WO2019208719A1 - 端末装置 - Google Patents

端末装置 Download PDF

Info

Publication number
WO2019208719A1
WO2019208719A1 PCT/JP2019/017747 JP2019017747W WO2019208719A1 WO 2019208719 A1 WO2019208719 A1 WO 2019208719A1 JP 2019017747 W JP2019017747 W JP 2019017747W WO 2019208719 A1 WO2019208719 A1 WO 2019208719A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
data transmission
grant
dci format
timer
Prior art date
Application number
PCT/JP2019/017747
Other languages
English (en)
French (fr)
Inventor
淳悟 後藤
中村 理
佐藤 聖二
泰弘 浜口
Original Assignee
シャープ株式会社
鴻穎創新有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 鴻穎創新有限公司 filed Critical シャープ株式会社
Priority to US17/050,201 priority Critical patent/US11265912B2/en
Publication of WO2019208719A1 publication Critical patent/WO2019208719A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • H04L1/1883Time-out mechanisms using multiple timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/38Connection release triggered by timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a terminal device.
  • This application claims priority on Japanese Patent Application No. 2018-086484 filed in Japan on April 27, 2018, the contents of which are incorporated herein by reference.
  • MTC massive Machine Type Communications
  • URLLC ultra-reliable and low-delay communication
  • eMBB enhanced Mobile Broadband
  • a terminal device (UE: User Termination) is a random access procedure (Random Termination Access Procedure) or scheduling.
  • a request (SR: Scheduling Request) or the like is used to request a radio resource for transmitting uplink data from a base station apparatus (BS; Base Station, eNB; also called evolved Node B).
  • the base station apparatus grants uplink transmission permission (UL Grant) to each terminal apparatus based on SR.
  • the terminal apparatus When receiving the UL Grant of control information from the base station apparatus, the terminal apparatus transmits uplink data using a predetermined radio resource based on the uplink transmission parameter included in the UL Grant (Scheduled access, grant- based access, referred to as transmission by dynamic scheduling, hereinafter referred to as scheduled access).
  • the base station apparatus controls all uplink data transmission (the base station apparatus knows the radio resources of uplink data transmitted by each terminal apparatus).
  • the base station apparatus controls uplink radio resources, thereby realizing orthogonal multiple access (OMA).
  • OMA orthogonal multiple access
  • 5G mMTC has a problem that the amount of control information increases when using scheduled access.
  • URLLC has a problem that the delay becomes longer when scheduled access is used. Therefore, grant-free access (grant free access, grant less access, Contention-based access, Autonomous access, Resource allocation for) where the terminal device does not perform random access procedure or SR transmission and does not perform UL Grant reception etc. Utilization of uplink transmission without grant, type1 configured grant transmission, etc. (hereinafter referred to as grant-free access) and Semi-persistent scheduling (also called SPS, Type2 configured grant transmission, etc.) Patent Document 3).
  • grant-free access an increase in overhead due to control information can be suppressed even when a large number of devices transmit data of a small size.
  • resources allocated for eMBB data transmission can be used for URLLC data transmission.
  • the base station apparatus notifies the downlink eMBB destination UE of the control information of the pre-extension, and uses the pre-empted resource for data transmission of the downlink URLLC.
  • the terminal device that has detected the control information of Pre-extension for the resource scheduled for downlink data reception determines that there is no downlink data destined for the own station in the resource specified by Pre-emption.
  • multiplexing of eMBB and URLLC data is being studied between different terminal apparatuses.
  • multiplexing of eMBB and URLLC data is also being studied.
  • the base station device uses the DCI format for radio resources scheduled in UL Grant for eMBB uplink data transmission in advance. Notification of changing to URLLC data transmission can be made.
  • a terminal device that has been scheduled for eMBB uplink data transmission radio resources cannot use radio resources that at least other terminal devices use for URLLC data transmission.
  • the terminal device may stop data transmission after detecting a notification of a radio resource used by another terminal device for URLLC data transmission by DCI. Since it is known that when the terminal device stops data transmission by notification of radio resources used for URLLC data transmission by DCI, the terminal device stops data transmission between the base station device and the terminal device. NACK may not be transmitted.
  • the terminal apparatus When the base station apparatus does not transmit ACK / NACK to the terminal apparatus that has stopped data transmission, the terminal apparatus needs to wait for DCI to retransmit the data that has stopped transmission.
  • the timer for waiting for DCI is not started and the terminal apparatus does not set a period for waiting for DCI.
  • power consumption increases when an SR is transmitted because of data that the terminal device has stopped transmitting.
  • One aspect of the present invention has been made in view of such circumstances, and an object thereof is to provide a terminal device capable of realizing an efficient procedure for data transmission again when data transmission is stopped. There is.
  • the configuration of the terminal device according to one aspect of the present invention is as follows.
  • One aspect of the present invention is a terminal apparatus that communicates with a base station apparatus, and includes a control information detection unit that detects a first DCI format and a second DCI format, and the first DCI format. Based on the uplink data transmission or the transmission unit capable of canceling the resource scheduled in the second DCI format, and the control information detection unit for the uplink data transmission in the first DCI format.
  • the uplink grant is detected, and when the corresponding uplink data is transmitted based on the uplink grant, the transmitter starts the first timer of the corresponding HARQ process after the data transmission and the corresponding HARQ process Stop the second timer and start the second timer of the corresponding HARQ process if the first timer expires
  • the first timer of the corresponding HARQ process expires at the timing of the corresponding data transmission canceled. If the second timer is running, the process is restarted. If the second timer is not running, the second timer is started.
  • different periods are set for the second timer that starts after the first timer expires and the second timer that starts at the timing of the corresponding data transmission canceled.
  • a third timer that starts when the uplink grant according to the first DCI format is detected, and is based on the uplink grant according to the second DCI format. When the cancellation of the uplink data transmission is detected, the third timer is restarted.
  • a third timer that starts when the uplink grant according to the first DCI format is detected, and an uplink based on the uplink grant according to the second DCI format A different period is set for the third timer that is restarted when the cancellation of link data transmission is detected.
  • the transmission timing included in the second DCI format and the second Uplink data transmission is performed based on transmission parameters included in one DCI format.
  • transmission timing and MCS included in the second DCI format are detected.
  • Uplink data transmission is performed based on frequency domain resource assignment and transmission parameters that are not included in the second DCI format and are included in the first DCI format.
  • efficient uplink data transmission can be realized.
  • the communication system includes a base station device (cell, small cell, pico cell, serving cell, component carrier, eNodeB (eNB), Home eNodeB, Low Power Node, Remote Radio Head, gNodeB (gNB), control station, Bandwidth. Part (BWP), Supplementary Uplink (SUL) and a terminal device (terminal, mobile terminal, mobile station, UE: User Equipment).
  • a base station device cell, small cell, pico cell, serving cell, component carrier, eNodeB (eNB), Home eNodeB, Low Power Node, Remote Radio Head, gNodeB (gNB), control station, Bandwidth. Part (BWP), Supplementary Uplink (SUL) and a terminal device (terminal, mobile terminal, mobile station, UE: User Equipment).
  • the base station apparatus in the case of downlink, the base station apparatus is a transmission apparatus (transmission point, transmission antenna group, transmission antenna port group), and the terminal apparatus is a reception apparatus (reception point, reception terminal, reception antenna
  • the base station apparatus becomes a receiving apparatus and the terminal apparatus becomes a transmitting apparatus.
  • the communication system can also be applied to D2D (Device-to-Device) communication. In that case, both the transmitting device and the receiving device are terminal devices.
  • the communication system is not limited to data communication between a terminal apparatus and a base station apparatus in which a human intervenes, but MTC (Machine Type Communication), M2M communication (Machine-to-Machine Type Communication), IoT (Internet type Of Things). ) Communication, NB-IoT (Narrow Band-IoT), etc. (hereinafter referred to as MTC) can be applied to data communication forms that do not require human intervention.
  • the terminal device is an MTC terminal.
  • the communication system includes DFTS-OFDM (Discrete-Fourier-Transform-Spread--Orthogonal-Frequency-Division-Multiplexing, SC-FDMA (Single Carrier--Frequency-Division-Multiple-Access)), CP-OFDM (Cyclic Prefix).
  • DFTS-OFDM Discrete-Fourier-Transform-Spread---Orthogonal-Frequency-Division-Multiplexing
  • SC-FDMA Single Carrier--Frequency-Division-Multiple-Access
  • CP-OFDM Cyclic Prefix
  • -Multi-carrier transmission methods such as Orthogonal, Frequency, Division, and Multiplexing can be used.
  • the communication system uses FBMC (Filter Bank-Multi OFDM Carrier), f-OFDM (Filtered-OFDM), UF-OFDM (Universal Filtered-OFDM), W-OFDM (Windowing-OFDM), and sparse code to which the filter is applied.
  • a scheme SCMA: Sparse Code Multiple Multiple Access
  • the communication system may apply a DFT precoding and use a signal waveform using the above filter.
  • the communication system can perform code spreading, interleaving, sparse code, and the like in the transmission method. In the following description, it is assumed that at least one of DFTS-OFDM transmission and CP-OFDM transmission is used for the uplink and CP-OFDM transmission is used for the downlink. Can be applied.
  • the base station device and the terminal device in the present embodiment are a frequency band called a licensed band (licensed band) obtained from a country or region where a wireless provider provides a service (license), and / or It is possible to communicate in a frequency band called an unlicensed band that does not require use permission (license) from the country or region.
  • a licensed band obtained from a country or region where a wireless provider provides a service (license)
  • a unlicensed band that does not require use permission (license) from the country or region.
  • communication based on carrier sense for example, listen before talk method
  • X / Y includes the meaning of “X or Y”. In the present embodiment, “X / Y” includes the meanings of “X and Y”. In the present embodiment, “X / Y” includes the meaning of “X and / or Y”.
  • FIG. 1 is a diagram illustrating a configuration example of a communication system according to the present embodiment.
  • the communication system according to the present embodiment includes a base station device 10 and terminal devices 20-1 to 20-n1 (n1 is the number of terminal devices connected to the base station device 10).
  • the terminal devices 20-1 to 20-n1 are also collectively referred to as the terminal device 20.
  • the coverage 10a is a range (communication area) in which the base station device 10 can be connected to the terminal device 20 (also referred to as a cell).
  • the radio communication of the uplink r30 includes at least the following uplink physical channels.
  • the uplink physical channel is used for transmitting information output from an upper layer.
  • -Physical uplink control channel (PUCCH) -Physical uplink shared channel (PUSCH) ⁇ Physical random access channel (PRACH)
  • PUCCH Physical uplink control channel
  • PUSCH Physical uplink shared channel
  • PRACH Physical random access channel
  • Uplink Control Information is a physical channel used for transmitting uplink control information (Uplink Control Information: UCI).
  • Uplink control information is a positive response (positive acknowledgement: ACK) / downlink data (Downlink transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH, Physical Downlink Shared Channel: PDSCH) / Includes negative acknowledgment (NACK).
  • the ACK / NACK is also referred to as a signal indicating HARQ-ACK (Hybrid Automatic Repeat request ACKnowledgement), HARQ feedback, HARQ response, or HARQ control information and delivery confirmation.
  • HARQ-ACK Hybrid Automatic Repeat request ACKnowledgement
  • the uplink control information includes a scheduling request (Scheduling request: SR) used to request a PUSCH (Uplink-Shared Channel: UL-SCH) resource for initial transmission.
  • the scheduling request includes a positive scheduling request (positive scheduling request) or a negative scheduling request (negative scheduling request).
  • a positive scheduling request indicates requesting UL-SCH resources for initial transmission.
  • a negative scheduling request indicates that no UL-SCH resource is required for initial transmission.
  • the uplink control information includes downlink channel state information (Channel State Information: CSI).
  • the downlink channel state information includes a rank index (Rank Indicator: RI) indicating a suitable spatial multiplexing number (number of layers), a precoding matrix indicator (Precoding Matrix Indicator: PMI) indicating a suitable precoder, and a suitable transmission rate.
  • Rank Indicator: RI Rank Indicator
  • PMI Precoding Matrix Indicator
  • CQI Channel quality index
  • the PMI indicates a code book determined by the terminal device.
  • the codebook is related to precoding of the physical downlink shared channel.
  • the CQI As the CQI, a suitable modulation scheme (for example, QPSK, 16QAM, 64QAM, 256QAM, etc.) in a predetermined band, a coding rate, and an index (CQI index) indicating frequency use efficiency can be used.
  • the terminal device selects a CQI index from the CQI table that will be received without the transport block of the PDSCH exceeding a predetermined block error probability (for example, error rate 0.1).
  • the terminal device may have a plurality of predetermined error probabilities (error rates) for the transport block. For example, the error rate of eMBB data may be targeted at 0.1, and the error rate of URLLC may be targeted at 0.00001.
  • the terminal device may perform CSI feedback for each target error rate (transport block error rate) when configured in an upper layer (for example, set up by RRC signaling from a base station), or multiple targets in an upper layer CSI feedback of the target error rate may be performed when one of the error rates is set in the upper layer.
  • the error rate for eMBB (not depending on whether or not the error rate is set by RRC signaling, but whether or not a CQI table that is not a CQI table for eMBB (that is, transmission in which BLER does not exceed 0.1) is selected.
  • the CSI may be calculated with an error rate other than 0.1).
  • PUCCH formats 0 to 4 are defined, PUCCH formats 0 and 2 are transmitted using 1 to 2 OFDM symbols, and PUCCH formats 1, 3 and 4 are transmitted using 4 to 14 OFDM symbols.
  • PUCCH formats 0 and 1 are used for notification of 2 bits or less, and can notify only HARQ-ACK, SR only, or HARQ-ACK and SR simultaneously.
  • PUCCH formats 1, 3, and 4 are used for reporting more than 2 bits, and can simultaneously report HARQ-ACK, SR, and CSI.
  • the number of OFDM symbols used for PUCCH transmission is set in an upper layer (for example, setup by RRC signaling), and which PUCCH format is used depends on the timing (slot, OFDM symbol) at which PUCCH is transmitted, It depends on whether there is CSI transmission.
  • the PUSCH is a physical channel used to transmit uplink data (Uplink Transport Block, Uplink-Shared: Channel: UL-SCH).
  • the PUSCH may be used to transmit HARQ-ACK and / or channel state information for downlink data together with the uplink data.
  • PUSCH may be used to transmit only channel state information.
  • PUSCH may be used to transmit only HARQ-ACK and channel state information.
  • PUSCH is used to transmit radio resource control (Radio Resource Control: RRC) signaling.
  • the RRC signaling is also referred to as RRC message / RRC layer information / RRC layer signal / RRC layer parameter / RRC information / RRC information element.
  • RRC signaling is information / signal processed in the radio resource control layer.
  • the RRC signaling transmitted from the base station apparatus may be common signaling for a plurality of terminal apparatuses in the cell.
  • the RRC signaling transmitted from the base station apparatus may be signaling dedicated to a certain terminal apparatus (also referred to as dedicated signaling). That is, user apparatus specific (UE-specific) information is transmitted to a certain terminal apparatus using dedicated signaling.
  • the RRC message can include the UE capability of the terminal device.
  • UE Capability is information indicating a function supported by the terminal device.
  • the PUSCH is used to transmit MAC CE (Medium Access Control Element).
  • the MAC CE is information / signal processed (transmitted) in the medium access control layer (Medium Access Control Layer).
  • the power headroom (PH: Power Headroom) may be included in the MAC CE and reported via the physical uplink shared channel. That is, the MAC CE field is used to indicate the power headroom level.
  • the uplink data can include an RRC message and a MAC CE.
  • RRC signaling and / or MAC CE is also referred to as higher layer signaling.
  • RRC signaling and / or MAC CE is included in the transport block.
  • PUSCH is a dynamic scheduling (periodic transmission) that performs uplink data transmission with specified radio resources based on uplink transmission parameters (eg, time domain resource allocation, frequency domain resource allocation, etc.) included in the DCI format. May be used for non-radio resource allocation data transmission.
  • uplink transmission parameters eg, time domain resource allocation, frequency domain resource allocation, etc.
  • PUSCH is a DCI format 0_0 / CRC that is scrambled with CS-RNTI after receiving Transform Precoder (precoder), nroF HARQ (number of HARQ processes), repK-RV (redundant version pattern when repeatedly transmitting the same data) by RRC SPS that receives 0_1, and further receives DCI format 0_0 / 0_1, which receives activation control information in which validation is set in a predetermined field, allows data transmission using periodic radio resources.
  • Transform Precoder precoder
  • nroF HARQ number of HARQ processes
  • repK-RV redundant version pattern when repeatedly transmitting the same data
  • all bits of the HARQ process number and 2 bits of RV may be used for the field used for validation.
  • the fields used for validation of the deactivation (release) control information of type2 configured grant transmission are all bits of HARQ process number, all bits of MCS, all bits of resource block assignment, 2 bits of RV, etc. May be used.
  • the PUSCH may be used for type1 configured grant transmission in which periodic data transmission is permitted by receiving rrcConfiguredUplinkGrant in addition to the information of type2 configured grant transmission by RRC.
  • the information of rrcConfiguredUplinkGrant may include time domain resource allocation, time domain offset, frequency domain resource allocation, DMRS setting, and the number of repeated transmissions of the same data (repK).
  • type1 configured grant transmission when type1 configured grant transmission and type2 configured grant transmission are set in the same serving cell (within the component carrier), type1 configured grant transmission may be prioritized.
  • the uplink grant of type1 configured grant transmission and the uplink grant of dynamic scheduling overlap in the time domain within the same serving cell the uplink grant of dynamic scheduling uses only override (dynamic, dynamic scheduling, type1 configured grant may reverse the uplink grant of transmission).
  • the fact that a plurality of uplink grants overlap in the time domain may mean that at least some OFDM symbols overlap, and when the subcarrier interval (SCS) is different, the OFDM symbol length is different. It may mean that some times in the OFDM symbol overlap.
  • the setting of type1 configured grant ⁇ transmission can also be set for Scells that are not activated by RRC. For Scells that are set up of type1 configured grant transmission, the uplink grant of type1 configured grant transmission becomes valid after activation May be.
  • PRACH is used for transmitting a preamble used for random access.
  • PRACH indicates initial connection establishment (initial connection establishment) procedure, handover procedure, connection re-establishment (connection re-establishment) procedure, synchronization (timing adjustment) for uplink transmission, and PUSCH (UL-SCH) resource requirements Used for.
  • an uplink reference signal (Uplink Signal: UL RS) is used as an uplink physical signal.
  • the uplink reference signal includes a demodulation reference signal (Demodulation Reference Signal: DMRS) and a sounding reference signal (Sounding Reference Signal: SRS).
  • DMRS is related to transmission of physical uplink shared channel / physical uplink control channel.
  • the base station apparatus 10 uses a demodulation reference signal to perform channel estimation / channel correction.
  • the maximum number of OFDM symbols of the front-loaded DMRS and an additional setting of DMRS symbols (DMRS-add-pos) are designated by the base station apparatus in RRC.
  • the frequency domain allocation, the cyclic shift value of the frequency domain, and how much different frequency domain allocation is used in the OFDM symbol including the DMRS is DCI.
  • the front-loaded DMRS is 2 OFDM symbols (double symbol DMRS)
  • a time spread setting of length 2 is specified by DCI.
  • SRS Sounding Reference Signal
  • a terminal apparatus transmits SRS based on the parameter notified with the signal (for example, RRC) of the upper layer from the base station apparatus.
  • the terminal apparatus performs SRS based on a parameter notified by a higher layer signal (for example, RRC) than the base station apparatus and a physical downlink control channel (for example, DCI) indicating SRS transmission timing.
  • the base station apparatus 10 uses the SRS to measure the uplink channel state (CSI Measurement).
  • the base station apparatus 10 may perform timing alignment and closed-loop transmission power control from the measurement result obtained by receiving the SRS.
  • At least the following downlink physical channel is used in downlink r31 radio communication.
  • the downlink physical channel is used for transmitting information output from an upper layer.
  • PBCH Physical broadcast channel
  • PDCH Physical downlink control channel
  • PDSCH Physical downlink shared channel
  • the PBCH is used to broadcast a master information block (Master Information Block: MIB, Broadcast Channel: BCH) that is commonly used by terminal devices.
  • MIB is one type of system information.
  • the MIB includes a downlink transmission bandwidth setting and a system frame number (SFN).
  • SFN system frame number
  • the MIB may include information indicating at least a part of a slot number, a subframe number, and a radio frame number in which the PBCH is transmitted.
  • the PDCCH is used to transmit downlink control information (Downlink Control Information: DCI).
  • DCI Downlink Control Information
  • the downlink control information defines a plurality of formats (also referred to as DCI formats) based on usage.
  • the DCI format may be defined based on the type of DCI and the number of bits constituting one DCI format.
  • the downlink control information includes control information for downlink data transmission and control information for uplink data transmission.
  • the DCI format for downlink data transmission is also called downlink assignment (or downlink grant, DL Grant).
  • the DCI format for uplink data transmission is also referred to as an uplink grant (or uplink assignment, UL Grant).
  • DCI formats for downlink data transmission include DCI format 1_0 and DCI format 1_1.
  • the DCI format 1_0 is for downlink data transmission for fallback, and has fewer parameters (fields) that can be set than the DCI format 1_1 that supports MIMO and the like. Further, the presence / absence (valid / invalid) of the parameter (field) to be notified can be changed in the DCI format 1_1, and the number of bits is larger than that in the DCI format 1_0 depending on the valid field.
  • the DCI format 1_1 can notify MIMO, a plurality of codeword transmissions, a ZP CSI-RS trigger, CBG transmission information, and the like, and the presence / absence of some fields and the number of bits are higher layers (for example, RRC signaling, MAC It is added according to the setting of (CE).
  • One downlink assignment is used for scheduling one PDSCH in one serving cell.
  • the downlink grant may be used at least for scheduling of PDSCH in the same slot / subframe as the slot / subframe in which the downlink grant is transmitted.
  • the downlink grant may be used for PDSCH scheduling after K 0 slots / subframes from the slot / subframe in which the downlink grant is transmitted.
  • the downlink grant may be used for scheduling of the PDSCH of a plurality of slots / subframes.
  • the downlink assignment according to the DCI format 1_0 includes the following fields. For example, DCI format identifier, frequency domain resource assignment (resource block allocation for PDSCH, resource allocation), time domain resource assignment, VRB to PRB mapping, MCS (Modulation and Coding Scheme, modulation multi-value for PDSCH) Information indicating the number and coding rate), NDI (NEW Data Indicator) instructing initial transmission or retransmission, information indicating the HARQ process number in the downlink, and information on redundant bits added to the code word during error correction coding Redundancy version (RV), DAI (Downlink Assignment Index), PUCCH transmission power control (TPC) command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, etc.
  • DCI format identifier frequency domain resource assignment (resource block allocation for PDSCH, resource allocation), time domain resource assignment, VRB to PRB mapping, MCS (
  • the DCI format for each downlink data transmission includes information (field) necessary for its use among the above information.
  • Either or both of the DCI format 1_0 and the DCI format 1_1 may be used for downlink SPS activation and deactivation (release).
  • DCI formats for uplink data transmission include DCI format 0_0 and DCI format 0_1.
  • the DCI format 0_0 is for uplink data transmission for fallback, and has fewer definable parameters (fields) than the DCI format 0_1 that supports MIMO and the like. Further, the presence / absence (valid / invalid) of the parameter (field) to be notified can be changed in the DCI format 0_1, and the number of bits is larger than that in the DCI format 0_0 depending on the valid field.
  • the DCI format 0_1 includes MIMO, multiple codeword transmission, SRS resource indicator, precoding information, antenna port information, SRS request information, CSI request information, CBG transmission information, uplink PTRS association, DMRS sequence Initialization or the like can be notified, and the presence / absence of some fields and the number of bits are added according to the setting of an upper layer (for example, RRC signaling).
  • One uplink grant is used to notify the terminal device of scheduling of one PUSCH in one serving cell.
  • the uplink grant may be used for PUSCH scheduling after K 2 slots / subframes from the slot / subframe in which the uplink grant was transmitted.
  • the downlink grant may be used for scheduling of PUSCH of a plurality of slots / subframes.
  • the uplink grant according to the DCI format 0_0 includes the following fields. For example, DCI format identifier, frequency domain resource assignment (information on resource block allocation for transmitting PUSCH and time domain resource assignment, frequency hopping flag, information on PUSCH MCS, RV, NDI, HARQ process in uplink Information indicating number, TPC command for PUSCH, UL / SUL (Supplemental UL) indicator, etc. Activation or deactivation (release of SPS) in either one or both of DCI format 0_0 and DCI format 0_1 ) May be used.
  • the DCI format may be used for notification of the slot format indicator (SFI) in DCI format 2_0 in which the CRC is scrambled by SFI-RNTI.
  • the DCI format is a DCI format 2_1 in which the CRC is scrambled by INT-RNTI.
  • the terminal device may assume that there is no downlink data transmission intended for the local station, and PRB (1 or more) and OFDM It may be used for notification of symbols (one or more).
  • the DCI format is DCI format 2_2 in which the CRC is scrambled with TPC-PUSCH-RNTI or TPC-PUCCH-RNTI, and may be used for transmission of TPC commands for PUSCH and PUCCH.
  • the DCI format is DCI format 2_3 in which CRC is scrambled by TPC-SRS-RNTI, and may be used for transmission of a group of TPC commands for SRS transmission by one or more terminal apparatuses. DCI format 2_3 may also be used for SRS requests.
  • the DCI format is DCI format 2_X (for example, DCI format 2_4, DCI format 2_1A) in which CRC is scrambled by INT-RNTI or other RNTI (for example, UL-INT-RNTI), and is scheduled by UL Grant / Configured UL Grant.
  • the terminal device may be used for notification of PRB (1 or more) and OFDM symbol (1 or more) for which data transmission is not performed.
  • MCS for PDSCH / PUSCH can use an index (MCS index) indicating the modulation order of PDSCH / PUSCH and the coding rate of the target.
  • the modulation order is associated with the modulation scheme.
  • the modulation orders “2”, “4”, and “6” indicate “QPSK”, “16QAM”, and “64QAM”, respectively.
  • 256QAM or 1024QAM is set in an upper layer (for example, RRC signaling)
  • the modulation orders “8” and “10” can be notified, and “256QAM” and “1024QAM” are indicated, respectively.
  • the target coding rate is used to determine a TBS (Transport Block Size) that is the number of bits to be transmitted according to the number of PDSCH / PUSCH resource elements (number of resource blocks) scheduled on the PDCCH.
  • Communication system 1 base station apparatus 10 and terminal apparatus 20 calculates transport block size based on MCS, target coding rate, and number of resource elements (number of resource blocks) allocated for PDSCH / PUSCH transmission Share
  • the PDCCH is generated by adding a cyclic redundancy check (CRC) to downlink control information.
  • CRC cyclic redundancy check
  • the CRC parity bit is scrambled (also called an exclusive OR operation or mask) using a predetermined identifier.
  • the parity bits are C-RNTI (Cell-Radio Network Temporary Identifier), CS (Configured Scheduling) -RNTI, TC (Temporary C) -RNTI, P (Paging) -RNTI, SI (System Information) -RNTI, RA (Random) Access) -RNTI, and scrambled with INT-RNTI, SFI (Slot Format Indicator) -RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, or TPC-SRS-RNTI.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • CS Configured Scheduling
  • TC Temporary C
  • P Paging
  • SI System Information
  • C-RNTI is an identifier for identifying a terminal device in a cell by dynamic scheduling and CS-RNTI is SPS / grant-free access.
  • Temporary C-RNTI is an identifier for identifying a terminal apparatus that has transmitted a random access preamble during a contention based random access procedure.
  • C-RNTI and Temporary C-RNTI is used to control PDSCH transmission or PUSCH transmission in a single subframe.
  • CS-RNTI is used for periodically allocating PDSCH or PUSCH resources.
  • P-RNTI is used to transmit a paging message (Paging Channel: PCH).
  • SI-RNTI is used to transmit SIB, and RA-RNTI is used to transmit a random access response (message 2 in the random access procedure).
  • SFI-RNTI is used to notify the slot format.
  • INT-RNTI is used to notify downlink / uplink pre-emption.
  • TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, and TPC-SRS-RNTI are used to notify transmission power control values of PUSCH, PUCCH, and SRS, respectively.
  • the identifier may include a CS-RNTI for each setting in order to set a plurality of grant-free access / SPS.
  • DCI with CRC scrambled by CS-RNTI can be used for grant-free access activation, deactivation (release), parameter change and retransmission control (ACK / NACK transmission).
  • Resource settings (DMRS setting parameters, grant-free access frequency domain / time domain resources, MCS used for grant-free access, number of repetitions, presence / absence of frequency hopping, etc.) can be included.
  • PDSCH is used to transmit downlink data (downlink transport block, DL-SCH).
  • the PDSCH is used to transmit a system information message (also referred to as System Information Block: SIB). Part or all of the SIB can be included in the RRC message.
  • SIB System Information Block
  • the PDSCH is used to transmit RRC signaling.
  • the RRC signaling transmitted from the base station apparatus may be common (cell specific) to a plurality of terminal apparatuses in the cell. That is, information common to user apparatuses in the cell is transmitted using cell-specific RRC signaling.
