アンテナポート数、物理再送要求を含むチャネルに関する設定等のシステム情報を特定する。前記報知チャネルにグラントフリー送信のための設定情報が含まれている場合、端末装置は、接続したセルにおけるグラントフリー送信のための設定を特定する。グラントフリー送信に関する設定情報は、基地局装置がグラントフリー送信をサポートしていることを示す情報、グラントフリーで送信可能な領域、端末装置識別に関する情報(識別信号を示す情報等)などを含めることができる。
 端末装置は、UE Capabilityを送信する(S202)。基地局装置は、前記UE Capabilityを用いて、端末装置がグラントフリーの多元接続をサポートしているか、を特定することができる。例えば、前記UE Capbilityは、RRCメッセージ等を用いて、送信される。なお、S201~S203において、端末装置は、上りリンク同期やRRC接続要求のためのリソースを取得するために、物理ランダムアクセスチャネルを送信することができる。
 基地局装置は、無線リソース制御に関する設定情報を端末装置に送信する(S203)。前記無線リソース制御のための設定情報は、RRCメッセージ等を用いて、送信される。前記無線リソース制御に関する設定情報は、グラントフリー送信に関する設定情報を含むこともできる。グラントフリー送信に関する設定情報は、グラントフリーで送信可能な領域、端末装置識別に関する情報、再送タイミングを示す情報、再送の周波数リソースを示す情報、ACK/NACK送信タイミングを示す情報、ACK/NACKの種類を示す情報、識別信号を示す情報等を含むことができる。この場合、端末装置は、前記無線リソース制御に関する設定情報を用いて、グラントフリー送信の設定情報を特定する。なお、前記グラントフリー送信に関する設定情報の一部または全部は、下りリンク制御情報によって、通知されても良い。
 グラントフリー送信をサポートする端末装置は、上りリンクデータが発生した場合、基地局装置からUL Grantを得ることなく、該上りリンクデータを送信する(S204)。S204において、端末装置は、自身に割当てられた識別信号と前記上りリンクデータを送信することができる。基地局装置は、前記識別信号を用いて端末装置を識別し、該端末装置が送信した上りリンクデータを検出する。基地局装置は、前記ACK/NACK送信タイミングを基に、該上りリンクデータに対するACK/NACKを送信する(S205)。基地局装置は、該ACK/NACK送信に、物理下りリンク制御チャネル/物理再送要求指示チャネルを用いることができる。基地局装置は、該上りリンクデータを正しく検出した場合、ACKを端末装置に送信する。一方、基地局装置は、該上りリンクデータを正しく検出できなかった場合、NACKを端末装置に送信する(図3のS205は、基地局装置がNACKを送信した場合である)。基地局装置は、S205において、再送タイミングを示す情報、再送の周波数リソースを示す情報等の再送に関する情報を送信しても良い。S204で同一時間リソースおよび周波数リソースで多重された端末装置は、再送において、初送と異なる時間リソース/周波数リソースを用いて送信しても良い。
 端末装置は、S205においてNACKを受信した場合、その上りリンクデータと同一のデータ(初送で送信したデータビットおよびパリティビット)を再度送信する(S206)。再送の上りリンクデータは、初送で送信したデータビット並びにパリティビットおよび初送で送信していないデータビット並びにパリティビットの両方を含むデータでも良い。S205において、ACKを受信した場合、端末装置は、新しい上りリンクデータを送信(初送)する。
 再送の場合、基地局装置は、S206で受信した上りリンクデータ(再送)を用いて、検出処理を行なう。基地局装置は、該検出処理の結果に基づいて、ACK/NACKを送信する(S207)。図2のS207は、ACKを送信した場合である。なお、基地局装置は、S204で受信した上りリンクデータ(初送)とS206で受信した上りリンクデータ(再送)を用いて、検出処理(Chase合成)を行なっても良い。
 図2、図3で説明の通り、本実施形態に係る通信システムは、スケジューリンググラントに基づいて送信された上りリンクデータとグラントフリー送信の上りリンクデータで、再送で送信する上りリンクデータを異なるように設定することができる。すなわち、グラントフリー送信の上りリンクデータの再送は、非適応的な再送方式(初送と再送で上りリンクデータの符号化率、変調方式を変更しない方式)を用い、スケジューリンググラントに基づいて送信された上りリンクデータは適応的な再送方式(初送と再送で上りリンクデータの符号化率、変調方式を変更可能な方式)を用いることができる。
 図4は、本実施形態に係る上りリンクデータ送信に対する端末装置毎のACK/NACK送信例を示す図である。例えば、該ACK/NACK送信は、スケジューリンググラント送信に用いられる。図4におけるUE1~UE5は、端末装置20-1~端末装置20-5の上りリンクデータに対応する。ACK/NACK#m-nは、サブフレーム#mで受信したUE#nに対するACK/NACKを示す。例えば、ACK/NACK#0-1は、サブフレーム#0で受信したUE1に対するACK/NACKを示す。サブフレームは、端末装置が上りリンクデータを割当てるタイムユニットである。
 ここで、基地局装置10の受信アンテナ数が2本、端末装置20の送信アンテナ数が1本とする。サブフレーム#0(同一周波数/同一時間)において、UE1およびUE2が上りリンクデータをUL Grantに従って送信している。サブフレーム#1において、UE3およびUE4が上りリンクデータをUL Grantに従って送信している。サブフレーム#2において、UE5およびUE6が上りリンクデータをUL Grantに従って送信している。サブフレーム#3において、UE3およびUE4が上りリンクデータをUL Grantに従って送信している。
 基地局装置10は、サブフレーム#0~#3で受信した各端末装置の上りリンクデータを検出する。基地局装置は、該上りリンクデータを検出した結果を、所定の送信タイミングで、端末装置毎にACK/NACKを送信する。なお、図4は、ACK/NACK#3-7およびACK/NACK#3-8の送信タイミングがACK/NACK#1-3およびACK/NACK#1-4の送信タイミングの1/2に設定されている場合を示している。図4において、スケジューリンググラントを用いた上りリンクデータに対する端末装置毎のACK/NACK送信で説明したが、グラントフリーを用いた上りリンクデータに対する端末装置毎のACK/NACK送信においても適用することができる。
 図5は、本実施形態に係る上りリンクデータに対する一括ACK/NACK送信例を示す図である。例えば、該ACK/NACK送信は、グラントフリー送信に用いられる。図5におけるUE1~UE14は、図1の端末装置20-1~端末装置20-14の上りリンクデータに対応する。ACK/NACK#0~ACK/NACK#3は各々、サブフレーム#0~#3の上りリンクデータに対するサブフレーム毎のACK/NACKである(一括ACK/NACK)。
 ここで、基地局装置10の受信アンテナ数が2本、端末装置20の送信アンテナ数が1本とする。サブフレーム#0(同一周波数/同一時間)において、UE1~UE8が上りリンクデータをグラントフリーで送信している。サブフレーム#1において、UE9~UE12が上りリンクデータをグラントフリーで送信している。サブフレーム#2において、基地局装置10が収容する端末装置は上りリンクデータを送信していない。サブフレーム#3において、UE13~UE14が上りリンクデータをグラントフリーで送信している。サブフレーム#0、#1において、基地局装置10は、受信アンテナ数を超える端末装置から上りリンクデータを受信する(非直交多元接続)。
 基地局装置10は、サブフレーム#0で受信した各UEの上りリンクデータを検出する。基地局装置は、UE1~UE8の上りリンクデータ全てを正しく検出した場合、下りリンクにおいて、所定の送信タイミング(ACK/NACK#0)でACKを送信する(一括ACKを送信)。一方、基地局装置は、UE1~UE8の上りリンクデータのうち1つでも正しく検出できなかった場合、下りリンクにおいて、所定の送信タイミング(ACK/NACK#0)でNACKを送信する(一括NACKを送信)。
 基地局装置10は、サブフレーム#1で受信した各上りリンクデータを検出する。基地局装置は、UE9~UE12の上りリンクデータ全てを正しく検出した場合、下りリンクにおいて、所定の送信タイミング(ACK/NACK#1)で一括ACKを送信する。一方、基地局装置は、UE9~UE12の上りリンクデータのうち1つでも正しく検出できなかった場合、下りリンクにおいて、所定の送信タイミング(ACK/NACK#1)で一括NACKを送信する。基地局装置10は、サブフレーム#2において、識別信号/上りリンクデータを検出しなかったため、ACK/NACKを送信しない。
 基地局装置10は、サブフレーム#3で受信した各上りリンクデータを検出する。基地局装置は、UE13~UE14の上りリンクデータ全てを正しく検出した場合、下りリンクにおいて、所定の送信タイミング(ACK/NACK#3)で一括ACKを送信する。一方、基地局装置は、UE13~UE14の上りリンクデータのうち1つでも正しく検出できなかった場合、下りリンクにおいて、所定の送信タイミング(ACK/NACK#3)で一括NACKを送信する。なお、図5は、ACK/NACK#3の送信タイミングがACK/NACK#1の送信タイミングの1/2に設定されている場合を示している。
 本実施形態に係る通信システムは、所定の時間単位で受信した上りリンクデータをグループ化し、そのグループ毎に一括ACK/NACKを送信する方法を、スケジューリンググラントを用いた上りリンクデータ送信に対しても用いても良い。一括ACK/NACK送信は、グラントフリー送信の上りリンクデータとスケジューリンググラントに基づいて送信された上りリンクデータが、重複する時間リソースおよび周波数リソースで送信された場合にも適用しても良い。例えば、図5において、UE1、UE2がスケジューリンググラントに基づいて送信された上りリンクデータであり、UE3~UE8がグラントフリー送信の上りリンクデータである場合、基地局装置は、サブフレーム#0において、一括ACK/NACKを送信する。
 本発明の一態様では、グラントフリーの多元接続は、所定の時間単位内に多重された上りリンクデータを送信した端末装置群を1つの端末装置グループとする。基地局装置は、そのグループ対して一括ACK/NACKを送信する。これにより、多数端末装置を収容するグラントフリー多元接続において、ACK/NACKの送信数の増加による下りリンク無線リソースの逼迫を抑えることができる。また、グラントフリー送信の上りリンクデータに対するNACKは、端末装置の識別誤りまたは該上りリンクデータの検出誤りのいずれかが予想される。このため、基地局装置が上りリンクデータ送信されるリソースを予めスケジューリングできないグラントフリーの多元接続において、一括ACK/NACKを用いることにより、基地局装置および端末装置は再送制御を効率的に行なうことができる。
 次に、上りリンクデータの再送タイミング(図3のS206)の態様について説明する。基地局装置は、システムインフォメーション/RRCメッセージ/下りリンク制御情報において、上りリンクデータの再送タイミングを示す情報を端末装置に送信する(図3のS203)。基地局装置は、再送タイミングを示す情報を、物理再送要求指示チャネルを用いて、端末装置に送信することもできる(図3のS205)。例えば、再送タイミングを示す情報は、S204の上りリンクデータ送信時間(例えば、物理上りリンク共有チャネルが割当てられたサブフレーム端)を基準とする送信間隔(サブフレーム間隔、スロット間隔、フレーム間隔)で設定される。再送タイミングを示す情報は、S205のACK/NACK送信時間(例えば、物理再送要求指示チャネルが割当てられたサブフレーム端)を基準とする送信間隔(サブフレーム間隔、スロット間隔、フレーム間隔)で設定されても良い。
 上りリンクデータの再送タイミングを示す情報は、複数の送信間隔からなる再送タイミング群(例えば、送信間隔={1、2、4、8、・・・}ms)とすることができる。S205において、NACKを受信した端末装置は、前記再送タイミング群のうち、いずれかの送信間隔を選択する。該端末装置は、選択した再送間隔で上りリンクデータを再送する(S206)。
 別の態様として、上りリンクデータの再送タイミングを示す情報は、基準時間と基準時間に対するオフセット値で設定される。例えば、基準時間/基準時間に対するオフセット値は、システムインフォメーション/RRCメッセージ/下りリンク制御情報/物理再送要求指示チャネルで端末装置に通知される。基地局装置は、基準時間および基準時間に対するオフセット値は、同一のチャネルで送信しても良いし、異なるチャネルで送信しても良い。例えば、基準時間は、システムインフォメーション/RRCメッセージで送信され、オフセット値は、下りリンク制御情報/物理再送要求指示チャネルで送信される。チャネル基準時間/基準時間に対するオフセット値は、複数の送信間隔からなる再送タイミング群から構成されても良い(例えば、基準時間={4、8、12・・・}ms、オフセット値={-2、-1、0、1、2、4、8、・・・}ms)。
 ここで、基地局装置は、再送タイミング群として、基準時間=4ms、オフセット値={-2、-1、0、1、2、4、8、・・・}msを端末装置に送信したとする。NACKを受信した端末装置は、前記オフセット値のうち、いずれかを選択する。該端末装置は、基準時間+選択したオフセット値で求められる再送間隔で上りリンクデータを再送する(S206)。前記オフセット値の選択は、端末装置がランダムに選択しても良いし、基地局装置が指示しても良い。
 例えば、基地局装置は、RRCメッセージ等で、再送タイミング群(送信間隔/基準時間およびオフセット値)を各端末装置に通知する。送信間隔/基準時間およびオフセット値は、再送タイミングインデックスにリンクされていても良い。この場合、基地局装置は、再送タイミングインデックスを各端末装置に通知する。
 送信間隔/オフセット値をランダムに選択する設定の場合、NACKを受信した端末装置は、前記再送タイミング群から選択した送信間隔/オフセット値に基づいて、上りリンクデータを再送する。
 基地局装置が再送タイミングを指示する設定の場合、NACKを端末装置に通知する基地局装置は、前記再送タイミング群のうち、1つまたは複数の送信間隔/オフセット値を、物理再送要求指示チャネルを用いて、各端末装置に送信する。送信間隔/オフセット値を受信した端末装置は、該送信間隔/オフセット値に基づいて、上りリンクデータを再送する。基地局装置は、NACKを通知する端末装置間で異なる送信間隔/オフセット値を通知することができる。なお、再送タイミングインデックスを受信した端末装置は、該再送タイミングインデックスにリンクされている送信間隔/オフセット値に基づいて、上りリンクデータを再送する。
 基地局装置は、端末装置毎に異なる再送タイミングを設定することができる。例えば、基地局装置は、端末装置毎に異なる再送タイミング群を設定する。基地局装置は、端末装置毎に異なる基準時間、基準時間に対するオフセット値を設定する。
 本実施形態に係る通信システムは、前記再送タイミング群の範囲を、再送回数に応じて可変することができる。例えば、基地局装置は、再送回数が増加するにつれて、前記再送タイミング群の範囲を広くすることができる。基地局装置は、再送回数が増加するにつれて、前記オフセット値の範囲を広くすることができる。
 同一時間リソースで送信された上りリンクデータにして、NACKを各端末装置に通知する場合、基地局装置は、前記端末装置の再送において、端末装置間で異なる送信電力/拡散符号/インターリーブパターン/復調用参照信号を用いて、上りリンクデータを送信するようにしても良い。この場合、前記送信電力/拡散符号/インターリーブパターン/復調用参照信号は、上りリンクデータを再送する端末装置間で、直交性が保たれることが好ましい。物理再送要求指示チャネルは、前記送信電力/拡散符号/インターリーブパターン/復調用参照信号を含めることができる。
 以上により、グラントフリーの多元接続において、同一時間リソースおよび同一周波数リソースで多重(衝突)された上りリンクデータ(初送)が、再送において多重(衝突)されることを避けることができる。なお、基地局装置は、物理再送要求指示チャネルでACKを送信する場合において、該物理再送要求指示チャネルに再送タイミングを示す情報を含めても良い。これにより、基地局装置は、次に送信される上りリンクデータ(初送)のために、該端末装置に対する再送タイミングを更新することができる。
 図6は、本実施形態に係るグラントフリーを用いた多元接続における上りリンク無線フレームフォーマット例を示す図である。図3において、無線フレームは、10個のサブフレームで構成される。各サブフレームは、2つのスロットからなる。各スロットは、7つのSC-FDMAシンボルからなる。すなわち、各サブフレームは、14つのSC-FDMAシンボルからなる。図6において、第1のスロットには、識別信号がSC-FDMAシンボル毎に配置される。第2のスロットには、上りリンクデータが配置される。例えば、各端末装置の上りリンクデータは、スロット単位で割当てられる(各端末装置の上りリンクデータは、第2のスロットに亘って、送信される)。すなわち、本実施形態に係る通信システムは、第1のスロットで識別信号0~6を割当てられた端末装置の上りリンクデータが、第2のスロットにおいて、非直交多重されることを許容する。
 識別信号は、上りリンクデータを送信した端末装置を基地局装置が識別(特定)するために用いられる。端末装置は、識別信号によって、上りリンクデータを送信したこと、上りリンクデータを送信したリソース(時間リソース/周波数リソース)を、基地局装置に通知することができる。識別信号は、基地局装置および端末装置において予め定められた既知系列が用いられる。例えば、図3において、識別信号として、SC-FDMAシンボル毎に異なる既知系列を割当てた場合、7つの端末装置を識別することができる。該既知系列は、さらに、予め定められた位相回転、巡回遅延(cyclic shift)、インターリーブ、OCC(Orthogonal Cover Code)等が施されても良い。基地局装置は、既知系列のパターン、位相回転パターン、巡回遅延パターン(Cyclic shiftパターン)、インターリーブパターン、OCCパターンによって、端末装置を識別することができる。これらにより、識別できる端末装置数を増やすことができる。
 基地局装置は、第1のスロットにおいて、いずれの端末装置が上りリンクデータを送信したか、を識別する。例えば、基地局装置は、各シンボルにおいて、識別信号系列を用いた相関処理により、識別処理を行なう。各端末装置は、識別信号系列と関連付けられている(例えば、図3のS203の無線リソース設定情報で通知する)。基地局装置は、上りリンクデータを送信した端末装置が存在すると判断した場合、第2のスロットにおいて、該端末装置の上りリンクデータの検出処理を行なう。前記上りリンクデータは、識別信号と関連付けることができる。例えば、識別信号を用いてスクランブル(排他的論理和演算、マスクとも呼ぶ)されたCRCが上りリンクデータに付加される。なお、前記各サブフレームのうち、いずれかのSC-FDMAシンボルに参照信号を配置することができる。前記参照信号は、基本となる既知系列に前記識別信号のいずれかで乗算しても良い。基地局装置は、該参照信号を用いて、基地局装置と送信端末装置間の伝搬路推定を行なう。基地局装置は、前記伝搬路推定値を用いて、上りリンクデータのターボ等化等の信号検出を行なうことができる。
 図7は、本実施形態における基地局装置10の構成を示す概略ブロック図である。基地局装置10は、上位層処理部(上位層処理ステップ)101、制御部(制御ステップ)102、送信部(送信ステップ)103、受信部(受信ステップ)104、送信アンテナ105、受信アンテナ106を含んで構成される。送信部103は、上位層処理部101から入力される論理チャネルに応じて、端末装置20への送信信号(物理下りリンクチャネル)を生成する。送信部103は、符号化部(符号化ステップ)1031、変調部(変調ステップ)1032、下りリンク参照信号生成部(下りリンク参照信号生成ステップ)1033、多重部(多重ステップ)1034、および無線送信部(無線送信ステップ)1035を含んで構成される。受信部104は、物理上りリンクチャネルの検出し、その内容を上位層処理部101に入力する。受信部104は、無線受信部(無線受信ステップ)1041、多重分離部(多重分離ステップ)1042、信号検出部(信号検出ステップ)1043、伝搬路推定部(伝搬路推定ステップ)1044および識別部(識別ステップ)1045を含んで構成される。
 上位層処理部101は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(PDCP: Packet Data Convergence Protocol)層、無線リンク制御(RLC: Radio Link Control)層、無線リソース制御(RRC: Radio Resource Control)層などの物理層より上位層の処理を行なう。上位層処理部101は、送信部103および受信部104の制御を行なうために必要な情報を生成し、制御部102に出力する。上位層処理部101は、上りリンクデータ(例えば、DL-SCH)、報知情報(例えば、BCH)、ハイブリッド自動再送要求(Hybrid Automatic Request)インジケータ(HARQインジケータ)などを送信部103に出力する。
 上位層処理部101は、端末装置の機能(UE capability)等、端末装置に関する情報を端末装置20(受信部104を介して)から受信する。端末装置は、自身の機能を基地局装置に上位層の信号で送信する。端末装置に関する情報は、その端末装置が所定の機能をサポートするかどうかを示す情報、または、その端末装置が所定の機能に対する導入およびテストの完了を示す情報を含む。所定の機能をサポートするかどうかは、所定の機能に対する導入およびテストを完了しているかどうかを含む。
 例えば、端末装置が所定の機能をサポートする場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信する。端末装置が所定の機能をサポートしない場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信しないようにして良い。すなわち、その所定の機能をサポートするかどうかは、その所定の機能をサポートするかどうかを示す情報(パラメータ)を送信するかどうかによって通知される。なお、所定の機能をサポートするかどうかを示す情報(パラメータ)は、1または0の1ビットを用いて通知しても良い。
 前記端末装置に関する情報には、グラントフリー送信(グラントフリー通信)をサポートすることを示す情報が含まれる。グラントフリー送信に対応する機能が複数ある場合、端末装置は、機能毎にサポートするかどうかを示す情報を送信することができる。グラントフリー送信に対応する機能は、アンテナポート、スクランブリングアイデンティティおよびレイヤ数を示す複数のテーブルに対応している能力、所定数のアンテナポート数に対応している能力、所定の送信モードに対応している能力の一部または全部である。送信モードは、アンテナポート数、送信ダイバーシチ、レイヤ数、グラントフリー送信のサポート等により定められる。所定の送信モードに対応している能力とは、例えば、FDDフォーマットにおけるグラントフリー送信に対応可能であることやTDDフォーマットにおけるグラントフリー送信に対応可能であること、などを含めることができる。例えば、FDD/TDDフォーマットが複数ある場合、端末装置は、端末装置に関する情報として、いずれのFDD/TDDフォーマットをサポートしているかを示す情報を送信することもできる。
 上位層処理部101は、受信部104から物理上りリンク共有チャネルの検出結果(復号後の上りリンクデータ(CRCも含む))を取得する。上位層処理部101は、前記検出を基に、各端末装置が送信した上りリンクデータに対して誤り検出を行なう。例えば、該誤り検出はMAC層で行なわれる。
 上位層処理部101は、誤り検出結果に基づいて、HARQインジケータ(ACK/NACKを示すビット系列)を生成する。上りリンクデータに対するHARQインジケータは、端末装置毎(図4)/サブフレーム毎(図5)に出力される。上位層処理部101は、HARQインジケータを送信部103に出力する。例えば、ACKの場合、「1」、NACKの場合「0」の各1ビットが出力される。HARQインジケータは、物理再送要求指示チャネルの生成に用いられる。
 上位層処理部101は、ブロードキャストするシステム制御情報を生成、または上位ノードから取得する。上位層処理部101は、前記ブロードキャストするシステム制御情報を送信部103に出力する。前記ブロードキャストするシステム制御情報は、基地局装置がグラントフリー送信をサポートすることを示す情報を含めることができる。前記ブロードキャストするシステム制御情報は、送信部103において、物理報知チャネル/物理下りリンク共有チャネルに配置される。
 上位層処理部101は、物理下りリンク共有チャネルに配置される下りリンクデータ(トランスポートブロック)、システムインフォメーション(SIB: System Information Block)、RRCメッセージ、MAC CEなどを生成、または上位ノードから取得し、送信部103に出力する。上位層処理部101は、これらの上位層の信号にグラントフリー送信のセットアップ、リリースを示すパラメータを含めることができる。上位層処理部101は、端末装置20の各種設定情報の管理をする。前記各種設定情報は、グラントフリー送信のセットアップ、リリースを示すパラメータを含めることができる。
 上位層処理部101は、グラントフリー送信をサポートしている端末装置に対して、各端末装置への識別信号の割当てを決定することもできる。上位層処理部101は、各端末装置への識別信号割当てに関する情報を、前記RRCメッセージに含めることができる。識別信号割当てに関する情報は、識別信号系列を生成するために必要なパラメータ(識別信号に乗算されている位相回転、巡回遅延、インターリーブ、OCC等)を含むことができる。上位層処理部101は、識別信号割当てに関する情報を、制御部102/送信部103に出力する。なお、無線リソース制御の機能の一部は、MACレイヤや物理レイヤで行なわれても良い。
 上位層処理部101は、各端末装置のためのセル無線ネットワーク一時的識別子(C-RNTI: Cell Radio Network Temporary Identifier)を設定する。セル無線ネットワーク一時的識別子には、グラントフリー送信固有の識別子が含まれる。前記識別子は、下りリンク制御チャネル、下りリンクデータチャネル、物理再送要求指示チャネルの暗号化(スクランブリング)に用いられる。前記識別子は、物理再送要求指示チャネルに乗算される系列に用いることもできる。前記識別子は、識別信号、上りリンクデータチャネル、上りリンク制御チャネルの暗号化(スクランブリング)に用いることができる。上位層処理部101は、前記識別子に関する設定情報を、制御部102/送信部103/受信部104に出力する。
 上位層処理部101は、物理チャネル(物理下りリンク共有チャネル、物理上りリンク共有チャネル)の符号化率、変調方式(あるいはMCS)および送信電力(識別信号と物理上り共有チャネルの電力比、参照信号と識別信号の電力比等)などを決定する。上位層処理部101は、前記符号化率/変調方式/送信電力比を制御部102/送信部103/受信部104に出力する。上位層処理部101は、前記符号化率/変調方式/送信電力比を上位層の信号に含めることができる。
 制御部102は、上位層処理部101から入力された各種設定情報に基づいて、送信部103および受信部104の制御を行なう制御信号を生成する。制御部102は、上位層処理部101から入力された情報に基づいて、下りリンク制御情報(DCI)を生成し、送信部103に出力する。制御部102は、下りリンク制御情報に、上りリンクデータの再送に関する情報を含むことができる。なお、スケジューリンググラントを用いてデータ送信する場合、下りリンク制御情報は、物理下りリンク共有チャネル/物理上りリンク共有チャネルのリソース割当てフィールド、を含む。
 生成されたDCIフォーマットの制御データ系列に対してCRC(Cyclic Redundancy Check)が生成される。前記CRCに対して識別子(例えば、C-RNTI(Cell-Radio Network Temporary Identifier))による暗号化(スクランブリング)が行なわれる。前記識別子は、グラントフリー送信固有の識別子を用いることができる。暗号化が行なわれたCRCがDCIフォーマットに付加される。DCIフォーマットとして生成された信号はPDCCHに配置される。なお、制御部102の機能は、上位層処理部101に含めることができる。
 送信部103は、制御部102から入力された制御信号に従って、下りリンク参照信号を生成する。送信部103は、各端末装置のために、上位層処理部101から入力された報知情報、下りリンク制御情報、下りリンクデータおよびHARQインジケータ等を符号化および変調し、物理報知チャネル、物理再送要求指示チャネル、物理下りリンク制御チャネル、物理下りリンク共有チャネルを生成する。送信部103は、物理報知チャネル、物理再送要求指示チャネル、物理下りリンク制御チャネル、物理下りリンク共有チャネルおよび下りリンク参照信号を多重して、送信アンテナ105を介して端末装置に送信する。
 符号化部1031は、上位層処理部101から入力された報知情報、下りリンク制御情報、下りリンクデータおよびHARQインジケータを、予め定められた/上位層処理部101が決定した符号化方式を用いて、ブロック符号化、畳み込み符号化、ターボ符号化などの符号化(リピティションを含む)を行なう。変調部1032は、符号化部1031から入力された符号化ビットをBPSK(Binary Phase Shift Keying)、QPSK(quadrature Phase Shift Keying)、16QAM(quadrature amplitude modulation)、64QAM、256QAM等の予め定められた/上位層処理部101が決定した変調方式で変調する。
 下りリンク参照信号生成部1033は、端末装置が既知の系列を下りリンク参照信号として生成する。前記既知の系列は、基地局装置10を識別するための物理セル識別子などの基に予め定められた規則で求まる。
 多重部1034は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号と下りリンク制御情報とを多重する。つまり、多重部1034は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号と下りリンク制御情報とをリソースエレメントに配置する。多重部1034は、設定された周波数リソースおよび時間リソース(ACK/NACKの送信タイミング)に基づいて、変調部1032の出力信号を、物理再送要求指示チャネルが送信されるリソースにマッピングする。なお、HARQインジケータ/それを含む上りリンクデータ再送に関する情報は、下りリンク制御情報の1つとしても良い。この場合、HARQインジケータ/それを含む上りリンクデータ再送に関する情報を通知するための固有のDCIフォーマットが定義されうる。
 無線送信部1035は、多重された変調シンボルなどを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)してOFDMシンボルを生成する。無線送信部1035は、前記OFDMシンボルにサイクリックプレフィックス(cyclic prefix: CP)を付加してベースバンドのディジタル信号を生成する。さらに、無線送信部1035は、前記ディジタル信号をアナログ信号に変換し、フィルタリングにより余分な周波数成分を除去し、搬送周波数にアップコンバートし、電力増幅し、送信アンテナ105に出力して送信する。
 ここで、グラントフリー送信された上りリンクデータに対する物理再送要求指示チャネルの生成例について説明する。
 まず、上位層処理部101は、HARQインジケータa(送達確認、ACK/NACK)を送信部103に入力する(例えば、NACKの場合、a=「0」、ACKの場合、a=「1」)。nは、HARQインジケータを送信する単位によって決まる。端末装置毎にACK/NACKを送信する場合、nは端末装置20-nの上りリンクデータに対するACK/NACKである。サブフレーム毎に一括したACK/NACKを送信する場合、nはサブフレームnで送信された上りリンクデータに対するACK/NACKである。
 拡散符号系列を乗算することで複数ACK/NACKを送信する物理再送要求指示チャネルの生成例を説明する。符号部1031は、前記HARQインジケータに対してリピティションをしても良い。例えば、3回リピティションする場合、NACK「0」、ACK「1」は各々、「000」、「111」とリピティションされる。変調部1032は、符号部1031の出力データに対して、データ変調(例えば、BPSK変調)を行なう。さらに、変調部1032は、前記データ変調後のデータに、所定の系列(拡散系列)を乗算する(前記データ変調後のデータは、所定の系列によって拡散される)。該系列は、直交系列(または準直交系列)を用いることができる。前記系列は、グラントフリー送信固有の識別子と関連付けることができる。例えば、グラントフリー送信固有の識別子は、前記直交系列の生成パラメータとされる。例えば、前記直交系列は、グラントフリー送信固有の識別子に基づいてサイクリックシフトされる。さらに、多重部1034は、設定された周波数リソースおよび時間リソース(ACK/NACKの送信タイミング)に基づいて、変調部1032の出力信号を、物理再送要求指示チャネルが送信されるリソースにマッピングする。多重部1034は、同一の周波数リソースおよび時間リソースにおいて、複数の物理再送要求指示チャネルを符号多重することができる。