  • the RRC signaling transmitted from the base station device may be a message dedicated to a certain terminal device (also referred to as dedicated signaling). That is, user apparatus specific (UE-Specific) information is transmitted to a certain terminal apparatus using a dedicated message.
  • PDSCH is used to transmit MAC CE.
  • RRC signaling and / or MAC CE is also referred to as higher layer signaling.
  • the PMCH is used to transmit multicast data (Multicast Channel: MCH).
  • a synchronization signal (Synchronization signal: SS) and a downlink reference signal (Downlink Signal: DL RS) are used as downlink physical signals.
  • SS Synchronization signal
  • DL RS Downlink Reference Signal
  • the synchronization signal is used for the terminal device to synchronize the downlink frequency domain and time domain.
  • the downlink reference signal is used for the terminal apparatus to perform channel estimation / channel correction of the downlink physical channel.
  • the downlink reference signal is used to demodulate PBCH, PDSCH, and PDCCH.
  • the downlink reference signal can also be used by the terminal apparatus to measure the downlink channel state (CSI measurement).
  • the downlink reference signal may include CRS (Cell-specific Reference Signal), CSI-RS (Channel state information Reference Signal), DRS (Discovery Reference Signal), DMRS (Demodulation Reference Signal).
  • the downlink physical channel and the downlink physical signal are collectively referred to as a downlink signal.
  • the uplink physical channel and the uplink physical signal are collectively referred to as an uplink signal.
  • the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel.
  • the downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
  • BCH, UL-SCH and DL-SCH are transport channels.
  • a channel used in the MAC layer is referred to as a transport channel.
  • a transport channel unit used in the MAC layer is also referred to as a transport block (TB) or a MAC PDU (Protocol Data Unit).
  • the transport block is a unit of data that is delivered (delivered) by the MAC layer to the physical layer. In the physical layer, the transport block is mapped to a code word, and an encoding process or the like is performed for each code word.
  • Upper layer processing includes medium access control (Medium Access Control: MAC) layer, packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, radio link control (Radio Link Control: RLC) layer, radio resource control (Radio Resource Control) : Processes higher layers than physical layer such as (RRC) layer.
  • Medium Access Control: MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Radio Resource Control Radio Resource Control
  • Medium Access Control Medium Access Control: MAC
  • Packet Data Integration Protocol Packet Data Convergence Protocol: PDCP
  • Radio Link Control Radio Link Control: RLC
  • Radio Resource Control Radio Resource Control: RRC
  • the upper layer processing unit sets various RNTIs for each terminal device.
  • the RNTI is used for encryption (scrambling) of PDCCH, PDSCH, and the like.
  • downlink data transport block, DL-SCH
  • system information specific to terminal equipment System Information Block: ⁇ SIB
  • RRC message MAC CE, etc.
  • MAC CE MAC CE
  • the terminal device 20 In the upper layer processing, information related to the terminal device such as a function supported by the terminal device (UE capability) is received from the terminal device 20.
  • the terminal device 20 transmits its own function to the base station device 10 using an upper layer signal (RRC signaling).
  • RRC signaling The information regarding the terminal device includes information indicating whether or not the terminal device supports a predetermined function, or information indicating that the terminal device is introduced into the predetermined function and the test is completed. Whether or not to support a predetermined function includes whether or not the installation and test for the predetermined function have been completed.
  • the terminal device When the terminal device supports a predetermined function, the terminal device transmits information (parameter) indicating whether the predetermined device is supported. When the terminal device does not support the predetermined function, the terminal device may not transmit information (parameter) indicating whether or not the predetermined device is supported. That is, whether or not to support the predetermined function is notified by whether or not information (parameter) indicating whether or not to support the predetermined function is transmitted. Information (parameter) indicating whether or not a predetermined function is supported may be notified using 1 or 1 bit.
  • the base station device 10 and the terminal device 20 have grant-free access (grant free access, grant less access, Contention-based access, Autonomous access, Resource allocation for uplink transmission without grant, type1configured grant transmission, etc.). Also supports multiple access (MA: “Multiple Access”), also called “Grant-Free Access”. Grant-free access means a terminal without performing a procedure for specifying physical resources and transmission timing of data transmission by UL Grant (also called UL Grant by L1 signaling) using SR transmission by the terminal device and DCI by the base station device. This is a scheme in which a device transmits uplink data (such as a physical uplink channel).
  • uplink data such as a physical uplink channel
  • the terminal device adds the resource allocation period, target received power, fractional TPC value ( ⁇ ), the number of HARQ processes, and the RV pattern for repeated transmission of the same transport through RRC signaling (SPS-config).
  • RRC Signaling Configured Uplink Grant (rrcConfiguredUplinkGrant, configured uplink grant), physical resources (frequency domain resource assignment, time domain resource assignment) that can be used for grant free access and transmission parameters (DMRS Click shift, OCC, antenna port number, position and number of OFDM symbols where DMRS is arranged, and the number of repeated transmissions of the same transport may be included) Shin; then, only when the transmission data is in the buffer, data can be transmitted using the physical resources that have been set.
  • the base station device transmits transmission parameters related to grant-free access to the terminal device using a higher layer signal (for example, RRC), and further grant-free access data.
  • a higher layer signal for example, RRC
  • transmission permission start activation, RRC setup
  • permission end deactivation (release)
  • RRC release transmission parameter changes are also transmitted using higher layer signals.
  • the transmission parameters related to grant-free access include physical resources (time domain and frequency domain resource assignments) usable for grant-free access data transmission, physical resource period, MCS, presence / absence of repeated transmission, and number of repetitions.
  • the transmission parameter related to grant-free access and the start of permission for data transmission may be set at the same time, or after the transmission parameter related to grant-free access is set, grant-free at different timings (for SCell, SCell activation, etc.) Access data transmission permission start may be set.
  • the second type2 configuredgrant transmission (UL-TWG-type2) is used to transmit grant parameters related to grant-free access to terminal devices using higher-layer signals (for example, RRC), and grant-free access data transmission.
  • the permission start (activation), permission end (deactivation (release)), and transmission parameter changes are transmitted by DCI (L1 (signaling).
  • DCI includes the physical resource period, the number of repetitions, the RV setting at the time of repeated transmission, the number of HARQ processes, information on the transform precoder, and information related to the TPC settings
  • the activation start by DCI (activation) May include physical resources (resource block allocation) that can be used for grant-free access.
  • Grant-free access transmission parameters and data transmission permission start may be set at the same time, or grant-free access data transmission permission start is set at different timings after grant-free access transmission parameters are set. Also good.
  • One embodiment of the present invention may be applied to any of the grant-free access described above.
  • SPS Semi-Persistent Scheduling
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • UL-TWG-type2 is the same in that it starts permitting (activation) with DCI (L1 signaling), but it can be used with SCell, BWP, SUL, the number of repetitions with RRC signaling, and the setting of RV during repeated transmission It may be different in that it is notified.
  • the base station apparatus scrambles using different types of RNTI for DCI (L1 ⁇ ⁇ ⁇ signaling) used in grant-free access (UL-TWG-type1 and UL-TWG-type2) and DCI used in dynamic scheduling.
  • DCI used for UL-TWG-type1 retransmission control and UL-TWG-type2 activation and deactivation (release) and DCI used for retransmission control may be scrambled using the same RNTI. .
  • the base station device 10 and the terminal device 20 may support non-orthogonal multi-access in addition to orthogonal multi-access. Note that the base station apparatus 10 and the terminal apparatus 20 can also support both grant-free access and scheduled access (dynamic scheduling).
  • uplink scheduled access means that the terminal device 20 transmits data according to the following procedure.
  • the terminal device 20 requests a radio resource for transmitting uplink data from the base station device 10 using a random access procedure (SR) and SR.
  • SR random access procedure
  • the base station apparatus gives UL Grant to each terminal apparatus based on RACH and SR using DCI.
  • the terminal apparatus transmits uplink data using a predetermined radio resource based on the uplink transmission parameter included in the UL Grant.
  • the downlink control information for uplink physical channel transmission can include a shared field for scheduled access and grant-free access.
  • the base station apparatus 10 instructs to transmit an uplink physical channel by grant-free access
  • the base station apparatus 10 and the terminal apparatus 20 convert the bit sequence stored in the shared field to grant-free access. To be interpreted according to the setting (eg, a lookup table defined for grant-free access).
  • the base station apparatus 10 and the terminal apparatus 20 interpret the shared field according to the setting for scheduled access. .
  • Transmission of an uplink physical channel in grant-free access is referred to as asynchronous data transmission. Note that the transmission of the uplink physical channel in the scheduled manner is referred to as synchronous data transmission.
  • the terminal device 20 may randomly select a radio resource for transmitting uplink data. For example, the terminal apparatus 20 is notified of a plurality of available radio resource candidates from the base station apparatus 10 as a resource pool, and randomly selects a radio resource from the resource pool.
  • the radio resource to which the terminal device 20 transmits uplink data may be set in advance by the base station device 10. In this case, the terminal device 20 transmits the uplink data using the wireless resource set in advance without receiving DCI UL Grant (including physical resource designation).
  • the radio resource includes a plurality of uplink multi-access resources (resources to which uplink data can be mapped).
  • the terminal device 20 transmits uplink data using one or a plurality of uplink multi-access resources selected from a plurality of uplink multi-access resources.
  • the radio resource to which the terminal apparatus 20 transmits uplink data may be determined in advance in a communication system including the base station apparatus 10 and the terminal apparatus 20.
  • the radio resource for transmitting the uplink data is transmitted from the base station apparatus 10 by a physical broadcast channel (eg, PBCH: Physical Broadcast Channel) / radio resource control RRC (Radio Resource Control) / system information (eg, SIB: System).
  • PBCH Physical Broadcast Channel
  • RRC Radio Resource Control
  • SIB System information
  • Downlink control information such as PDCCH: Physical Downlink Control Channel
  • EPDCCH Enhanced PDCCH
  • MPDCCH MTC PDCCH
  • NPDCCH Narrowband PDCCH
  • the uplink multi-access resource includes a multi-access physical resource and a multi-access signature resource (Multi-Access Signature Resource).
  • the multi-access physical resource is a resource composed of time and frequency.
  • the multi-access physical resource and the multi-access signature resource can be used to specify an uplink physical channel transmitted by each terminal apparatus.
  • the resource block is a unit to which the base station apparatus 10 and the terminal apparatus 20 can map a physical channel (for example, a physical data shared channel or a physical control channel).
  • the resource block includes one or more subcarriers (for example, 12 subcarriers and 16 subcarriers) in the frequency domain.
  • the multi-access signature resource is composed of at least one multi-access signature among a plurality of multi-access signature groups (also called a multi-access signature pool).
  • the multi-access signature is information indicating characteristics (marks and indices) for distinguishing (identifying) uplink physical channels transmitted by each terminal apparatus.
  • Multi-access signatures include spatial multiplexing patterns, spreading code patterns (Walsh code, OCC; OrthogonalgonCover Code, cyclic shift for data spreading, sparse code, etc.), interleave pattern, demodulation reference signal pattern (reference signal sequence, cyclic) Shift, OCC, IFDM) / identification signal pattern, transmission power, etc., at least one of which is included.
  • the terminal device 20 transmits uplink data using one or a plurality of multi-access signatures selected from the multi-access signature pool.
  • the terminal device 20 can notify the base station device 10 of usable multi-access signatures.
  • the base station apparatus 10 can notify the terminal apparatus of a multi-access signature used when the terminal apparatus 20 transmits uplink data.
  • the base station apparatus 10 can notify the terminal apparatus 20 of a multi-access signature group that can be used when the terminal apparatus 20 transmits uplink data.
  • the usable multi-access signature group may be notified using a broadcast channel / RRC / system information / downlink control channel. In this case, the terminal device 20 can transmit uplink data using the multi-access signature selected from the notified multi-access signature group.
  • the terminal device 20 transmits uplink data using the multi-access resource.
  • the terminal device 20 can map uplink data to a multi-access resource including a multi-carrier signature resource including one multi-access physical resource and a spreading code pattern.
  • the terminal device 20 can also allocate uplink data to a multi-access resource configured by one multi-access physical resource and a multi-carrier signature resource composed of an interleave pattern.
  • the terminal device 20 can also map uplink data to a multi-access resource including a multi-access physical resource and a multi-access signature resource including a demodulation reference signal pattern / identification signal pattern.
  • the terminal apparatus 20 can also map uplink data to a multi-access resource configured by a multi-access signature resource including one multi-access physical resource and a transmission power pattern (for example, each uplink data) May be set so that a reception power difference occurs in the base station apparatus 10).
  • a transmission power pattern for example, each uplink data
  • uplink data transmitted by a plurality of terminal devices 20 is duplicated (overlapping, spatial multiplexing, non-orthogonal multiplexing) in uplink multi-access physical resources. , Collision) and transmission.
  • the base station apparatus 10 detects an uplink data signal transmitted by each terminal apparatus in grant-free access.
  • the base station apparatus 10 includes SLIC (Symbol Level Interference Cancellation) that performs interference cancellation based on the demodulation result of the interference signal, and CWIC (Codeword Level) that performs interference cancellation based on the decoding result of the interference signal.
  • SLIC Symbol Level Interference Cancellation
  • CWIC Codeword Level
  • Interference Cancellation Sequential Interference Canceller; SIC and Parallel Interference Canceller; also called PIC
  • turbo equalization maximum likelihood detection (MLD: maximum likelihood detection, R-MLD) that searches for the most suitable one among transmission signal candidates : Reduced complexity (maximum-likelihood detection), EMMSE-IRC (Enhanced Minimum Mean Error-Interference Rejection Combining), which suppresses interference signals by linear operation, and message pack Signal detection by sing (BP: Beliefationpropagation), MF (Matched Filter) -BP combining a matched filter and BP, and the like may be provided.
  • MLD maximum likelihood detection
  • R-MLD maximum likelihood detection
  • BP Beliefationpropagation
  • MF Matched Filter
  • FIG. 2 is a diagram showing a radio frame configuration example of the communication system according to the present embodiment.
  • the radio frame configuration indicates a configuration in a time domain multi-access physical resource.
  • One radio frame is composed of a plurality of slots (may be subframes).
  • FIG. 2 is an example in which one radio frame is composed of 10 slots.
  • the terminal device 20 has a reference subcarrier interval (reference topology).
  • the subframe is composed of a plurality of OFDM symbols generated at a reference subcarrier interval.
  • FIG. 2 is an example in which the subcarrier interval is 15 kHz, one frame is composed of 10 slots, one subframe is composed of one slot, and one slot is composed of 14 OFDM symbols.
  • the subcarrier interval is 15 kHz ⁇ 2 ⁇ ( ⁇ is an integer of 0 or more)
  • one frame is composed of 2 ⁇ ⁇ 10 slots and one subframe is composed of 2 ⁇ slots .
  • FIG. 2 shows a case where the reference subcarrier interval is the same as the subcarrier interval used for uplink data transmission.
  • the slot may be a minimum unit in which the terminal device 20 maps a physical channel (for example, a physical data shared channel or a physical control channel).
  • a physical channel for example, a physical data shared channel or a physical control channel.
  • one slot is a resource block unit in the time domain.
  • the minimum unit for mapping the physical channel by the terminal device 20 may be one or a plurality of OFDM symbols (for example, 2 to 13 OFDM symbols).
  • the base station apparatus 10 one or a plurality of OFDM symbols is a resource block unit in the time domain.
  • the base station apparatus 10 may signal the minimum unit for mapping the physical channel to the terminal apparatus 20.
  • FIG. 3 is a schematic block diagram showing the configuration of the base station apparatus 10 according to the present embodiment.
  • the base station apparatus 10 includes a reception antenna 202, a reception unit (reception step) 204, an upper layer processing unit (upper layer processing step) 206, a control unit (control step) 208, a transmission unit (transmission step) 210, and a transmission antenna 212. Consists of including.
  • the reception unit 204 includes a radio reception unit (radio reception step) 2040, an FFT unit 2041 (FFT step), a demultiplexing unit (demultiplexing step) 2042, a propagation channel estimation unit (propagation channel estimation step) 2043, a signal detection unit (signal Detection step) 2044.
  • the transmission unit 210 includes an encoding unit (encoding step) 2100, a modulation unit (modulation step) 2102, a multiple access processing unit (multiple access processing step) 2106, a multiplexing unit (multiplexing step) 2108, and a wireless transmission unit (wireless transmission step). ) 2110, IFFT unit (IFFT step) 2109, downlink reference signal generation unit (downlink reference signal generation step) 2112, and downlink control signal generation unit (downlink control signal generation step) 2113.
  • the receiving unit 204 demultiplexes, demodulates, and decodes an uplink signal (uplink physical channel, uplink physical signal) received from the terminal apparatus 10 via the reception antenna 202.
  • the receiving unit 204 outputs a control channel (control information) separated from the received signal to the control unit 208.
  • the receiving unit 204 outputs the decoding result to the higher layer processing unit 206.
  • the receiving unit 204 acquires ACK / NACK and CSI for SR and downlink data transmission included in the received signal.
  • the radio reception unit 2040 converts the uplink signal received via the reception antenna 202 into a baseband signal by down-conversion, removes unnecessary frequency components, and sets the amplification level so that the signal level is properly maintained. Based on the in-phase component and the quadrature component of the received signal, the quadrature demodulation is performed, and the quadrature demodulated analog signal is converted into a digital signal. Radio reception section 2040 removes a portion corresponding to CP (Cyclic Prefix) from the converted digital signal.
  • the FFT unit 2041 performs fast Fourier transform on the downlink signal from which CP is removed (demodulation processing for OFDM modulation), and extracts a frequency domain signal.
  • the propagation path estimation unit 2043 performs channel estimation for uplink physical channel signal detection using the demodulation reference signal.
  • the propagation path estimation unit 2043 receives, from the control unit 208, the resource to which the demodulation reference signal is mapped and the demodulation reference signal sequence assigned to each terminal apparatus.
  • the propagation path estimation unit 2043 measures the channel state (propagation path state) between the base station apparatus 10 and the terminal apparatus 20 using the demodulation reference signal sequence.
  • the propagation path estimation unit 2043 can identify the terminal device using the channel estimation results (channel state impulse response, frequency response) (for this reason, it is also referred to as an identification unit).
  • the propagation path estimation unit 2043 determines that the terminal device 20 associated with the demodulation reference signal for which the channel state has been successfully extracted has transmitted the uplink physical channel.
  • the demultiplexing unit 2042 uses the frequency domain signal (including signals of a plurality of terminal devices 20) input from the FFT unit 2041 in the resource that the propagation path estimation unit 2043 determines that the uplink physical channel is transmitted. Extract.
  • the demultiplexing unit 2042 separates and extracts uplink physical channels (physical uplink control channel, physical uplink shared channel) and the like included in the extracted frequency domain uplink signal.
  • the demultiplexing unit outputs the physical uplink channel to the signal detection unit 2044 / control unit 208.
  • the signal detection unit 2044 uses the channel estimation result estimated by the propagation path estimation unit 2043 and the frequency domain signal input from the demultiplexing unit 2042 to use the uplink data (uplink physical channel) of each terminal apparatus. ) Signal is detected.
  • the signal detection unit 2044 detects the signal of the terminal apparatus 20 associated with the demodulation reference signal (demodulation reference signal for which the channel state has been successfully extracted) assigned to the terminal apparatus 20 that has determined that uplink data has been transmitted. Process.
  • FIG. 4 is a diagram illustrating an example of a signal detection unit according to the present embodiment.
  • the signal detection unit 2044 includes an equalization unit 2504, multiple access signal separation units 2506-1 to 2506-u, IDFT units 2508-1 to 2508-u, demodulation units 2510-1 to 2510-u, decoding units 2512-1 to 2512-u.
  • u determines that the propagation path estimation unit 2043 has transmitted uplink data in the same or overlapping multi-access physical resources (at the same time and the same frequency) (successfully extracted the channel state) ) Terminal device number.
  • u is the number of terminal apparatuses that are permitted to transmit uplink data in the same or overlapping multi-access physical resources (same time, eg, OFDM symbol and slot) in DCI.
  • Each part constituting the signal detection unit 2044 is controlled using the setting related to grant-free access of each terminal device input from the control unit 208.
  • the equalization unit 2504 generates equalization weights based on the MMSE norm from the frequency response input from the propagation path estimation unit 2043.
  • MRC or ZF may be used for the equalization processing.
  • the equalization unit 2504 multiplies the equalization weight by the frequency domain signal (including the signal of each terminal device) input from the demultiplexing unit 2042, and extracts the frequency domain signal of each terminal device.
  • the equalization unit 2504 outputs the frequency domain signal of each terminal apparatus after equalization to the IDFT units 2508-1 to 2508-u.
  • frequency domain signals are output to the IDFT units 2508-1 to 2508-u.
  • frequency domain signals are output to the multiple access signal demultiplexing sections 2506-1 to 2506-u.
  • IDFT sections 2508-1 to 2508-u convert the frequency domain signals of the respective terminal devices after equalization into time domain signals.
  • the IDFT units 2508-1 to 2508-u correspond to the processing performed by the DFT unit of the terminal device 20.
  • Multiple access signal demultiplexing sections 2506-1 to 2506-u separate the signals multiplexed by the multi-access signature resource from the time domain signals of each terminal apparatus after IDFT (multiple access signal separation processing). For example, when code spreading is used as the multi-access signature resource, each of the multiple access signal demultiplexing units 2506-1 to 2506-u performs despreading processing using the spreading code sequence assigned to each terminal apparatus. .
  • deinterleaving processing is performed on the time domain signal of each terminal apparatus after IDFT (deinterleaving unit).
  • Demodulation units 2510-1 to 2510-u receive from control unit 208 information on modulation schemes (BPSK, QPSK, 16QAM, 64QAM, 256QAM, etc.) of each terminal device that has been notified in advance or determined in advance. Is done. Based on the modulation scheme information, the demodulation units 2510-1 to 2510-u perform demodulation processing on the signal after separation of the multiple access signal and output a bit sequence LLR (Log Likelihood Ratio).
  • LLR Log Likelihood Ratio
  • the decoding units 2512-1 to 2512-u are input from the control unit 208 information on a coding rate that is notified in advance or determined in advance.
  • Decoding sections 2512-1 to 2512-u perform decoding processing on the LLR sequences output from demodulation sections 2510-1 to 2510-u, and receive the decoded uplink data / uplink control information as an upper layer The data is output to the processing unit 206.
  • cancellation processing such as successive interference canceller (SIC: Successive Interference Canceller) or turbo equalization
  • the decoding units 2512-1 to 2512 -u generate a replica from the external LLR or the posterior LLR output from the decoding unit and cancel it. It may be processed.
  • SIC Successive Interference Canceller
  • the difference between the external LLR and the posterior LLR is whether or not the prior LLR input to the decoding units 2512-1 to 2512-u is subtracted from the decoded LLR.
  • the decoding units 2512-1 to 2512 -u perform a hard decision on the LLR after the decoding process, and the uplink data in each terminal apparatus
  • the bit sequence may be output to the upper layer processing unit 206. Not only signal detection using turbo equalization processing, but also replica generation, signal detection without interference removal, maximum likelihood detection, EMMSE-IRC, or the like can be used.
  • the control unit 208 sets configuration information related to uplink reception / configuration information related to downlink transmission included in uplink physical channels (physical uplink control channel, physical uplink shared channel, etc.) from the base station apparatus to the terminal apparatus.
  • the reception unit 204 and the transmission unit 210 are controlled by using RRC, SIB, etc.).
  • the control unit 208 acquires the setting information regarding uplink reception / setting information regarding downlink transmission from the higher layer processing unit 206.
  • the control unit 208 When the transmission unit 210 transmits a physical downlink control channel, the control unit 208 generates downlink control information (DCI: Downlink Control information) and outputs the downlink control information (DCI) to the transmission unit 210.
  • DCI Downlink Control information
  • a part of the function of the control unit 108 can be included in the upper layer processing unit 102. Note that the control unit 208 may control the transmission unit 210 in accordance with the parameter of the CP length added to the data signal.
  • the upper layer processing unit 206 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (PDCP: Packet Data Convergence Protocol) layer, a radio link control (RLC: Radio Link Control) layer, and a radio resource control (RRC). : Processes higher layers than physical layer such as Radio (Resource Control) layer.
  • Upper layer processing section 206 generates information necessary for controlling transmission section 210 and reception section 204 and outputs the information to control section 208.
  • Upper layer processing section 206 outputs downlink data (for example, DL-SCH), broadcast information (for example, BCH), hybrid automatic retransmission request (Hybrid Automatic Repeat reques) indicator (HARQ indicator), and the like to transmitting section 210. .
  • the upper layer processing unit 206 receives information about the function (UE ⁇ capability) of the terminal device supported by the terminal device from the receiving unit 204. For example, the upper layer processing unit 206 receives information related to the function of the terminal device through RRC layer signaling
  • the information regarding the function of the terminal device includes information indicating whether the terminal device supports a predetermined function, or information indicating that the terminal device has introduced the predetermined function and completed the test. Whether or not to support a predetermined function includes whether or not the installation and test for the predetermined function have been completed.
  • the terminal device transmits information (parameter) indicating whether the predetermined device is supported.
  • the terminal device may not transmit information (parameter) indicating whether the terminal device supports the predetermined function. That is, whether or not to support the predetermined function is notified by whether or not information (parameter) indicating whether or not to support the predetermined function is transmitted.
  • Information (parameter) indicating whether or not a predetermined function is supported may be notified using 1 or 1 bit.
  • the information on the function of the terminal device includes information indicating that grant-free access is supported (information on whether to support UL-TWG-type 1 and UL-TWG-type 2 respectively).
  • the higher layer processing unit 206 can receive information indicating whether to support each function.
  • the information indicating that grant-free access is supported includes information indicating multi-access physical resources and multi-access signature resources supported by the terminal device.
  • the information indicating that grant-free access is supported may include setting of a reference table for setting the multi-access physical resource and multi-access signature resource.
  • the information indicating that grant-free access is supported includes the ability to support a plurality of tables indicating antenna ports, scrambling identities and the number of layers, the ability to support a predetermined number of antenna ports, and a predetermined transmission mode. Some or all of the abilities corresponding to The transmission mode is determined by the number of antenna ports, transmission diversity, the number of layers, presence / absence of grant-free access support, and the like.
  • the information related to the function of the terminal device may include information indicating that the function related to URLLC is supported.
  • a DCI format for uplink dynamic scheduling, SPS / grant-free access, downlink dynamic scheduling, and SPS there is a compact DCI format with a small total number of bits in a field in the DCI format, and the function of the terminal device
  • the information may include information indicating that the reception process (blind decoding) of the compact DCI format is supported.
  • the DCI format is transmitted in a PDCCH search space, and the number of resources that can be used is determined for each aggregation level.
  • the DCI format is placed in a predetermined resource element (search space). Therefore, if the number of resource elements (aggregation level) is constant, a DCI format with a large payload size is transmitted at a higher coding rate than a DCI format with a small payload size, and it is difficult to satisfy high reliability.
  • the information related to the function of the terminal device may include information indicating that the function related to URLLC is supported.
  • information indicating that PDCCH is supported with high reliability may be included by repeatedly transmitting information of DCI format for dynamic scheduling of uplink and downlink.
  • the base station apparatus associates blind decoding candidates, aggregation levels, search spaces, CORESET, BWP, serving cells, and slots in the search space that is repeatedly transmitted.
  • Information of the same DCI format may be repeatedly transmitted by rule.
  • the information related to the function of the terminal device may include information indicating that the function related to carrier aggregation is supported. Further, the information on the function of the terminal device is information indicating that it supports a function related to simultaneous transmission of a plurality of component carriers (serving cells) (including time domain duplication and at least part of OFDM symbols). May be included.
  • the upper layer processing unit 206 manages various setting information of the terminal device. Part of the various setting information is input to the control unit 208. Various setting information is transmitted from the base station apparatus 10 using the downlink physical channel via the transmission unit 210.
  • the various setting information includes setting information related to grant-free access input from the transmission unit 210.
  • the setting information related to grant-free access includes setting information for multi-access resources (multi-access physical resources and multi-access signature resources).
  • uplink resource block setting starting position of OFDM symbol to be used and number of OFDM symbols / number of resource blocks
  • setting of demodulation reference signal / identification signal reference signal sequence, cyclic shift, mapped OFDM symbol, etc.
  • Spreading code setting Walsh code, OCC; Orthogonal Cover Code, sparse code and spreading rate of these spreading codes, etc.
  • interleave setting transmission power setting, transmission / reception antenna setting, transmission / reception beamforming setting, etc.
  • These multi-access signature resources may be associated (may be linked) either directly or indirectly.
  • the association of multi-access signature resources is indicated by a multi-access signature process index.
  • the setting information related to grant-free access may include setting of a reference table for setting the multi-access physical resource and multi-access signature resource.
  • the setting information related to grant-free access may include information indicating setup and release of grant-free access, ACK / NACK reception timing information for an uplink data signal, retransmission timing information for an uplink data signal, and the like.
  • the higher-layer processing unit 206 grant-free uplink data (transport block) multi-access resources (multi-access physical resources, multi-access signature resources) Manage.