 別の態様として、CRC付加により物理再送要求指示チャネルを生成する場合を説明する。上位層処理部101は、HARQインジケータを含む上りリンクデータ再送に関する情報のビット系列にCRCパリティビットを付加する。上位層処理部101は、複数のHARQインジケータを含む上りリンクデータ再送に関する情報に対して、CRCパリティビットを付加しても良い。CRC付加後のビット系列は、「x、x、・・・xq-1、p、p、・・・pr-1」と示される(xはHARQインジケータのビット系列、pはCRCパリティビット系列、qはACK/NACKのトータルビット数、rはCRCパリティビット数である)。
 同一送信タイミングの複数ACK/NACKに対して、CRCパリティビットを付加する。図5において、サブフレーム#5で送信されるACK/NACK#1およびACK/NACK#3のACK/NACKビット(各1ビット)およびACK/NACK#1およびACK/NACK#3のための上りリンクデータ再送に関する情報のビット系列に対して、CRCパリティビットを付加する。上位層処理部101は、CRCパリティビットを、グラントフリー送信固有の識別子を用いてスクランブル(マスク)する。
 例えば、基地局装置は、HARQインジケータxのビット系列長(またはACK/NACK格納フィールド数)を、上りリンクのサブフレーム数に基づいて設定することができる。一括ACK/NACK送信において、HARQインジケータxのビット系列長q=サブフレーム数m×HARQインジケータのビット数Lとなる。サブフレーム数m=10の場合、CRC付加後のビット系列「x、x、x、x、・・・、xq-1、p、q、・・・qr-1」は、「a、a、a、a、・・・、a9、、q、・・・qr-1」となる。a(mは上りリンクデータの送信サブフレーム番号)は、上りリンクデータに対するACK/NACKビット(HARQインジケータビット)である。この場合、HARQインジケータxは、1ビットからなる10個のACK/NACKフィールドを有する。図5のサブフレーム#5におけるACK/NACK送信において、ACK/NACK#1は「a」に格納される。ACK/NACK#3は、「a」に格納される。その他のビット(a、a以外)には、ダミービットが格納されても良い。この場合、端末装置は、上りリンクデータを送信したサブフレーム番号を基に、該上りリンクデータに対するACK/NACKを取得する。なお、基地局装置は、各上りリンクデータに対するACK/NACKの格納フィールドインデックスを、RRCメッセージ/下りリンク制御チャネル等を用いて、端末装置に通知することもできる。
 上位層処理部101は、上記CRCパリティビット「p、p、・・・pr-1」をグラントフリー送信固有の識別子と関連付けた系列などの多重される端末装置で共通のパラメータを用いてスクランブル(マスク)する。例えば、図5において、CRCパリティビット長=16ビット、グラントフリー送信固有の識別子と関連付けた系列=1+ACK/NACKが送信されるサブフレーム番号の場合、サブフレーム#5で送信されるACK/NACKのCRCパリティビットは、「0000000000000110」の系列でスクランブルする。
 符号部1031は、前記CRCパリティビットを付加した複数ACK/NACKのビット系列に対して、誤り訂正符号化(レートマッチングを含む)を行なう。変調部1032は、前記符号部1031の出力信号に対してデータ変調を行なう。多重部1034は、設定された周波数リソースおよび時間リソース(ACK/NACKの送信タイミング)に基づいて、変調部1032の出力信号を、物理再送要求指示チャネルが送信されるリソースにマッピングする。なお、変調部1032の出力データは、さらに、スクランブルされても良い。このスクランブルパターンは、グラントフリー送信固有の識別子と関連付けても良い。本実施形態に係る通信システムにおいて、グラントフリー送信/スケジューリンググラントに基づく送信は、上記2つの態様により生成された物理再送要求指示チャネルの両方を用いても良い。
 以上のように、グラントフリー送信における上りリンクデータに対するACK/NACKは、多重される端末装置に共通のパラメータで生成されたグラントフリー送信固有の識別子や拡散系列(直交系列や準直交系列)と関連付けられる。一方、スケジューリンググラントに基づいて送信された上りリンクデータに対するACK/NACKは、端末装置固有の識別子や端末装置固有のパラメータで生成された拡散系列と関連付けられる。端末装置固有の識別子は、各端末装置に割当てられるC-RNTIなどを含む。端末装置固有のパラメータは、DMRSのための巡回遅延、OCCなどを含む。
 受信部104は、制御部102から入力された制御信号に従って、受信アンテナ106を介して端末装置20からの受信信号を検出(分離、復調、復号)し、復号した情報を上位層処理部101に出力する。制御部102は、識別部1045から端末装置の識別結果(識別した端末装置に施されている識別子など)を取得し、上位層処理部101に出力する。制御部102は、識別された端末装置に対する上りリンクデータ再送に関する情報を取得する。制御部102は、該上りリンクデータ再送に関する情報に基づいて、送信部103を制御する。
 無線受信部1041は、受信アンテナ106を介して受信された上りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部1041は、変換したディジタル信号からCPに相当する部分を除去する。無線受信部1041は、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行ない、周波数領域の信号を抽出する。前記周波数領域の信号は、多重分離部1042に出力される。さらに、無線受信部1041は、CPを除去した信号を識別部1045に出力する。
 識別部1045は、受信信号から識別信号を抽出する。識別部1045は、識別信号を用いて、グラントフリーで上りリンクデータを送信した端末装置を識別(特定)する。識別部1045は、その送信端末装置に関する情報を伝搬路推定部1044と多重分離部1042に出力する。例えば、送信端末装置の識別は、基地局装置10が保持する識別信号系列と前記抽出した識別信号系列との相関処理を用いて、ブラインド検出を行なう。
 多重分離部1042は、無線受信部1041から入力された信号を上りリンクデータチャネルおよび上りリンク制御チャネルなどの信号に分離する。多重分離部1042は、前記識別部1045で識別された送信端末装置に関する情報(識別信号に関連付けられた上りリンクデータチャネル割当て情報など)を用いて、周波数領域信号を上りリンクデータチャネル、上りリンク制御チャネル、参照信号に分離する。前記分離された参照信号は、伝搬路推定部1044に入力される。前記分離された上りリンクデータチャネルおよび上りリンク制御チャネルは、信号検出部1043に出力する。なお、スケジューリンググラントを用いた上りリンクデータ送信の場合、多重分離部1042は、予め基地局装置10が上位層処理部101で決定し、各端末装置20に通知した上りリンクグラントに含まれる無線リソースの割当て情報に基づいて、信号分離を行なう。
 伝搬路推定部1044には、データ信号と時間多重されて送信された参照信号(例えば、DMRS)と識別された送信端末装置に関する情報が入力される。伝搬路推定部1044は、参照信号を用いて、周波数応答を推定し、復調用に推定した周波数応答を信号検出部1043に出力する。伝搬路推定部1044は、SRS(Sounding Reference Signal)が入力された場合、上りリンクスケジューリングで使用される周波数応答を推定することができる。なお、伝搬路推定部1044は、伝搬路推定に識別信号を用いることもできる。
 図8は、本実施形態に係る信号検出部の一例を示す図である。信号検出部1043は、キャンセル部1501、等化部1502、IDFT部1503-1~1503-u、復調部1504-1~1504-u、復号部1505-1~1505-u、レプリカ生成部1506から構成される(1<u<U、Uは、識別部1045で識別され、同一時間および同一周波数において非直交多重/直交多重されている端末装置数)。信号検出部1043において、多重分離部1042より抽出された各端末装置の受信信号がキャンセル部1501に入力される。キャンセル部1501は、レプリカ生成部1506から入力されたソフトレプリカを用いて、各受信信号に対してキャンセル処理を行なう。等化部1502は、伝搬路推定部1044より入力された周波数応答よりMMSE規範に基づく等化重みを生成する。なお、等化部1502は、等化重み生成において、識別信号から算出した周波数応答を用いることもできる。
 等化部1502は、該等化重みを、ソフトキャンセル後の信号(キャンセル部1501からの入力信号)に乗算する。等化部1502は、等化後の端末装置毎の信号をIDFT部1503-1~1503-uに出力する。IDFT部1503-1~1503-uは、周波数領域の等化後の受信信号を時間領域信号に変換する。なお、端末装置が送信処理におけるDFTの前または後において、巡回遅延や位相回転、インターリーブを施している場合、周波数領域等化後の受信信号または時間領域信号は、巡回遅延や位相回転、インターリーブを元に戻す処理が施される。復調部1504-1~1504-uには、図示していないが予め通知されている、または予め決められている変調方式の情報が入力される。復調部1504-1~1504-uは、前記変調方式の情報に基づき、時間領域信号に対して復調処理を施し、ビット系列のLLR(Log Likelihood Ratio)を出力する。
 復号部1505-1~1505-uには、図示していないが予め通知されているもしくは予め決められている符号化率の情報が入力される。復号部1505-1~1505-uは、前記復調部から出力されたLLRの系列に対して復号処理を行なう。逐次干渉キャンセラ(SIC: Successive Interference Canceller)やターボ等化等のキャンセル処理を行なうために、復号部1505-1~1505-uは、復号部出力の外部LLRもしくは事後LLRをレプリカ生成部1506に出力する。外部LLRと事後LLRの違いは、それぞれ復号後のLLRから復号部1505-1~1505-uに入力される事前LLRを減算するか、否かである。なお、端末装置が、送信処理において、誤り訂正符号化後の符号化ビット列にパンクチャリング(間引き)やインターリーブ、スクランブルが施している場合、信号検出部1043は復号部1505-1~1505-uに入力するLLRの系列に対してデパンクチャリング(間引きされたビットのLLRに0を挿入)、デインターリーブ(並び換えを元に戻す)、デスクランブルを施す。
 レプリカ生成部1506は、各復号部から入力されたLLR系列を、各端末装置が上りリンクデータに施した変調方式に応じてシンボルレプリカを生成する。さらに、レプリカ生成部1506は、前記シンボルレプリカをDFTで周波数領域の信号に変換し、各端末装置が使用したリソースに信号を割当て、伝搬路推定部1044から入力された周波数応答を乗算することでソフトレプリカを生成する。復号部1505-1~1505-uは、SICやターボ等化の繰り返し回数が所定の回数に達した場合、復号後のLLR系列を硬判定し、上位層処理部101に入力する。
 上位層処理部101は、前記硬判定結果に含まれる巡回冗長検査(CRC: Cyclic Redundancy Check)より誤りビットの有無を判別する。上位層処理部101は、識別した端末装置がCRCをスクランブルした識別子を用いて、前記CRCに対してデスクランブル(排他的論理和演算)を行なう。上位層処理部101は、デスクランブル結果から、各端末装置の上りリンクデータを正しく受信したか否か、を判断する。なお、図8では、ターボ等化処理を用いた信号検出を説明したが、最尤検出、EMMSE-IRCなどを用いることもできる。
 図9は、本実施形態における端末装置20の構成を示す概略ブロック図である。端末装置20は、上位層処理部(上位層処理ステップ)201、制御部(制御ステップ)202、送信部(送信ステップ)203、受信部(受信ステップ)204、送信アンテナ205および受信アンテナ206を含んで構成される。送信部203は、符号化部(符号化ステップ)2031、変調部(変調ステップ)2032、上りリンク参照信号生成部(上りリンク参照信号生成ステップ)2033、多重部(多重ステップ)2034、無線送信部(無線送信ステップ)2035、識別信号生成部2036を含んで構成される。受信部204は、無線受信部(無線受信ステップ)2041、多重分離部(多重分離ステップ)2042、復調部(復調ステップ)2043、復号部(復号ステップ)2044を含んで構成される。
 上位層処理部201は、媒体アクセス制御(MAC)層、パケットデータ統合プロトコル(PDCP)層、無線リンク制御(RLC)層、無線リソース制御(RRC)層の処理を行なう。上位層処理部201は、自端末装置がサポートしている端末装置の機能を示す情報(UE Capability)を、送信部203に出力する。例えば、自端末装置がサポートしている端末装置の機能を示す情報は、グラントフリー送信をサポートすることを示す情報などを含む。上位層処理部201は、グラントフリー送信に対応する機能が複数ある場合、機能毎にサポートするかどうかを示す情報を送信することができる。例えば、上位層処理部201は、前記自端末装置がサポートしている端末装置の機能を示す情報をRRC層でシグナリングする。
 上位層処理部101は、受信部204を介して受信した下りリンク制御情報(DCI)を解釈する。上位層処理部101は、下りリンク制御情報に含まれるグラントフリー送信に関する情報を解釈することができる。上位層処理部101は、グラントフリー送信に関する情報に基づき、受信部204、および送信部203の制御を行なうために制御情報を生成し、制御部202に出力する。
 上位層処理部201は、自端末装置の各種設定情報の管理をする。前記各種設定情報の一部は、制御部202に入力される。各種設定情報の一部は、受信部204を介して基地局装置10から受信される。前記各種設定情報は、上りリンク無線フレームフォーマットを示す情報を含む。前記各種設定情報は、基地局装置10から受信したグラントフリー送信に関する設定情報を含む。グラントフリー送信に関する情報には、各端末装置への識別信号の割当てに関する情報、グラントフリー送信固有識別子の設定、グラントフリー送信のセットアップ、リリースを示すパラメータ、上りリンクデータ信号に対するACK/NACKの受信タイミング、上りリンクデータ信号の再送タイミング、およびこれらのグラントフリー送信に関する設定情報の変更、識別信号を示す信号などが含まれる。上位層処理部201は、グラントフリー送信に関する情報に基づいて、グラントフリーで上りリンクデータ(トランスポートブロック)を送信する無線リソースを管理する。
 上位層処理部201は、ユーザの操作等によって生成された上りリンクデータを、送信部203に出力する。上位層処理部201は、ユーザの操作を介さず(例えば、センサにより取得されたデータ)に生成された上りリンクデータを、送信部203に出力することもできる。上位層処理部201は、前記上りリンクデータにCRCパリティビットを付加する。前記CRCパリティビットは、前記上りリンクデータを用いて生成される。前記CRCパリティビットは、所定の識別子でスクランブル(排他的論理和演算、マスクとも呼ぶ)される。前記識別子として、セル無線ネットワーク一時的識別子が用いられうる。前記無線ネットワーク一時的識別子は、グラントフリーで送信する端末装置固有の識別子を用いても良い。前記識別子として、自端末装置に割当てられた識別信号系列が用いられうる。前記識別子として、自端末装置に割当てられた識別信号系列に関するパラメータ(位相回転量、巡回遅延量、OCCパターン、インターリーブパターン)を用いて生成された系列が用いられうる。
 上位層処理部201は、受信部204を介して、物理再送要求指示チャネルに含まれる上りリンクデータに対するACK/NACK(HARQインジケータ)を取得する。この際、上位層処理部201は、前記HARQインジケータに付加されたCRCをマスクしている識別子を用いて、デスクランブル処理(排他的論理和演算)を行なう。上位層処理部201は、上りリンクデータに対するACK/NACKの取得において、該上りリンクデータ/識別信号が送信されたサブフレーム番号等を用いて、物理再送要求指示チャネルに含まれる自分宛てのACK/NACKを特定することができる。上位層処理部201は、基地局装置から通知されたACK/NACK格納フィールドインデックスに基に、自分宛てのACK/NACKを特定することもできる。
 NACKの場合、上位層処理部201は、制御部202に該上りリンクデータを再送するための制御情報を入力する。前記再送するための制御情報は、再送タイミングを示す情報、再送の周波数リソースを示す情報、再送のための識別信号を示す情報、物理上りリンク共有チャネルのRV(Redundancy Version)に関する情報、等を含むことができる。制御部202は、前記再送するための制御情報に基づいて、送信部203を制御する。
 制御部202は、上位層処理部201から入力された情報に基づいて、上りリンク制御情報(UCI)を生成し、送信部203に出力する。制御部202は、前記UCIフォーマットのデータ系列に対してCRC(Cyclic Redundancy Check)を生成することができる。前記CRCに対してC-RNTI(Cell-Radio Network Temporary Identifier)による暗号化(スクランブリング)が行なわれても良い。前記C-RNTIは、グラントフリー送信の端末固有の識別子を用いることができる。制御部202は、前記CRCに対して、識別信号を用いて暗号化することもできる。暗号化が行なわれたCRCがUCIフォーマットに付加される。
 受信部204は、受信アンテナ206を介して基地局装置10から受信した受信信号を、分離、復調、復号する。受信部204は、復号した情報を上位層処理部201に出力する。無線受信部2041は、受信アンテナ206を介して受信した下りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部2041は、変換したディジタル信号からCPに相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換を行ない、周波数領域の信号を抽出する。
 多重分離部2042は、前記抽出した周波数領域の信号を下りリンクチャネル、すなわち、物理再送要求指示チャネル、物理下りリンク制御チャネル、物理下りリンク共有チャネルおよび下りリンク参照信号に、それぞれ分離する。多重分離部2042は、下りリンク参照信号を用いた伝搬路測定から得られた伝搬路推定値に基づいて、下りリンクチャネルの補償を行なう。多重分離部は、各下りリンクチャネルを復調部2043に出力する。
 復調部2043は、各下りリンクチャネルの変調シンボルそれぞれに対して、BPSK、QPSK、16QAM、64QAM、256QAM等の予め定められた、または下りリンクグラントで予め通知した変調方式を用いて受信信号の復調を行なう。物理再送要求指示チャネルが識別子/識別信号等により拡散されている場合、復調部2043は、復調処理前に、該識別子を用いて逆拡散処理を行なう。
 復号部2044は、復調された各下りリンクチャネルの符号化ビットを、予め定められた符号化方式の、予め定められた、または下りリンクグラントで予め通知した符号化率で復号を行ない、復号した下りリンクデータと、下りリンク制御情報、HARQインジケータを上位層処理部201へ出力する。
 送信部203は、制御部202から入力された制御信号に従って、上りリンク参照信号を生成する。送信部203は、上位層処理部201から入力された上りリンクデータ(トランスポートブロック)や上りリンク制御信号を符号化および変調して、物理上りリンク制御チャネルおよび物理上りリンク共有チャネルを生成する。物理上りリンク制御チャネルは、C-RNTIを用いて暗号化される。グラントフリー送信される物理上りリンク制御チャネルは、識別信号を用いて、暗号化(スクランブリング、排他的論理和演算、マスクとも呼ぶ。)されうる。物理上りリンクデータチャネルは、端末装置固有の識別信号や識別子と関連付けられる。
 送信部203は、物理上りリンク制御チャネル、物理上りリンク共有チャネルおよび上りリンク参照信号を多重し、送信アンテナ205を介して基地局装置10に送信する。
 符号化部2031は、上位層処理部201から入力された上りリンク制御情報、上りリンクデータを畳み込み符号化、ブロック符号化、ターボ符号化等の符号化を行なう。
 変調部2032は、符号化部2031から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM等の下りリンク制御情報で通知された変調方式または、チャネル毎に予め定められた変調方式で変調する。
 上りリンク参照信号生成部2033は、基地局装置10を識別するための物理セル識別子(physical cell identity: PCI、Cell IDなどと称される)、上りリンク参照信号を配置する帯域幅、サイクリックシフト、DMRSシーケンスの生成に対するパラメータの値などを基に、予め定められた規則(式)で求まる系列を生成する。前記上りインク参照信号は、識別信号と関連付けても良い。例えば、前記上りリンク参照信号には、識別信号が乗算されても良い。また、前記予め定められた規則(式)には、識別信号系列生成パラメータが含まれても良い。
 識別信号生成部2036は、グラントフリー送信に関する設定情報に基づいて、予め定められた規則(式)で求まる系列を生成する。例えば、識別信号系列は、M系列、Zadoff Chu系列、アダマール系列などの直交系列あるいは準直交系列(疑似直交系列)を用いることができる。さらに、識別信号生成部2036は、グラントフリー送信に関する設定情報に基づいて、該識別信号系列に位相回転/巡回遅延/OCC/インターリーブを施す。
 多重部2034は、上りリンクデータチャネルの変調シンボルを並列に並び替えてから離散フーリエ変換(Discrete Fourier Transform: DFT)する。多重部2034は、上りリンク制御チャネル、上りリンクデータチャネル、識別信号と上りリンク参照信号を送信アンテナポート毎に多重する。つまり、多重部2034は、上りリンク制御チャネル、上りリンクデータチャネル、識別信号と上りリンク参照信号を送信アンテナポート毎にリソースエレメントに配置する。
 無線送信部2035は、多重された信号を逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、SC-FDMA方式の変調を行ない、SC-FDMAシンボルを生成する。無線送信部2035は、前記SC-FDMAシンボルにCPを付加し、ベースバンドのディジタル信号を生成する。さらに、無線送信部2035は、前記ベースバンドのディジタル信号をアナログ信号に変換し、余分な周波数成分を除去し、アップコンバートにより搬送周波数に変換し、電力増幅し、送信アンテナ205を介して基地局装置10に送信する。
 以上のように、本実施形態に係るグラントフリーの多元接続を用いた通信システムにおいて、上りリンクデータは、グラントフリー送信に係る端末装置固有の識別信号や端末装置固有の識別子と関連付けられる。また、上りリンクデータに対するACK/NACKは、多重される端末装置に共通のパラメータで生成されたグラントフリー送信固有の識別子と関連付けられる。または、上りリンクデータに対するACK/NACKには、端末装置毎ACK/NACKや一括ACK/NACKが適用される。これにより、基地局装置が上りリンクデータ送信されるリソースを予めスケジューリングできないグラントフリーの多元接続において、基地局装置および端末装置は、再送制御を効率的に行なうことができる。
 (第2の実施形態)
 本実施形態は、グラントフリー送信の上りリンクデータとスケジューリンググラントに基づいて送信された上りリンクデータが混在している場合の一例である。本実施形態に係る通信システムは、スケジューリンググラントに基づいて送信された上りリンクデータか、グラントフリー送信された上りリンクデータかによって、端末装置毎ACK/NACKと一括ACK/NACKを使い分けることができる。本実施形態に係る通信システムは、図1~図9で説明した基地局装置10および端末装置20で構成される。以下、第1の実施形態との相違点/追加点を主に説明する。
 図10は、本実施形態に係る上りリンクデータに対するACK/NACK送信例を示す図である。グラントフリー送信の上りリンクデータとスケジューリンググラントに基づいて送信された上りリンクデータが、重複する時間リソースおよび周波数リソースで送信される一例である。UE1~UE14は、端末装置20-1~端末装置20-14の上りリンクデータに対応する。ACK/NACK#0~ACK/NACK#3は各々、サブフレーム#0~#3の上りリンクデータに対するACK/NACKである(各サブフレームにおける一括ACK/NACK)。ACK/NACK#m-nは、サブフレーム#mで受信したUE#nに対するACK/NACKを示す(端末装置毎ACK/NACK)。
 ここで、基地局装置10の受信アンテナ数が2本、端末装置20の送信アンテナ数が1本とする。図10において、UE1、UE2、UE14はスケジューリンググラントに基づいて送信された上りリンクデータである(左上がり斜線)。UE3~UE13は、グラントフリー送信の上りリンクデータである。
 サブフレーム#0(同一周波数/同一時間)において、UE1~UE8が上りリンクデータを送信している。サブフレーム#1において、UE9~UE12が上りリンクデータを送信している。サブフレーム#2において、基地局装置10が収容する端末装置は上りリンクデータを送信していない。サブフレーム#3において、UE13~UE14が上りリンクデータを送信している。サブフレーム#0、#1において、基地局装置10は、受信アンテナ数を超える端末装置から上りリンクデータを受信する(非直交多元接続)。
 基地局装置10は、サブフレーム#0で受信した各端末装置の上りリンクデータを検出する。基地局装置は、スケジューリンググラントに基づいて送信されたUE1およびUE2の上りリンクデータに対して、所定の送信タイミングで、端末装置毎にACK/NACKを送信する(ACK/NACK#0-1、ACK/NACK#0-2)。一方、基地局装置は、グラントフリー送信のUE3~UE8の上りリンクデータに対して、所定の送信タイミングで、一括ACK/NACKを送信する。具体的には、UE3~UE8の上りリンクデータ全てを正しく検出した場合、下りリンクにおいて、所定の送信タイミング(ACK/NACK#0)でACKを送信する(一括ACKを送信する)。基地局装置は、UE3~UE8の上りリンクデータのうち1つでも正しく検出できなかった場合、下りリンクにおいて、所定の送信タイミング(ACK/NACK#0)でNACKを送信する(一括NACKを送信する)。
 基地局装置10は、サブフレーム#1で受信した各上りリンクデータを検出する。UE9~UE12の上りリンクデータは、グラントフリー送信されている。よって、基地局装置は、UE9~UE12の上りリンクデータ全てを正しく検出した場合、下りリンクにおいて、所定の送信タイミング(ACK/NACK#1)で一括ACKを送信する。一方、基地局装置は、UE9~UE12の上りリンクデータのうち1つでも正しく検出できなかった場合、下りリンクにおいて、所定の送信タイミング(ACK/NACK#1)で一括NACKを送信する。基地局装置10は、サブフレーム#2において、識別信号/上りリンクデータを検出しなかったため、ACK/NACKを送信しない。
 基地局装置10は、サブフレーム#3で受信した各上りリンクデータを検出する。UE13はグラントフリー送信の上りリンクデータである。よって、基地局装置は、UE13の上りリンクデータを正しく検出した場合、下りリンクにおいて、所定の送信タイミング(ACK/NACK#3)で一括ACKを送信する。基地局装置は、UE13の上りリンクデータを正しく検出できなかった場合、下りリンクにおいて、所定の送信タイミング(ACK/NACK#3)で一括NACKを送信する。一方、UE14はスケジューリンググラントに基づく送信の上りリンクデータである。よって、基地局装置は、UE14の上りリンクデータに対して、所定の送信タイミング(ACK/NACK#3-14)で端末装置毎にACK/NACKを送信する。
 本実施形態に係る基地局装置10において、上位層処理部101は、誤り検出結果に基づいて、HARQインジケータ(ACK/NACKを示すビット系列)を生成する。スケジューリンググラントで送信された上りリンクデータに対するHARQインジケータは、端末装置毎に出力される(図4)。グラントフリーで送信された上りリンクデータに対するHARQインジケータは、サブフレーム毎に出力される(図5)。上位層処理部101および送信部103は、拡散符号系列を乗算することで複数ACK/NACKを送信する物理再送要求指示チャネルを生成する。この物理再送要求指示チャネルの生成において、送信部103は、一括ACK/NACKのビット系列を拡散系列する場合、該拡散系列を、多重される端末装置に共通のパラメータで生成されたグラントフリー送信固有の識別子と関連付ける。一方、送信部103は、端末装置毎のACK/NACKのビット系列を拡散系列する場合、該拡散系列を、グラントフリー送信に係る端末装置固有の識別信号に関するパラメータ(サイクリックシフト値、OCC等)や端末装置固有の識別子と関連付ける。
 別の態様として、上位層処理部101および送信部103は、CRC付加により物理再送要求指示チャネルを生成する。この物理再送要求指示チャネルの生成において、送信部103は、一括ACK/NACKのビット系列を送信する場合、CRCパリティビットを、多重される端末装置に共通のパラメータで生成されたグラントフリー送信固有の識別子と関連付ける。例えば、CRCパリティビットは、該グラントフリー送信固有の識別子によってスクランブル(排他的論理和演算、マスクとも呼ぶ)される。一方、送信部103は、端末装置毎のACK/NACKのビット系列を送信する場合、CRCパリティビットを、グラントフリー送信に係る端末装置固有の識別信号や端末装置固有の識別子によってスクランブルする。
 また、物理再送要求指示チャネルが送信されるリソースは、周波数ドメインにおいて、識別信号を生成するために用いたサイクリックシフト値、OCC等を用いて設定されても良い。物理再送要求指示チャネルが送信されるリソースは、識別信号が送信されたサブフレーム/スロット/シンボルを用いて設定されても良い。
 以上のように、本実施形態に係る通信システムでは、上りリンクデータが、グラントフリー送信か、スケジューリンググラントに基づいて送信かによって、一括または端末装置毎ACK/NACKが選択される。これにより、多数端末装置を収容するグラントフリー多元接続において、ACK/NACKの送信数の増加による下りリンク無線リソースの逼迫を抑えることができる。また、基地局装置は、グラントフリー送信における上りリンクデータは、端末装置の識別誤りも含まれることを考慮できるため、基地局装置が上りリンクデータ送信されるリソースを予めスケジューリングできないグラントフリーの多元接続において、基地局装置および端末装置は、再送制御を効率的に行なうことができる。
 なお、本実施形態に係る通信システムは、拡散符号系列を乗算することで複数ACK/NACKを送信する物理再送要求指示チャネルとCRC付加によりで生成される物理再送要求指示チャネルの両方を用いても良い。基地局装置は、拡散符号系列を乗算することで複数ACK/NACKを送信する物理再送要求指示チャネル(前者)を一括ACK/NACK送信に用い、CRC付加によりで生成される物理再送要求指示チャネル(後者)をUE毎ACK/NACK送信に用いるようにしても良い。
 (第3の実施形態)
 本実施形態は、一部の上りリンクデータに対して、一括ACK/NACKを適用する場合の例である。本実施形態に係る通信システムでは、上りリンクデータのビット数に応じて、一括ACK/NACKが適用される。本実施形態に係る通信システムは、図1~図9で説明した基地局装置10および端末装置20で構成される。以下、第1の実施形態との相違点/追加点を主に説明する。
 図11は、本実施形態に係る上りリンクデータに対するACK/NACK送信例を示す図である。UE1~UE14は、端末装置20-1~端末装置20-14の上りリンクデータに対応する。ACK/NACK#0~ACK/NACK#3は各々、サブフレーム#0~#3の上りリンクデータに対するACK/NACKである(各サブフレームにおける一括ACK/NACK)。ACK/NACK#m-nは、サブフレーム#mで受信したUE#nに対するACK/NACKを示す(端末装置毎ACK/NACK)。
 ここで、基地局装置10の受信アンテナ数が2本、端末装置20の送信アンテナ数が1本とする。図11において、UE1~UE14はスケジューリンググラントに基づいて送信された上りリンクデータであっても良いし、グラントフリー送信の上りリンクデータであっても良い。すなわち、スケジューリンググラントに基づいて送信された上りリンクデータとグラントフリー送信の上りリンクデータが混在する。