  • the upper layer processing unit 206 outputs information for controlling the receiving unit 204 to the control unit 208 based on the setting information regarding grant-free access.
  • the upper layer processing unit 206 outputs the generated downlink data (for example, DL-SCH) to the transmission unit 210.
  • the downlink data may include a field for storing a UE ID (RNTI).
  • the upper layer processing unit 206 adds a CRC to the downlink data.
  • the CRC parity bits are generated using the downlink data.
  • the CRC parity bits are scrambled (also referred to as exclusive OR operation, masking, or encryption) with the UE ID (RNTI) assigned to the destination terminal device.
  • RNTI UE ID
  • there are a plurality of types of RNTI there are a plurality of types of RNTI, and the RNTI used differs depending on the data to be transmitted.
  • the upper layer processing unit 206 generates or acquires broadcast system information (MIB, SIB) from the upper node.
  • the upper layer processing unit 206 outputs the broadcast system information to the transmission unit 210.
  • the system information to be broadcast may include information indicating that the base station device 10 supports grant-free access.
  • the upper layer processing unit 206 can include part or all of setting information related to grant-free access (setting information related to multi-access resources such as multi-access physical resources and multi-access signature resources) in the system information.
  • Uplink The system control information is mapped to a physical broadcast channel / physical downlink shared channel in the transmission unit 210.
  • the upper layer processing unit 206 generates downlink data (transport block) mapped to the physical downlink shared channel, system information (SIB), RRC message, MAC CE, or the like, or acquires from the upper node, and transmits Output to 210.
  • the upper layer processing unit 206 can include a part or all of the setting information regarding grant free access, the setup of grant free access, and the parameter indicating release in these upper layer signals.
  • the upper layer processing unit 206 may generate a dedicated SIB for notifying setting information regarding grant-free access.
  • the upper layer processing unit 206 maps multi-access resources to the terminal device 20 that supports grant-free access.
  • the base station apparatus 10 may hold a setting parameter reference table related to the multi-access signature resource.
  • the upper layer processing unit 206 assigns each setting parameter to the terminal device 20.
  • the upper layer processing unit 206 uses the multi-access signature resource to generate setting information related to grant-free access for each terminal device.
  • the upper layer processing unit 206 generates a downlink shared channel that includes a part or all of the setting information related to grant-free access for each terminal device.
  • the upper layer processing unit 206 outputs setting information regarding the grant-free access to the control unit 208 / transmission unit 210.
  • the upper layer processing unit 206 sets and notifies the UE ID for each terminal device.
  • a radio network temporary identifier (RNTI) can be used.
  • the UE ID is used for scrambling the CRC added to the downlink control channel and the downlink shared channel.
  • the UE ID is used for scrambling CRC that is added to the uplink shared channel.
  • the UE ID is used for generating an uplink reference signal sequence.
  • the upper layer processing unit 206 may set a UE ID unique to the SPS / grant free access.
  • the upper layer processing unit 206 may set the UE ID by distinguishing whether the terminal device supports grant-free access.
  • the downlink physical channel UE may be set separately from the downlink physical channel UE ID.
  • the upper layer processing unit 206 outputs the setting information related to the UE ID to the transmission unit 210 / control unit 208 / reception unit 204.
  • the higher layer processing unit 206 determines the coding rate, modulation scheme (or MCS), transmission power, etc. of the physical channel (physical downlink shared channel, physical uplink shared channel, etc.).
  • the upper layer processing unit 206 outputs the coding rate / modulation method / transmission power to the transmission unit 210 / control unit 208 / reception unit 204.
  • the upper layer processing unit 206 can include the coding rate / modulation scheme / transmission power in the upper layer signal.
  • the transmission unit 210 transmits a physical downlink shared channel when downlink data to be transmitted is generated. In addition, when transmitting a resource for data transmission using DL Grant, the transmission unit 210 transmits a physical downlink shared channel by scheduled access, and transmits an SPS physical downlink shared channel when activating SPS. You may do it.
  • the transmission unit 210 generates a physical downlink shared channel and a demodulation reference signal / control signal associated therewith according to the setting related to scheduled access / SPS input from the control unit 208.
  • the encoding unit 2100 encodes downlink data input from the higher layer processing unit 206 (including repetition) using a predetermined encoding method set by the control unit 208.
  • a predetermined encoding method set by the control unit 208.
  • convolutional encoding convolutional encoding
  • turbo encoding turbo encoding
  • LDPC Low Density Parity Check
  • Polar encoding Polar encoding
  • An LDPC code may be used for data transmission and a Polar code may be used for control information transmission, and different error correction coding may be used depending on the downlink channel to be used.
  • different error correction coding may be used depending on the size of data to be transmitted and control information. For example, a convolutional code is used when the data size is smaller than a predetermined value, and the above correction coding is used otherwise.
  • a mother code such as a low encoding rate 1/6 or 1/12 may be used in addition to the encoding rate 1/3.
  • the coding rate used for data transmission may be realized by rate matching (puncturing).
  • Modulator 2102 uses the downlink control information such as BPSK, QPSK, 16QAM, 64QAM, and 256QAM (which may also include ⁇ / 2 shift BPSK and ⁇ / 4 shift QPSK) for the coded bits input from coding unit 2100. Modulation is performed using the notified modulation scheme or a modulation scheme predetermined for each channel.
  • Multiple access processing section 2106 allows base station apparatus 10 to detect a signal even if a plurality of data is multiplexed according to the multi-access signature resource input from control section 208 for the sequence output from modulation section 2102
  • the signal is converted as follows.
  • the multi-access signature resource is spread, the spread code sequence is multiplied according to the spread code sequence setting.
  • the multi-access processing unit 2106 can be replaced with an interleaving unit when interleaving is set as a multi-access signature resource.
  • the interleave unit performs interleaving processing on the sequence output from modulation unit 2102 according to the setting of the interleave pattern input from control unit 208.
  • the transmission unit 210 When code spreading and interleaving are set as multi-access signature resources, the transmission unit 210 performs multiple processing and interleaving by the multiple access processing unit 2106. The same applies when other multi-access signature resources are applied, and a sparse code or the like may be applied.
  • the multiple access processing unit 2106 inputs the signal after the multiple access processing to the multiplexing unit 2108.
  • the downlink reference signal generation unit 2112 generates a demodulation reference signal in accordance with the demodulation reference signal setting information input from the control unit 208.
  • the setting information of the demodulation reference signal / identification signal is based on information such as the number of OFDM symbols notified by the base station apparatus in the downlink control information, the OFDM symbol position where the DMRS is arranged, the cyclic shift, and the time domain spreading. A sequence obtained according to a predetermined rule is generated.
  • the multiplexing unit 2108 multiplexes (maps and arranges) the downlink physical channel and the downlink reference signal to the resource element for each transmission antenna port.
  • the multiplexing unit 2108 arranges the downlink physical channel in the resource element according to the SCMA resource pattern input from the control unit 208.
  • the IFFT unit 2109 performs inverse fast Fourier transform (Inverse Fourier Transform: IFFT) on the multiplexed signal, modulates the OFDM method, and generates an OFDM symbol.
  • the wireless transmission unit 2110 adds a CP to the OFDM-modulated symbol to generate a baseband digital signal. Further, the wireless transmission unit 2110 converts the baseband digital signal into an analog signal, removes excess frequency components, converts it to a carrier frequency by up-conversion, amplifies the power, and transmits the terminal device via the transmission antenna 212. 20 to send.
  • Radio transmission section 2110 includes a transmission power control function (transmission power control section). The transmission power control follows the transmission power setting information input from the control unit 208. When FBMC, UF-OFDM, or F-OFDM is applied, the OFDM symbol is subjected to filter processing in subcarrier units or subband units.
  • FIG. 5 is a schematic block diagram showing the configuration of the terminal device 20 in the present embodiment.
  • the base station apparatus 10 includes an upper layer processing unit (upper layer processing step) 102, a transmission unit (transmission step) 104, a transmission antenna 106, a control unit (control step) 108, a reception antenna 110, and a reception unit (reception step) 112. Consists of including.
  • the transmission unit 104 includes an encoding unit (encoding step) 1040, a modulation unit (modulation step) 1042, a multiple access processing unit (multiple access processing step) 1043, a multiplexing unit (multiplexing step) 1044, and a DFT unit (DFT step) 1045.
  • the reception unit 112 includes a radio reception unit (radio reception step) 1120, an FFT unit (FFT step) 1121, a propagation path estimation unit (propagation path estimation step) 1122, a demultiplexing unit (demultiplexing step) 1124, and a signal detection unit (signal Detection step) 1126.
  • the upper layer processing unit 102 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (PDCP: Packet Data Convergence Protocol) layer, a radio link control (RLC: Radio Link Control) layer, a radio resource control (RRC). : Processes higher layers than physical layer such as Radio (Resource Control) layer.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • RRC radio resource control
  • Processes higher layers than physical layer such as Radio (Resource Control) layer.
  • Upper layer processing section 102 generates information necessary for controlling transmission section 104 and reception section 112 and outputs the information to control section 108.
  • the upper layer processing unit 102 outputs uplink data (for example, UL-SCH), uplink control information, and the like to the transmission unit 104.
  • the higher layer processing unit 102 transmits information on the terminal device such as the function (UE capability) of the terminal device from the base station device 10 (via the transmission unit 104).
  • Information related to terminal equipment includes information indicating that grant-free access and compact DCI reception / detection / blind decoding are supported, and reception / detection / blind decoding when repeated DCI format information is transmitted on PDCCH.
  • Information indicating whether or not to support each function Information indicating that grant-free access is supported and information indicating whether to support each function may be distinguished by the transmission mode.
  • the control unit 108 controls the transmission unit 104 and the reception unit 112 based on various setting information input from the higher layer processing unit 102.
  • the control unit 108 generates uplink control information (UCI) based on the setting information related to control information input from the higher layer processing unit 102 and outputs the uplink control information (UCI) to the transmission unit 104.
  • UCI uplink control information
  • the transmission unit 104 encodes and modulates the uplink control information, the uplink shared channel, and the like input from the higher layer processing unit 102 for each terminal device, and sets the physical uplink control channel and the physical uplink shared channel. Generate.
  • the encoding unit 1040 encodes the uplink control information and the uplink shared channel (including repetition) using a predetermined encoding method notified by the control information. As the encoding method, convolutional encoding, turbo encoding, LDPC (Low Density Parity Check) encoding, Polar encoding, and the like can be applied.
  • Modulation section 1042 modulates the coded bits input from coding section 1040 using a modulation scheme notified by predetermined / control information such as BPSK, QPSK, 16QAM, 64QAM, and 256QAM.
  • Multiple access processing section 1043 allows base station apparatus 10 to detect a signal even if a plurality of data is multiplexed according to the multi-access signature resource input from control section 108 for the sequence output from modulation section 1042
  • the signal is converted as follows.
  • the multi-access signature resource is spread, the spread code sequence is multiplied according to the spread code sequence setting.
  • the setting of the spreading code sequence may be associated with other grant-free access settings such as the demodulation reference signal / identification signal.
  • the multiple access process may be performed on the series after the DFT process.
  • the multi-access processing unit 1043 can be replaced with an interleaving unit when interleaving is set as a multi-access signature resource.
  • the interleave unit performs interleaving processing on the sequence output from the DFT unit according to the setting of the interleave pattern input from the control unit 108.
  • code spreading and interleaving are set as multi-access signature resources
  • the transmission unit 104 performs multiple processing and interleaving by the multiple access processing unit 1043. The same applies when other multi-access signature resources are applied, and a sparse code or the like may be applied.
  • the multiple access processing unit 1043 inputs the signal after the multiple access processing to the DFT unit 1045 or the multiplexing unit 1044 depending on whether the signal waveform is DFTS-OFDM or OFDM.
  • the DFT unit 1045 rearranges the modulation symbols after the multiple access processing output from the multiple access processing unit 1043 in parallel, and then performs discrete Fourier transform (Discrete Fourier Transform:) DFT) processing.
  • Discrete Fourier Transform:) DFT discrete Fourier transform
  • a signal waveform using a zero interval instead of CP may be used for the time signal after IFFT by adding a zero symbol string to the modulation symbol and performing DFT.
  • a specific waveform such as a Gold sequence or a Zadoff-Chu sequence may be added to the modulation symbol, and a signal waveform using a specific pattern instead of CP for the time signal after IFFT may be performed by performing DFT.
  • the signal waveform is OFDM, since DFT is not applied, the signal after the multiple access processing is input to the multiplexing unit 1044.
  • the control unit 108 sets the setting of the zero symbol string (such as the number of bits of the symbol string) and the setting of the specific sequence (such as the seed of the sequence and the sequence length) included in the setting information regarding the grant-free access. Use and control.
  • the uplink control signal generation unit 1046 adds a CRC to the uplink control information input from the control unit 108 to generate a physical uplink control channel.
  • the uplink reference signal generation unit 1048 generates an uplink reference signal.
  • the multiplexing unit 1044 maps the modulation symbol, physical uplink control channel, and uplink reference signal of each uplink physical channel modulated by the multiple access processing unit 1043 or the DFT unit 1045 to resource elements.
  • the multiplexing unit 1044 maps the physical uplink shared channel and the physical uplink control channel to resources allocated to each terminal device.
  • the IFFT unit 1049 generates an OFDM symbol by performing inverse Fast Fourier Transform (IFFT) on the multiplexed modulation symbol of each uplink physical channel.
  • the wireless transmission unit 1050 adds a cyclic prefix ( ⁇ CP) to the OFDM symbol to generate a baseband digital signal. Further, the wireless transmission unit 1050 converts the digital signal into an analog signal, removes excess frequency components by filtering, up-converts to a carrier frequency, amplifies the power, and outputs to the transmission antenna 106 for transmission.
  • the receiving unit 112 detects the downlink physical channel transmitted from the base station apparatus 10 using the demodulation reference signal.
  • the receiving unit 112 detects a downlink physical channel based on setting information notified by control information (DCI, RRC, SIB, etc.) from the base station apparatus.
  • the reception unit 112 performs blind decoding on a search space included in the PDCCH for candidates that are determined in advance or that are notified by higher layer control information (RRC signaling).
  • RRC signaling higher layer control information
  • the receiving unit 112 uses C-RNTI, CS-RNTI, INT-RNTI (both downlink and uplink may exist), other CRC scrambled with RNTI, Detect DCI.
  • Blind decoding may be performed by the signal detection unit 1126 in the reception unit 112, and although not shown in the figure, it has a control signal detection unit separately and is performed by the control signal detection unit. May be.
  • the radio reception unit 1120 converts an uplink signal received via the reception antenna 110 into a baseband signal by down-conversion, removes unnecessary frequency components, and an amplification level so that the signal level is appropriately maintained. And quadrature demodulation based on the in-phase and quadrature components of the received signal, and converting the quadrature demodulated analog signal into a digital signal. Radio receiving section 1120 removes a portion corresponding to CP from the converted digital signal.
  • the FFT unit 1121 performs Fast Fourier Transform (FFT) on the signal from which the CP is removed, and extracts a signal in the frequency domain.
  • FFT Fast Fourier Transform
  • the propagation path estimation unit 1122 performs channel estimation for signal detection of the downlink physical channel using the demodulation reference signal.
  • the propagation path estimation unit 1122 receives from the control unit 108 the resource to which the demodulation reference signal is mapped and the demodulation reference signal sequence assigned to each terminal apparatus.
  • the propagation path estimation unit 1122 measures the channel state (propagation path state) between the base station apparatus 10 and the terminal apparatus 20 using the demodulation reference signal sequence.
  • the demultiplexing unit 1124 extracts a frequency domain signal (including signals from a plurality of terminal devices 20) input from the wireless reception unit 1120.
  • the signal detection unit 1126 detects a signal of downlink data (uplink physical channel) using the channel estimation result and the frequency domain signal input from the demultiplexing unit 1124.
  • the upper layer processing unit 102 acquires downlink data (bit sequence after hard decision) from the signal detection unit 1126.
  • the upper layer processing unit 102 performs descrambling (exclusive OR operation) on the CRC included in the downlink data after decoding of each terminal device, using the UE ID (RNTI) assigned to each terminal. Do.
  • the upper layer processing unit 102 determines that the downlink data has been correctly received when there is no error in the downlink data as a result of error detection by descrambling.
  • the signal detection unit 1126 may include a control information detection unit that detects downlink control information, for example, control information such as a DCI format.
  • FIG. 6 is a diagram illustrating an example of a signal detection unit according to the present embodiment.
  • the signal detection unit 1126 includes an equalization unit 1504, multiple access signal separation units 1506-1 to 1506-c, demodulation units 1510-1 to 1510-c, and decoding units 1512-1 to 1512-c.
  • the equalization unit 1504 generates equalization weights based on the MMSE norm from the frequency response input from the propagation path estimation unit 1122.
  • MRC or ZF may be used for the equalization processing.
  • the equalization unit 1504 multiplies the equalization weight by the frequency domain signal input from the demultiplexing unit 1124 to extract the frequency domain signal.
  • Equalization section 1504 outputs the equalized frequency domain signals to multiple access signal separation sections 1506-1 to 1506-c.
  • c is 1 or more and is the number of signals received in the same subframe, the same slot, and the same OFDM symbol, for example, PUSCH and PUCCH. Other downlink channels may be received at the same timing.
  • the multiple access signal demultiplexing units 1506-1 to 1506-c separate the signals multiplexed by the multi-access signature resource from the time domain signals (multiple access signal separation processing). For example, when code spreading is used as the multi-access signature resource, each of the multiple access signal demultiplexing units 1506-1 to 1506-c performs despreading processing using the used spreading code sequence. When interleaving is applied as a multi-access signature resource, deinterleaving processing is performed on a time domain signal (deinterleaving unit).
  • the demodulating units 1510-1 to 1510-c are input from the control unit 108 with information on modulation schemes that are notified in advance or determined in advance. Based on the modulation scheme information, the demodulation units 1510-1 to 1510-c perform demodulation processing on the signal after separation of the multiple access signal and output a bit sequence LLR (Log Likelihood Ratio).
  • LLR Log Likelihood Ratio
  • Decoding units 1512-1 to 1512-c are input from the control unit 108 with information on a coding rate that has been notified in advance or determined in advance.
  • Decoding sections 1512-1 to 1512-c perform decoding processing on the LLR sequences output from demodulation sections 1510-1 to 1510-c.
  • the decoding units 1512-1 to 1512-c generate a replica from the external LLR or the posterior LLR output from the decoding unit and cancel it. It may be processed.
  • the difference between the external LLR and the posterior LLR is whether or not the prior LLR inputted to the decoding units 1512-1 to 1512-c is subtracted from the decoded LLR.
  • FIG. 7 shows an example of conventional uplink data transmission.
  • the figure shows the operations of timer 1 and timer 2 that are controlled in response to ACK / NACK notification for uplink data transmission and uplink data transmission.
  • the horizontal axis of the figure is time and may be slot / minislot (non-slot or a plurality of OFDM symbols less than 14) / OFDM symbol, but in this specification, it is described as a slot.
  • the base station apparatus uses the DCI format on the PDCCH and notifies the uplink grant.
  • the uplink grant is reported in DCI format 0_0 or 0_1, or in other DCI formats.
  • the uplink grant is information on frequency resources (resource blocks, resource block groups, subcarriers) used by the terminal device for uplink data transmission and a relative time from the slot n to the uplink data transmission timing (for example, If the relative time is k, slot n + k is the uplink data transmission timing), the number of OFDM symbols used in the slot of the uplink data transmission timing and the start position, and the number of consecutive OFDM symbols are included. Also good. Further, the uplink grant may notify the data transmission of a plurality of slots, and when the relative time indicating the uplink data transmission timing is k, the data transmission from slot n + k to slot n + k + n ′ is permitted. In this case, n 'information is included in the uplink grant.
  • frequency resources resource blocks, resource block groups, subcarriers
  • the uplink grant has a HARQ process number (for example, 4 bits), and the terminal apparatus performs data transmission of the uplink grant corresponding to the HARQ process number designated by the uplink grant.
  • the timer 1 Immediately after data transmission (PUSCH transmission) corresponding to the HARQ process, the timer 1 of the corresponding HARQ process is started (activated / executed).
  • the timer 1 may be drx-HARQ-RTT-TimerUL, and the drx-HARQ-RTT-TimerUL may be a minimum period before an uplink HARQ retransmission grant (UL HARQ retransmission grant) is expected by the MAC entity. . That is, when the timer 1 is being executed, it means a period in which the base station apparatus performs demodulation / decoding processing of uplink data and no ACK / NACK for uplink data transmission occurs.
  • blind decoding may be stopped during a period in which blind decoding may be stopped by the DRX setting (a period other than the On period) and a period in which timer 1 is being executed.
  • Timer 1 may be set in the range of 0 to 56 OFDM symbols.
  • timer 1 When the period of timer 1 is set to 2 slots, timer 1 expires at slot n + 4. When timer 1 expires, start timer 2 of the corresponding HARQ process.
  • the timer 2 may be a drx-RetransmissionTimerUL, and the drx-RetransmissionTimerUL may be a maximum period until a grant for uplink retransmission is received.
  • the timer 2 is an example of 6 slots.
  • Timer 2 has 10 slots, 11 slots, 12 slots, 14 slots, 16 slots, 18 slots, 116 slots, 124 slots, 133 slots, 140 slots, 164 slots, 180 slots, 196 slots, 1112 slots, 1128 slots, 1160 slots. It may be set from the slot.
  • ACK / NACK for uplink data transmission When the terminal device receives an ACK / NACK for uplink data transmission while the timer 2 is running (slot n + 7 in the example of FIG. 7), it is the same as the new data transmission (initial transmission) for ACK or the previous transmission for NACK Immediately after the data transmission (retransmission), the timer 1 of the corresponding HARQ process is started, and the timer 2 of the corresponding HARQ process is stopped.
  • ACK / NACK for uplink data transmission can use the same format as the DCI format used in the uplink grant, and is notified by the HARQ process ID and NDI in the DCI format.
  • the NDI has been changed from the NDI value at the time of detection of the previous DCI format of the same HARQ process ID (because it is 1 bit, it is toggled).
  • the detected DCI format is an uplink grant for new data transmission
  • the NDI value is the same (when not toggled)
  • the detected DCI format is retransmitted. Uplink grant for data transmission.
  • the terminal apparatus performs blind decoding with DRX.
  • Blind decoding may be stopped if it is not necessary (non-On period). In this case, after a period (On period) in which the blind decoding determined by the DRX cycle is necessary, the blind decoding may be started and ACK / NACK for uplink data transmission may be waited again. .
  • ACK / NACK for uplink data transmission cannot be detected even after timer 2 expires, it is considered that the detection of ACK / NACK transmitted by the base station apparatus has failed, and the corresponding HARQ process ID buffer is flushed.
  • retransmission may be performed using a predetermined radio resource (which may be a radio resource set by RRC and activated by SPS).
  • FIG. 8 shows an example of the stop of uplink data transmission according to the first embodiment.
  • a base station apparatus accommodates a plurality of terminal apparatuses, and a terminal apparatus (hereinafter referred to as a URLLC terminal apparatus) that transmits data requiring at least one of low delay and high reliability, It is included in a terminal device in which a terminal device that transmits data that does not require low delay and high reliability (hereinafter referred to as a non-URLLC terminal device or an eMBB terminal device) is accommodated.
  • a non-URLLC terminal device or an eMBB terminal device a terminal device that transmits data that does not require low delay and high reliability
  • an eMBB terminal device that performs eMBB data transmission detects an uplink grant in a DCI format transmitted by PDCCH, and receives a notification of radio resources of the allocated PUSCH.
  • the eMBB terminal apparatus When the eMBB terminal apparatus detects the DCI format in which the CRC is scrambled by INT-RNTI / UL-INT-RNTI, the eMBB terminal apparatus uses the radio resource indicated by the DCI format in which the CRC is scrambled by INT-RNTI / UL-INT-RNTI.
  • the information includes information on radio resources that cannot be used by the eMBB terminal device for uplink data transmission, for example, other terminal devices (URLLC terminal devices).
  • the eMBB terminal apparatus has radio resources in which at least a part of the radio resources that cannot be used overlaps with the radio resources of the allocated PUSCH, or the frequency (subcarrier / resource block) of the radio resources of the allocated PUSCH cannot be used.
  • the bandwidth (guard band) between the frequency of the PUSCH radio resource adjacent to or allocated to the frequency and the frequency of the unusable radio resource is equal to or lower than a predetermined bandwidth, and is notified by an upper layer control signal such as RRC. If the bandwidth is equal to or less than the bandwidth, data transmission using the allocated PUSCH radio resource may be canceled / preemption / suspend / stop / drop / postponed / discard / cancel (hereinafter referred to as cancel or preemption).
  • FIG. 9 shows an example of the stop of uplink data transmission according to the first embodiment.
  • FIG. 9A shows a case where all of the allocated PUSCH radio resources are canceled by canceling the PUSCH radio resources to which the eMBB terminal apparatus is allocated. This is because the process of FIG. 9 (a) is possible when the data transmission stop process for the PUSCH radio resource allocated after receiving the notification of the radio resource that cannot be used by the eMBB terminal apparatus is in time.
  • FIG. 9B shows, for example, a slot for eMBB data transmission when the data transmission stop processing of PUSCH radio resources allocated after receiving notification of radio resources that cannot be used by the eMBB terminal apparatus is not in time.
  • the eMBB terminal device stops data transmission until the OFDM symbol of the radio resources that cannot be used.
  • the data transmission may be stopped before the number of OFDM symbols of the radio resource that cannot be used. . Note that one embodiment of the present invention is applicable to any case. Also, the eMBB terminal apparatus may continue data transmission even after an OFDM symbol of an unusable radio resource only when a predetermined condition is satisfied.
  • the coding rate is 1 or less when an OFDM symbol of an unusable radio resource is regarded as a puncture, or if DMRS transmission is possible even if the OFDM symbol of the radio resource is excluded, retransmission data transmission In this case, at least one in the case of Piggyback (UCI on PUSCH), or a combination of two or more conditions.
  • the difference between the eMBB terminal device and the URLLC terminal device is that the uplink grant is received in the DCI format 0_0 / 0_1 and the uplink grant is received in the compact DCI configured with a smaller number of control information bits than the DCI format 0_0 / 0_1.
  • the MCS table used for data transmission may use a table with a high frequency efficiency (Spectral efficiency) or a table with a low frequency, and may use a table with a low MCS table that can be used for data transmission.
  • the number of entries may be 32 (5 bits), 16 or less (4 bits or less), dynamic scheduling, and SPS / Configured grant / grant-free access.
  • the number of HARQ processes may be 16 or the number of HARQ processes may be 4, or the number of repetitions of data transmission may be less than a predetermined value (for example, 1 or less) and the number of repetitions may be greater than a predetermined value.
  • the priority of LCH may be low or high, or may be determined by QCI (QoS Class Indicator).
  • FIG. 10 shows an example of uplink data transmission according to the first embodiment.
  • the figure shows a timer that is controlled when the preemption DCI is received and the uplink data transmission is canceled after the uplink data transmission is allocated by the uplink grant.
  • the horizontal axis of the figure is time, and may be slot / minislot (non-slot or a plurality of OFDM symbols less than 14) / OFDM symbol, but will be described as a slot.
  • the base station apparatus uses the DCI format on the PDCCH and notifies the uplink grant.
  • the uplink grant is reported in DCI format 0_0 or 0_1, or in other DCI formats.
  • the uplink grant is information on frequency resources (resource blocks, resource block groups, subcarriers) used by the terminal device for uplink data transmission and a relative time from the slot n to the uplink data transmission timing (for example, If the relative time is k, slot n + k is the uplink data transmission timing), the number of OFDM symbols used in the slot of the uplink data transmission timing and the start position, and the number of consecutive OFDM symbols are included. Also good. Further, the uplink grant may notify the data transmission of a plurality of slots, and when the relative time indicating the uplink data transmission timing is k, the data transmission from slot n + k to slot n + k + n ′ is permitted. In this case, n 'information is included in the uplink grant.
  • frequency resources resource blocks, resource block groups, subcarriers
  • the uplink grant has a HARQ process number (for example, 4 bits), and the terminal apparatus cancels uplink grant data transmission corresponding to the HARQ process number designated by the uplink grant.
  • the timer 2 may be a drx-RetransmissionTimerUL, and the drx-RetransmissionTimerUL may be a maximum period until a grant for uplink retransmission is received.
  • the timer 2 is an example of 6 slots. Timer 2 has 10 slots, 11 slots, 12 slots, 14 slots, 16 slots, 18 slots, 116 slots, 124 slots, 133 slots, 140 slots, 164 slots, 180 slots, 196 slots, 1112 slots, 1128 slots, 1160 slots.
  • the period of the timer 2 may be set when canceling uplink data transmission by preemption (FIG. 10) and when transmitting uplink data (FIG. 7). For example, 16 slots may be set when uplink data transmission is performed, and 10 slots may be set when uplink data transmission is canceled.
  • the terminal apparatus When the terminal apparatus receives an uplink grant for the corresponding data transmission (preempted data) canceled while the timer 2 is running (slot n + 5 in the example of FIG. 10), the data corresponding to the canceled HARQ process ID Immediately after transmission, timer 1 of the corresponding HARQ process is started and timer 2 of the corresponding HARQ process is stopped.