 本実施形態の通信システムは、上りリンクデータのサイズが所定の閾値以下の場合に、一括ACK/NACKを適用する。閾値は、各端末装置が送信する上りリンクデータのビット数/リソースブロック数で定義することができる。図11において、UE1、UE2、UE14は、基地局装置が設定した該閾値より大きいデータサイズの上りリンクデータである。UE3~UE13は、基地局装置が設定した該閾値以下のデータサイズの上りリンクデータである。基地局装置は、前記閾値を設定し、端末装置に通知する。基地局装置は、該閾値を、MIB、SIBなどのシステムインフォメーションに含めることができる。基地局装置は、前記閾値を、RRCメッセージに含めても良い。基地局装置は、前記閾値を、下りリンク制御情報に含めても良い。
 端末装置は、基地局装置に対して、UE Capability/RRCメッセージ/上りリンク制御情報などを用いて、上りリンク送信データのサイズを明示的に通知することができる。上りリンク送信データのサイズは、識別信号に関するパラメータ(識別信号の系列長、巡回遅延量、など)と関連付けることもできる。例えば、上りリンク送信データの周波数ドメインリソース数(サブキャリア数)と識別信号の系列長を同一に設定する。基地局装置は、識別信号を用いて端末装置を識別することで、暗示的に上りリンク送信データのサイズを認識する。
 サブフレーム#0(同一周波数/同一時間)において、UE1~UE8が上りリンクデータを送信している。サブフレーム#1において、UE9~UE12が上りリンクデータを送信している。サブフレーム#2において、基地局装置10が収容する端末装置は上りリンクデータを送信していない。サブフレーム#3において、UE13~UE14が上りリンクデータを送信している。サブフレーム#0、#1において、基地局装置10は、受信アンテナ数を超える端末装置から上りリンクデータを受信する。
 基地局装置10は、サブフレーム#0で受信した各端末装置の上りリンクデータを検出する。基地局装置10は、閾値を超えるデータサイズの上りリンクデータUE1およびUE2に対して、所定の送信タイミングで、端末装置毎にACK/NACKを送信する(ACK/NACK#0-1、ACK/NACK#0-2)。一方、基地局装置は、閾値以下データサイズの上りリンクデータUE3~UE8に対して、所定の送信タイミングで、一括ACK/NACKを送信する。具体的には、UE3~UE8の上りリンクデータ全てを正しく検出した場合、下りリンクにおいて、所定の送信タイミング(ACK/NACK#0)でACKを送信する(一括ACKを送信する)。基地局装置は、UE3~UE8の上りリンクデータのうち1つでも正しく検出できなかった場合、下りリンクにおいて、所定の送信タイミング(ACK/NACK#0)でNACKを送信する(一括NACKを送信する)。
 基地局装置10は、サブフレーム#1で受信した各上りリンクデータを検出する。上りリンクデータUE9~UE12のデータサイズは閾値以下である。よって、基地局装置は、UE9~UE12の上りリンクデータに対して、所定の送信タイミング(ACK/NACK#1)で、一括ACK/NACKを送信する。
 基地局装置10は、サブフレーム#3で受信した各上りリンクデータを検出する。上りリンクデータUE13は閾値以下のデータサイズである。よって、基地局装置は、UE13の上りリンクデータに対して、下りリンクにおいて、所定の送信タイミング(ACK/NACK#3)で一括ACK/NACKを送信する。一方、上りリンクデータUE14は閾値以上のデータサイズである。よって、基地局装置は、UE14の上りリンクデータに対して、所定の送信タイミング(ACK/NACK#3-14)で端末装置毎にACK/NACKを送信する。なお、図11は、ACK/NACK#3の送信タイミングがACK/NACK#1の送信タイミングの1/2に設定されている場合を示している。
 基地局装置10において、上位層処理部101および送信部103は、拡散符号系列を乗算することで複数ACK/NACKを送信する物理再送要求指示チャネルを生成する。この物理再送要求指示チャネルの生成において、送信部103は、一括ACK/NACKのビット系列を拡散系列する場合、該拡散系列を、多重される端末装置に共通のパラメータで生成された識別子と関連付ける。端末装置に共通のパラメータは、上りリンクデータ/識別信号が送信されたサブフレーム番号/スロット番号/シンボル番号/システムフレーム番号/周波数リソースを含むことができる。例えば、拡散系列の生成パラメータに端末装置に共通のパラメータを含める。一方、送信部103は、UE毎のACK/NACKのビット系列を拡散系列する場合、端末装置固有の識別信号に関するパラメータや端末装置固有の識別子と関連付ける。端末装置固有の識別信号関するパラメータは、識別信号系列(直交系列/準直交系列)、該識別信号系列に施されている巡回遅延量、OCCなどを含む。端末装置固有の識別子は、各端末装置に割当てられるC-RNTIやグラントフリーで送信する端末装置固有の識別子などを含む。
 別の態様として、上位層処理部101および送信部103は、CRC付加により物理再送要求指示チャネルを生成する。この物理再送要求指示チャネルの生成において、送信部103は、一括ACK/NACKのビット系列を送信する場合、CRCパリティビットを、多重される端末装置に共通のパラメータで生成された識別子と関連付ける。例えば、CRCパリティビットは、該識別子によってスクランブル(排他的論理和演算、マスクとも呼ぶ)される。一方、送信部103は、UE毎のACK/NACKのビット系列を送信する場合、CRCパリティビットを、端末装置固有の識別信号に関するパラメータや端末装置固有の識別子と関連付ける。
 以上のように、本実施形態に係る通信システムでは、一部の上りリンクデータに対して、一括ACK/NACKを適用する。具体的には、大きいサイズの上りリンクデータに対して端末装置毎のACK/NACKを送信し、小サイズの上りリンクデータに対して一括ACK/NACKを送信する。これにより、多数端末装置を収容するグラントフリー多元接続において、ACK/NACKの送信数の増加による下りリンク無線リソースの逼迫を抑えることができる。また、サイズの大きい上りリンクデータに対して、ファインなACK/NACKを送信するため、サイズの大きい上りリンクデータの再送による上りリンク無線リソースの逼迫を抑えることができる。したがって、本実施形態に係る通信システムでは、グラントフリーの多元接続およびスケジューリングラントの多元接続が混在し、多数の端末装置が収容される場合において、基地局装置および端末装置は、再送制御を効率的に行なうことができる。
 (第4の実施形態)
 本実施形態に係る通信システムは、図1~図11で説明した基地局装置10および端末装置20で構成される。以下、第1の実施形態~第3の実施形態との相違点/追加点を主に説明する。
 本実施形態に係る通信システムでは、複数種類の否定応答(NACK)が用いられる。NACKの種類は、その理由と関連付けられる。一態様として、NACKの理由は、基地局装置が所定時間リソースにおいて識別した端末装置数に関する情報と関連付けられる。例えば、所定時間リソースにおいて、基地局装置が識別した端末装置数が閾値以下かどうか、によって、NACKが区分けされる。
 第1のNACK(第1の否定応答)は、基地局装置が所定時間リソースにおいて識別した端末装置数が閾値以下の場合に送信される。例えば、前記所定時間リソースは、端末装置が上りリンクデータを割当てるタイムユニットであるサブフレーム単位で設定される。前記所定時間リソースは、スロット単位/フレーム単位で設定されても良い。
 基地局装置は、前記閾値を収容可能な端末装置数に設定することができる。例えば、基地局装置は、基地局装置の受信アンテナ数を用いて、前記閾値を設定することができる。基地局装置は、多重された上りリンクデータのリソースブロック数を用いて、前記閾値を設定することもできる。基地局装置は、識別信号に関するパラメータを用いて、前記閾値を設定することができる。前記識別信号に関するパラメータは、直交系列数(準直交系列数)/巡回遅延パターン数/OCCパターン数を含むことができる。例えば、前記閾値は、前記識別信号に関するパラメータによって生成できる識別信号数とする。
 基地局装置は、物理再送要求指示チャネルの設定数を用いて、前記閾値を設定することができる。拡散符号系列を乗算することで複数ACK/NACKを送信する物理再送要求指示チャネルにおいて、前記物理再送要求指示チャネルの設定数は、物理再送要求指示チャネルの多重数とすることができる。CRC付加により生成される物理再送要求指示チャネルにおいて、前記物理再送要求指示チャネルの設定数は、1つの物理再送要求指示チャネルに含めることができる端末装置数(CRC生成に用いられるACK/NACK数)とすることができる。基地局装置は、前記閾値を、基地局装置の受信能力に応じた係数を設定しても良い。
 第2のNACK(第2の否定応答)は、基地局装置が所定時間リソースにおいて識別した端末装置数が閾値を超える場合に送信される。基地局装置は、該所定時間リソースおよび該閾値に、第1のNACKと同様の基準を用いることができる。なお、基地局装置は、基地局装置が所定時間リソースにおいて端末装置を識別しなかった場合に送信される第3のNACKを送信しても良い。
 別の態様として、NACKの理由は、再送方法に関する情報/再送データに関する情報と関連付けられうる。例えば、初送の上りリンクデータと再送上りリンクデータの関係によってNACKは区分けされる。第1のNACKは、少なくとも初送で送信していないデータを含むデータの再送要求をする場合に、送信される。第2のNACKは、初送で送信したデータで再送要求をする場合に、再送される。
 別の態様として、NACKの理由は、再送リソースに関する情報/再送タイミングに関する情報と関連付けられうる。例えば、初送と同一時間リソース/周波数リソースで上りリンクデータを再送するか、によってNACKは区分けされる。第1のNACKは、初送と同一時間リソース/周波数リソースで上りリンクデータの再送要求をする場合に、送信される。第2のNACKは、初送と異なる時間リソース/周波数リソースで上りリンクデータの再送要求をする場合に、送信される。
 別の態様として、NACKの理由は、所定時間リソースで受信した上りリンクデータの誤り検出度合と関連付けられうる。例えば、同一時間リソースおよび周波数リソースで受信した上りリンクデータの一部または全部に誤りがあるか、によってNACKが区分けされる。第1のNACKは、同一時間リソースおよび周波数リソースで受信した上りリンクデータの一部に誤りがある場合に、送信される。第2のNACKは、同一時間リソースおよび周波数リソースで受信した上りリンクデータの全部に誤りがある場合に、送信される。
 別の態様として、NACKの理由は、上りリンクデータに対して、信号検出処理を行なったか、によってNACKが区分けされる。第1のNACKは、信号検出処理を行なった結果、誤りを検出した場合、送信される。第2のNACKは、信号検出処理を行なわず、端末識別処理を行なった結果によって、送信される。なお、ターボ等化等の高度な受信処理を用いて信号検出処理を行なったか、によって、NACKが区分けされても良い。
 別の態様として、NACKの種類は、一括したNACKか、端末装置毎のNACKか、と関連付けられうる。第1のNACKは、端末装置毎のNACKであることを意味する。第2のNACKは、所定時間リソースで受信した上りリンクデータに対する一括したNACKであること、を意味する。
 ここで、複数種類のNACKを含むACK/NACK送信について、NACKの種類に関する設定において、アンテナ本数と端末装置の受信能力が用いられる場合を説明する。ここで、基地局装置10の受信アンテナ数が2本、端末装置20の送信アンテナ数が1本とする。前記端末装置数の閾値は、2×α(αは受信能力で設定される係数)とする。以下、基地局装置がα=3と設定した場合である(閾値=6)で説明する。
 図12は、本実施形態に係る上りリンクデータに対するACK/NACK送信例を示す図である。UE1~UE14は、端末装置20-1~端末装置20-14の上りリンクデータに対応する。各端末装置は、グラントフリーで上りリンクデータを送信する。ACK/NACK#0~ACK/NACK#3は各々、サブフレーム#0~#3の上りリンクデータに対する一括ACK/NACKである。図12は、第1のNACKおよび第2のNACKともに、一括ACK/NACKを用いて、送信される場合である。
 図12では、サブフレーム#0(同一周波数/同一時間)において、上りリンクデータUE1~UE8が送信されている。基地局装置は、識別信号を用いて、サブフレーム#0における上りリンクデータを送信した端末装置を識別する。基地局装置は、UE1~UE8の8つの端末装置を識別する(基地局装置は、サブフレーム#0の端末装置の多重数を8と認識する)。基地局装置は、サブフレーム#0の端末装置の多重数が前記所定値(=6)を超えていると判断する。この場合、基地局装置は、UE1~UE8に対して、所定の送信タイミング(ACK/NACK#0)で、第2のNACK(右上がり斜線部)を送信する。
 サブフレーム#1において、上りリンクデータUE9~UE12が送信されている。基地局装置は、識別信号を用いて、サブフレーム#0における上りリンクデータを送信した端末装置を識別する。基地局装置は、UE9~UE12の4つの端末装置を識別する(基地局装置は、サブフレーム#1の端末装置の多重数を4と認識する)。基地局装置は、サブフレーム#1の端末装置の多重数が前記所定値(=6)以下であると判断する。この場合、基地局装置は、識別した端末装置が送信した上りリンクデータUE9~UE12に対して、信号検出部1043において、信号検出処理を行なう。基地局装置は、UE9~UE12の上りリンクデータ全てを正しく検出した場合、下りリンクにおいて、所定の送信タイミング(ACK/NACK#1)でACKを送信する。一方、基地局装置は、UE9~UE12の上りリンクデータのうち1つでも正しく検出できなかった場合、下りリンクにおいて、所定の送信タイミング(ACK/NACK#1)で第1のNACK(網掛け部)を送信する。
 同様に、基地局装置は、サブフレーム#3において、識別信号を用いて、端末装置を識別する。基地局装置は、サブフレーム#3において、UE13、UE14の2つの端末装置を識別し、端末装置の多重数が前記閾値(=6)以下であると判断する。次に、基地局装置は、識別した端末装置が送信した上りリンクデータUE13、UE14に対して、信号検出処理を行なう。基地局装置は、UE13およびUE14の上りリンクデータ全てを正しく検出した場合、所定の送信タイミング(ACK/NACK#3)でACKを送信する。一方、基地局装置は、UE13およびUE14の上りリンクデータのうち1つでも正しく検出できなかった場合、所定の送信タイミング(ACK/NACK#3)で第1のNACK(網掛け部)を送信する。
 図13は、本実施形態に係る上りリンクデータに対するACK/NACK送信の別例を示す図である。ACK/NACK#0~ACK/NACK#3は各々、サブフレーム#0~#3の上りリンクデータに対する一括ACK/NACKである。ACK/NACK#m-nは、サブフレーム#mで受信したUE#nに対するACK/NACKである。図13は、第1のNACKは一括ACK/NACKを用いて送信され、第2のNACKは、端末装置毎ACK/NACKを用いて、送信される場合である。
 図13では、前記閾値に応じて、一括ACK/NACKを適用することができる。基地局装置は、端末装置数が前記閾値を超える場合、一括ACK/NACKを適用する。基地局装置は、端末装置数が前記閾値以下の場合、端末装置毎ACK/NACKを適用する。
 図13では、基地局装置は、サブフレーム#0において、UE1~UE8の8つの端末装置を識別する(基地局装置は、サブフレーム#0の端末装置の多重数を8と認識する)。基地局装置は、サブフレーム#0の端末装置の多重数が前記閾値(=6)を超えているため、一括ACK/NACK#0を送信する。さらに、基地局装置は、UE1~UE8に対して、所定の送信タイミング(ACK/NACK#0)で、第2のNACK(右上がり斜線部)を送信する。
 基地局装置は、サブフレーム#1において、識別信号を用いて、UE9~UE12の4つの端末装置を識別する(基地局装置は、サブフレーム#1の端末装置の多重数を4と認識する)。基地局装置は、サブフレーム#1の端末装置の多重数が前記所定値(=6)以下であるため、端末装置毎のACK/NACKを送信する。さらに、基地局装置は、識別した端末装置が送信した上りリンクデータUE9~UE12に対して、信号検出部1043において、信号検出処理を行なう。基地局装置は、上りリンクデータUE9~UE12の各々の検出結果に基づいて、各端末装置にACK/NACKを送信する(ACK/NACK#1-9~ACK/NACK#1-12)。この場合、基地局装置は、誤りを検出した上りリンクデータに対して第1のNACK(網掛け部)を送信する。
 同様に、基地局装置は、サブフレーム#3において、識別信号を用いて、端末装置を識別する。サブフレーム#3において、端末装置の多重数が前記閾値(=6)以下であるため、基地局装置は、識別した端末装置が送信した上りリンクデータUE13およびUE14に対して、信号検出処理を行なう。基地局装置は、上りリンクデータUE13およびUE14の各々の検出結果に基づいて、端末装置毎ACK/NACKを送信する(ACK/NACK#1-13~ACK/NACK#1-14)。この場合、基地局装置は、誤りを検出した上りリンクデータに対して第1のNACK(網掛け部)を送信する。
 以上のように、グラントフリーの多元接続において、基地局装置が収容可能な端末装置数を超える場合、基地局装置は、信号検出処理を行なわずにNACKを送信する。これにより、多数端末装置が存在する場合でも、基地局装置は、効率的に再送制御を行なうことができる。
 図14は、本実施形態に係る上りリンクデータに対するACK/NACK送信の別例を示す図である。ACK/NACK#m-nは、サブフレーム#mで受信したUE#nに対するACK/NACKである。図14は、第1のNACKおよび第2のNACK共に、端末装置毎ACK/NACKを用いて、送信される場合である。
 図14では、基地局装置は、サブフレーム#0において、UE1~UE8の8つの端末装置を識別する(基地局装置は、サブフレーム#0の端末装置の多重数を8と認識する)。さらに、基地局装置は、識別した端末装置が送信した上りリンクデータUE1~UE8に対して、信号検出部1043において、信号検出処理を行なう。基地局装置は、上りリンクデータUE9~UE14の各々の検出結果に基づいて、端末装置毎にACK/NACKを送信する(ACK/NACK#0-1~ACK/NACK#0-8)。基地局装置は、サブフレーム#0の端末装置の多重数が前記閾値(=6)を超えているため、検出結果に誤りがある場合、第2のNACK(右上がり斜線部)を送信する。
 基地局装置は、サブフレーム#1において、識別信号を用いて、UE9~UE12の4つの端末装置を識別する。また、基地局装置は、サブフレーム#3において、識別信号を用いて、UE13およびUE14の2つの端末装置を識別する。基地局装置は、サブフレーム#1および#3の端末装置の多重数が前記所定値(=6)以下であるため、識別した端末装置が送信した上りリンクデータUE9~UE14に対して、信号検出部1043において、信号検出処理を行なう。基地局装置は、上りリンクデータUE9~UE14の各々の検出結果に基づいて、端末装置毎にACK/NACKを送信する(ACK/NACK#1-9~ACK/NACK#1-12およびACK/NACK#3-13~ACK/NACK#3-14)。この場合、基地局装置は、誤りを検出した上りリンクデータに対して第1のNACK(網掛け部)を送信する。
 基地局装置は、サブフレーム#2において、端末装置を識別しないため、ACK/NACKを送信しない。ここで、サブフレーム#2において、上りリンクデータが送信されているにも関わらず、基地局装置10が識別できなかった場合、該上りリンクデータを送信した端末装置は、該上りリンクデータ送信時間から所定時間経過後、NACKと判断する。この場合、該端末装置は、第2のNACKが送信されたとみなして、上りリンクデータを再度送信する。
 なお、基地局装置は、端末装置を識別しないサブフレーム#2に対しても、上りリンクデータを識別しなかったことを示すNACK(例えば、第3のNACK)を送信しても良い。これにより、該サブフレームで上りリンクデータを送信した端末装置は、自端末装置が識別されなかったことを知ることができる。
 次に、本実施形態に係る物理再送要求指示チャネルの生成例について説明する。上位層処理部101は、複数種類のNACKを用いたHARQインジケータ(送達確認、ACK/NACK)を送信部103に入力する。HARQインジケータをan0、an1、・・・、anLとする。nは、HARQインジケータを送信する単位によって決まる。端末装置毎にACK/NACKを送信する場合、nは端末装置20-nの上りリンクデータに対するACK/NACKである。サブフレーム毎に一括したACK/NACKを送信する場合、nはサブフレームnで送信された上りリンクデータに対するACK/NACKである。LはHARQインジケータのビット数である。
 サブフレームnに対する一括したACK/NACKのビット数が2の場合、HARQインジケータ「an0、an1」は、第1のNACKを「00」、第2のNACKを「01」、ACKを「11」と示す。HARQインジケータ「an0、an1」において、an0はACK/NACKを示すビット、an1はNACKの種類(または理由)を示すビットともいえる。例えば、NACKの理由が所定時間リソースにおいて識別された端末装置数に関する情報と関連付けられる場合、an1=「0」は端末装置数が閾値以下であることを意味し、an1=「1」は、端末装置数が閾値を超えることを意味する。なお、第1のNACK「00」は、スケジューリンググラントに基づいて送信された上りリンクデータに対するNACKを含んでも良い。
 拡散符号系列を乗算することで複数ACK/NACKを送信する物理再送要求指示チャネルの生成例を説明する。符号部1031は、前記HARQインジケータに対してリピティションをしても良い。例えば、2ビットのHARQインジケータ「an0、an1」を3回リピティションする場合、第1のNACK、第2のNACK、ACKは各々、「000000」、「010101」「111111」とリピティションされる。変調部1032は、符号部1031の出力データに対して、データ変調を行なう。例えば、QPSKを用いてデータ変調を行なう。これにより、複数種類のNACKを用いることによるビット数の増加を抑圧することができる(例えば、2ビットのACK/NACKは、1ビットでACK/NACKを示す場合と同様のビット数にすることができる)。なお、ACK/NACKが1ビットで示される場合、基地局装置および端末装置は、NACK「0」を前記第1のNACK「00」と、ACK「1」をACK「11」とみなして、各処理をしても良い。
 さらに、変調部1032は、前記データ変調後のデータに、所定の系列(拡散系列)を乗算する(前記データ変調後のデータは、所定の系列によって拡散される)。該拡散系列は、直交系列(または準直交系列)を用いることができる。一括ACK/NACK送信の場合、前記拡散系列は、グラントフリー送信固有の識別子などの多重される端末装置で共通のパラメータと関連付けられうる。該拡散系列を、多重される端末装置に共通のパラメータで生成された識別子と関連付ける。端末装置に共通のパラメータは、上りリンクデータ/識別信号が送信されたサブフレーム番号/スロット番号/シンボル番号/システムフレーム番号/周波数リソースを含むことができる。例えば、拡散系列の生成パラメータは前記端末装置に共通のパラメータを含める。一方、端末装置毎のACK/NACK送信の場合、前記拡散系列は、端末装置固有の識別信号に関するパラメータや端末装置固有の識別子と関連付けられうる。端末装置固有の識別信号に関するパラメータは、識別信号系列(直交系列/準直交系列)、該識別信号系列に施されている位相回転量、巡回遅延量、インターリーブパターン、OCCなどを含む。端末装置固有の識別子は、各端末装置に割当てられるC-RNTIやグラントフリーで送信する端末装置固有の識別子などを含む。例えば、端末装置毎のACK/NACKは、識別信号系列/端末装置固有の識別信号に関するパラメータから生成された系列で拡散される。
 別の態様として、CRC付加により物理再送要求指示チャネルを生成する場合を説明する。上位層処理部101は、複数のHARQインジケータを含む上りリンクデータ再送に関する情報に対して、CRCパリティビットを付加することができる。xをHARQインジケータのビット系列、pをCRCパリティビット系列とすると、CRC付加後のビット系列は、「x、x、・・・xq-1、p、p、・・・pr-1」と示される(qはACK/NACKのトータルビット数、rはCRCパリティビット数)。HARQインジケータのビット系列は、各上りリンクデータに対するACK/NACKフィールドから構成される。なお、各上りリンクデータに対するACK/NACKフィールドは、上りリンクデータ再送に関する情報のビット系列を含むことができる。
 例えば、同一送信タイミングの複数ACK/NACKに対して、CRCパリティビットを付加する。基地局装置は、HARQインジケータxのビット系列長(またはACK/NACKフィールド数)を、上りリンクのサブフレーム数に基づいて設定することができる。一括ACK/NACK送信において、HARQインジケータxのビット系列長q=サブフレーム数m×HARQインジケータのビット数Lとなる。サブフレーム数m=10、HARQインジケータのビット数L=2とすると、q=20となる。CRC付加後のビット系列「x、x、x、x、・・・、xq-1、p、q、・・・qr-1」は、「a00、a01、a10、a11、a20、a21、30、a31、・・・、a90、a91、p、q、・・・qr-1」となる。amlは、上りリンクデータに対するACK/NACKビット(HARQインジケータビット)である。mは上りリンクデータの送信サブフレーム番号、lは各サブフレームの一括ACK/NACKを構成するビット番号である。この場合、HARQインジケータxは、2ビットからなる10個のACK/NACKフィールドを有する。図12のサブフレーム#5におけるACK/NACK送信において、ACK/NACK#1は「a10、a11」に格納される。ACK/NACK#3は、「a30、a31」に格納される。その他のビット(a10、a11、a30、a31以外)には、ダミービットが格納されても良い。この場合、端末装置は、上りリンクデータを送信したサブフレーム番号を基に、該上りリンクデータに対するACK/NACKを取得する。
 基地局装置は、HARQインジケータxのビット系列長(またはACK/NACK格納フィールド数)を、上りリンクのシステム帯域幅等によって、設定しても良い。基地局装置は、各上りリンクデータに対するACK/NACKの格納フィールドインデックスを、端末装置に、RRCメッセージ/下りリンク制御チャネル等を用いて、通知することができる。基地局装置は、各端末装置に予め通知した格納フィールドインデックスに従って、各上りリンクデータに対するACK/NACKを格納する。例えば、図13において、HARQインジケータxの系列は、10個のACK/NACKの格納フィールド(ACK/NACK格納フィールド#1~10)が設定されたとする。基地局装置は、端末装置9~14の各々に、ACK/NACKの格納フィールドインデックス#1~6の通知する(割当てる)。例えば、図13のサブフレーム#5におけるACK/NACK送信において、基地局装置は、端末装置9~14各々に予め通知した格納フィールドインデックスに従って、各上りリンクデータに対するACK/NACKを格納する。さらに、基地局装置は、端末装置9~14に対するACK/NACKを格納した系列に対して、CRCパリティビットを付加する。この場合、端末装置は、基地局装置から通知された格納フィールドインデックスに基に、該上りリンクデータに対するACK/NACKを取得する。
 上位層処理部101は、上記CRCパリティビット「p、p、・・・pr-1」をグラントフリー送信固有の識別子と関連付けた系列などの多重される端末装置で共通のパラメータを用いてスクランブル(マスク)する。例えば、図12、13において、CRCパリティビット長=16ビット、グラントフリー送信固有の識別子と関連付けた系列=1+ACK/NACKが送信されるサブフレーム番号の場合、サブフレーム#5で送信されるACK/NACKのCRCパリティビットは、「0000000000000110」の系列でスクランブルする。
 本実施形態に係る通信システムにおいて、一括ACK/NACKは、端末装置毎ACK/NACKと異なるパラメータを用いてスクランブルしても良い。一括ACK/NACKの場合、上位層処理部101は、CRCパリティビットを、グラントフリー送信固有の識別子などの多重される端末装置で共通のパラメータを用いてスクランブル(マスク)する。一方、端末装置毎ACK/NACKの場合、上位層処理部101は、CRCパリティビットを、端末装置固有の識別信号に関するパラメータや端末装置固有の識別子を用いてスクランブルする。
 CRC付加後のビット系列「x、x、・・・xq-1、p、p、・・・pr-1」(qは各上りリンクデータに対するACK/NACKのビット数、rはCRCパリティビット数)において、CRCパリティビットは、上りリンクデータに対するACK/NACK毎に割当てられても良い。一括ACK/NACKにおいて、サブフレーム#mの上りリンクデータに対するACK/NACKは、「x、x、・・・xq-1、p、p、・・・pr-1」=「am0、am1、am2、am3、・・・、am,q-1、p、p、・・・、pr-1」となる(「am0、am1、am2、am3・・・、m,q-1」はサブフレーム#mの上りリンクデータに対するACK/NACK格納フィールドまたは/および該上りリンクデータ再送に関する情報の格納フィールドから構成される)。さらに、パリティビット「p、p、・・・pr-1」は、グラントフリー送信固有の識別子と関連付けた系列などの多重される端末装置で共通のパラメータを用いて、スクランブル(マスク)される。
 例えば、図13のサブフレーム#4において送信されるACK/NACKのCRC付加後のビット系列(ACK/NACK格納フィールドまたは/および該上りリンクデータ再送に関する情報の格納フィールドのビット数=4)は、「x、x、x、x、p、p、・・・pr-1」=「a00、a01、a02、a03、p、p、・・・pr-1」である。この場合、「p、p、・・・pr-1」は、サブフレーム#4から生成された系列「0000000000000101」でスクランブルする。
 端末装置毎のACK/NACKにおいて、端末装置20-nの上りリンクデータUEnに対するACK/NACKは、「x、x、・・・xq-1、p、p、・・・pr-1」=「an0、an1、an2、an3、・・・、an(q-1)、p、q、・・・qr-1」となる(「an0、an1、an2、an3、・・・、an(q-1)」は、端末装置20-nの上りリンクデータに対するACK/NACK格納フィールドまたは/および該上りリンクデータ再送に関する情報の格納フィールドから構成される)。すなわち、端末装置毎にCRCパリティビットが付加される。さらに、パリティビット「p、p、・・・pr-1」は、各端末装置固有のパラメータを用いて、スクランブル(マスク)される。
 例えば、図13のサブフレーム#5において、端末装置20-9に対するACK/NACK(ACK/NACK#1-9)のCRC付加後のビット系列(ACK/NACK格納フィールドまたは/および該上りリンクデータ再送に関する情報の格納フィールドのビット数=4)は、「x、x、x、x、p、p、・・・pr-1」=「a90、a91、a92、a93、p、p、・・・pr-1」である。この場合、パリティビット「p、p、・・・pr-1」は、ACK/NACK#1-9の識別信号系列を用いて、スクランブルされる。サブフレーム#5において、端末装置20-10~端末装置20-14に対するACK/NACKも、同様に、端末装置毎にCRCパリティビットが付加される。
 別の態様として、本実施形態に係る通信システムが、複数種類のNACKを用いたHARQインジケータを、1ビットで示す場合を説明する。複数種類のNACKを用いたHARQインジケータにおいて、第1のNACKおよび第2のNACKは「0」、ACKは「1」で示される。拡散符号系列を乗算することで複数ACK/NACKを送信する物理再送要求指示チャネルにおいて、第1のNACKおよび第2のNACKは、乗算されている拡散符号系列で区別される。
 変調部1032は、第1のNACKと第2のNACKで異なる拡散系列を用いる。例えば、第1のNACKは、端末装置固有の識別信号に関するパラメータや端末装置固有の識別子と関連付けられた拡散符号系列を用いて、拡散される。第2のNACKは、端末装置に共通のパラメータと関連付けられた拡散符号を用いて、拡散される。
 CRC付加により生成される物理再送要求指示チャネルにおいて、第1のNACKおよび第2のNACKは、CRCパリティビットをスクランブル(排他的論理和演算、マスク)する識別子で区別される。例えば、第1のNACKは端末装置固有の識別信号に関するパラメータや端末装置固有の識別子を用いて、スクランブルされる。第2のNACKは、グラントフリー送信固有の識別子などの多重される端末装置で共通のパラメータを用いてスクランブルされる。
 物理再送要求指示チャネルは、第1のNACKと第2のNACKで、拡散符号系列を乗算することで複数ACK/NACKを送信する物理再送要求指示チャネルを用いるか、CRC付加により生成される複数ACK/NACKを送信する物理再送要求指示チャネルを用いるか、を設定されても良い。