  • the HARQ process ID for uplink data transmission is reported in the DCI format used in the uplink grant.
  • the timer 1 may be drx-HARQ-RTT-TimerUL, and the drx-HARQ-RTT-TimerUL may be a minimum period before an uplink HARQ retransmission grant (UL HARQ retransmission grant) is expected by the MAC entity. . That is, when the timer 1 is being executed, it means a period in which the base station apparatus performs demodulation / decoding processing of uplink data and no ACK / NACK for uplink data transmission occurs. For this reason, blind decoding may be stopped during a period in which blind decoding may be stopped by the DRX setting (a period other than the On period) and a period in which timer 1 is being executed.
  • Timer 1 may be set in the range of 0 to 56 OFDM symbols. Therefore, when uplink data transmission in FIG. 10 is canceled, the base station apparatus does not need uplink data demodulation / decoding processing, and therefore timer 2 is not used and timer 2 is started (executed). .
  • FIG. 11 shows an example of retransmission of uplink data according to the first embodiment.
  • the difference from FIG. 10 is that the canceled uplink data is retransmission.
  • the initial transmission may be performed when the timer 1 as an example in FIG. 7 expires and the timer 2 is executed, or when the timer 2 as an example in FIG. 10 is executed.
  • retransmission NDI is not toggled
  • initial transmission NDI is toggled
  • the base station apparatus uses the DCI format on the PDCCH to notify the retransmission uplink grant while the timer 2 is being executed by canceling the initial transmission, retransmission, or uplink data transmission.
  • the uplink grant is reported in DCI format 0_0 or 0_1, or in other DCI formats.
  • the uplink grant is information on frequency resources (resource blocks, resource block groups, subcarriers) used by the terminal device for uplink data transmission and a relative time from the slot n to the uplink data transmission timing (for example, If the relative time is k, slot n + k is the uplink data transmission timing), the number of OFDM symbols used in the slot of the uplink data transmission timing and the start position, and the number of consecutive OFDM symbols are included. Also good. Further, the uplink grant may notify the data transmission of a plurality of slots, and when the relative time indicating the uplink data transmission timing is k, the data transmission from slot n + k to slot n + k + n ′ is permitted. In this case, n 'information is included in the uplink grant.
  • frequency resources resource blocks, resource block groups, subcarriers
  • the terminal apparatus When the terminal apparatus detects an uplink grant for retransmission by blind decoding of PDCCH, the uplink data transmission timing specified by the uplink grant (n + 2 in the example of FIG. 11 and relative to the data transmission timing)
  • the uplink grant has a HARQ process number (for example, 4 bits), and the terminal apparatus cancels uplink grant data transmission corresponding to the HARQ process number designated by the uplink grant.
  • the timer 2 may be a drx-RetransmissionTimerUL, and the drx-RetransmissionTimerUL may be a maximum period until a grant for uplink retransmission is received.
  • the timer 2 is an example of 6 slots. Timer 2 has 10 slots, 11 slots, 12 slots, 14 slots, 16 slots, 18 slots, 116 slots, 124 slots, 133 slots, 140 slots, 164 slots, 180 slots, 196 slots, 1112 slots, 1128 slots, 1160 slots.
  • the period of the timer 2 may be set when canceling uplink data transmission by preemption (FIG. 11) and when transmitting uplink data (FIG. 7). For example, 16 slots may be set when uplink data transmission is performed, and 10 slots may be set when uplink data transmission is canceled.
  • the terminal apparatus When the terminal apparatus receives an uplink grant for the corresponding data transmission (preempted data) canceled while the timer 2 is running (slot n + 5 in the example of FIG. 11), the data corresponding to the canceled HARQ process ID Immediately after transmission, timer 1 of the corresponding HARQ process is started and timer 2 of the corresponding HARQ process is stopped.
  • the HARQ process ID for uplink data transmission is reported in the DCI format used in the uplink grant.
  • the timer 1 may be drx-HARQ-RTT-TimerUL, and the drx-HARQ-RTT-TimerUL may be a minimum period before an uplink HARQ retransmission grant (UL HARQ retransmission grant) is expected by the MAC entity. . That is, when the timer 1 is being executed, it means a period in which the base station apparatus performs demodulation / decoding processing of uplink data and no ACK / NACK for uplink data transmission occurs. For this reason, blind decoding may be stopped during a period in which blind decoding may be stopped by the DRX setting (a period other than the On period) and a period in which timer 1 is being executed.
  • Timer 1 may be set in the range of 0 to 56 OFDM symbols. Therefore, when the uplink data transmission of FIG. 11 is canceled, the base station apparatus does not need the demodulation / decoding process of the uplink data, so the timer 2 is started (executed) without using the timer 1. .
  • FIG. 12 shows an example of the stop of uplink data transmission according to the first embodiment.
  • the figure shows a timer that is controlled when the preemption DCI is received and the uplink data transmission is canceled after the uplink data transmission is allocated by the uplink grant.
  • the horizontal axis of the figure is time, and may be slot / minislot (non-slot or a plurality of OFDM symbols less than 14) / OFDM symbol, but will be described as a slot.
  • the base station apparatus uses the DCI format on the PDCCH and notifies the uplink grant.
  • the uplink grant is reported in DCI format 0_0 or 0_1, or in other DCI formats.
  • the uplink grant is information on frequency resources (resource blocks, resource block groups, subcarriers) used by the terminal device for uplink data transmission and a relative time from the slot n to the uplink data transmission timing (for example, If the relative time is k, slot n + k is the uplink data transmission timing), the number of OFDM symbols used in the slot of the uplink data transmission timing and the start position, and the number of consecutive OFDM symbols are included. Also good. Further, the uplink grant may notify the data transmission of a plurality of slots, and when the relative time indicating the uplink data transmission timing is k, the data transmission from slot n + k to slot n + k + n ′ is permitted. In this case, n 'information is included in the uplink grant.
  • frequency resources resource blocks, resource block groups, subcarriers
  • the uplink grant has a HARQ process number (for example, 4 bits), and the terminal apparatus cancels uplink grant data transmission corresponding to the HARQ process number designated by the uplink grant.
  • the timer 3 when the PDCCH indicates the uplink grant of the first transmission (uplink new transmission), the timer 3 is started (startup / execution / start).
  • the timer 3 may be a drx-InactivityTimer.
  • the drx-InactivityTimer is a period after PDCCH occlusion of PDCCH (uplink grant or downlink grant) indicating initial uplink or downlink user data transmission of the MAC entity. Also good.
  • the timer 3 is restarted (restarted) in the same manner as when the uplink grant is received.
  • the timer 3 may transmit uplink grant or downlink grant continuously in the base station apparatus, and when receiving either grant, it is not necessary to perform blind decoding with DRX ( This is to avoid that the grant cannot be continuously detected when the period is not On). Therefore, if the timer 3 expires immediately after detecting the preemption DCI format, the terminal device may stop blind decoding. Therefore, in the present embodiment, the preemption notification is handled in the same manner as the grant, and the timer 3 can be restarted by restarting the timer 3.
  • the drx-InactivityTimer is ⁇ 1 ms, 2 ms, 3 ms, 4 ms, 5 ms, 6 ms, 8 ms, 10 ms, 20 ms, 30 ms, 40 ms, 50 ms, 60 ms, 80 ms, 100 ms, 200 ms, 300 ms, 400 ms, 500 ms, 600 ms, 800 ms, 1000 ms. 1200 ms, 1600 ms ⁇ .
  • the timer 3 may have a setting for the timer period for detecting the uplink grant and the timer period for detecting the preemption, and the timer period for detecting the uplink grant may be set to 10 ms.
  • the timer period at the time of detection may be 20 ms.
  • the preemption notification by DCI described in the present embodiment is the same number of bits as in DCI format 0_0, and CRC scrambling may be INT-RNTI / UL-INT-RNTI, or the same bits as in DCI format 0_1 CRC scrambling may be INT-RNTI / UL-INT-RNTI, or the same number of bits as in DCI format 2_1, and CRC scrambling may be UL-INT-RNTI different from INT-RNTI,
  • the number of bits in the dedicated DCI format for uplink preemption notification may be defined, and the CRC scrambling may be notified UE-specifically as INT-RNTI / UL-INT-RNTI, or the same INT-RNTI / UL-INT -Notification of RNTI in advance That to a group of UE may be notified, it may notify the UE in the / BWP same serving cell.
  • timer control when the terminal apparatus performs uplink data transmission not only timer control when the terminal apparatus performs uplink data transmission, but also timer control is performed when uplink data transmission is canceled.
  • timer control is performed when uplink data transmission is cancelled.
  • This embodiment will explain a method for notifying allocation information for uplink data transmission canceled in the DCI format for notifying preemption.
  • the communication system according to this embodiment includes the base station device 10 and the terminal device 20 described with reference to FIGS. 3, 4, 5, and 6.
  • differences / additional points from the first embodiment will be mainly described.
  • the preemption using DCI is notified that the uplink data transmission is canceled, but in this embodiment, the preemption notification and the alternative resource for transmitting the preempted data are also notified in the DCI.
  • the preemption notification and the alternative resource for transmitting the preempted data are also notified in the DCI.
  • FIG. 13 shows an example of uplink data transmission according to the second embodiment.
  • the figure shows control of alternative resources for receiving preemption DCI after uplink data transmission is allocated by the uplink grant, and transmitting data in which the uplink data transmission is canceled and preempted.
  • the horizontal axis of the figure is time, and may be slot / minislot (non-slot or a plurality of OFDM symbols less than 14) / OFDM symbol, but will be described as a slot.
  • the base station apparatus uses the DCI format on the PDCCH and notifies the uplink grant.
  • the uplink grant is reported in DCI format 0_0 or 0_1, or in other DCI formats.
  • the uplink grant is information on frequency resources (resource blocks, resource block groups, subcarriers) used by the terminal device for uplink data transmission and a relative time from the slot n to the uplink data transmission timing (for example, If the relative time is k, slot n + k is the uplink data transmission timing), the number of OFDM symbols used in the slot of the uplink data transmission timing and the start position, and the number of consecutive OFDM symbols are included. Also good. Further, the uplink grant may notify the data transmission of a plurality of slots, and when the relative time indicating the uplink data transmission timing is k, the data transmission from slot n + k to slot n + k + n ′ is permitted. In this case, n 'information is included in the uplink grant.
  • frequency resources resource blocks, resource block groups, subcarriers
  • the uplink grant has a HARQ process number (for example, 4 bits), and the terminal apparatus cancels uplink grant data transmission corresponding to the HARQ process number designated by the uplink grant.
  • the DCI format of the detected preemption notification may include timing (time domain resource assignment) information for transmitting data in which uplink data transmission is canceled in slot n + 2.
  • the timing information may be a relative time L from the preemption notification slot n + 1.
  • L 3
  • the terminal apparatus performs uplink data transmission canceled in slot n + 2 in slot n + 4.
  • the timing information may be a relative time from a slot (slot n) in which an uplink grant for canceled uplink data transmission is detected.
  • the timing information may be a relative time from the canceled uplink data transmission slot (slot n + 2).
  • the terminal device transmits the transmission parameters (frequency domain resource assignment, MCS, frequency hopping flag, RV, NDI, HARQ process number, TPC command for PUSCH, UL / SUL notified in DCI format 0_0 or 0_1 in slot n.
  • the transmission parameters frequency domain resource assignment, MCS, frequency hopping flag, RV, NDI, HARQ process number, TPC command for PUSCH, UL / SUL notified in DCI format 0_0 or 0_1 in slot n.
  • the transmission parameters frequency domain resource assignment, MCS, frequency hopping flag, RV, NDI, HARQ process number, TPC command for PUSCH, UL / SUL notified in DCI format 0_0 or 0_1 in slot n.
  • HARQ process number TPC command for PUSCH
  • UL / SUL notified in DCI format 0_0 or 0_1 in slot n may be used to transmit uplink data by changing only the transmission timing.
  • a frequency domain resource assignment or MCS may be notified in addition to information on timing for transmitting data in which uplink data transmission is canceled in slot n + 2. This is because the uplink data transmission timing is shifted in slot n + 2, so that frequency domain resource assignment and MCS re-designation can be performed in accordance with the scheduling situation and the like.
  • the terminal apparatus when the terminal apparatus cancels uplink data transmission, the terminal apparatus notifies an alternative radio resource for uplink data transmission canceled by the preemption DCI. As a result, it is possible to efficiently realize uplink grant notification when uplink data transmission is cancelled, and avoid an increase in power consumption due to the terminal device continuing to perform blind decoding and unnecessary SR transmission.
  • This embodiment will explain a method for notifying allocation information for uplink data transmission canceled in the DCI format for notifying preemption.
  • the communication system according to this embodiment includes the base station device 10 and the terminal device 20 described with reference to FIGS. 3, 4, 5, and 6.
  • differences / additional points from the first embodiment will be mainly described.
  • FIG. 14 shows an example of uplink data transmission according to the third embodiment.
  • the figure shows control of alternative resources for receiving preemption DCI after uplink data transmission is allocated by the uplink grant, and transmitting data in which the uplink data transmission is canceled and preempted.
  • the horizontal axis of the figure is time, and may be slot / minislot (non-slot or a plurality of OFDM symbols less than 14) / OFDM symbol, but will be described as a slot.
  • the base station apparatus uses the DCI format on the PDCCH and notifies the uplink grant.
  • the uplink grant is reported in DCI format 0_0 or 0_1, or in other DCI formats.
  • the uplink grant is information on frequency resources (resource blocks, resource block groups, subcarriers) used by the terminal device for uplink data transmission and a relative time from the slot n to the uplink data transmission timing (for example, If the relative time is k, slot n + k is the uplink data transmission timing), the number of OFDM symbols used in the slot of the uplink data transmission timing and the start position, and the number of consecutive OFDM symbols are included. Also good. Further, the uplink grant may notify the data transmission of a plurality of slots, and when the relative time indicating the uplink data transmission timing is k, the data transmission from slot n + k to slot n + k + n ′ is permitted. In this case, n 'information is included in the uplink grant.
  • frequency resources resource blocks, resource block groups, subcarriers
  • the uplink grant has a HARQ process number (for example, 4 bits), and the terminal apparatus cancels uplink grant data transmission corresponding to the HARQ process number designated by the uplink grant.
  • the DCI format of the detected preemption notification may include timing information for notifying an uplink grant for reassigning radio resources for transmitting the canceled data.
  • a relative time J from the slot n + 1 of the preemption notification may be notified.
  • J 3
  • the terminal apparatus detects an uplink grant that notifies a radio resource for uplink data transmission canceled in slot n + 2 in slot n + 4.
  • the timing information may be a relative time from a slot (slot n) in which an uplink grant for canceled uplink data transmission is detected.
  • the timing information may be a relative time from the canceled uplink data transmission slot (slot n + 2).
  • the terminal apparatus detects the uplink grant of the DCI format 0_0 or 0_1 in the slot n + 4, and transmits preempted data based on the DCI detected in the slot n + 4 (slot n + 5).
  • the uplink grant timing for notifying the alternative radio resource for uplink data transmission canceled by the preemption DCI is notified.
  • a program that operates in a device is a program that controls a central processing unit (CPU) or the like to function a computer so as to realize the functions of the above-described embodiments according to one aspect of the present invention.
  • CPU central processing unit
  • the program or the information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) during processing, or stored in nonvolatile memory such as flash memory or Hard Disk Drive (HDD).
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • the CPU reads and corrects / writes.
  • a program for realizing the functions of the embodiments may be recorded on a computer-readable recording medium.
  • the “computer system” here is a computer system built in the apparatus, and includes hardware such as an operating system and peripheral devices.
  • the “computer-readable recording medium” may be any of a semiconductor recording medium, an optical recording medium, a magnetic recording medium, and the like.
  • Computer-readable recording medium means a program that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory inside a computer system serving as a server or a client may be included, which holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • each functional block or various features of the apparatus used in the above-described embodiments can be implemented or executed by an electric circuit, that is, typically an integrated circuit or a plurality of integrated circuits.
  • Electrical circuits designed to perform the functions described herein can be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or others Programmable logic devices, discrete gate or transistor logic, discrete hardware components, or a combination thereof.
  • a general purpose processor may be a microprocessor or a conventional processor, controller, microcontroller, or state machine.
  • the electric circuit described above may be configured with a digital circuit or an analog circuit.
  • an integrated circuit based on the technology can be used.
  • the present invention is not limited to the above-described embodiment.
  • an example of an apparatus has been described.
  • the present invention is not limited to this, and a stationary or non-movable electronic device installed indoors or outdoors, such as an AV device, a kitchen device, It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • One embodiment of the present invention is used in, for example, a communication system, a communication device (for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (for example, a communication chip), a program, or the like. be able to.
  • a communication device for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device
  • an integrated circuit for example, a communication chip
  • a program or the like.

Abstract

第1と第2のDCIを検出する制御情報検出部と第1のDCIによる上りリンク(UL)データ送信、もしくは第2のDCIで割当てられたリソースのキャンセルが可能な送信部と、を備え、第1のDCIのULグラントを検出し、ULグラントに基づいてULデータ送信した場合にデータ送信後に対応するHARQプロセスの第1のタイマーをスタートして第2のタイマーを止め、第1のタイマーが満了した場合はHARQプロセスの第2のタイマーをスタートし、第2のDCIによるULデータ送信のキャンセルを検出した場合、キャンセルされたデータ送信のタイミングで、第1のタイマーが満了して第2のタイマーが実行中であれば再スタートし、第2のタイマーが実行中でなければスタートする。

Description

端末装置
 本発明は、端末装置に関する。
 本願は、2018年4月27日に日本に出願された特願2018-086484号について優先権を主張し、その内容をここに援用する。
 近年、第5世代移動通信システム(5G: 5th Generation mobile telecommunication systems)が注目されており、主に多数の端末装置によるMTC(mMTC;Massive Machine Type Communications)、超高信頼・低遅延通信(URLLC;Ultra-reliable and low latency communications)、大容量・高速通信(eMBB;enhanced Mobile BroadBand)を実現する通信技術の仕様化が見込まれている。3GPP(3rd Generation Partnership Project)では、5Gの通信技術としてNR(New Radio)の検討が行われており、NRのマルチアクセス(MA: Multiple Access)の議論が進められている。
 5Gでは、これまでネットワークに接続されていなかった多様な機器を接続するIoT(Internet of Things)の実現が見込まれ、mMTCの実現が重要な要素の一つになっている。3GPPにおいて、小さいサイズのデータ送受信を行う端末装置を収容するMTC(Machine Type Communication)として、M2M(Machine-to-Machine)通信技術の標準化が既に行われている(非特許文献1)。さらに、低レートでのデータ送信を狭帯域でサポートするため、NB-IoT(Narrow Band-IoT)の仕様化が行われている(非特許文献2)。5Gでは、これらの標準規格よりもさらなる多数端末の収容を実現すると共に、超高信頼・低遅延通信が必要なIoTの機器も収容することが期待されている。
 一方、3GPPで仕様化されているLTE(Long Term Evolution)、LTE-A(LTE-Advanced)等の通信システムにおいて、端末装置(UE:User Equipment)は、ランダムアクセスプロシージャ(Random Access Procedure)やスケジューリング要求(SR:Scheduling Request)等を使用して、基地局装置(BS;Base Station、eNB;evolvedNode Bとも呼称される)に、上りリンクのデータを送信するための無線リソースを要求する。前記基地局装置は、SRを基に各端末装置に上り送信許可(UL Grant)を与える。前記端末装置は、前記基地局装置から制御情報のUL Grantを受信すると、そのUL Grantに含まれる上りリンク送信パラメータに基づき、所定の無線リソースで上りリンクのデータを送信する(Scheduled access、grant-based access、ダイナミックスケジューリングによる伝送と呼ばれる、以下スケジュールドアクセスとする)。このように、基地局装置は、全ての上りリンクのデータ送信を制御する(基地局装置は、各端末装置よって送信される上りリンクのデータの無線リソースを把握している)。スケジュールドアクセスにおいて、基地局装置が上りリンク無線リソースを制御することにより、直交多元接続(OMA:Orthogonal Multiple Access)を実現できる。
 5GのmMTCでは、スケジュールドアクセスを用いると制御情報量が増大することが問題である。また、URLLCではスケジュールドアクセスを用いると遅延が長くなることが問題である。そこで、端末装置がランダムアクセスプロシージャもしくはSR送信をしない、かつUL Grant受信等を行うことなくデータ送信を行うグラントフリーアクセス(grant free access、grant less access、Contention-based access、Autonomous accessやResource allocation for uplink transmission without grant、type1 configured grant transmissionなどとも呼称される、以下、グラントフリーアクセスとする)やSemi-persistent scheduling(SPS、Type2 configured grant transmissionなどとも呼称される)の活用が検討されている(非特許文献3)。グラントフリーアクセスでは、多数デバイスが小さいサイズのデータの送信を行う場合でも、制御情報によるオーバーヘッドの増加を抑えることができる。さらに、グラントフリーアクセスでは、UL Grant受信等を行わないため、送信データの発生から送信までの時間を短くできる。また、SPSでは一部の送信パラメータを上位層の制御情報で通知し、上位層で通知していない送信パラメータと共に周期的なリソースの使用許可を示すアクティベーションのUL Grantで通知することでデータ送信が可能となる。
 一方、下りリンクでは、eMBBのデータ送信のために割当て済みのリソースをURLLCのデータ送信のために使用することができる。基地局装置は、下りリンクのeMBBの宛先のUEに対して、Pre-emptionの制御情報を通知し、Pre-emptionしたリソースを下りリンクのURLLCのデータ送信に使う。一方、下りリンクのデータ受信のスケジューリングをされたリソースに対するPre-emptionの制御情報を検出した端末装置は、Pre-emptionで指定されるリソースに自局宛ての下りリンクのデータがないと判断する。上りリンクにおいても異なる端末装置間でeMBBとURLLCのデータの多重の検討が行われている。また、1つの端末装置がeMBBとURLLCのトラフィックを有する場合に、eMBBとURLLCのデータの多重についても検討されている。
 異なる端末装置間(Inter-UE)でeMBBとURLLCのデータの多重する場合は、基地局装置は予めeMBBの上りリンクのデータ送信用にUL Grantでスケジューリング済みの無線リソースを、DCIフォーマットを使ってURLLCのデータ送信に変更する通知をすることができる。この場合、eMBBの上りリンクのデータ送信用の無線リソースをスケジューリングされていた端末装置は、少なくとも他の端末装置がURLLCのデータ送信に使われる無線リソースは使用できなくなる。ここで、端末装置は、DCIにより他の端末装置がURLLCのデータ送信に使われる無線リソースの通知を検出後に、データ送信を止めても良い。DCIにより他の端末装置がURLLCのデータ送信に使われる無線リソースの通知により端末装置がデータ送信を止めた場合、基地局装置と端末装置でデータ送信を止めたことがわかっているため、ACK/NACKを送信してなくても良い。
 基地局装置がデータ送信を止めた端末装置に対してACK/NACKを送信しない場合、端末装置は、送信を止めたデータを再度送信するためのDCIを待つ必要がある。しかしながら、基地局装置からのDCIによりデータ送信を止めると、DCIを待つタイマーが開始されず、端末装置はDCIを待つ期間が設定されない問題がある。また、端末装置が送信を止めたデータのために、SRを送信すると消費電力が大きくなる問題がある。
 本発明の一態様はこのような事情を鑑みてなされたものであり、その目的は、データ送信を止めた場合の再度データ送信の効率的なプロシージャを実現することが可能な端末装置を提供することにある。
 上述した課題を解決するために本発明の一態様に係る端末装置の構成は、次の通りである。
 (1)本発明の一態様は、基地局装置と通信を行う端末装置であって、第1のDCIフォーマットと第2のDCIフォーマットを検出する制御情報検出部と、前記第1のDCIフォーマットに基づく上りリンクデータ送信、もしくは前記第2のDCIフォーマットでスケジュールされたリソースのキャンセルが可能な送信部と、を備え、前記制御情報検出部が前記第1のDCIフォーマットによる前記上りリンクデータ送信のための上りリンクグラントを検出し、前記送信部は、前記上りリンクグラントに基づいて対応する上りリンクのデータ送信した場合にデータ送信後に対応するHARQプロセスの第1のタイマーをスタートして対応するHARQプロセスの第2のタイマーを止め、前記第1のタイマーが満了した場合は対応するHARQプロセスの第2のタイマーをスタートし、前記第2のDCIフォーマットによる前記上りリンクグラントに基づく上りリンクデータ送信のキャンセルを検出した場合、キャンセルされた対応するデータ送信のタイミングで、対応するHARQプロセスの前記第1のタイマーが満了して前記第2のタイマーが実行中であれば再スタートし、前記第2のタイマーが実行中でなければスタートする。
 (2)また、本発明の一態様は、前記第1のタイマーが満了後にスタートする第2のタイマーと、キャンセルされた対応するデータ送信のタイミングでスタートする第2のタイマーは異なる期間が設定される。
 (3)また、本発明の一態様は、前記第1のDCIフォーマットによる前記上りリンクグラントを検出したときにスタートする第3のタイマーがあり、前記第2のDCIフォーマットによる前記上りリンクグラントに基づく上りリンクデータ送信のキャンセルを検出した場合に前記第3のタイマーを再スタートする。
 (4)また、本発明の一態様は、前記第1のDCIフォーマットによる前記上りリンクグラントを検出したときにスタートする第3のタイマーと、前記第2のDCIフォーマットによる前記上りリンクグラントに基づく上りリンクデータ送信のキャンセルを検出した場合に再スタートする第3のタイマーは異なる期間が設定される。
 (5)また、本発明の一態様は、前記第2のDCIフォーマットによる前記上りリンクグラントに基づく上りリンクデータ送信のキャンセルを検出した場合、前記第2のDCIフォーマットに含まれる送信タイミングと前記第1のDCIフォーマットに含まれる送信パラメータに基づき上りリンクのデータ送信をする。
 (6)また、本発明の一態様は、前記第2のDCIフォーマットによる前記上りリンクグラントに基づく上りリンクデータ送信のキャンセルを検出した場合、前記第2のDCIフォーマットに含まれる送信タイミングとMCS、周波数領域リソースアサインメントと、前記第2のDCIフォーマットに含まれない送信パラメータであり前記第1のDCIフォーマットに含まれる送信パラメータに基づき上りリンクのデータ送信をする。
 (7)また、本発明の一態様は、前記第2のDCIフォーマットによる前記上りリンクグラントに基づく上りリンクデータ送信のキャンセルを検出した場合、前記第2のDCIフォーマットに含まれる上りリンクグラントの通知タイミングに基づき、再割当ての上りリンクグラントを検出する。
 本発明の一又は複数の態様によれば、効率的な上りリンクのデータ送信を実現することができる。
第1の実施形態に係る通信システムの例を示す図である。 第1の実施形態に係る通信システムの無線フレーム構成例を示す図である。 第1の実施形態に係る基地局装置10の構成を示す概略ブロック図である。 第1の実施形態に係る信号検出部の一例を示す図である。 第1の実施形態における端末装置20の構成を示す概略ブロック図である。 第1の実施形態に係る信号検出部の一例を示す図である。 従来の上りリンクのデータ送信の一例を示す図である。 第1の実施形態に係る上りリンクのデータ送信の停止の一例を示す図である。 第1の実施形態に係る上りリンクのデータ送信の停止の一例を示す図である。 第1の実施形態に係る上りリンクのデータ送信の一例を示す図である。 第1の実施形態に係る上りリンクのデータの再送の一例を示す図である。 第1の実施形態に係る上りリンクのデータ送信の停止の一例を示す図である。 第2の実施形態に係る上りリンクのデータ送信の一例を示す図である。 第3の実施形態に係る上りリンクのデータ送信の一例を示す図である。
 本実施形態に係る通信システムは、基地局装置(セル、スモールセル、ピコセル、サービングセル、コンポーネントキャリア、eNodeB(eNB)、Home eNodeB、Low Power Node、Remote Radio Head、gNodeB(gNB)、制御局、Bandwidth Part(BWP)、Supplementary Uplink(SUL)とも呼称される)および端末装置(端末、移動端末、移動局、UE:User Equipmentとも呼称される)を備える。該通信システムにおいて、下りリンクの場合、基地局装置は送信装置(送信点、送信アンテナ群、送信アンテナポート群)となり、端末装置は受信装置(受信点、受信端末、受信アンテナ群、受信アンテナポート群)となる。上りリンクの場合、基地局装置は受信装置となり、端末装置は送信装置となる。前記通信システムは、D2D(Device-to-Device)通信にも適用可能である。その場合、送信装置も受信装置も共に端末装置になる。
 前記通信システムは、人間が介入する端末装置と基地局装置間のデータ通信に限定されるものではなく、MTC(Machine Type Communication)、M2M通信(Machine-to-Machine Communication)、IoT(Internet of Things)用通信、NB-IoT(Narrow Band-IoT)等(以下、MTCと呼ぶ)の人間の介入を必要としないデータ通信の形態にも、適用することができる。この場合、端末装置がMTC端末となる。前記通信システムは、上りリンク及び下りリンクにおいて、DFTS-OFDM(Discrete Fourier Transform Spread - Orthogonal Frequency Division Multiplexing、SC-FDMA(Single Carrier - Frequency Division Multiple Access)とも称される)、CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing)等のマルチキャリア伝送方式を用いることができる。前記通信システムは、フィルタを適用したFBMC(Filter Bank Multi Carrier)、f-OFDM(Filtered - OFDM)、UF-OFDM(Universal Filtered - OFDM)、W-OFDM(Windowing - OFDM)、スパース符号を用いる伝送方式(SCMA:Sparse Code Multiple Access)などを用いることもできる。さらに、前記通信システムは、DFTプレコーディングを適用し、上記のフィルタを用いる信号波形を用いてもよい。さらに、前記通信システムは、前記伝送方式において、符号拡散、インターリーブ、スパース符号等を施すこともできる。なお、以下では、上りリンクはDFTS-OFDM伝送とCP-OFDM伝送の少なくとも一つを用い、下りリンクはCP-OFDM伝送を用いた場合で説明するが、これに限らず、他の伝送方式を適用することができる。
 本実施形態における基地局装置及び端末装置は、無線事業者がサービスを提供する国や地域から使用許可(免許)が得られた、いわゆるライセンスバンド(licensed band)と呼ばれる周波数バンド、及び/又は、国や地域からの使用許可(免許)を必要としない、いわゆるアンライセンスバンド(unlicensed band)と呼ばれる周波数バンドで通信することができる。アンライセンスバンドでは、キャリアセンス(例えば、listen before talk方式)に基づく通信としても良い。
 本実施形態において、“X/Y”は、“XまたはY”の意味を含む。本実施形態において、“X/Y”は、“XおよびY”の意味を含む。本実施形態において、“X/Y”は、“Xおよび/またはY”の意味を含む。
(第1の実施形態)
 図1は、本実施形態に係る通信システムの構成例を示す図である。本実施形態における通信システムは、基地局装置10、端末装置20-1~20-n1(n1は基地局装置10と接続している端末装置数)を備える。端末装置20-1~20-n1を総称して端末装置20とも称する。カバレッジ10aは、基地局装置10が端末装置20と接続可能な範囲(通信エリア)である(セルとも呼ぶ)。
 図1において、上りリンクr30の無線通信は、少なくとも以下の上りリンク物理チャネルを含む。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・物理上りリンク制御チャネル(PUCCH)
・物理上りリンク共有チャネル(PUSCH)
・物理ランダムアクセスチャネル(PRACH)
 PUCCHは、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる物理チャネルである。上りリンク制御情報は、下りリンクデータ(Downlink transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH, Physical Downlink Shared Channel: PDSCH)に対する肯定応答(positive acknowledgement: ACK)/否定応答(Negative acknowledgement: NACK)を含む。ACK/NACKは、HARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)、HARQフィードバック、HARQ応答、または、HARQ制御情報、送達確認を示す信号とも称される。
 上りリンク制御情報は、初期送信のためのPUSCH(Uplink-Shared Channel: UL-SCH)リソースを要求するために用いられるスケジューリングリクエスト(Scheduling Request: SR)を含む。スケジューリングリクエストは、正のスケジューリングリクエスト(positive scheduling request)、または、負のスケジューリングリクエスト(negative scheduling request)を含む。正のスケジューリングリクエストは、初期送信のためのUL-SCHリソースを要求することを示す。負のスケジューリングリクエストは、初期送信のためのUL-SCHリソースを要求しないことを示す。
 上りリンク制御情報は、下りリンクのチャネル状態情報(Channel State Information:CSI)を含む。前記下りリンクのチャネル状態情報は、好適な空間多重数(レイヤ数)を示すランク指標(Rank Indicator: RI)、好適なプレコーダを示すプレコーディング行列指標(Precoding Matrix Indicator: PMI)、好適な伝送レートを指定するチャネル品質指標(Channel Quality Indicator: CQI)などを含む。前記PMIは、端末装置によって決定されるコードブックを示す。該コードブックは、物理下りリンク共有チャネルのプレコーディングに関連する。前記CQIは、所定の帯域における好適な変調方式(例えば、QPSK、16QAM、64QAM、256QAMなど)、符号化率(coding rate)、および周波数利用効率を指し示すインデックス(CQIインデックス)を用いることができる。端末装置は、PDSCHのトランスポートブロックが所定のブロック誤り確率(例えば、誤り率0.1)を超えずに受信可能であろうCQIインデックスをCQIテーブルから選択する。ここで、端末装置は、トランスポートブロック用の所定の誤り確率(誤り率)を複数有してもよい。例えば、eMBBのデータの誤り率は0.1をターゲットとし、URLLCの誤り率は0.00001をターゲットとしても良い。端末装置は、上位レイヤ(例えば、基地局からRRCシグナリングでセットアップ)で設定された場合にターゲットの誤り率(トランスポートブロック誤り率)毎のCSIフィードバックを行っても良いし、上位レイヤで複数ターゲットの誤り率のうち1つが上位レイヤで設定された場合に設定されたターゲットの誤り率のCSIフィードバックを行っても良い。なおRRCシグナリングで誤り率が設定されたか否かではなく、eMBB(つまりBLERが0.1を超えない伝送)用のCQIテーブルではないCQIテーブルが選択されたか否かによって、eMBB用の誤り率(例えば0.1)ではない誤り率によってCSIを算出してもよい。
 PUCCHは、PUCCHフォーマット0~4が定義されており、PUCCHフォーマット0、2は1~2OFDMシンボルで送信、PUCCHフォーマット1,3、4は4~14OFDMシンボルで送信する。PUCCHフォーマット0と1は、2ビット以下の通知に用いられ、HARQ-ACKのみ、SRのみ、もしくはHARQ-ACKとSRを同時に通知できる。PUCCHフォーマット1、3、4は、2ビットより多いビットの通知に用いられ、HARQ-ACK、SR、CSIを同時に通知できる。PUCCHの送信に使用するOFDMシンボル数は、上位レイヤ(例えば、RRCシグナリングでセットアップ)で設定され、いずれのPUCCHフォーマットを使用するかはPUCCHを送信するタイミング(スロット、OFDMシンボル)で、SR送信やCSI送信があるか否かによって決まる。
 PUSCHは、上りリンクデータ(Uplink Transport Block、Uplink-Shared Channel:UL-SCH)を送信するために用いられる物理チャネルである。PUSCHは、前記上りリンクデータと共に、下りリンクデータに対するHARQ-ACKおよび/またはチャネル状態情報を送信するために用いられてもよい。PUSCHは、チャネル状態情報のみを送信するために用いられてもよい。PUSCHはHARQ-ACKおよびチャネル状態情報のみを送信するために用いられてもよい。
 PUSCHは、無線リソース制御(Radio Resource Control: RRC)シグナリングを送信するために用いられる。RRCシグナリングは、RRCメッセージ/RRC層の情報/RRC層の信号/RRC層のパラメータ/RRC情報/RRC情報要素とも称される。RRCシグナリングは、無線リソース制御層において処理される情報/信号である。基地局装置から送信されるRRCシグナリングは、セル内における複数の端末装置に対して共通のシグナリングであってもよい。基地局装置から送信されるRRCシグナリングは、ある端末装置に対して専用のシグナリング(dedicated signalingとも称する)であってもよい。すなわち、ユーザ装置固有(UE-specific)な情報は、ある端末装置に対して専用のシグナリングを用いて送信される。RRCメッセージは、端末装置のUE Capabilityを含めることができる。UE Capabilityは、該端末装置がサポートする機能を示す情報である。
 PUSCHは、MAC CE(Medium Access Control Element)を送信するために用いられる。MAC CEは、媒体アクセス制御層(Medium Access Control layer)において処理(送信)される情報/信号である。例えば、パワーヘッドルーム(PH: Power Headroom)は、MAC CEに含まれ、物理上りリンク共有チャネルを経由して報告されてもよい。すなわち、MAC CEのフィールドが、パワーヘッドルームのレベルを示すために用いられる。上りリンクデータは、RRCメッセージ、MAC CEを含むことができる。RRCシグナリング、および/または、MAC CEを、上位層の信号(higher layer signaling)とも称する。RRCシグナリング、および/または、MAC CEは、トランスポートブロックに含まれる。
 PUSCHは、DCIフォーマットに含まれる上りリンクの送信パラメータ(例えば、時間領域のリソース割当、周波数領域のリソース割当など)に基づき、指定された無線リソースで上りリンクのデータ送信を行うダイナミックスケジューリング(周期的でない無線リソースの割当)のデータ送信に用いられても良い。PUSCHは、RRCによるTransformPrecoder(プレコーダ)、nrofHARQ(HARQプロセス数)、repK-RV(同一データの繰り返し送信時のリダンダンシーバージョンのパターン)受信後に、CRCがCS-RNTIでスクランブルされているDCIフォーマット0_0/0_1を受信し、さらに受信したDCIフォーマット0_0/0_1が所定のフィールドにValidationの設定がされているアクティベーションの制御情報を受信することで周期的な無線リソースを使用したデータ送信が許可されるSPS(Semi-Persistent scheduling) Type2(Configured uplink grant(設定された上りリンクグラント) type2)のデータ送信に用いられても良い。ここで、Validationに使用されるフィールドはHARQのプロセス番号の全ビットとRVの2ビットなどが用いられても良い。また、type2 configured grant transmissionのディアクティベーション(リリース)の制御情報のValidationに使用されるフィールドはHARQのプロセス番号の全ビット、MCSの全ビット、リソースブロックアサインメントの全ビット、RVの2ビットなどが用いられても良い。さらに、PUSCHは、RRCによりtype2 configured grant transmissionの情報に加えて、rrcConfiguredUplinkGrantを受信することで周期的なデータ送信が許可されるtype1 configured grant transmissionに用いられても良い。rrcConfiguredUplinkGrantの情報には、時間領域のリソース割当、時間領域のオフセット、周波数領域のリソース割当、DMRSの設定、同一データの繰り返し送信回数(repK)が含まれても良い。また、同一のサービングセル内(コンポーネントキャリア内)で、type1 configured grant transmissionとtype2 configured grant transmissionが設定された場合は、type1 configured grant transmissionを優先しても良い。また、同一のサービングセル内でtype1 configured grant transmissionの上りリンクグラントとダイナミックスケジューリングの上りリンクグラントが時間領域で重複する場合、ダイナミックスケジューリングの上りリンクグラントがオーバライド(override、ダイナミックスケジューリングのみ使用し、type1 configured grant transmissionの上りリンクグラントを覆す)しても良い。また、複数の上りリンクグラントが時間領域で重複するとは、少なくとも一部のOFDMシンボルで重複することを意味しても良いし、サブキャリア間隔(SCS)が異なる場合はOFDMシンボル長が異なるため、OFDMシンボル内の一部の時間が重複することを意味しても良い。type1 configured grant transmissionの設定は、RRCでアクティベーションされていないScellに設定することも可能とし、type1 configured grant transmissionの設定されたScellは、アクティベーション後にtype1 configured grant transmissionの上りリンクグラントが有効となっても良い。
 PRACHは、ランダムアクセスに用いるプリアンブルを送信するために用いられる。PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャ、上りリンク送信に対する同期(タイミング調整)、およびPUSCH(UL-SCH)リソースの要求を示すために用いられる。
 上りリンクの無線通信では、上りリンク物理信号として上りリンク参照信号(Uplink Reference Signal: UL RS)が用いられる。上りリンク参照信号には、復調用参照信号(Demodulation Reference Signal: DMRS)、サウンディング参照信号(Sounding Reference Signal: SRS)が含まれる。DMRSは、物理上りリンク共有チャネル/物理上りリンク制御チャネルの送信に関連する。例えば、基地局装置10は、物理上りリンク共有チャネル/物理上りリンク制御チャネルを復調するとき、伝搬路推定/伝搬路補正を行うために復調用参照信号を使用する。上りリンクのDMRSは、front-loaded DMRSの最大のOFDMシンボル数とDMRSシンボルの追加の設定(DMRS-add―pos)がRRCで基地局装置により指定される。front-loaded DMRSが1OFDMシンボル(シングルシンボルDMRS)の場合、周波数領域配置、周波数領域のサイクリックシフトの値、DMRSが含まれるOFDMシンボルにおいて、どの程度異なる周波数領域配置が使用されるかがDCIで指定され、front-loaded DMRSが2OFDMシンボル(ダブルシンボルDMRS)の場合、上記に加え、長さ2の時間拡散の設定がDCIで指定される。
 SRS(Sounding Reference Signal)は、物理上りリンク共有チャネル/物理上りリンク制御チャネルの送信に関連しない。つまり、上りリンクのデータ送信の有無に関わらず、端末装置は周期的もしくは非周期的にSRSを送信する。周期的なSRSでは、端末装置は基地局装置より上位層の信号(例えばRRC)で通知されたパラメータに基づいてSRSを送信する。一方、非周期的なSRSでは、端末装置は基地局装置より上位層の信号(例えばRRC)で通知されたパラメータとSRSの送信タイミングを示す物理下りリンク制御チャネル(例えば、DCI)に基づいてSRSを送信する。基地局装置10は、上りリンクのチャネル状態を測定(CSI Measurement)するためにSRSを使用する。基地局装置10は、SRSの受信により得られた測定結果から、タイミングアライメントや閉ループ送信電力制御を行っても良い。
 図1において、下りリンクr31の無線通信では、少なくとも以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・物理報知チャネル(PBCH)