 次に、各種NACKに対して再送される上りリンクデータについて説明する。端末装置は、上りリンクデータ(初送)に対して、ACK/NACKを受信する(図3のS205)。端末装置は、第1のNACKを受信した場合、上りリンクデータ(初送)に関連するデータを再度送信する(図3のS206)。上りリンクデータに関連するデータは、初送で送信した上りリンクデータ(初送で送信したデータビットおよびパリティビット)と同一でも良いし、初送で送信していないデータ(初送で送信していないデータビットおよびパリティビット)でも良い。また、上りリンクデータに関連するデータは、初送で送信した上りリンクデータと初送で送信していないデータの両方を含むデータでも良い。この場合、再送を受信した基地局装置は、上りリンクデータ(初送)と上りリンクデータ(再送)を用いて、信号検出処理を行なう。前記検出処理において、基地局装置は、Chase合成、IR(Incremental Redundancy)を用いることができる。
 端末装置は、第2のNACKを受信した場合、その上りリンクデータと同一のデータ(初送で送信したデータビットおよびパリティビット)を再度送信する(図3のS206)。該上りリンクデータ(再送)は、初送で送信したデータビット並びにパリティビットおよび初送で送信していないデータビット並びにパリティビットの両方を含むデータでも良い。この場合、再送を受信した基地局装置は、上りリンクデータ(初送)を用いて、信号検出処理を行なう。
 次に、各種NACKに対する上りリンクデータの再送タイミングについて説明する。基地局装置は、システムインフォメーション/RRCメッセージ/下りリンク制御情報として、上りリンクデータの再送タイミングを示す情報を端末装置に送信する(図3のS203)。基地局装置は、再送タイミングを示す情報を、物理再送要求指示チャネルを用いて、端末装置に送信することもできる(図3のS205)。例えば、上りリンクデータの再送タイミングを示す情報は、基準時間と基準時間に対するオフセット値で設定される。
 図3のS205において、第1のNACKを受信した端末装置は、基準時間に従って(すなわち、オフセット値=0)、上りリンクデータを再送する(S206)。一方、第2のNACKを受信した端末装置は、基準時間+選択したオフセット値で求められる再送間隔で上りリンクデータを再送する(S206)。前記オフセット値の選択は、端末装置がランダムに選択しても良いし、基地局装置が指示しても良い。
 以上のように、本実施形態に係る通信システムは、NACKを送信する理由によって、複数種類のNACKを定義する。例えば、NACKの種類は、基地局装置が収容可能な端末装置数等と関連付けられる。これにより、基地局装置が上りリンクデータ送信されるリソースを予めスケジューリングできないグラントフリーの多元接続において、基地局装置および端末装置は、上りリンクデータの多重状況を考慮して、効率的に再送制御することができる。
 (第5の実施形態)
 本実施形態は、グラントフリー送信の上りリンクデータとスケジューリンググラントに基づいて送信された上りリンクデータが、重複する時間リソースおよび周波数リソースで送信された場合において、複数種類の否定応答(NACK)を用いる例である。本実施形態に係る通信システムは、図1~図14で説明した基地局装置10および端末装置20で構成される。以下、第1の実施形態~第4の実施形態との相違点/追加点を主に説明する。
 図15は、本実施形態に係る上りリンクデータに対するACK/NACK送信の例を示す図である。UE1~UE15は各々、端末装置20-1~端末装置20-15が送信した上りリンクデータである。ACK/NACK#m-nは、サブフレーム#mで受信したUE#nに対するACK/NACKである。UE1およびUE9は、スケジューリンググラントに基づいて送信された上りリンクデータである(左上がり斜線部)。UE2~UE8、UE10~UE15は、グラントフリーにより送信された上りリンクデータである。NACKの種類に関する閾値設定において、アンテナ本数と端末装置の受信能力が用いられる場合を説明する。ここで、基地局装置10の受信アンテナ数が2本、端末装置20の送信アンテナ数が1本とする。前記端末装置数の閾値は、2×α(αは受信能力で設定される係数)とする。以下、基地局装置がα=3と設定した場合である(閾値=6)で説明する。
 図15では、サブフレーム#0において、UE1~UE8の8つの上りリンクデータが送信されている。基地局装置は、サブフレーム#0において、スケジューリンググラントに基づいて送信されたUE1を受信する。さらに、基地局装置は、サブフレーム#0において、識別信号により、UE2~UE8の7つの端末装置を識別する(基地局装置は、サブフレーム#0において、グラントフリー送信の端末装置の多重数を7と認識する)。さらに、基地局装置は、上りリンクデータUE1~UE8に対して、信号検出部1043において、信号検出処理を行なう。基地局装置は、上りリンクデータUE1~UE8の各々の検出結果に基づいて、端末装置毎にACK/NACKを送信する(ACK/NACK#0-1~ACK/NACK#0-8)。
 基地局装置は、スケジューリンググラントに基づいて送信されたUE1に誤りがある場合、該端末装置に第1のNACKを送信する(網掛け部)。一方、グラントフリー送信の端末装置の多重数(=7)が前記閾値(=6)を超えている。このため、グラントフリー送信された上りリンクデータUE2~UE8の検出結果に誤りがある場合、基地局装置は、該端末装置に第2のNACK(右上がり斜線部)を送信する。
 サブフレーム#1において、UE9~UE15の7つの上りリンクデータが送信されている。基地局装置は、サブフレーム#1において、スケジューリンググラントに基づいて送信されたUE9を受信する。さらに、基地局装置は、サブフレーム#1において、識別信号により、UE10~UE15の6つの端末装置を識別する(基地局装置は、サブフレーム#1において、グラントフリー送信の端末装置の多重数を6と認識する)。さらに、基地局装置は、端上りリンクデータUE9~UE15に対して、信号検出部1043において、信号検出処理を行なう。基地局装置は、上りリンクデータUE9~UE15の各々の検出結果に基づいて、端末装置毎にACK/NACKを送信する(ACK/NACK#1-9~ACK/NACK#1-15)。
 基地局装置は、スケジューリンググラントに基づいて送信されたUE9に誤りがある場合、該端末装置に、第1のNACKを送信する(網掛け部)。一方、グラントフリー送信の端末装置の多重数(=6)が前記閾値(=6)以下である。このため、グラントフリー送信された上りリンクデータUE10~UE15の検出結果に誤りがある場合、基地局装置は、該端末装置に、第1のNACKを送信する(網掛け部)を送信する。
 以上のように、本実施形態に係る通信システムは、基地局装置が収容可能な端末装置数と関連付けて、複数種類NACKを定義する。基地局装置は、グラントフリー送信の上りリンクデータとスケジューリンググラントに基づいて送信された上りリンクデータを同一時間リソースおよび周波数リソースで受信した場合、グラントフリー送信の上りリンクデータの送信端末数を基に、返信するNACKの種類を判断する。これにより、基地局装置および端末装置は、上りリンクデータの多重状況を考慮して、効率的に再送制御することができる。
 さらに、基地局装置は、グラントフリー送信の上りリンクデータの検出処理において、スケジューリンググラントに基づいて送信された上りリンクデータを用いて、ターボ等化等を適用できる。これにより、基地局装置が上りリンク送信リソースを予めスケジューリングできないグラントフリー送信のデータの検出精度を向上することができる。
 (1)本発明の一態様は、複数の端末装置と通信を行なう基地局装置であって、上りリンクデータを送信した端末装置を識別する識別信号と前記上りリンクデータを受信する受信部と、前記上りリンクデータに対する送達確認を示す信号を送信する送信部と、を備え、前記送達確認を示す信号は、同一時間リソースおよび同一周波数リソースで受信した上りリンクデータに対して一括して送達確認を示す信号であること、を特徴とする。
 (2)また、本発明の一態様は、前記受信部は、同一時間リソースおよび同一周波数リソースで、スケジューリンググラントに基づいて送信された上りリンクデータとグラントフリーで送信された上りリンクデータを受信し、前記送信部は、スケジューリンググラントに基づいて送信された前記上りリンクデータに対して端末装置毎に送達確認を示す信号を送信し、グラントフリーで送信された前記上りリンクデータに対して一括して送達確認を示す信号を送信すること、を特徴とする。
 (3)また、本発明の一態様は、前記受信部は、同一時間リソースおよび同一周波数リソースで、スケジューリンググラントに基づいて送信された上りリンクデータとグラントフリーで送信された上りリンクデータを受信し、前記送信部は、スケジューリンググラントに基づいて送信された前記上りリンクデータおよびグラントフリーで送信された前記上りリンクデータに対して一括して送達確認を示す信号を送信すること、を特徴とする。
 (4)また、本発明の一態様は、前記送達確認を示す信号は、否定応答の理由を示すビットを含み、前記否定応答の理由を示すビットの少なくとも一つは、同一時間リソースおよび同一周波数リソースで受信した上りリンクデータに対して一括した否定応答を意味すること、を特徴とする。
 (5)また、本発明の一態様は、前記送達確認を示す信号は、否定応答の理由を示すビットを含み、前記否定応答の理由を示すビットは、識別した端末装置数に関する情報と関連付けられていること、を特徴とする。
 (6)また、本発明の一態様は、前記送達確認を示す信号は、否定応答の理由を示すビットを含み、前記否定応答の理由を示すビットは、基地局装置の受信アンテナ数をパラメータとして設定されること、を特徴とする。
 (7)また、本発明の一態様は、前記送達確認を示す信号は、否定応答の理由を示すビットを含み、前記否定応答の理由を示すビットは、上りリンクデータのビット数をパラメータとして設定されること、を特徴とする。
 (8)また、本発明の一態様は、前記送達確認を示す信号は、該送達確認を示す信号が送信されるサブフレーム番号と関連付けられること、を特徴とする。
 (9)また、本発明の一態様は、基地局装置とグラントフリーで通信を行なう端末装置であって、自端末装置が上りリンクデータを送信したことを示す識別信号と前記上りリンクデータを送信する送信部と、前記上りリンクデータに対する前記送達確認を示す信号を受信する受信部と、を備え、前記送信部は、前記送達確認を示す信号が一括して送達確認を示す信号かつ否定応答である場合、前記上りリンクデータを構成するデータビットおよびパリティビットを、再度送信すること、を特徴とする。
 (10)また、本発明の一態様は、複数の端末装置と通信を行なう基地局装置の通信方法であって、上りリンクデータを送信した端末装置を識別する識別信号と前記上りリンクデータを受信する受信ステップと、前記上りリンクデータに対する送達確認を示す信号を送信する送信ステップと、を有し、前記送達確認を示す信号は、同一時間リソースおよび同一周波数リソースで受信した上りリンクデータに対して一括して送達確認を示す信号であること、を特徴とする。
 (11)また、本発明の一態様は、基地局装置とグラントフリーで通信を行なう端末装置の通信方法であって、自端末装置が上りリンクデータを送信したことを示す識別信号と前記上りリンクデータを送信する送信ステップと、前記上りリンクデータに対する前記送達確認を示す信号を受信する受信ステップと、を有し、前記送達確認を示す信号が一括して送達確認を示す信号かつ否定応答である場合、前記上りリンクデータを構成するデータビットおよびパリティビットを、再度送信するステップを有すること、を特徴とする。
 (12)また、本発明の一態様は、複数の端末装置と通信を行なう基地局装置であって、上りリンクデータを送信した端末装置を識別する識別信号と前記上りリンクデータを受信する受信部と、前記上りリンクデータに対する送達確認を示す信号を送信する送信部と、を備え、前記送達確認を示す信号は、前記端末装置に固有のパラメータと関連付けられる第1の否定応答を示す送達確認と同一時間リソースおよび同一周波数リソースで識別した前記端末装置に共通のパラメータと関連付けられる第2の否定応答を含む送達確認を含むこと、を特徴とする。
 (13)また、本発明の一態様は、前記第1の否定応答を示す送達確認は、前記識別信号の系列と関連付けられること、を特徴とする。
 (14)また、本発明の一態様は、前記第1の否定応答を示す送達確認は、前記識別信号の系列に施されたサイクリックシフト量と関連付けられること、を特徴とする。
 (15)また、本発明の一態様は、前記第2の否定応答を示す送達確認は、前記識別信号が送信されたサブフレーム番号と関連付けられること、を特徴とする。
 (16)また、本発明の一態様は、前記第2の否定応答を示す送達確認は、前記上りリンクデータが送信されたサブフレーム番号と関連付けられること、を特徴とする。
 (17)また、本発明の一態様は、前記送達確認を示す信号は、否定応答の理由を示すビットを含み、前記第1の否定応答を示す送達確認と前記第2の否定応答を示す送達確認は、前記否定応答の理由を示すビットにより区別されること、を特徴とする。
 (18)また、本発明の一態様は、否定応答の理由を示すビットは、基地局装置の受信アンテナ数をパラメータとして設定されること、を特徴とする。
 (19)また、本発明の一態様は、基地局装置と通信を行なう端末装置であって、自端末装置が上りリンクデータを送信したことを示す識別信号と前記上りリンクデータを送信する送信部と、前記上りリンクデータに対する前記送達確認信号を受信する受信部と、を備え、前記送達確認信号が前記端末装置に固有のパラメータと関連付けられた否定応答を示す送達確認である場合、前記上りリンクデータを構成するデータビットおよびパリティビットを、再度送信すること、を特徴とする。
 (20)また、本発明の一態様は、複数の端末装置と通信を行なう基地局装置の通信方法であって、上りリンクデータを送信した端末装置を識別する識別信号と前記上りリンクデータを受信する受信ステップと、前記上りリンクデータに対する送達確認を示す信号を送信する送信ステップと、を有し、前記送達確認信号は、前記端末装置固有のパラメータと関連付けられる第1の否定応答を示す送達確認信号と同一時間リソースおよび同一周波数リソースで識別した前記端末装置に共通のパラメータと関連付けられる第2の否定応答を含む送達確認信号からなること、を特徴とする。
 (21)また、本発明の一態様は、基地局装置と通信を行なう端末装置であって、自端末装置が上りリンクデータを送信したことを示す識別信号と前記上りリンクデータを送信する送信ステップと、前記上りリンクデータに対する前記送達確認信号を受信する受信ステップと、を有し、前記送達確認信号が前記端末装置に固有のパラメータと関連付けられた否定応答を示す送達確認信号である場合、前記上りリンクデータを構成するデータビットおよびパリティビットを、再度送信すること、を特徴とする。
 本発明に関わる装置で動作するプログラムは、本発明に関わる上述した実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、処理時に一時的にRandom Access Memory(RAM)などの揮発性メモリに読み込まれ、あるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。
 なお、上述した実施形態における装置の一部、をコンピュータで実現するようにしても良い。その場合、実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体等のいずれであっても良い。
 さらに「コンピュータが読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、すなわち典型的には集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んで良い。汎用用途プロセッサは、マイクロプロセッサであっても良いし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、ディジタル回路で構成されていても良いし、アナログ回路で構成されていても良い。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、例えば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
 本発明は、基地局装置、端末装置および通信方法に用いて好適である。
 なお、本国際出願は、2016年6月27日に出願した日本国特許出願第2016-126321号および日本国特許出願第2016-126322号に基づく優先権を主張するものであり、日本国特許出願第2016-126321号および日本国特許出願第2016-126322号の全内容を本国際出願に援用する。
10 基地局装置
20-1~20-n 端末装置
10a 基地局装置10が端末装置と接続可能な範囲
101 上位層処理部
102 制御部
103 送信部
104 受信部
105 送信アンテナ
106 受信アンテナ
1031 符号化部
1032 変調部
1033 下りリンク参照信号生成部
1034 多重部
1035 無線送信部
1041 無線受信部
1042 多重分離部
1043 信号検出部
1044 伝搬路推定部
1045 識別部
1501 キャンセル部
1502 等化部
1503-1~1503-u IDFT部
1504-1~1503-u 復調部
1505-1~1503-u 復号部
1506 レプリカ生成部
201 上位層処理部
202 制御部
203 送信部
204 受信部
205 送信アンテナ
206 受信アンテナ
2031 符号化部
2032 変調部
2033 上りリンク参照信号生成部
2034 多重部
2035 無線送信部
2036 識別信号生成部
2041 無線受信部
2042 多重分離部
2043 復調部
2044 復号部

Claims (7)

  1.  端末装置と通信を行なう基地局装置であって、
     上りリンクデータを送信するリソースを前記端末装置に指示するアップリンクグラントを送信する送信部と、
     前記アップリンクグラントに基づいて前記端末装置から送信された上りリンクデータと前記アップリンクグランドによらず前記端末装置から送信された上りリンクデータを受信する受信部と、を備え、
     前記受信部が前記アップリンクグラントに基づいた上りリンクデータを前記端末装置から受信した場合、前記送信部は、該上りリンクデータのみに対する送信確認信号を含む1つの制御チャネルを用いて、該上りリンクデータに対する送信確認信号を送信し、
     前記受信部が前記アップリンクグラントによらず上りリンクデータを前記端末装置から受信した場合、前記送信部は、前記端末装置を含む複数の端末装置に対する送信確認信号を含む1つの制御チャネルを用いて、該上りリンクデータに対する送信確認信号を送信すること、
     を特徴とする基地局装置。
  2.  前記送信部は、前記端末装置を含む複数の端末装置に対する送信確認信号を含む1つの制御チャネルに、前記複数の端末装置に共通のパラメータを用いて生成された系列でスクランブルされた巡回冗長検査を付加し、
     前記上りリンクデータのみに対する送信確認信号を含む1つの制御チャネルに、前記上りリンクデータを送信した端末装置に固有のパラメータでスクランブルされた巡回冗長検査を付加すること、を特徴とする請求項1に記載の基地局装置。
  3.  前記受信部は、アップリンクグランドによらず前記上りリンクデータを送信した端末装置を識別する識別信号を受信し、
    前記複数の端末装置に共通のパラメータは、前記識別信号が送信されたスロット番号を含むこと、を特徴とする請求項1または請求項2に記載の基地局装置。
  4.  前記受信部は、アップリンクグランドによらず前記上りリンクデータを送信した端末装置を識別する識別信号を受信し、
     前記複数の端末装置に共通のパラメータは、前記上りリンクデータが送信されたスロット番号を含むこと、を特徴とする請求項1から請求項3のいずれかに記載の基地局装置。
  5.  端末装置と通信を行なう基地局装置の通信方法であって、
     上りリンクデータを送信するリソースを前記端末装置に指示するアップリンクグラントを送信する送信ステップと、
     前記アップリンクグラントに基づいて前記端末装置から送信された上りリンクデータと前記アップリンクグランドによらず前記端末装置から送信された上りリンクデータを受信する受信ステップと、を有し、
     前記アップリンクグラントに基づいた上りリンクデータを前記端末装置から受信した場合、該上りリンクデータのみに対する送信確認信号を含む1つの制御チャネルを用いて、該上りリンクデータに対する送信確認信号を送信し、
     前記アップリンクグラントによらず上りリンクデータを前記端末装置から受信した場合、前記端末装置を含む複数の端末装置に対する送信確認信号を含む1つの制御チャネルを用いて、該上りリンクデータに対する送信確認信号を送信すること、
     を特徴とする通信方法。
  6.  基地局装置と通信を行なう端末装置であって、
     上りリンクデータを送信するリソースを指示するアップリンクグラントを受信する受信部と、
     前記アップリンクグラントに基づいて前記基地局装置へ上りリンクデータ送信し、前記アップリンクグランドによらず前記基地局装置へ上りリンクデータを送信する送信部と、を備え、
     前記送信部が前記アップリンクグラントに基づいた上りリンクデータを前記基地局装置へ送信した場合、前記受信部は、該上りリンクデータのみに対する送信確認信号を含む1つの制御チャネルを用いて、該上りリンクデータに対する送信確認信号を受信し、
     前記送信部が前記アップリンクグラントによらず上りリンクデータを前記基地局装置へ送信した場合、前記受信部は、自端末装置を含む複数の端末装置に対する送信確認信号を含む1つの制御チャネルを用いて、該上りリンクデータに対する送信確認信号を受信すること、
     を特徴とする端末装置。
  7.  基地局装置と通信を行なう端末装置の通信方法であって、
     上りリンクデータを送信するリソースを指示するアップリンクグラントを受信する受信ステップと、
     前記アップリンクグラントに基づいて前記基地局装置へ上りリンクデータ送信し、前記アップリンクグランドによらず前記基地局装置へ上りリンクデータを送信する送信ステップと、を有し、
     前記アップリンクグラントに基づいた上りリンクデータを前記基地局装置へ送信した場合、該上りリンクデータのみに対する送信確認信号を含む1つの制御チャネルを用いて、該上りリンクデータに対する送信確認信号を受信し、
     前記アップリンクグラントによらず上りリンクデータを前記基地局装置へ送信した場合、自端末装置を含む複数の端末装置に対する送信確認信号を含む1つの制御チャネルを用いて、該上りリンクデータに対する送信確認信号を受信すること、
     を特徴とする通信方法。
PCT/JP2017/022957 2016-06-27 2017-06-22 基地局装置、端末装置およびその通信方法 WO2018003645A2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/313,040 US10660122B2 (en) 2016-06-27 2017-06-22 Base station apparatus, terminal apparatus, and communication method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-126322 2016-06-27
JP2016126321A JP2019145852A (ja) 2016-06-27 2016-06-27 基地局装置、端末装置およびその通信方法
JP2016-126321 2016-06-27
JP2016126322A JP2019145853A (ja) 2016-06-27 2016-06-27 基地局装置、端末装置およびその通信方法

Publications (2)

Publication Number Publication Date
WO2018003645A2 true WO2018003645A2 (ja) 2018-01-04
WO2018003645A3 WO2018003645A3 (ja) 2018-03-01

Family

ID=60786422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022957 WO2018003645A2 (ja) 2016-06-27 2017-06-22 基地局装置、端末装置およびその通信方法

Country Status (2)

Country Link
US (1) US10660122B2 (ja)
WO (1) WO2018003645A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021522753A (ja) * 2018-05-11 2021-08-30 中▲興▼通▲訊▼股▲ふぇん▼有限公司Zte Corporation チャネル構成方法および装置、電力制御方法および装置、ユーザ機器、基地局、および記憶媒体
JP2022174232A (ja) * 2018-04-09 2022-11-22 グーグル エルエルシー 共有グラントフリー伝送によって支援される第5世代新無線アップリンク多重化

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075861B (zh) * 2016-06-14 2020-04-28 华为技术有限公司 上行数据均衡方法、装置和系统
CN107995636B (zh) * 2016-10-26 2021-08-13 华为技术有限公司 免授权传输的方法、终端设备和网络设备
US10440703B2 (en) * 2017-01-10 2019-10-08 Mediatek Inc. Physical downlink control channel design for 5G new radio
CN109526057A (zh) * 2017-09-18 2019-03-26 株式会社Ntt都科摩 一种用于生成扩展符号的方法及装置
CN109526062A (zh) * 2017-09-20 2019-03-26 株式会社Ntt都科摩 上行链路调度方式确定方法、用户设备和基站
WO2021072741A1 (en) * 2019-10-18 2021-04-22 Qualcomm Incorporated Encryption of pdcch ordered rach resource for more secured positioning
EP4152708A4 (en) * 2020-05-27 2023-06-28 Huawei Technologies Co., Ltd. Communication method and communication device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008127183A2 (en) * 2007-04-11 2008-10-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus in a telecommunication system
US20160255656A1 (en) * 2013-10-01 2016-09-01 Interdigital Patent Holdings, Inc. Enhancements for coordinated orthogonal block-based resource allocation (cobra) in wlan systems
EP3133888B1 (en) * 2015-08-21 2019-07-17 Panasonic Intellectual Property Corporation of America Uplink transmission indication
KR102183650B1 (ko) * 2015-11-17 2020-11-27 노키아 솔루션스 앤드 네트웍스 오와이 업링크 스케줄링 할당의 2―단계 시그널링
WO2017184071A2 (en) * 2016-04-22 2017-10-26 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for unscheduled uplink transmissions on unlicensed bands
US10972224B2 (en) * 2016-06-27 2021-04-06 Sharp Kabushiki Kaisha Base station apparatus, terminal apparatus, and communication method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022174232A (ja) * 2018-04-09 2022-11-22 グーグル エルエルシー 共有グラントフリー伝送によって支援される第5世代新無線アップリンク多重化
JP7412494B2 (ja) 2018-04-09 2024-01-12 グーグル エルエルシー 共有グラントフリー伝送によって支援される第5世代新無線アップリンク多重化
US11936576B2 (en) 2018-04-09 2024-03-19 Google Llc Fifth generation new radio uplink multiplexing assisted by shared grant-free transmission
JP2021522753A (ja) * 2018-05-11 2021-08-30 中▲興▼通▲訊▼股▲ふぇん▼有限公司Zte Corporation チャネル構成方法および装置、電力制御方法および装置、ユーザ機器、基地局、および記憶媒体
JP7106678B2 (ja) 2018-05-11 2022-07-26 中▲興▼通▲訊▼股▲ふぇん▼有限公司 チャネル構成方法および装置、電力制御方法および装置、ユーザ機器、基地局、および記憶媒体
US11895595B2 (en) 2018-05-11 2024-02-06 Zte Corporation Channel configuration method and apparatus, power control method and apparatus, user equipment, base station and storage medium

Also Published As

Publication number Publication date
WO2018003645A3 (ja) 2018-03-01
US10660122B2 (en) 2020-05-19
US20190223208A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
WO2018003275A1 (ja) 基地局装置、端末装置およびその通信方法
WO2018008406A1 (ja) 基地局装置、端末装置およびその通信方法
US11109267B2 (en) Base station apparatus, terminal apparatus, and communication method for these apparatuses
US10848260B2 (en) Base station apparatus, terminal apparatus, and communication method for the same
WO2018123746A1 (ja) 基地局装置、端末装置およびその通信方法
WO2018003645A2 (ja) 基地局装置、端末装置およびその通信方法
JP6723388B2 (ja) 基地局装置、端末装置およびその通信方法
CN109076589B (zh) 基站装置、终端装置及其通信方法
US11019684B2 (en) Base station, terminal apparatus, and communication method with semi-static first control information and dynamic allocation second control information
WO2019208719A1 (ja) 端末装置
JP2020048110A (ja) 端末装置および基地局装置
WO2020090646A1 (ja) 端末装置および基地局装置
WO2015005428A1 (ja) 端末装置、基地局装置、集積回路、および、通信方法
JP2019145855A (ja) 基地局装置、端末装置およびその通信方法
JP2019145853A (ja) 基地局装置、端末装置およびその通信方法
JP2019145852A (ja) 基地局装置、端末装置およびその通信方法
JP2019145854A (ja) 基地局装置、端末装置およびその通信方法
WO2022080391A1 (ja) 端末装置および基地局装置
WO2022080390A1 (ja) 端末装置および基地局装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820004

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820004

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: JP