・物理下りリンク制御チャネル(PDCCH)
・物理下りリンク共有チャネル(PDSCH)
 PBCHは、端末装置で共通に用いられるマスターインフォメーションブロック(Master Information Block: MIB, Broadcast Channel: BCH)を報知するために用いられる。MIBはシステム情報の1つである。例えば、MIBは、下りリンク送信帯域幅設定、システムフレーム番号(SFN:System Frame number)を含む。MIBは、PBCHが送信されるスロットの番号、サブフレームの番号、および、無線フレームの番号の少なくとも一部を指示する情報を含んでもよい。
 PDCCHは、下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる。下りリンク制御情報は、用途に基づいた複数のフォーマット(DCIフォーマットとも称する)が定義される。1つのDCIフォーマットを構成するDCIの種類やビット数に基づいて、DCIフォーマットは定義されてもよい。下りリンク制御情報は、下りリンクデータ送信のための制御情報と上りリンクデータ送信のための制御情報を含む。下りリンクデータ送信のためのDCIフォーマットは、下りリンクアサインメント(または、下りリンクグラント、DL Grant)とも称する。上りリンクデータ送信のためのDCIフォーマットは、上りリンクグラント(または、上りリンクアサインメント、UL Grant)とも称する。
 下りリンクのデータ送信のためのDCIフォーマットには、DCIフォーマット1_0とDCIフォーマット1_1などがある。DCIフォーマット1_0はフォールバック用の下りリンクのデータ送信用であり、MIMOなどをサポートするDCIフォーマット1_1よりも設定可能なパラメータ(フィールド)が少ない。また、DCIフォーマット1_1は、通知するパラメータ(フィールド)の有無(有効/無効)を変えることが可能であり、有効とするフィールドによりDCIフォーマット1_0よりもビット数が多くなる。一方、DCIフォーマット1_1はMIMOや複数のコードワード伝送、ZP CSI-RSトリガー、CBG送信情報などが通知可能であり、さらに、一部のフィールドの有無やビット数は上位層(例えばRRCシグナリング、MAC CE)の設定に応じて、追加される。1つの下りリンクアサインメントは、1つのサービングセル内の1つのPDSCHのスケジューリングに用いられる。下りリンクグラントは、該下りリンクグラントが送信されたスロット/サブフレームと同じスロット/サブフレーム内のPDSCHのスケジューリングのために、少なくとも用いられてもよい。下りリンクグラントは、該下りリンクグラントが送信されたスロット/サブフレームからKスロット/サブフレーム後のPDSCHのスケジューリングのために、用いられてもよい。また、下りリンクグラントは、複数のスロット/サブフレームのPDSCHのスケジューリングのために、用いられてもよい。DCIフォーマット1_0による下りリンクアサインメントには、以下のフィールドが含まれる。例えば、DCIフォーマットの識別子、周波数領域リソースアサインメント(PDSCHのためのリソースブロック割り当て、リソース割当)、時間領域リソースアサインメント、VRBからPRBへのマッピング、PDSCHに対するMCS(Modulation and Coding Scheme、変調多値数と符号化率を示す情報)、初期送信または再送信を指示するNDI(NEW Data Indicator)、下りリンクにおけるHARQプロセス番号を示す情報、誤り訂正符号化時にコードワードに加えられた冗長ビットの情報を示すRedudancy version(RV)、DAI(Downlink Assignment Index)、PUCCHの送信電力制御(TPC:Transmission Power Control)コマンド、PUCCHのリソースインディケータ、PDSCHからHARQフィードバックタイミングのインディケータなどがある。なお、各下りリンクデータ送信のためのDCIフォーマットには、上記情報のうち、その用途のために必要な情報(フィールド)が含まれる。DCIフォーマット1_0とDCIフォーマット1_1のいずれか一方、もしくは両方が下りリンクのSPSのアクティベーションとディアクティベーション(リリース)に使われても良い。
 上りリンクのデータ送信のためのDCIフォーマットには、DCIフォーマット0_0とDCIフォーマット0_1などがある。DCIフォーマット0_0はフォールバック用の上りリンクのデータ送信用であり、MIMOなどをサポートするDCIフォーマット0_1よりも定可能なパラメータ(フィールド)が少ない。また、DCIフォーマット0_1は、通知するパラメータ(フィールド)の有無(有効/無効)を変えることが可能であり、有効とするフィールドによりDCIフォーマット0_0よりもビット数が多くなる。一方、DCIフォーマット0_1はMIMOや複数のコードワード伝送、SRSリソースインディケータ、プレコーディング情報、アンテナポートの情報、SRS要求の情報、CSI要求の情報、CBG送信情報、上りリンクのPTRSアソシエーション、DMRSのシーケンス初期化などが通知可能であり、さらに、一部のフィールドの有無やビット数は上位層(例えばRRCシグナリング)の設定に応じて、追加される。1つの上りリンクグラントは、1つのサービングセル内の1つのPUSCHのスケジューリングを端末装置に通知するために用いられる。上りリンクグラントは、該上りリンクグラントが送信されたスロット/サブフレームからKスロット/サブフレーム後のPUSCHのスケジューリングのために、用いられてもよい。また、下りリンクグラントは、複数のスロット/サブフレームのPUSCHのスケジューリングのために、用いられてもよい。DCIフォーマット0_0による上りリンクグラントは、以下のフィールドが含まれる。例えば、DCIフォーマットの識別子、周波数領域リソースアサインメント(PUSCHを送信するためのリソースブロック割り当てに関する情報および時間領域リソースアサインメント、周波数ホッピングフラグ、PUSCHのMCSに関する情報、RV、NDI、上りリンクにおけるHARQプロセス番号を示す情報、PUSCHに対するTPCコマンド、UL/SUL(Supplemental UL)インディケータなどがある。DCIフォーマット0_0とDCIフォーマット0_1のいずれか一方、もしくは両方が上りリンクのSPSのアクティベーションとディアクティベーション(リリース)に使われても良い。
 DCIフォーマットは、SFI-RNTIでCRCがスクランブルされたDCIフォーマット2_0でスロットフォーマットインディケータ(SFI)の通知に用いられても良い。DCIフォーマットは、INT-RNTIでCRCがスクランブルされたDCIフォーマット2_1で、端末装置が自局のために意図された下りリンクのデータ送信がないことを想定するかもしれないPRB(1以上)とOFDMシンボル(1以上)の通知に用いられても良い。DCIフォーマットは、TPC-PUSCH-RNTIもしくはTPC-PUCCH-RNTIでCRCがスクランブルされたDCIフォーマット2_2で、PUSCHとPUCCHのためのTPCコマンドの送信に用いられても良い。DCIフォーマットは、TPC-SRS-RNTIでCRCがスクランブルされたDCIフォーマット2_3で、1以上の端末装置によるSRS送信のためのTPCコマンドのグループの送信に用いられても良い。DCIフォーマット2_3は、SRS要求にも使われても良い。DCIフォーマットは、INT-RNTIもしくはその他のRNTI(例えば、UL-INT-RNTI)でCRCがスクランブルされたDCIフォーマット2_X(例えば、DCIフォーマット2_4、DCIフォーマット2_1A)で、UL Grant/Configured UL Grantでスケジューリング済みのうち、端末装置がデータ送信を行わないPRB(1以上)とOFDMシンボル(1以上)の通知に用いられても良い。
 PDSCH/PUSCHに対するMCSは、該PDSCH/該PUSCHの変調オーダーおよびターゲットの符号化率を指し示すインデックス(MCSインデックス)を用いることができる。変調オーダーは、変調方式と対応づけられる。変調オーダー「2」、「4」、「6」は各々、「QPSK」、「16QAM」、「64QAM」を示す。さらに、上位レイヤ(例えばRRCシグナリング)で256QAMや1024QAMの設定がされた場合、変調オーダー「8」、「10」の通知が可能であり、それぞれ「256QAM」、「1024QAM」を示す。ターゲット符号化率は、前記PDCCHでスケジュールされたPDSCH/PUSCHのリソースエレメント数(リソースブロック数)に応じて、送信するビット数であるTBS(トランスポートブロックサイズ)の決定に使用される。通信システム1(基地局装置10及び端末装置20)は、MCSとターゲットの符号化率と前記PDSCH/PUSCH送信のために割当てられたリソースエレメント数(リソースブロック数)によってトランスポートブロックサイズの算出方法を共有する。
 PDCCHは、下りリンク制御情報に巡回冗長検査(Cyclic Redundancy Check: CRC)を付加して生成される。PDCCHにおいて、CRCパリティビットは、所定の識別子を用いてスクランブル(排他的論理和演算、マスクとも呼ぶ)される。パリティビットは、C-RNTI(Cell-Radio Network Temporary Identifier)、CS(Configured Scheduling)-RNTI、TC(Temporary C)-RNTI、P(Paging)-RNTI、SI(System Information)-RNTI、RA(Random Access)-RNTIで、INT-RNTI、SFI(Slot Format Indicator)-RNTI、TPC-PUSCH-RNTI、TPC-PUCCH-RNTI、またはTPC-SRS-RNTIでスクランブルされる。C-RNTIはダイナミックスケジューリング、CS-RNTIはSPS/グラントフリーアクセスでセル内における端末装置を識別するための識別子である。Temporary C-RNTIは、コンテンションベースランダムアクセス手順(contention based random access procedure)中において、ランダムアクセスプリアンブルを送信した端末装置を識別するための識別子である。C-RNTIおよびTemporary
 C-RNTIは、単一のサブフレームにおけるPDSCH送信またはPUSCH送信を制御するために用いられる。CS-RNTIは、PDSCHまたはPUSCHのリソースを周期的に割り当てるために用いられる。P-RNTIは、ページングメッセージ(Paging Channel: PCH)を送信するために用いられる。SI-RNTIは、SIBを送信するために用いられる、RA-RNTIは、ランダムアクセスレスポンス(ランダムアクセスプロシージャーにおけるメッセージ2)を送信するために用いられる。SFI-RNTIはスロットフォーマットを通知するために用いられる。INT-RNTIは下りリンク/上りリンクのプリエンプション(Pre-emption)を通知するために用いられる。TPC-PUSCH-RNTIとTPC-PUCCH-RNTI、TPC-SRS-RNTIは、それぞれPUSCHとPUCCH、SRSの送信電力制御値を通知するために用いられる。なお、前記識別子は、グラントフリーアクセス/SPSを複数設定するために、設定毎のCS-RNTIを含んでもよい。CS-RNTIによってスクランブルされたCRCを付加したDCIは、グラントフリーアクセスのアクティベーション、ディアクティベーション(リリース)、パラメータ変更や再送制御(ACK/NACK送信)のために使用することができ、パラメータはリソース設定(DMRSの設定パラメータ、グラントフリーアクセスの周波数領域・時間領域のリソース、グラントフリーアクセスに用いられるMCS、繰り返し回数、周波数ホッピングの有無など)を含むことができる。
 PDSCHは、下りリンクデータ(下りリンクトランスポートブロック、DL-SCH)を送信するために用いられる。PDSCHは、システムインフォメーションメッセージ(System Information Block: SIBとも称する。)を送信するために用いられる。SIBの一部又は全部は、RRCメッセージに含めることができる。
 PDSCHは、RRCシグナリングを送信するために用いられる。基地局装置から送信されるRRCシグナリングは、セル内における複数の端末装置に対して共通(セル固有)であってもよい。すなわち、そのセル内のユーザ装置共通の情報は、セル固有のRRCシグナリングを使用して送信される。基地局装置から送信されるRRCシグナリングは、ある端末装置に対して専用のメッセージ(dedicated signalingとも称する)であってもよい。すなわち、ユーザ装置固有(UE-Specific)な情報は、ある端末装置に対して専用のメッセージを使用して送信される。
 PDSCHは、MAC CEを送信するために用いられる。RRCシグナリングおよび/またはMAC CEを、上位層の信号(higher layer signaling)とも称する。PMCHは、マルチキャストデータ(Multicast Channel: MCH)を送信するために用いられる。
 図1の下りリンクの無線通信では、下りリンク物理信号として同期信号(Synchronization signal: SS)、下りリンク参照信号(Downlink Reference Signal: DL RS)が用いられる。
 同期信号は、端末装置が下りリンクの周波数領域および時間領域の同期を取るために用いられる。下りリンク参照信号は、端末装置が、下りリンク物理チャネルの伝搬路推定/伝搬路補正を行なうために用いられる。例えば、下りリンク参照信号は、PBCH、PDSCH、PDCCHを復調するために用いられる。下りリンク参照信号は、端末装置が、下りリンクのチャネル状態を測定(CSI measurement)するために用いることもできる。下りリンク参照信号には、CRS(Cell-specific Reference Signal)、CSI-RS(Channel state information Reference Signal)、DRS(Discovery Reference Signal)、DMRS(Demodulation Reference Signal)を含むことができる。
 下りリンク物理チャネルおよび下りリンク物理信号を総称して、下りリンク信号とも称する。また、上りリンク物理チャネルおよび上りリンク物理信号を総称して、上りリンク信号とも称する。また、下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルとも称する。また、下りリンク物理信号および上りリンク物理信号を総称して、物理信号とも称する。
 BCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。MAC層で用いられるチャネルを、トランスポートチャネルと称する。MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(TB:Transport Block)、または、MAC PDU(Protocol Data Unit)とも称する。トランスポートブロックは、MAC層が物理層に渡す(deliverする)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理などが行なわれる。
 上位層処理は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層などの物理層より上位層の処理を行なう。
 媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層などの物理層より上位層の処理を行なう。
 上位層の処理部では、各端末装置のための各種RNTIを設定する。前記RNTIは、PDCCH、PDSCHなどの暗号化(スクランブリング)に用いられる。上位層の処理では、PDSCHに配置される下りリンクデータ(トランスポートブロック、DL-SCH)、端末装置固有のシステムインフォメーション(System Information Block: SIB)、RRCメッセージ、MAC CEなどを生成、又は上位ノードから取得し、送信する。上位層の処理では、端末装置20の各種設定情報の管理をする。なお、無線リソース制御の機能の一部は、MACレイヤや物理レイヤで行われてもよい。
 上位層の処理では、端末装置がサポートする機能(UE capability)等、端末装置に関する情報を端末装置20から受信する。端末装置20は、自身の機能を基地局装置10に上位層の信号(RRCシグナリング)で送信する。端末装置に関する情報は、その端末装置が所定の機能をサポートするかどうかを示す情報、または、その端末装置が所定の機能に対する導入およびテストの完了を示す情報を含む。所定の機能をサポートするかどうかは、所定の機能に対する導入およびテストを完了しているかどうかを含む。
 端末装置が所定の機能をサポートする場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信する。端末装置が所定の機能をサポートしない場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信しなくてもよい。すなわち、その所定の機能をサポートするかどうかは、その所定の機能をサポートするかどうかを示す情報(パラメータ)を送信するかどうかによって通知される。なお、所定の機能をサポートするかどうかを示す情報(パラメータ)は、1または0の1ビットを用いて通知してもよい。
 図1において、基地局装置10及び端末装置20は、上りリンクにおいて、グラントフリーアクセス(grant free access、grant less access、Contention-based access、Autonomous accessやResource allocation for uplink transmission without grant、type1configured grant transmissionなどとも呼称される、以下、グラントフリーアクセスとする)を用いた多元接続(MA: Multiple Access)をサポートする。グラントフリーアクセスとは、端末装置によるSRの送信と基地局装置によるDCIを使ったUL Grant(L1 signalingによるUL Grantとも呼ばれる)によるデータ送信の物理リソースと送信タイミングの指定の手順を行わずに端末装置が上りリンクのデータ(物理上りリンクチャネルなど)を送信する方式である。よって、端末装置は、RRCシグナリング(SPS-config)により、使用できるリソースの割当て周期、目標受信電力、フラクショナルTPCの値(α)、HARQプロセス数、同一トランスポートの繰り返し送信時のRVパターンに加え、RRCシグナリングのConfigured Uplink Grant(rrcConfiguredUplinkGrant、設定された上りリンクグラント)として、予めグラントフリーアクセスに使用できる物理リソース(周波数領域のリソースアサインメント、時間領域のリソースアサインメント)や送信パラメータ(DMRSのサイクリックシフトやOCC、アンテナポート番号、DMRSを配置するOFDMシンボルの位置や数、同一トランスポートの繰り返し送信回数などを含んでも良い)を受信しておき、送信データがバッファに入っている場合のみ、設定されている物理リソースを使用してデータ送信することができる。つまり、上位層がグラントフリーアクセスで送信するトランスポートブロックを運んでこない場合は、グラントフリーアクセスのデータ送信は行わない。また、端末装置は、SPS-configを受信しているが、RRCシグナリングのConfigured Uplink Grantを受信していない場合、UL GrantによるSPSのアクティベーションにより、SPS(type2 configured grant transmission)で同様のデータ送信を行うこともできる。
 グラントフリーアクセスには以下の2つのタイプが存在する。1つ目のtype1 configured grant transmission (UL-TWG-type1)は、基地局装置がグラントフリーアクセスに関する送信パラメータを端末装置に上位層の信号(例えば、RRC)で送信し、さらにグラントフリーアクセスのデータ送信の許可開始(アクティベーション、RRCセットアップ)と許可終了(ディアクティベーション(リリース)、RRCリリース)、送信パラメータの変更も上位層の信号で送信する方式である。ここで、グラントフリーアクセスに関する送信パラメータには、グラントフリーアクセスのデータ送信に使用可能な物理リソース(時間領域と周波数領域のリソースアサインメント)、物理リソースの周期、MCS、繰り返し送信の有無、繰り返し回数、繰り返し送信時のRVの設定、周波数ホッピングの有無、ホッピングパターン、DMRSの設定(front-loaded DMRSのOFDMシンボル数、サイクリックシフトと時間拡散の設定など)、HARQのプロセス数、トランスフォーマプレコーダの情報、TPCに関する設定に関する情報が含まれても良い。グラントフリーアクセスに関する送信パラメータとデータ送信の許可開始は、同時に設定されても良いし、グラントフリーアクセスに関する送信パラメータが設定された後、異なるタイミング(SCellであれば、SCellアクティベーションなど)でグラントフリーアクセスのデータ送信の許可開始が設定されても良い。2つ目のtype2 configuredgrant transmission (UL-TWG-type2)は、基地局装置がグラントフリーアクセスに関する送信パラメータを端末装置に上位層の信号(例えば、RRC)で送信し、グラントフリーアクセスのデータ送信の許可開始(アクティベーション)と許可終了(ディアクティベーション(リリース))、送信パラメータの変更はDCI(L1 signaling)で送信する。ここで、RRCで物理リソースの周期、繰り返し回数、繰り返し送信時のRVの設定、HARQのプロセス数、トランスフォーマプレコーダの情報、TPCに関する設定に関する情報が含まれ、DCIによる許可開始(アクティベーション)にはグラントフリーアクセスに使用可能な物理リソース(リソースブロックの割当て)が含まれても良い。グラントフリーアクセスに関する送信パラメータとデータ送信の許可開始は、同時に設定されても良いし、グラントフリーアクセスに関する送信パラメータが設定された後、異なるタイミングでグラントフリーアクセスのデータ送信の許可開始が設定されても良い。本発明の一態様は、上記のグラントフリーアクセスのいずれに適用しても良い。
 一方、SPS(Semi-Persistent Scheduling)という技術がLTEで導入されており、主にVoIP(Voice over Internet Protocol)の用途で周期的なリソース割当てが可能である。SPSでは、DCIを使い、物理リソースの指定(リソースブロックの割当て)やMCSなどの送信パラメータを含むUL Grantで許可開始(アクティベーション)を行う。そのため、グラントフリーアクセスの上位層の信号(例えば、RRC)で許可開始(アクティベーション)するタイプ(UL-TWG-type1)は、SPSと開始手順が異なる。また、UL-TWG-type2は、DCI(L1 signaling)で許可開始(アクティベーション)する点は同じだが、SCellやBWP、SULで使用できる点やRRCシグナリングで繰り返し回数、繰り返し送信時のRVの設定を通知する点で異なっても良い。また、基地局装置はグラントフリーアクセス(UL-TWG-type1とUL-TWG-type2)で使用されるDCI(L1 signaling)とダイナミックスケジューリングで使用されるDCIで異なる種類のRNTIを使ってスクランブルしても良いし、UL-TWG-type1の再送制御で使用するDCIとUL-TWG-type2のアクティベーションとディアクティベーション(リリース)と再送制御で使用するDCIで同じRNTIを使ってスクランブルしても良い。
 基地局装置10及び端末装置20は、直交マルチアクセスに加えて、非直交マルチアクセスをサポートしても良い。なお、基地局装置10及び端末装置20は、グラントフリーアクセス及びスケジュールドアクセス(ダイナミックスケジューリング)の両方をサポートすることもできる。ここで、上りリンクのスケジュールドアクセスとは、以下の手順により端末装置20がデータ送信するこという。端末装置20は、ランダムアクセスプロシージャ(Random Access Procedure)やSRを使用して、基地局装置10に、上りリンクのデータを送信するための無線リソースを要求する。前記基地局装置は、RACHやSRを基に各端末装置にDCIでUL Grantを与える。前記端末装置は、前記基地局装置から制御情報のUL Grantを受信すると、そのUL Grantに含まれる上りリンク送信パラメータに基づき、所定の無線リソースで上りリンクのデータを送信する。
 上りリンクの物理チャネル送信のための下りリンク制御情報は、スケジュールドアクセスとグラントフリーアクセスで共有フィールドを含むことができる。この場合、基地局装置10がグラントフリーアクセスで上りリンクの物理チャネルを送信することを指示した場合、基地局装置10及び端末装置20は、前記共有フィールドに格納されたビット系列をグラントフリーアクセスのための設定(例えば、グラントフリーアクセスのために定義された参照テーブル)に従って解釈する。同様に、基地局装置10がスケジュールドアクセスで上りリンクの物理チャネルを送信することを指示した場合、基地局装置10及び端末装置20は、前記共有フィールドをスケジュールドアクセスのために設定に従って解釈する。グラントフリーアクセスにおける上りリンクの物理チャネルの送信は、アシンクロナスデータ送信(Asynchronous data transmission)と称される。なお、スケジュールドにおける上りリンクの物理チャネルの送信は、シンクロナスデータ送信(Synchronous data transmission)と称される。
 グラントフリーアクセスにおいて、端末装置20は、上りリンクのデータを送信する無線リソースをランダムに選択するようにしてもよい。例えば、端末装置20は、利用可能な複数の無線リソースの候補がリソースプールとして基地局装置10から通知されており、該リソースプールからランダムに無線リソースを選択する。グラントフリーアクセスにおいて、端末装置20が上りリンクのデータを送信する無線リソースは、基地局装置10によって予め設定されてもよい。この場合、端末装置20は、予め設定された前記無線リソースを用いて、DCIのUL Grant(物理リソースの指定を含む)を受信せずに、前記上りリンクのデータを送信する。前記無線リソースは、複数の上りリンクのマルチアクセスリソース(上りリンクのデータをマッピングすることができるリソース)から構成される。端末装置20は、複数の上りリンクのマルチアクセスリソースから選択した1又は複数の上りリンクのマルチアクセスリソースを用いて、上りリンクのデータを送信する。なお、端末装置20が上りリンクのデータを送信する前記無線リソースは、基地局装置10及び端末装置20で構成される通信システムにおいて予め決定されていてもよい。前記上りリンクのデータを送信する前記無線リソースは、基地局装置10によって、物理報知チャネル(例えば、PBCH:Physical Broadcast Channel)/無線リソース制御RRC(Radio Resource Control)/システムインフォメーション(例えば、SIB:System Information Block)/物理下りリンク制御チャネル(下りリンク制御情報、例えばPDCCH:Physical Downlink Control Channel、EPDCCH:Enhanced PDCCH、MPDCCH:MTC PDCCH、NPDCCH:Narrowband PDCCH)を用いて、端末装置20に通知されてもよい。
 グラントフリーアクセスにおいて、前記上りリンクのマルチアクセスリソースは、マルチアクセスの物理リソースとマルチアクセス署名リソース(Multi Access Signature Resource)で構成される。前記マルチアクセスの物理リソースは、時間と周波数から構成されるリソースである。マルチアクセスの物理リソースとマルチアクセス署名リソースは、各端末装置が送信した上りリンクの物理チャネルを特定することに用いられうる。前記リソースブロックは、基地局装置10及び端末装置20が物理チャネル(例えば、物理データ共有チャネル、物理制御チャネル)をマッピングすることができる単位である。前記リソースブロックは、周波数領域において、1以上のサブキャリア(例えば、12サブキャリア、16サブキャリア)から構成される。
 マルチアクセス署名リソースは、複数のマルチアクセス署名群(マルチアクセス署名プールとも呼ばれる)のうち、少なくとも1つのマルチアクセス署名で構成される。マルチアクセス署名は、各端末装置が送信する上りリンクの物理チャネルを区別(同定)する特徴(目印、指標)を示す情報である。マルチアクセス署名は、空間多重パターン、拡散符号パターン(Walsh符号、OCC;Orthogonal Cover Code、データ拡散用のサイクリックシフト、スパース符号など)、インターリーブパターン、復調用参照信号パターン(参照信号系列、サイクリックシフト、OCC、IFDM)/識別信号パターン、送信電力、等であり、これらの中の少なくとも一つが含まれる。グラントフリーアクセスにおいて、端末装置20は、マルチアクセス署名プールから選択した1つ又は複数のマルチアクセス署名を用いて、上りリンクのデータを送信する。端末装置20は、使用可能なマルチアクセス署名を基地局装置10に通知することができる。基地局装置10は、端末装置20が上りリンクのデータを送信する際に使用するマルチアクセス署名を端末装置に通知することができる。基地局装置10は、端末装置20が上りリンクのデータを送信する際に使用可能なマルチアクセス署名群を端末装置20に通知することができる。使用可能なマルチアクセス署名群は、報知チャネル/RRC/システムインフォメーション/下りリンク制御チャネルを用いて、通知されてもよい。この場合、端末装置20は、通知されたマルチアクセス署名群から選択したマルチアクセス署名を用いて、上りリンクのデータを送信することができる。
 端末装置20は、マルチアクセスリソースを用いて、上りリンクのデータを送信する。例えば、端末装置20は、1つのマルチアクセスの物理リソースと拡散符号パターンなどからなるマルチキャリア署名リソースで構成されるマルチアクセスリソースに、上りリンクのデータをマッピングすることができる。端末装置20は、1つのマルチアクセスの物理リソースとインターリーブパターンからなるマルチキャリア署名リソースで構成されるマルチアクセスリソースに、上りリンクのデータを割当てることもできる。端末装置20は、1つのマルチアクセスの物理リソースと復調用参照信号パターン/識別信号パターンからなるマルチアクセス署名リソースで構成されるマルチアクセスリソースに、上りリンクのデータをマッピングすることもできる。端末装置20は、1つのマルチアクセスの物理リソースと送信電力パターンからなるマルチアクセス署名リソースで構成されるマルチアクセスリソースに、上りリンクのデータをマッピングすることもできる(例えば、前記各上りリンクのデータの送信電力は、基地局装置10において受信電力差が生じるように、設定されてもよい)。このようなグラントフリーアクセスにおいて、本実施形態の通信システムでは、複数の端末装置20が送信した上りリンクのデータが、上りリンクのマルチアクセスの物理リソースにおいて、重複(重畳、空間多重、非直交多重、衝突)して送信されること、を許容しても良い。
 基地局装置10は、グラントフリーアクセスにおいて、各端末装置によって送信した上りリンクのデータの信号を検出する。基地局装置10は、前記上りリンクのデータ信号を検出するために、干渉信号の復調結果によって干渉除去を行うSLIC(Symbol Level Interference Cancellation)、干渉信号の復号結果によって干渉除去を行うCWIC(Codeword Level Interference Cancellation、逐次干渉キャンセラ;SICや並列干渉キャンセラ;PICとも呼称される)、ターボ等化、送信信号候補の中から最もそれらしいものを探索する最尤検出(MLD:maximum likelihood detection、R-MLD:Reduced complexity maximum likelihood detection)、干渉信号を線形演算によって抑圧するEMMSE-IRC(Enhanced Minimum Mean Square Error-Interference Rejection Combining)、メッセージパッシングによる信号検出(BP:Belief propagation)やマッチドフィルタとBPを組み合わせたMF(Matched Filter)-BPなどを備えても良い。
 図2は、本実施形態に係る通信システムの無線フレーム構成例を示す図である。無線フレーム構成は、時間領域のマルチアクセスの物理リソースにおける構成を示す。1つの無線フレームは、複数のスロット(サブフレームでも良い)から構成される。図2は、1つの無線フレームが10個のスロットから構成される例である。端末装置20は、リファレンスとなるサブキャリア間隔(リファレンスニューメロロジー)を持つ。前記サブフレームは、リファレンスとなるサブキャリア間隔において生成される複数のOFDMシンボルで構成される。図2は、サブキャリア間隔が15kHzであり、1フレームが10スロット、1つのサブフレームが1スロットで構成され、1スロットが14つのOFDMシンボルから構成される例である。サブキャリア間隔が15kHz×2μ(μは0以上の整数)の場合、1フレームが2μ×10スロット、1サブフレームが2μスロットで構成される。
 図2は、リファレンスとなるサブキャリア間隔と上りリンクのデータ送信に用いるサブキャリア間隔が同一である場合である。本実施形態に係る通信システムは、スロットを、端末装置20が物理チャネル(例えば、物理データ共有チャネル、物理制御チャネル)をマッピングする最小単位としてもよい。この場合、前記マルチアクセスの物理リソースにおいて、1つのスロットが時間領域におけるリソースブロック単位となる。さらに、本実施形態に係る通信システムは、端末装置20が物理チャネルをマッピングする最小単位を1もしくは複数のOFDMシンボル(例えば、2~13OFDMシンボル)としても良い。基地局装置10は、1もしくは複数のOFDMシンボルが時間領域におけるリソースブロック単位となる。基地局装置10は、物理チャネルをマッピングする最小単位を端末装置20にシグナリングしても良い。
 図3は、本実施形態に係る基地局装置10の構成を示す概略ブロック図である。基地局装置10は、受信アンテナ202、受信部(受信ステップ)204、上位層処理部(上位層処理ステップ)206、制御部(制御ステップ)208、送信部(送信ステップ)210、送信アンテナ212を含んで構成される。受信部204は、無線受信部(無線受信ステップ)2040、FFT部2041(FFTステップ)、多重分離部(多重分離ステップ)2042、伝搬路推定部(伝搬路推定ステップ)2043、信号検出部(信号検出ステップ)2044を含んで構成される。送信部210は、符号化部(符号化ステップ)2100、変調部(変調ステップ)2102、多元接続処理部(多元接続処理ステップ)2106、多重部(多重ステップ)2108、無線送信部(無線送信ステップ)2110、IFFT部(IFFTステップ)2109、下りリンク参照信号生成部(下りリンク参照信号生成ステップ)2112、下りリンク制御信号生成部(下りリンク制御信号生成ステップ)2113を含んで構成される。
 受信部204は、受信アンテナ202を介して端末装置10からの受信した上りリンク信号(上りリンクの物理チャネル、上りリンク物理信号)を多重分離、復調、復号する。受信部204は、受信信号から分離した制御チャネル(制御情報)を制御部208に出力する。受信部204は、復号結果を上位層処理部206に出力する。受信部204は、前記受信信号に含まれるSRや下りリンクのデータ送信に対するACK/NACK、CSIを取得する。
 無線受信部2040は、受信アンテナ202を介して受信した上りリンク信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部2040は、変換したディジタル信号からCP(Cyclic Prefix)に相当する部分を除去する。FFT部2041はCPを除去した下りリンク信号に対して高速フーリエ変換を行い(OFDM変調に対する復調処理)、周波数領域の信号を抽出する。
 伝搬路推定部2043は、復調用参照信号を用いて、上りリンクの物理チャネルの信号検出のためのチャネル推定を行う。伝搬路推定部2043には、復調用参照信号がマッピングされているリソース及び各端末装置に割当てた復調用参照信号系列が制御部208から入力される。伝搬路推定部2043は、前記復調用参照信号系列を用いて、基地局装置10と端末装置20の間のチャネル状態(伝搬路状態)を測定する。伝搬路推定部2043は、グラントフリーアクセスの場合、チャネル推定の結果(チャネル状態のインパルス応答、周波数応答)を用いて、端末装置の識別を行うことができる(このため、識別部とも称する)。伝搬路推定部2043は、チャネル状態の抽出に成功した復調用参照信号に関連付けられる端末装置20が、上りリンクの物理チャネルを送信したと判断する。多重分離部2042は、伝搬路推定部2043が上りリンクの物理チャネルが送信されたと判断したリソースにおいて、FFT部2041から入力された周波数領域の信号(複数の端末装置20の信号が含まれる)を抽出する。
 多重分離部2042は、前記抽出した周波数領域の上りリンク信号に含まれる上りリンクの物理チャネル(物理上りリンク制御チャネル、物理上りリンク共有チャネル)等を分離抽出する。多重分離部は、物理上りリンクチャネルを信号検出部2044/制御部208に出力する。
 信号検出部2044は、伝搬路推定部2043で推定されたチャネル推定結果及び多重分離部2042から入力される前記周波数領域の信号を用いて、各端末装置の上りリンクのデータ(上りリンクの物理チャネル)の信号を検出する。信号検出部2044は、上りリンクのデータを送信したと判断した端末装置20に割当てた復調用参照信号(チャネル状態の抽出に成功した復調用参照信号)に関連付けられた端末装置20の信号の検出処理を行う。
 図4は、本実施形態に係る信号検出部の一例を示す図である。信号検出部2044は、等化部2504、多元接続信号分離部2506-1~2506-u、IDFT部2508-1~2508-u、復調部2510-1~2510-u、復号部2512-1~2512-uから構成される。uは、グラントフリーアクセスの場合、同一又は重複するマルチアクセスの物理リソースにおいて(同一時間及び同一周波数において)、伝搬路推定部2043が上りリンクのデータを送信したと判断(チャネル状態の抽出に成功)した端末装置数である。uは、スケジュールドアクセスの場合、DCIで同一又は重複するマルチアクセスの物理リソースにおいて(同一時間、例えばOFDMシンボル、スロットにおいて)、上りリンクのデータ送信を許可した端末装置数である。信号検出部2044を構成する各部位は、制御部208から入力される各端末装置のグラントフリーアクセスに関する設定を用いて、制御される。
 等化部2504は、伝搬路推定部2043より入力された周波数応答よりMMSE規範に基づく等化重みを生成する。ここで、等化処理は、MRCやZFを用いても良い。等化部2504は、該等化重みを多重分離部2042から入力される周波数領域の信号(各端末装置の信号が含まれる)に乗算し、各端末装置の周波数領域の信号を抽出する。等化部2504は、等化後の各端末装置の周波数領域の信号をIDFT部2508-1~2508-uに出力する。ここで、信号波形をDFTS-OFDMとした端末装置20が送信したデータを検出する場合、IDFT部2508-1~2508-uに周波数領域の信号を出力する。また、信号波形をOFDMとした端末装置20が送信したデータを受信する場合、多元接続信号分離部2506-1~2506-uに周波数領域の信号を出力する。
 IDFT部2508-1~2508-uは、等化後の各端末装置の周波数領域の信号を時間領域の信号に変換する。なお、IDFT部2508-1~2508-uは、端末装置20のDFT部で施された処理に対応する。多元接続信号分離部2506-1~2506-uは、IDFT後の各端末装置の時間領域の信号に対して、マルチアクセス署名リソースにより多重されている信号を分離する(多元接続信号分離処理)。例えば、マルチアクセス署名リソースとして符号拡散を用いた場合は、多元接続信号分離部2506-1~2506-uの各々は、各端末装置に割当てられた拡散符号系列を用いて、逆拡散処理を行う。なお、マルチアクセス署名リソースとしてインターリーブが適用される場合、IDFT後の各端末装置の時間領域の信号に対して、デインターリーブ処理が行われる(デインターリーブ部)。
 復調部2510-1~2510-uには、予め通知されている、又は予め決められている各端末装置の変調方式の情報(BPSK、QPSK、16QAM、64QAM、256QAM等)が制御部208から入力される。復調部2510-1~2510-uは、前記変調方式の情報に基づき、多元接続信号の分離後の信号に対して復調処理を施し、ビット系列のLLR(Log Likelihood Ratio)を出力する。
 復号部2512-1~2512-uには、予め通知されている、又は予め決められている符号化率の情報が制御部208から入力される。復号部2512-1~2512-uは、前記復調部2510-1~2510-uから出力されたLLRの系列に対して復号処理を行い、復号した上りリンクのデータ/上りリンク制御情報を上位層処理部206へ出力する。逐次干渉キャンセラ(SIC: Successive Interference Canceller)やターボ等化等のキャンセル処理を行うために、復号部2512-1~2512-uは、復号部出力の外部LLRもしくは事後LLRからレプリカを生成し、キャンセル処理をしても良い。外部LLRと事後LLRの違いは、それぞれ復号後のLLRから復号部2512-1~2512-uに入力される事前LLRを減算するか、否かである。復号部2512-1~2512-uは、SICやターボ等化の繰り返し回数が所定の回数に達した場合、復号処理後のLLRに対して硬判定を行い、各端末装置における上りリンクのデータのビット系列を、上位層処理部206に出力しても良い。なお、ターボ等化処理を用いた信号検出に限らず、レプリカ生成し、干渉除去を用いない信号検出や最尤検出、EMMSE-IRCなどを用いることもできる。
 制御部208は、上りリンクの物理チャネル(物理上りリンク制御チャネル、物理上りリンク共有チャネル等)に含まれる上りリンク受信に関する設定情報/下りリンク送信に関する設定情報(基地局装置から端末装置へDCIやRRC、SIBなどで通知)を用いて、受信部204及び送信部210の制御を行う。制御部208は、前記上りリンク受信に関する設定情報/下りリンク送信に関する設定情報を上位層処理部206から取得する。送信部210が物理下りリンク制御チャネルを送信する場合、制御部208は、下りリンク制御情報(DCI:Downlink Control information)を生成し、送信部210に出力する。なお、制御部108の機能の一部は、上位層処理部102に含めることができる。なお、制御部208はデータ信号に付加するCPの長さのパラメータに従って、送信部210を制御しても良い。
 上位層処理部206は、媒体アクセス制御(MAC:Medium Access Control)層、パケットデータ統合プロトコル(PDCP:Packet Data Convergence Protocol)層、無線リンク制御(RLC:Radio Link Control)層、無線リソース制御(RRC:Radio Resource Control)層などの物理層より上位層の処理を行なう。上位層処理部206は、送信部210および受信部204の制御を行なうために必要な情報を生成し、制御部208に出力する。上位層処理部206は、下りリンクのデータ(例えば、DL-SCH)、報知情報(例えば、BCH)、ハイブリッド自動再送要求(Hybrid Automatic Repeat reques)インジケータ(HARQインジケータ)などを送信部210に出力する。上位層処理部206は、端末装置からサポートしている端末装置の機能(UE capability)に関する情報を受信部204から入力される。例えば、上位層処理部206は、前記端末装置の機能に関する情報をRRC層のシグナリングで受信する。
 前記端末装置の機能に関する情報は、その端末装置が所定の機能をサポートするかどうかを示す情報、または、その端末装置が所定の機能に対する導入およびテストの完了を示す情報を含む。所定の機能をサポートするかどうかは、所定の機能に対する導入およびテストを完了しているかどうかを含む。端末装置が所定の機能をサポートする場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信する。端末装置が所定の機能をサポートしない場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信しないようにしてよい。すなわち、その所定の機能をサポートするかどうかは、その所定の機能をサポートするかどうかを示す情報(パラメータ)を送信するかどうかによって通知される。なお、所定の機能をサポートするかどうかを示す情報(パラメータ)は、1または0の1ビットを用いて通知してもよい。
 前記端末装置の機能に関する情報は、グラントフリーアクセスをサポートすることを示す情報(UL-TWG-type1とUL-TWG-type2をそれぞれサポートするか否かの情報)を含む。グラントフリーアクセスに対応する機能が複数ある場合、上位層処理部206は、機能毎にサポートするかどうかを示す情報を受信することができる。グラントフリーアクセスをサポートすることを示す情報は、端末装置がサポートしているマルチアクセスの物理リソース、マルチアクセス署名リソースを示す情報を含む。グラントフリーアクセスをサポートすることを示す情報は、前記マルチアクセスの物理リソース、マルチアクセス署名リソースの設定のための参照テーブルの設定を含んでもよい。グラントフリーアクセスをサポートすることを示す情報は、アンテナポート、スクランブリングアイデンティティ及びレイヤ数を示す複数のテーブルに対応している能力、所定数のアンテナポート数に対応している能力、所定の送信モードに対応している能力の一部又は全部を含んでも良い。送信モードは、アンテナポート数、送信ダイバーシチ、レイヤ数、グラントフリーアクセスのサポート等の有無により定められる。
 前記端末装置の機能に関する情報は、URLLCに関する機能をサポートすることを示す情報を含んでも良い。例えば、上りリンクのダイナミックスケジューリングやSPS/グラントフリーアクセスや下りリンクのダイナミックスケジューリングやSPSのDCIフォーマットとして、DCIフォーマット内のフィールドの合計のビット数の少ないcompact DCIフォーマットがあり、前記端末装置の機能に関する情報はcompact DCIフォーマットの受信処理(ブラインドデコーディング)をサポートすることを示す情報を含んでも良い。DCIフォーマットは、PDCCHのサーチスペースに配置されて送信されるが、アグリゲーションレベル毎に使用できるリソース数が決まっている。そのため、DCIフォーマット内のフィールドの合計のビット数が多いと高い符号化率の伝送となり、DCIフォーマット内のフィールドの合計のビット数が少ないと低い符号化率の伝送となる。そのため、URLLCのような高信頼性が要求される場合は、compact DCIフォーマットを使用することが好ましい。なお、LTEやNRではDCIフォーマットは予め決められたリソースエレメント(サーチスペース)にDCIフォーマットを置く。そのため、リソースエレメント数(アグリゲーションレベル)を一定とすると、ペイロードサイズの大きいDCIフォーマットはペイロードサイズの小さいDCIフォーマットと比較して、高い符号化率の送信となり、高信頼性を満たすことが難しくなる。
 前記端末装置の機能に関する情報は、URLLCに関する機能をサポートすることを示す情報を含んでも良い。例えば、上りリンクや下りリンクのダイナミックスケジューリングのDCIフォーマットの情報を繰り返し送信することで、PDCCHを高い信頼性での検出(ブラインドデコーディングによる検出)をサポートすることを示す情報を含んでも良い。PDCCHで繰り返しDCIフォーマットの情報を送信する場合、基地局装置は繰り返し送信されるサーチスペース内のブラインドデコーディングの候補やアグリゲーションレベルやサーチスペース、CORESET、BWP、サービングセル、スロットが関連付けられて、所定の規則で同一のDCIフォーマットの情報を繰り返し送信しても良い。
 前記端末装置の機能に関する情報は、キャリアアグリゲーションに関する機能をサポートすることを示す情報を含んでも良い。また、前記端末装置の機能に関する情報は、複数のコンポーネントキャリア(サービングセル)の同時送信(時間領域の重複、少なくとも一部のOFDMシンボルで重複する場合も含む)に関する機能をサポートすることを示す情報を含んでも良い。
 上位層処理部206は、端末装置の各種設定情報の管理をする。前記各種設定情報の一部は、制御部208に入力される。各種設定情報は、送信部210を介して下りリンクの物理チャネルを用いて、基地局装置10から送信される。前記各種設定情報は、送信部210から入力されたグラントフリーアクセスに関する設定情報を含む。前記グラントフリーアクセスに関する設定情報は、マルチアクセスリソース(マルチアクセスの物理リソース、マルチアクセス署名リソース)の設定情報を含む。例えば、上りリンクのリソースブロック設定(使用するOFDMシンボルの開始位置とOFDMシンボル数/リソースブロック数)、復調用参照信号/識別信号の設定(参照信号系列、サイクリックシフト、マッピングされるOFDMシンボル等)、拡散符号設定(Walsh符号、OCC;Orthogonal Cover Code、スパース符号やこれらの拡散符号の拡散率など)、インターリーブ設定、送信電力設定、送受信アンテナ設定、送受信ビームフォーミング設定、等のマルチアクセス署名リソースに関する設定(端末装置20が送信した上りリンクの物理チャネルを同定するための目印に基づいて施される処理に関する設定)が含まれうる。これらのマルチアクセス署名リソースは、直接的又は間接的に、関連付けられてもよい(結び付けられてもよい)。マルチアクセス署名リソースの関連付けは、マルチアクセス署名プロセスインデックスによって示される。また、前記グラントフリーアクセスに関する設定情報には、前記マルチアクセスの物理リソース、マルチアクセス署名リソースの設定のための参照テーブルの設定が含まれてもよい。前記グラントフリーアクセスに関する設定情報は、グラントフリーアクセスのセットアップ、リリースを示す情報、上りリンクのデータ信号に対するACK/NACKの受信タイミング情報、上りリンクのデータ信号の再送タイミング情報などを含めてもよい。
 上位層処理部206は、制御情報として通知したグラントフリーアクセスに関する設定情報に基づいて、グラントフリーで上りリンクのデータ(トランスポートブロック)のマルチアクセスリソース(マルチアクセスの物理リソース、マルチアクセス署名リソース)を管理する。上位層処理部206は、グラントフリーアクセスに関する設定情報に基づき、受信部204を制御するための情報を制御部208に出力する。
 上位層処理部206は、生成された下りリンクのデータ(例えば、DL-SCH)を、送信部210に出力する。前記下りリンクのデータには、UE ID(RNTI)を格納するフィールドを有しても良い。上位層処理部206は、前記下りリンクのデータにCRCを付加する。前記CRCのパリティビットは、前記下りリンクのデータを用いて生成される。前記CRCのパリティビットは、宛先の端末装置に割当てられたUE ID(RNTI)でスクランブル(排他的論理和演算、マスク、暗号化とも呼ぶ)される。ただし、RNTIは前述の通り、複数の種類が存在し、送信するデータなどによって使用するRNTIが異なる。
 上位層処理部206は、ブロードキャストするシステムインフォメーション(MIB、SIB)を生成、又は上位ノードから取得する。上位層処理部206は、前記ブロードキャストするシステムインフォメーションを送信部210に出力する。前記ブロードキャストするシステムインフォメーションは、基地局装置10がグラントフリーアクセスをサポートすることを示す情報を含めることができる。上位層処理部206は、前記システムインフォメーションに、グラントフリーアクセスに関する設定情報(マルチアクセスの物理リソース、マルチアクセス署名リソースなどのマルチアクセスリソースに関する設定情報など)の一部又は全部を含めることができる。上りリンク前記システム制御情報は、送信部210において、物理報知チャネル/物理下りリンク共有チャネルにマッピングされる。
 上位層処理部206は、物理下りリンク共有チャネルにマッピングされる下りリンクのデータ(トランスポートブロック)、システムインフォメーション(SIB)、RRCメッセージ、MAC CEなどを生成、又は上位ノードから取得し、送信部210に出力する。上位層処理部206は、これらの上位層の信号にグラントフリーアクセスに関する設定情報、グラントフリーアクセスのセットアップ、リリースを示すパラメータの一部又は全部を含めることができる。上位層処理部206は、グラントフリーアクセスに関する設定情報を通知するための専用SIBを生成してもよい。
 上位層処理部206は、グラントフリーアクセスをサポートしている端末装置20に対して、マルチアクセスリソースをマッピングする。基地局装置10は、マルチアクセス署名リソースに関する設定パラメータの参照テーブルを保持しても良い。上位層処理部206は、前記端末装置20に対して各設定パラメータを割当てる。上位層処理部206は、前記マルチアアクセス署名リソースを用いて、各端末装置に対するグラントフリーアクセスに関する設定情報を生成する。上位層処理部206は、各端末装置に対するグラントフリーアクセスに関する設定情報の一部又は全部を含む下りリンク共有チャネルを生成する。上位層処理部206は、前記グラントフリーアクセスに関する設定情報を、制御部208/送信部210に出力する。
 上位層処理部206は、各端末装置に対してUE IDを設定し、通知する。UE IDは、無線ネットワーク一時的識別子(RNTI:Cell Radio Network Temporary Identifier)を用いることができる。UE IDは、下りリンク制御チャネル、下りリンク共有チャネルに付加されるCRCのスクランブルに用いられる。UE IDは、上りリンク共有チャネルに付加されるCRCのスクランブリングに用いられる。UE IDは、上りリンク参照信号系列の生成に用いられる。上位層処理部206は、SPS/グラントフリーアクセス固有のUE IDを設定してもよい。上位層処理部206は、グラントフリーアクセスをサポートする端末装置か否かで区別して、UE IDを設定してもよい。例えば、下りリンクの物理チャネルがスケジュールドアクセスで送信され、上りリンクの物理チャネルがグラントフリーアクセスで送信される場合、下りリンクの物理チャネル用UE
 IDは、下りリンクの物理チャネル用UE IDと区別して設定してもよい。上位層処理部206は、前記UE IDに関する設定情報を、送信部210/制御部208/受信部204に出力する。
 上位層処理部206は、物理チャネル(物理下りリンク共有チャネル、物理上りリンク共有チャネルなど)の符号化率、変調方式(あるいはMCS)および送信電力などを決定する。上位層処理部206は、前記符号化率/変調方式/送信電力を送信部210/制御部208/受信部204に出力する。上位層処理部206は、前記符号化率/変調方式/送信電力を上位層の信号に含めることができる。
 送信部210は、送信する下りリンクのデータが発生した場合、物理下りリンク共有チャネルを送信する。また、送信部210は、DL Grantによりデータ送信用のリソースを送信している場合、スケジュールドアクセスで物理下りリンク共有チャネルを送信し、SPSをアクティベーション時はSPSの物理下りリンク共有チャネルを送信しても良い。送信部210は、制御部208から入力されたスケジュールドアクセス/SPSに関する設定に従って、物理下りリンク共有チャネル及びそれに関連付けられた復調用参照信号/制御信号を生成する。
 符号化部2100は、予め定められた/制御部208が設定した符号化方式を用いて、上位層処理部206から入力された下りリンクのデータを符号化する(リピティションを含む)。符号化方式は、畳み込み符号化、ターボ符号化、LDPC(Low Density Parity Check)符号化、Polar符号化、等を適用することができる。データ送信ではLDPC符号、制御情報の送信ではPolar符号を用い、使用する下りリンクのチャネルによって異なる誤り訂正符号化を用いても良い。また、送信するデータや制御情報のサイズによって異なる誤り訂正符号化を用いても良く、例えばデータサイズが所定の値よりも小さい場合には畳み込み符号を用い、それ以外は前記の訂正符号化を用いても良い。前記符号化は、符号化率1/3に加え、低い符号化率1/6や1/12などのマザーコードを用いてもよい。また、マザーコードより高い符号化率を用いる場合には、レートマッチング(パンクチャリング)によりデータ伝送に用いる符号化率を実現しても良い。変調部2102は、符号化部2100から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等(π/2シフトBPSK、π/4シフトQPSKも含んでもよい)の下りリンク制御情報で通知された変調方式または、チャネル毎に予め定められた変調方式で変調する。
 多元接続処理部2106は、変調部2102から出力される系列に対して、制御部208から入力されるマルチアクセス署名リソースに従って、複数のデータが多重されても基地局装置10が信号の検出が可能なように信号を変換する。マルチアクセス署名リソースが拡散の場合は、拡散符号系列の設定に従って拡散符号系列を乗算する。なお、多元接続処理部2106は、マルチアクセス署名リソースとしてインターリーブが設定された場合、前記多元接続処理部2106は、インターリーブ部に置換えることができる。インターリーブ部は、変調部2102から出力される系列に対して、制御部208から入力されるインターリーブパターンの設定に従ってインターリーブ処理を行う。マルチアクセス署名リソースとして符号拡散及びインターリーブが設定された場合、送信部210は、多元接続処理部2106は拡散処理とインターリーブを行う。その他のマルチアクセス署名リソースが適用された場合でも、同様であり、スパース符号などを適用しても良い。
 多元接続処理部2106は、信号波形をOFDMとする場合、多元接続処理後の信号を多重部2108に入力する。下りリンク参照信号生成部2112は、制御部208から入力される復調用参照信号の設定情報に従って、復調用参照信号を生成する。復調用参照信号/識別信号の設定情報は、基地局装置が下りリンク制御情報で通知するOFDMシンボル数、DMRSの配置するOFDMシンボル位置、サイクリックシフト、時間領域の拡散などの情報を基に、予め定められた規則で求まる系列を生成する。
 多重部2108は、下りリンクの物理チャネルと下りリンク参照信号を送信アンテナポート毎にリソースエレメントへ多重(マッピング、配置)する。多重部2108は、SCMAを用いる場合、制御部208から入力されるSCMAリソースパターンに従って、前記下りリンクの物理チャネルをリソースエレメントに配置する。
 IFFT部2109は多重された信号を逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、OFDM方式の変調を行い、OFDMシンボルを生成する。無線送信部2110は、前記OFDM方式の変調されたシンボルにCPを付加し、ベースバンドのディジタル信号を生成する。さらに、無線送信部2110は、前記ベースバンドのディジタル信号をアナログ信号に変換し、余分な周波数成分を除去し、アップコンバートにより搬送周波数に変換し、電力増幅し、送信アンテナ212を介して端末装置20に送信する。無線送信部2110は、送信電力制御機能(送信電力制御部)を含む。前記送信電力制御は、制御部208から入力される送信電力の設定情報に従う。なお、FBMC、UF-OFDM、F-OFDMが適用される場合、前記OFDMシンボルに対して、サブキャリア単位又はサブバンド単位でフィルタ処理が行われる。
 図5は、本実施形態における端末装置20の構成を示す概略ブロック図である。基地局装置10は、上位層処理部(上位層処理ステップ)102、送信部(送信ステップ)104、送信アンテナ106、制御部(制御ステップ)108、受信アンテナ110、受信部(受信ステップ)112を含んで構成される。送信部104は、符号化部(符号化ステップ)1040、変調部(変調ステップ)1042、多元接続処理部(多元接続処理ステップ)1043、多重部(多重ステップ)1044、DFT部(DFTステップ)1045、上りリンク制御信号生成部(上りリンク制御信号生成ステップ)1046、上りリンク参照信号生成部(上りリンク参照信号生成ステップ)1048、IFFT部1049(IFFTステップ)及び無線送信部(無線送信ステップ)1050を含んで構成される。受信部112は、無線受信部(無線受信ステップ)1120、FFT部(FFTステップ)1121、伝搬路推定部(伝搬路推定ステップ)1122、多重分離部(多重分離ステップ)1124及び信号検出部(信号検出ステップ)1126を含んで構成される。
 上位層処理部102は、媒体アクセス制御(MAC:Medium Access Control)層、パケットデータ統合プロトコル(PDCP:Packet Data Convergence Protocol)層、無線リンク制御(RLC:Radio Link Control)層、無線リソース制御(RRC:Radio Resource Control)層などの物理層より上位層の処理を行なう。上位層処理部102は、送信部104および受信部112の制御を行なうために必要な情報を生成し、制御部108に出力する。上位層処理部102は、上りリンクのデータ(例えば、UL-SCH)、上りリンクの制御情報のなどを送信部104に出力する。
 上位層処理部102は、端末装置の機能(UE capability)等の端末装置に関する情報を、基地局装置10から(送信部104を介して)送信する。端末装置に関する情報は、グラントフリーアクセスやcompact DCIの受信/検出/ブラインドデコーディングをサポートすることを示す情報、繰り返しDCIフォーマットの情報がPDCCHで送信された場合の受信/検出/ブラインドデコーディングをサポートすることを示す情報、その機能毎にサポートするかどうかを示す情報を含む。グラントフリーアクセスをサポートすることを示す情報、その機能毎にサポートするかどうかを示す情報は、送信モードで区別されてもよい。
 制御部108は、上位層処理部102から入力された各種設定情報に基づいて、送信部104および受信部112の制御を行なう。制御部108は、上位層処理部102から入力された制御情報に関する設定情報に基づいて、上りリンク制御情報(UCI)を生成し、送信部104に出力する。
 送信部104は、各端末装置のために、上位層処理部102から入力された上りリンク制御情報、上りリンク共有チャネル等を符号化および変調し、物理上りリンク制御チャネル、物理上りリンク共有チャネルを生成する。符号化部1040は、予め定められた/制御情報で通知された符号化方式を用いて、上りリンク制御情報、上りリンク共有チャネルを符号化する(リピティションを含む)。符号化方式は、畳み込み符号化、ターボ符号化、LDPC(Low Density Parity Check)符号化、Polar符号化、等を適用することができる。変調部1042は、符号化部1040から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の予め定められた/制御情報で通知された変調方式で変調する。
 多元接続処理部1043は、変調部1042から出力される系列に対して、制御部108から入力されるマルチアクセス署名リソースに従って、複数のデータが多重されても基地局装置10が信号の検出が可能なように信号を変換する。マルチアクセス署名リソースが拡散の場合は、拡散符号系列の設定に従って拡散符号系列を乗算する。前記拡散符号系列の設定は、前記復調用参照信号/識別信号などの他のグラントフリーアクセスに関する設定と関連付けられても良い。なお、多元接続処理は、DFT処理後の系列に対して行ってもよい。なお、多元接続処理部1043は、マルチアクセス署名リソースとしてインターリーブが設定された場合、前記多元接続処理部1043は、インターリーブ部に置換えることができる。インターリーブ部は、DFT部から出力される系列に対して、制御部108から入力されるインターリーブパターンの設定に従ってインターリーブ処理を行う。マルチアクセス署名リソースとして符号拡散及びインターリーブが設定された場合、送信部104は、多元接続処理部1043は拡散処理とインターリーブを行う。その他のマルチアクセス署名リソースが適用された場合でも、同様であり、スパース符号などを適用しても良い。
 多元接続処理部1043は、信号波形をDFTS-OFDMとするか、OFDMとするかによって、多元接続処理後の信号をDFT部1045もしくは多重部1044に入力する。信号波形をDFTS-OFDMとする場合、DFT部1045は、多元接続処理部1043から出力される多元接続処理後の変調シンボルを並列に並び替えてから離散フーリエ変換(Discrete Fourier Transform: DFT)処理をする。ここで,前記変調シンボルにゼロのシンボル列を付加して、DFTを行うことでIFFT後の時間信号にCPの代わりにゼロ区間を使う信号波形としても良い。また、変調シンボルにGold系列やZadoff-Chu系列などの特定の系列を付加して、DFTを行うことでIFFT後の時間信号にCPの代わりに特定パターンを使う信号波形としても良い。信号波形をOFDMとする場合は、DFTを適用しないため、多元接続処理後の信号を多重部1044に入力する。制御部108は、前記グラントフリーアクセスに関する設定情報に含まれる前記ゼロのシンボル列の設定(シンボル列のビット数など)、前記特定の系列の設定(系列の種(seed)、系列長など)を用いて、制御する。
 上りリンク制御信号生成部1046は、制御部108から入力される上りリンク制御情報にCRCを付加して、物理上りリンク制御チャネルを生成する。上りリンク参照信号生成部1048は、上りリンク参照信号を生成する。
 多重部1044は、多元接続処理部1043もしくはDFT部1045の変調された各上りリンクの物理チャネルの変調シンボル、物理上りリンク制御チャネルと上りリンク参照信号をリソースエレメントにマッピングする。多重部1044は、物理上りリンク共有チャネル、物理上りリンク制御チャネルを、各端末装置に割当てられたリソースにマッピングする。
 IFFT部1049は、多重された各上りリンクの物理チャネルの変調シンボルを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)してOFDMシンボルを生成する。無線送信部1050は、前記OFDMシンボルにサイクリックプレフィックス(cyclic prefix: CP)を付加してベースバンドのディジタル信号を生成する。さらに、無線送信部1050は、前記ディジタル信号をアナログ信号に変換し、フィルタリングにより余分な周波数成分を除去し、搬送周波数にアップコンバートし、電力増幅し、送信アンテナ106に出力して送信する。
 受信部112は、基地局装置10から送信された下りリンクの物理チャネルを、復調用参照信号を用いて検出する。受信部112は、基地局装置より制御情報(DCIやRRC、SIBなど)で通知された設定情報に基づいて、下りリンクの物理チャネルの検出を行う。ここで、受信部112は、PDCCHに含まれるサーチスペースに対して、予め決められている、もしくは上位層の制御情報(RRCシグナリング)で通知されている候補に対してブラインドデコーディングを行う。受信部112は、ブラインドデコーディングの結果、C-RNTIやCS-RNTI、INT-RNTI(下りリンクと上りリンクの両方が存在しても良い)、その他のRNTIでスクランブルされているCRCを使い、DCIを検出する。ブラインドデコーディングは、受信部112内の信号検出部1126で行われても良いし、図中には記載していないが、別途、制御信号検出部を有して、制御信号検出部で行われても良い。
 無線受信部1120は、受信アンテナ110を介して受信した上りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部1120は、変換したディジタル信号からCPに相当する部分を除去する。FFT部1121は、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出する。
 伝搬路推定部1122は、復調用参照信号を用いて、下りリンクの物理チャネルの信号検出のためのチャネル推定を行う。伝搬路推定部1122には、復調用参照信号がマッピングされているリソース及び各端末装置に割当てた復調用参照信号系列が制御部108から入力される。伝搬路推定部1122は、前記復調用参照信号系列を用いて、基地局装置10と端末装置20の間のチャネル状態(伝搬路状態)を測定する。多重分離部1124は、無線受信部1120から入力された周波数領域の信号(複数の端末装置20の信号が含まれる)を抽出する。信号検出部1126は、前記チャネル推定結果及び多重分離部1124から入力される前記周波数領域の信号を用いて、下りリンクのデータ(上りリンクの物理チャネル)の信号を検出する。
 上位層処理部102は、信号検出部1126から下りリンクのデータ(硬判定後のビット系列)を取得する。上位層処理部102は、各端末装置の復号後の下りリンクのデータに含まれるCRCに対して、各端末に割当てたUE ID(RNTI)を用いて、デスクランブル(排他的論理和演算)を行う。上位層処理部102は、デスクランブルによる誤り検出の結果、下りリンクのデータに誤りが無い場合、下りリンクのデータを正しく受信できたと判断する。なお、信号検出部1126は、下りリンクの制御情報、例えばDCIフォーマットなどの制御情報を検出する制御情報検出部を含んでもよい。
 図6は、本実施形態に係る信号検出部の一例を示す図である。信号検出部1126は、等化部1504、多元接続信号分離部1506-1~1506-c、復調部1510-1~1510-c、復号部1512-1~1512-cから構成される。
 等化部1504は、伝搬路推定部1122より入力された周波数応答よりMMSE規範に基づく等化重みを生成する。ここで、等化処理は、MRCやZFを用いても良い。等化部1504は、該等化重みを多重分離部1124から入力される周波数領域の信号に乗算し、周波数領域の信号を抽出する。等化部1504は、等化後の周波数領域の信号を多元接続信号分離部1506-1~1506-cに出力する。cは1以上であり、同一サブフレーム、同一スロット、同一OFDMシンボルで受信した信号、例えばPUSCHとPUCCHなどの数である。その他の下りリンクのチャネルの受信を同一のタイミングで受信としても良い。
 多元接続信号分離部1506-1~1506-cは、時間領域の信号に対して、マルチアクセス署名リソースにより多重されている信号を分離する(多元接続信号分離処理)。例えば、マルチアクセス署名リソースとして符号拡散を用いた場合は、多元接続信号分離部1506-1~1506-cの各々は、使用された拡散符号系列を用いて、逆拡散処理を行う。なお、マルチアクセス署名リソースとしてインターリーブが適用される場合、時間領域の信号に対して、デインターリーブ処理が行われる(デインターリーブ部)。
 復調部1510-1~1510-cには、予め通知されている、又は予め決められている変調方式の情報が制御部108から入力される。復調部1510-1~1510-cは、前記変調方式の情報に基づき、多元接続信号の分離後の信号に対して復調処理を施し、ビット系列のLLR(Log Likelihood Ratio)を出力する。
 復号部1512-1~1512-cには、予め通知されている、又は予め決められている符号化率の情報が制御部108から入力される。復号部1512-1~1512-cは、前記復調部1510-1~1510-cから出力されたLLRの系列に対して復号処理を行う。逐次干渉キャンセラ(SIC: Successive Interference Canceller)やターボ等化等のキャンセル処理を行うために、復号部1512-1~1512-cは、復号部出力の外部LLRもしくは事後LLRからレプリカを生成し、キャンセル処理をしても良い。外部LLRと事後LLRの違いは、それぞれ復号後のLLRから復号部1512-1~1512-cに入力される事前LLRを減算するか、否かである。
 図7に、従来の上りリンクのデータ送信の一例を示す。同図は、上りリンクのデータ送信と上りリンクのデータ送信に対するACK/NACKの通知に対して、制御されるタイマー1とタイマー2の動作を示している。同図の横軸は、時間でありスロット/ミニスロット(Non-Slotもしくは14未満の複数のOFDMシンボル)/OFDMシンボルとしても良いが、本明細書ではスロットとして説明する。まず、基地局装置は、スロットnにおいて、PDCCHでDCIフォーマットを使い、上りリンクグラントを通知する。上りリンクグラントは、DCIフォーマット0_0もしくは0_1で通知される、もしくはその他のDCIフォーマットで通知されるものとする。上りリンクグラントは、端末装置が上りリンクのデータ送信に使用する周波数リソース(リソースブロック、リソースブロックグループ、サブキャリア)の情報と、スロットnから上りリンクのデータ送信タイミングまでの相対的な時間(例えば、相対的な時間がkであれば、スロットn+kが上りリンクのデータ送信タイミング)と上りリンクのデータ送信タイミングのスロット内で使用するOFDMシンボル数と開始位置、連続するOFDMシンボル数が含まれても良い。また、上りリンクグラントは、複数のスロットのデータ送信を通知しても良く、上りリンクのデータ送信タイミングを示す相対的な時間をkとする場合、スロットn+k~スロットn+k+n’までのデータ送信を許可する場合、上りリンクグラントにn’の情報が含まれる。
 端末装置は、PDCCHのブラインドデコーディングにより、上りリンクグラントを検出した場合、上りリンクグラントで指定された上りリンクのデータ送信タイミング(図7の例ではn+2であり、データ送信タイミングまでの相対的な時間k=2)で、上りリンクのデータを送信する。ここで、上りリンクグラントには、HARQのプロセス番号(例えば4ビット)があり、端末装置は、上りリンクグラントで指定されたHARQのプロセス番号に対応した上りリンクグラントのデータ送信を行う。
 HARQのプロセスに対応するデータ送信(PUSCH送信)後すぐに、対応するHARQプロセスのタイマー1を開始(起動/実行)する。タイマー1はdrx-HARQ-RTT-TimerULであってもよく、drx-HARQ-RTT-TimerULはMACエンティティによって上りリンクHARQの再送グラント(UL HARQ retransmission grant)が予期される前の最小期間としても良い。つまり、タイマー1が実行中は、基地局装置が上りリンクのデータの復調/復号処理を行っており、上りリンクデータ送信に対するACK/NACKがこない期間を意味する。そのため、DRXの設定によりブラインドデコーディングを停止してもよい期間(Onの期間でない期間)かつタイマー1の実行中の期間は、ブラインドデコーディングを停止してもよい。タイマー1は、0から56OFDMシンボルの範囲で設定しても良い。
 タイマー1の期間が2スロットに設定されている場合は、スロットn+4でタイマー1が満了する。タイマー1が満了したら、対応するHARQプロセスのタイマー2をスタートする。タイマー2はdrx-RetransmissionTimerULであってもよく、drx-RetransmissionTimerULは上りリンク再送のためのグラントが受信されるまでの最大期間としても良い。図7では、タイマー2は6スロットの例である。タイマー2は、10スロット、11スロット、12スロット、14スロット、16スロット、18スロット、116スロット、124スロット、133スロット、140スロット、164スロット、180スロット、196スロット、1112スロット、1128スロット、1160スロットの中から設定されても良い。
 端末装置は、タイマー2が実行中に上りリンクのデータ送信に対するACK/NACKを受信した場合(図7の例ではスロットn+7)、ACKに対する新規のデータ送信(初送)もしくはNACKに対する前回送信と同一のデータ送信(再送)後すぐに、対応するHARQプロセスのタイマー1を開始し、対応するHARQプロセスのタイマー2を停止する。ここで、上りリンクのデータ送信に対するACK/NACKは、上りリンクグラントで使われるDCIフォーマットと同一フォーマットを使用でき、DCIフォーマット内のHARQプロセスIDとNDIで通知される。具体的には、データ送信したHARQプロセスIDを含むDCIフォーマットを検出した場合、NDIが前回の同一HARQプロセスIDのDCIフォーマットを検出時のNDI値から変更されている場合(1ビットのため、トグルされている場合)はACKであり、検出したDCIフォーマットは新規のデータ送信用の上りリンクグラントとなり、NDI値が同一の場合(トグルされていない場合)はNACKであり、検出したDCIフォーマットは再送のデータ送信用の上りリンクグラントとなる。
 一方、タイマー2が満了までに上りリンクのデータ送信に対するACK/NACKを検出できない場合、もしくはACK/NACKを含むDCIフォーマットに基づく初送、再送が完了しない場合、端末装置はDRXでブラインドデコーディングしなくても良い期間(Onでない期間)であれば、ブラインドデコーディングを停止しても良い。この場合は、DRXの周期により決まるブラインドデコーディングが必要な期間(Onの期間)になった後、ブラインドデコーディングを開始して、再度、上りリンクのデータ送信に対するACK/NACKを待っても良い。また、タイマー2が満了しても上りリンクのデータ送信に対するACK/NACKを検出できない場合は、基地局装置が送信したACK/NACKの検出を失敗したと見なし、対応するHARQプロセスIDのバッファをフラッシュしても良いし、予め決められている無線リソース(RRCで設定されている、SPSでアクティベーションされている無線リソースでも良い)で再送をしても良い。
 図8に、第1の実施形態に係る上りリンクのデータ送信の停止の一例を示す。同図では、基地局装置が複数の端末装置を収容しており、低遅延もしくは高信頼の少なくとも一方が要求されるデータを送信する端末装置(以下、URLLC端末装置と記載)と、比較的に低遅延と高信頼が要求されないデータを送信する端末装置(以下、非URLLC端末装置もしくはeMBB端末装置と記載)が収容されている端末装置に含まれる。まず、eMBBのデータ送信を行うeMBB端末装置は、PDCCHで送信されるDCIフォーマットで上りリンクグラントを検出し、割当てられたPUSCHの無線リソースの通知を受信する。eMBB端末装置は、INT-RNTI/UL-INT-RNTIでCRCがスクランブルされたDCIフォーマットを検出した場合、INT-RNTI/UL-INT-RNTIでCRCがスクランブルされたDCIフォーマットで示される無線リソースの情報はeMBB端末装置が上りリンクのデータ送信に使用できない、例えば他の端末装置(URLLC端末装置)が使用する無線リソースの情報が含まれる。eMBB端末装置は、割当てられているPUSCHの無線リソースと使用できない無線リソースの少なくとも一部が重複する、もしくは割当てられているPUSCHの無線リソースの周波数(サブキャリア/リソースブロック)が使用できない無線リソースの周波数と隣接する、もしくは割当てられているPUSCHの無線リソースの周波数と使用できない無線リソースの周波数の間の帯域幅(ガードバンド)が所定の帯域幅以下、RRCなどの上位層の制御信号で通知されている帯域幅以下の場合、割当てられているPUSCHの無線リソースを使ったデータ送信をキャンセル/プリエンプション/サスペンド/ストップ/ドロップ/延期/破棄/取り消し(以下、キャンセルもしくはプリエンプションと記載)としても良い。
 図9に、第1の実施形態に係る上りリンクのデータ送信の停止の一例を示す。図9(a)は、eMBB端末装置が割当てられているPUSCHの無線リソースのキャンセルにより、割当てられているPUSCHの無線リソースの全てをキャンセルした場合である。これは、eMBB端末装置が使用できない無線リソースの通知を受けてから割当てられているPUSCHの無線リソースのデータ送信の停止処理が間に合った場合に、図9(a)の処理が可能となる。一方、図9(b)は、eMBB端末装置が使用できない無線リソースの通知を受けてから割当てられているPUSCHの無線リソースのデータ送信の停止処理が間に合わない場合、例えば、eMBBのデータ送信のスロットと同一スロットの先頭のOFDMシンボル(1以上のOFDMシンボル)で使用できない無線リソースの通知を検出した場合、eMBB端末装置は使用できない無線リソースのOFDMシンボルまでにデータ送信を止める。図9(b)では、eMBB端末装置が使用できない無線リソースのOFDMシンボルの直前までデータ送信を続けている例だが、使用できない無線リソースのOFDMシンボルの数OFDMシンボル前にデータ送信を止めても良い。なお、本発明の一態様では、いずれの場合にも適用可能である。また、eMBB端末装置は所定の条件を満たす場合のみ、使用できない無線リソースのOFDMシンボル後もデータ送信を継続しても良い。具体的には、使用できない無線リソースのOFDMシンボルをパンクチャと見なした時に符号化率が1以下の場合、もしくは無線リソースのOFDMシンボルを除いてもDMRSの送信が可能な場合、再送のデータ送信の場合、Piggyback(UCI on PUSCH)の場合の少なくとも一つ、もしくは2つ以上の組合せの条件にするなどである。
 eMBB端末装置とURLLC端末装置の違いは、DCIフォーマット0_0/0_1で上りリンクグラントを受信した場合とDCIフォーマット0_0/0_1よりも少ない制御情報ビット数で構成されるcompact DCIで上りリンクグラントを受信した場合としても良いし、データ送信に使用するMCSテーブルの最低の周波数利用効率(Spectral efficiency)が高いテーブルを使用する場合と低いテーブルを使用する場合としても良いし、データ送信に使用できるMCSテーブルのエントリー数が32(5ビット)の場合と16以下(4ビット以下)の場合としても良いし、ダイナミックスケジューリングの場合とSPS/Configured grant/グラントフリーアクセスの場合としても良いし、HARQプロセス数が16個の場合とHARQプロセス数が4個の場合としても良いし、データ送信の繰り返し回数が所定の値以下(例えば1以下)と繰り返し回数が所定の値より大きい場合としても良いし、LCH(Logical CHannel)のプライオリティが低い場合とプライオリティが高い場合としても良いし、QCI(QoS Class Indicator)によって決まっても良い。
 図10に、第1の実施形態に係る上りリンクのデータ送信の一例を示す。同図は、上りリンクグラントにより上りリンクのデータ送信の割当て後に、プリエンプションのDCIを受信し、上りリンクのデータ送信をキャンセルした場合に制御されるタイマーを示している。同図の横軸は、時間でありスロット/ミニスロット(Non-Slotもしくは14未満の複数のOFDMシンボル)/OFDMシンボルとしても良いが、スロットとして説明する。まず、基地局装置は、スロットnにおいて、PDCCHでDCIフォーマットを使い、上りリンクグラントを通知する。上りリンクグラントは、DCIフォーマット0_0もしくは0_1で通知される、もしくはその他のDCIフォーマットで通知されるものとする。上りリンクグラントは、端末装置が上りリンクのデータ送信に使用する周波数リソース(リソースブロック、リソースブロックグループ、サブキャリア)の情報と、スロットnから上りリンクのデータ送信タイミングまでの相対的な時間(例えば、相対的な時間がkであれば、スロットn+kが上りリンクのデータ送信タイミング)と上りリンクのデータ送信タイミングのスロット内で使用するOFDMシンボル数と開始位置、連続するOFDMシンボル数が含まれても良い。また、上りリンクグラントは、複数のスロットのデータ送信を通知しても良く、上りリンクのデータ送信タイミングを示す相対的な時間をkとする場合、スロットn+k~スロットn+k+n’までのデータ送信を許可する場合、上りリンクグラントにn’の情報が含まれる。
 端末装置は、PDCCHのブラインドデコーディングにより、上りリンクグラントを検出した場合、上りリンクグラントで指定された上りリンクのデータ送信タイミング(図10の例ではn+2であり、データ送信タイミングまでの相対的な時間k=2)で、上りリンクのデータを送信するが、スロットn+1においてPDCCHでDCIフォーマットによりプリエンプションの通知を検出した場合はスロットn+2の上りリンクのデータ送信をキャンセルする。なお、上りリンクグラントには、HARQのプロセス番号(例えば4ビット)があり、端末装置は、上りリンクグラントで指定されたHARQのプロセス番号に対応した上りリンクグラントのデータ送信のキャンセルを行う。
 キャンセルされた対応するデータ送信(PUSCH送信)のタイミング後すぐに、対応するHARQプロセスのタイマー2が実行中(ランニング)でなければ、対応するHARQプロセスのタイマー2を開始(起動/実行/スタート)する。タイマー2はdrx-RetransmissionTimerULであってもよく、drx-RetransmissionTimerULは上りリンク再送のためのグラントが受信されるまでの最大期間としても良い。図10では、タイマー2は6スロットの例である。タイマー2は、10スロット、11スロット、12スロット、14スロット、16スロット、18スロット、116スロット、124スロット、133スロット、140スロット、164スロット、180スロット、196スロット、1112スロット、1128スロット、1160スロットの中から設定されても良いし、プリエンプションされない(図7の動作)と異なるスロット数から設定されても良い。また、プリエンプションで上りリンクのデータ送信をキャンセルする場合(図10)と上りリンクのデータ送信する場合(図7)で、タイマー2の期間をそれぞれ設定できても良い。例えば、上りリンクのデータ送信する場合は16スロット、上りリンクのデータ送信をキャンセルする場合は10スロットと設定しても良い。
 端末装置は、タイマー2が実行中にキャンセルされた対応するデータ送信(プリエンプションしたデータ)に対する上りリンクグラントを受信した場合(図10の例ではスロットn+5)、キャンセルされたHARQプロセスIDに対応するデータ送信後すぐに、対応するHARQプロセスのタイマー1を開始し、対応するHARQプロセスのタイマー2を停止する。ここで、上りリンクのデータ送信のHARQプロセスIDは、上りリンクグラントで使われるDCIフォーマットで通知される。タイマー1はdrx-HARQ-RTT-TimerULであってもよく、drx-HARQ-RTT-TimerULはMACエンティティによって上りリンクHARQの再送グラント(UL HARQ retransmission grant)が予期される前の最小期間としても良い。つまり、タイマー1が実行中は、基地局装置が上りリンクのデータの復調/復号処理を行っており、上りリンクデータ送信に対するACK/NACKがこない期間を意味する。そのため、DRXの設定によりブラインドデコーディングを停止してもよい期間(Onの期間でない期間)かつタイマー1の実行中の期間は、ブラインドデコーディングを停止してもよい。タイマー1は、0から56OFDMシンボルの範囲で設定しても良い。よって、図10の上りリンクのデータ送信をキャンセルした場合は、基地局装置が上りリンクのデータの復調/復号処理が不要のため、タイマー1は使用せずに、タイマー2を起動(実行)する。
 図11に、第1の実施形態に係る上りリンクのデータの再送の一例を示す。同図は、図10との違いは、キャンセルされた上りリンクのデータが再送である点である。初送は、図7の例であるタイマー1が満了し、タイマー2が実行されている場合であっても、図10の例であるタイマー2が実行されている場合で合っても良い。なお、図10の上りリンクのデータ送信をキャンセルした場合、再送(NDIがトグルされていない)としても良いし、初送(NDIがトグルされている)としても良く、本発明の一態様はいずれにも適用できる。
 図11では、スロットnにおいて、初送もしくは再送、上りリンクのデータ送信のキャンセルによりタイマー2が実行中に、基地局装置がPDCCHでDCIフォーマットを使い、再送の上りリンクグラントを通知する。上りリンクグラントは、DCIフォーマット0_0もしくは0_1で通知される、もしくはその他のDCIフォーマットで通知されるものとする。上りリンクグラントは、端末装置が上りリンクのデータ送信に使用する周波数リソース(リソースブロック、リソースブロックグループ、サブキャリア)の情報と、スロットnから上りリンクのデータ送信タイミングまでの相対的な時間(例えば、相対的な時間がkであれば、スロットn+kが上りリンクのデータ送信タイミング)と上りリンクのデータ送信タイミングのスロット内で使用するOFDMシンボル数と開始位置、連続するOFDMシンボル数が含まれても良い。また、上りリンクグラントは、複数のスロットのデータ送信を通知しても良く、上りリンクのデータ送信タイミングを示す相対的な時間をkとする場合、スロットn+k~スロットn+k+n’までのデータ送信を許可する場合、上りリンクグラントにn’の情報が含まれる。
 端末装置は、PDCCHのブラインドデコーディングにより、再送の上りリンクグラントを検出した場合、上りリンクグラントで指定された上りリンクのデータ送信タイミング(図11の例ではn+2であり、データ送信タイミングまでの相対的な時間k=2)で、上りリンクのデータを送信するが、スロットn+1においてPDCCHでDCIフォーマットによりプリエンプションの通知を検出した場合はスロットn+2の上りリンクのデータ送信をキャンセルする。なお、上りリンクグラントには、HARQのプロセス番号(例えば4ビット)があり、端末装置は、上りリンクグラントで指定されたHARQのプロセス番号に対応した上りリンクグラントのデータ送信のキャンセルを行う。
 キャンセルされた対応するデータ送信(PUSCH送信)のタイミング後すぐに、対応するHARQプロセスのタイマー2が実行中であれば、対応するHARQプロセスのタイマー2を再開始(再スタート)する。タイマー2はdrx-RetransmissionTimerULであってもよく、drx-RetransmissionTimerULは上りリンク再送のためのグラントが受信されるまでの最大期間としても良い。図11では、タイマー2は6スロットの例である。タイマー2は、10スロット、11スロット、12スロット、14スロット、16スロット、18スロット、116スロット、124スロット、133スロット、140スロット、164スロット、180スロット、196スロット、1112スロット、1128スロット、1160スロットの中から設定されても良いし、プリエンプションされない(図7の動作)と異なるスロット数から設定されても良い。また、プリエンプションで上りリンクのデータ送信をキャンセルする場合(図11)と上りリンクのデータ送信する場合(図7)で、タイマー2の期間をそれぞれ設定できても良い。例えば、上りリンクのデータ送信する場合は16スロット、上りリンクのデータ送信をキャンセルする場合は10スロットと設定しても良い。
 端末装置は、タイマー2が実行中にキャンセルされた対応するデータ送信(プリエンプションしたデータ)に対する上りリンクグラントを受信した場合(図11の例ではスロットn+5)、キャンセルされたHARQプロセスIDに対応するデータ送信後すぐに、対応するHARQプロセスのタイマー1を開始し、対応するHARQプロセスのタイマー2を停止する。ここで、上りリンクのデータ送信のHARQプロセスIDは、上りリンクグラントで使われるDCIフォーマットで通知される。タイマー1はdrx-HARQ-RTT-TimerULであってもよく、drx-HARQ-RTT-TimerULはMACエンティティによって上りリンクHARQの再送グラント(UL HARQ retransmission grant)が予期される前の最小期間としても良い。つまり、タイマー1が実行中は、基地局装置が上りリンクのデータの復調/復号処理を行っており、上りリンクデータ送信に対するACK/NACKがこない期間を意味する。そのため、DRXの設定によりブラインドデコーディングを停止してもよい期間(Onの期間でない期間)かつタイマー1の実行中の期間は、ブラインドデコーディングを停止してもよい。タイマー1は、0から56OFDMシンボルの範囲で設定しても良い。よって、図11の上りリンクのデータ送信をキャンセルした場合は、基地局装置が上りリンクのデータの復調/復号処理が不要のため、タイマー1は使用せずに、タイマー2を起動(実行)する。
 図12に、第1の実施形態に係る上りリンクのデータ送信の停止の一例を示す。同図は、上りリンクグラントにより上りリンクのデータ送信の割当て後に、プリエンプションのDCIを受信し、上りリンクのデータ送信をキャンセルした場合に制御されるタイマーを示している。同図の横軸は、時間でありスロット/ミニスロット(Non-Slotもしくは14未満の複数のOFDMシンボル)/OFDMシンボルとしても良いが、スロットとして説明する。まず、基地局装置は、スロットnにおいて、PDCCHでDCIフォーマットを使い、上りリンクグラントを通知する。上りリンクグラントは、DCIフォーマット0_0もしくは0_1で通知される、もしくはその他のDCIフォーマットで通知されるものとする。上りリンクグラントは、端末装置が上りリンクのデータ送信に使用する周波数リソース(リソースブロック、リソースブロックグループ、サブキャリア)の情報と、スロットnから上りリンクのデータ送信タイミングまでの相対的な時間(例えば、相対的な時間がkであれば、スロットn+kが上りリンクのデータ送信タイミング)と上りリンクのデータ送信タイミングのスロット内で使用するOFDMシンボル数と開始位置、連続するOFDMシンボル数が含まれても良い。また、上りリンクグラントは、複数のスロットのデータ送信を通知しても良く、上りリンクのデータ送信タイミングを示す相対的な時間をkとする場合、スロットn+k~スロットn+k+n’までのデータ送信を許可する場合、上りリンクグラントにn’の情報が含まれる。
 端末装置は、PDCCHのブラインドデコーディングにより、上りリンクグラントを検出した場合、上りリンクグラントで指定された上りリンクのデータ送信タイミング(図12の例ではn+2であり、データ送信タイミングまでの相対的な時間k=2)で、上りリンクのデータを送信するが、スロットn+1においてPDCCHでDCIフォーマットによりプリエンプションの通知を検出した場合はスロットn+2の上りリンクのデータ送信をキャンセルする。なお、上りリンクグラントには、HARQのプロセス番号(例えば4ビット)があり、端末装置は、上りリンクグラントで指定されたHARQのプロセス番号に対応した上りリンクグラントのデータ送信のキャンセルを行う。
 図12では、PDCCHが初送(上りリンクのnew transmission)の上りリンクグラントを示す場合、タイマー3を開始(起動/実行/スタート)する。タイマー3は、drx-InactivityTimerであってもよく、drx-InactivityTimerはMACエンティティの初期の上りリンクもしくは下りリンクのユーザデータ送信を示すPDCCH(上りリンクグラントもしくは下りリンクグラント)のPDCCH occasion後の期間としても良い。次に、タイマー3が実行中のスロットn+1においてPDCCHでDCIフォーマットによりプリエンプションの通知を検出した場合は、上りリンクグラントを受信時と同様にタイマー3を再開始(再スタート)する。これは、タイマー3は、基地局装置が連続的に上りリンクグラントもしくは下りリンクグラントを送信する場合があり、いずれかのグラントを受信した場合に、DRXでブラインドデコーディングしなくても良い期間(Onでない期間)であると連続的にグラントを検出ができなくなることを回避するためである。そのため、プリエンプションのDCIフォーマットを検出後に、タイマー3がすぐに満了してしまうと、端末装置がブラインドデコーディングを停止する可能性がある。そこで、本実施形態では、プリエンプションの通知もグラントと同様に扱い、タイマー3のリスタートすることで満了までの期間を確保できる。なお、drx-InactivityTimerは{1ms、2ms、3ms、4ms、5ms、6ms、8ms、10ms、20ms、30ms、40ms、50ms、60ms、80ms、100ms、200ms、300ms、400ms、500ms、600ms、800ms、1000ms、1200ms、1600ms}の中から設定されても良い。また、タイマー3は、上りリンクグラントを検出時のタイマーの期間と、プリエンプションを検出時のタイマーの期間はそれぞれ設定を持っても良く、上りリンクグラントを検出時のタイマーの期間を10ms、プリエンプションを検出時のタイマーの期間を20msとしても良い。
 なお、本実施形態で説明したDCIによるプリエンプションの通知は、DCIフォーマット0_0と同一のビット数で、CRCのスクランブルがINT-RNTI/UL-INT-RNTIとしても良いし、DCIフォーマット0_1と同一のビット数で、CRCのスクランブルがINT-RNTI/UL-INT-RNTIとしても良いし、DCIフォーマット2_1と同一のビット数で、CRCのスクランブルがINT-RNTIと異なるUL-INT-RNTIとしても良いし、上りリンクのプリエンプションの通知の専用DCIフォーマットのビット数を定義し、CRCのスクランブルがINT-RNTI/UL-INT-RNTIとしてUE固有に通知しても良いし、同一のINT-RNTI/UL-INT-RNTIを予め通知しているUEのグループに通知しても良いし、同一のサービングセル内/BWP内のUEに通知しても良い。
 本実施形態では、端末装置が上りリンクのデータ送信を行った場合のタイマー制御だけでなく、上りリンクのデータ送信をキャンセルした場合においてもタイマーの制御を行う。その結果、上りリンクのデータ送信をキャンセルした場合の上りリンクグラントの通知を効率的に実現でき、端末装置がブラインドデコーディングし続けることや不要なSR送信による消費電力の増大を回避できる。
 (第2の実施形態)
 本実施形態は、プリエンプションを通知するDCIフォーマットでキャンセルされた上りリンクのデータ送信用の割当情報を通知する方法について説明する。本実施形態に係る通信システムは、図3、図4、図5及び図6で説明した基地局装置10及び端末装置20で構成される。以下、第1の実施形態との相違点/追加点を主に説明する。
 前実施形態では、DCIを用いたプリエンプションは、上りリンクのデータ送信をキャンセルすることを通知したが、本実施形態ではDCIでプリエンプションの通知とプリエンプションするデータの送信するための代替リソースも一緒に通知する例について説明する。
 図13に、第2の実施形態に係る上りリンクのデータ送信の一例を示す。同図は、上りリンクグラントにより上りリンクのデータ送信の割当て後に、プリエンプションのDCIを受信し、上りリンクのデータ送信をキャンセルとプリエンプションしたデータを送信するための代替リソースの制御を示している。同図の横軸は、時間でありスロット/ミニスロット(Non-Slotもしくは14未満の複数のOFDMシンボル)/OFDMシンボルとしても良いが、スロットとして説明する。まず、基地局装置は、スロットnにおいて、PDCCHでDCIフォーマットを使い、上りリンクグラントを通知する。上りリンクグラントは、DCIフォーマット0_0もしくは0_1で通知される、もしくはその他のDCIフォーマットで通知されるものとする。上りリンクグラントは、端末装置が上りリンクのデータ送信に使用する周波数リソース(リソースブロック、リソースブロックグループ、サブキャリア)の情報と、スロットnから上りリンクのデータ送信タイミングまでの相対的な時間(例えば、相対的な時間がkであれば、スロットn+kが上りリンクのデータ送信タイミング)と上りリンクのデータ送信タイミングのスロット内で使用するOFDMシンボル数と開始位置、連続するOFDMシンボル数が含まれても良い。また、上りリンクグラントは、複数のスロットのデータ送信を通知しても良く、上りリンクのデータ送信タイミングを示す相対的な時間をkとする場合、スロットn+k~スロットn+k+n’までのデータ送信を許可する場合、上りリンクグラントにn’の情報が含まれる。
 端末装置は、PDCCHのブラインドデコーディングにより、上りリンクグラントを検出した場合、上りリンクグラントで指定された上りリンクのデータ送信タイミング(図13の例ではn+2であり、データ送信タイミングまでの相対的な時間k=2)で、上りリンクのデータを送信するが、スロットn+1においてPDCCHでDCIフォーマットによりプリエンプションの通知を検出した場合はスロットn+2の上りリンクのデータ送信をキャンセルする。なお、上りリンクグラントには、HARQのプロセス番号(例えば4ビット)があり、端末装置は、上りリンクグラントで指定されたHARQのプロセス番号に対応した上りリンクグラントのデータ送信のキャンセルを行う。
 さらに、検出したプリエンプションの通知のDCIフォーマットには、スロットn+2において上りリンクのデータ送信がキャンセルされたデータを送信するためのタイミング(時間領域リソースアサインメント)の情報が含まれても良い。この場合、タイミングの情報は、プリエンプションの通知のスロットn+1からの相対的な時間Lを通知しても良い。図13の場合は、L=3であり、端末装置は、スロットn+4において、スロットn+2でキャンセルした上りリンクのデータ送信を行う。なお、タイミングの情報は、キャンセルされた上りリンクのデータ送信のための上りリンクグラントを検出したスロット(スロットn)からの相対的な時間としても良い。なお、タイミングの情報は、キャンセルされた上りリンクのデータ送信のスロット(スロットn+2)からの相対的な時間としても良い。ここで、端末装置は、スロットnでDCIフォーマット0_0もしくは0_1により通知された送信パラメータ(周波数領域リソースアサインメント、MCS、周波数ホッピングフラグ、RV、NDI、HARQプロセス番号、PUSCHに対するTPCコマンド、UL/SUL(Supplemental UL)インディケータなど)を使い、送信タイミングだけ変えて上りリンクのデータ送信を行っても良い。
 また、検出したプリエンプションの通知のDCIフォーマットには、スロットn+2において上りリンクのデータ送信がキャンセルされたデータを送信するタイミングの情報に加えて、周波数領域リソースアサインメントやMCSを通知しても良い。これは、スロットn+2で上りリンクのデータ送信のタイミングがずれるため、スケジューリング状況などに応じて、周波数領域リソースアサインメントやMCSの再指定を可能とするためである。
 本実施形態では、端末装置が上りリンクのデータ送信をキャンセルした場合に、プリエンプションのDCIでキャンセルした上りリンクのデータ送信のための代替の無線リソースを通知する。その結果、上りリンクのデータ送信をキャンセルした場合の上りリンクグラントの通知を効率的に実現でき、端末装置がブラインドデコーディングし続けることや不要なSR送信による消費電力の増大を回避できる。
 (第3の実施形態)
 本実施形態は、プリエンプションを通知するDCIフォーマットでキャンセルされた上りリンクのデータ送信用の割当情報を通知する方法について説明する。本実施形態に係る通信システムは、図3、図4、図5及び図6で説明した基地局装置10及び端末装置20で構成される。以下、第1の実施形態との相違点/追加点を主に説明する。
 図14に、第3の実施形態に係る上りリンクのデータ送信の一例を示す。同図は、上りリンクグラントにより上りリンクのデータ送信の割当て後に、プリエンプションのDCIを受信し、上りリンクのデータ送信をキャンセルとプリエンプションしたデータを送信するための代替リソースの制御を示している。同図の横軸は、時間でありスロット/ミニスロット(Non-Slotもしくは14未満の複数のOFDMシンボル)/OFDMシンボルとしても良いが、スロットとして説明する。まず、基地局装置は、スロットnにおいて、PDCCHでDCIフォーマットを使い、上りリンクグラントを通知する。上りリンクグラントは、DCIフォーマット0_0もしくは0_1で通知される、もしくはその他のDCIフォーマットで通知されるものとする。上りリンクグラントは、端末装置が上りリンクのデータ送信に使用する周波数リソース(リソースブロック、リソースブロックグループ、サブキャリア)の情報と、スロットnから上りリンクのデータ送信タイミングまでの相対的な時間(例えば、相対的な時間がkであれば、スロットn+kが上りリンクのデータ送信タイミング)と上りリンクのデータ送信タイミングのスロット内で使用するOFDMシンボル数と開始位置、連続するOFDMシンボル数が含まれても良い。また、上りリンクグラントは、複数のスロットのデータ送信を通知しても良く、上りリンクのデータ送信タイミングを示す相対的な時間をkとする場合、スロットn+k~スロットn+k+n’までのデータ送信を許可する場合、上りリンクグラントにn’の情報が含まれる。
 端末装置は、PDCCHのブラインドデコーディングにより、上りリンクグラントを検出した場合、上りリンクグラントで指定された上りリンクのデータ送信タイミング(図14の例ではn+2であり、データ送信タイミングまでの相対的な時間k=2)で、上りリンクのデータを送信するが、スロットn+1においてPDCCHでDCIフォーマットによりプリエンプションの通知を検出した場合はスロットn+2の上りリンクのデータ送信をキャンセルする。なお、上りリンクグラントには、HARQのプロセス番号(例えば4ビット)があり、端末装置は、上りリンクグラントで指定されたHARQのプロセス番号に対応した上りリンクグラントのデータ送信のキャンセルを行う。
 さらに、検出したプリエンプションの通知のDCIフォーマットには、キャンセルされたデータを送信するための無線リソースを再割当てする上りリンクグラントを通知するタイミングの情報が含まれても良い。この場合、タイミングの情報は、プリエンプションの通知のスロットn+1からの相対的な時間Jを通知しても良い。図14の場合は、J=3であり、端末装置は、スロットn+4において、スロットn+2でキャンセルした上りリンクのデータ送信のための無線リソースを通知する上りリンクグラントの検出を行う。なお、タイミングの情報は、キャンセルされた上りリンクのデータ送信のための上りリンクグラントを検出したスロット(スロットn)からの相対的な時間としても良い。なお、タイミングの情報は、キャンセルされた上りリンクのデータ送信のスロット(スロットn+2)からの相対的な時間としても良い。ここで、端末装置は、スロットn+4において、DCIフォーマット0_0もしくは0_1の上りリンクグラントを検出し、スロットn+4で検出したDCIに情報に基づき、プリエンプションしたデータを送信する(スロットn+5)。
 本実施形態では、端末装置が上りリンクのデータ送信をキャンセルした場合に、プリエンプションのDCIでキャンセルした上りリンクのデータ送信のための代替の無線リソースを通知する上りリンクグラントのタイミングを通知する。その結果、上りリンクのデータ送信をキャンセルした場合の上りリンクグラントの通知を効率的に実現でき、端末装置がブラインドデコーディングし続けることや不要なSR送信による消費電力の増大を回避できる。
 なお、本明細書の実施形態は、複数の実施形態を組み合わせて適用しても良いし、各実施形態のみを適用しても良い。
 本発明の一態様に関わる装置で動作するプログラムは、本発明の一態様に関わる上述した実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、処理時に一時的にRandom Access Memory(RAM)などの揮発性メモリに読み込まれ、あるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。
 なお、上述した実施形態における装置の一部、をコンピュータで実現するようにしても良い。その場合、実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体等のいずれであっても良い。
 さらに「コンピュータが読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、すなわち典型的には集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、ディジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明の一態様は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
 本発明の一態様は、例えば、通信システム、通信機器(例えば、携帯電話装置、基地局装置、無線LAN装置、或いはセンサーデバイス)、集積回路(例えば、通信チップ)、又はプログラム等において、利用することができる。
10 基地局装置
20-1~20-n1 端末装置
10a 基地局装置10が端末装置と接続可能な範囲
102 上位層処理部
104 送信部
106 送信アンテナ
108 制御部
110 受信アンテナ
112 受信部
1040 符号化部
1042 変調部
1043 多元接続処理部
1044 多重部
1046 上りリンク制御信号生成部
1048 上りリンク参照信号生成部
1049 IFFT部
1050 無線送信部
1120 無線受信部
1121 FFT部
1122 伝搬路推定部
1124 多重分離部
1126 信号検出部
1504 等化部
1506-1~1506-c 多元接続信号分離部
1510-1~1510-c 復調部
1512-1~1512-c 復号部
202 受信アンテナ
204 受信部
206 上位層処理部
208 制御部
210 送信部
212 送信アンテナ
2100 符号化部
2102 変調部
2106 多元接続処理部
2108 多重部
2109 IFFT部
2110 無線送信部
2112 下りリンク参照信号生成部
2113 下りリンク制御信号生成部
2040 無線受信部
2041 FFT部
2042 多重分離部
2043 伝搬路推定部
2044 信号検出部
2504 等化部
2506-1~2506-u 多元接続信号分離部
2508-1~2508-u IDFT部
2510-1~2510-u 復調部
2512-1~2512-u 復号部

Claims (7)

  1.  基地局装置と通信を行う端末装置であって、
     第1のDCIフォーマットと第2のDCIフォーマットを検出する制御情報検出部と、前記第1のDCIフォーマットに基づく上りリンクデータ送信、もしくはスケジュールされたリソースの前記第2のDCIフォーマットによるキャンセルが可能な送信部と、を備え、
     前記制御情報検出部が前記第1のDCIフォーマットによる前記上りリンクデータ送信のための上りリンクグラントを検出し、
     前記送信部は、前記上りリンクグラントに基づいて対応する上りリンクのデータ送信した場合にデータ送信後に対応するHARQプロセスの第1のタイマーをスタートして対応するHARQプロセスの第2のタイマーを止め、前記第1のタイマーが満了した場合は対応するHARQプロセスの第2のタイマーをスタートし、
     前記第2のDCIフォーマットによる前記上りリンクグラントに基づく上りリンクデータ送信のキャンセルを検出した場合、キャンセルされた対応するデータ送信のタイミングで、対応するHARQプロセスの前記第1のタイマーが満了して前記第2のタイマーが実行中であれば再スタートし、前記第2のタイマーが実行中でなければスタートする端末装置。
  2.  前記第1のタイマーが満了後にスタートする第2のタイマーと、キャンセルされた対応するデータ送信のタイミングでスタートする第2のタイマーは異なる期間が設定される請求項1に記載の端末装置。
  3.  前記第1のDCIフォーマットによる前記上りリンクグラントを検出したときにスタートする第3のタイマーがあり、前記第2のDCIフォーマットによる前記上りリンクグラントに基づく上りリンクデータ送信のキャンセルを検出した場合に前記第3のタイマーを再スタートする請求項1に記載の端末装置。
  4.  前記第1のDCIフォーマットによる前記上りリンクグラントを検出したときにスタートする第3のタイマーと、前記第2のDCIフォーマットによる前記上りリンクグラントに基づく上りリンクデータ送信のキャンセルを検出した場合に再スタートする第3のタイマーは異なる期間が設定される請求項3に記載の端末装置。
  5.  前記第2のDCIフォーマットによる前記上りリンクグラントに基づく上りリンクデータ送信のキャンセルを検出した場合、前記第2のDCIフォーマットに含まれる送信タイミングと前記第1のDCIフォーマットに含まれる送信パラメータに基づき上りリンクのデータ送信をする請求項1に記載の端末装置。
  6.  前記第2のDCIフォーマットによる前記上りリンクグラントに基づく上りリンクデータ送信のキャンセルを検出した場合、前記第2のDCIフォーマットに含まれる送信タイミングとMCS、周波数領域リソースアサインメントと、前記第2のDCIフォーマットに含まれない送信パラメータであり前記第1のDCIフォーマットに含まれる送信パラメータに基づき上りリンクのデータ送信をする請求項5に記載の端末装置。
  7.  前記第2のDCIフォーマットによる前記上りリンクグラントに基づく上りリンクデータ送信のキャンセルを検出した場合、前記第2のDCIフォーマットに含まれる上りリンクグラントの通知タイミングに基づき、再割当ての上りリンクグラントを検出する請求項1に記載の端末装置。
PCT/JP2019/017747 2018-04-27 2019-04-25 端末装置 WO2019208719A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/050,201 US11265912B2 (en) 2018-04-27 2019-04-25 Terminal apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018086484A JP7066503B2 (ja) 2018-04-27 2018-04-27 基地局装置および端末装置
JP2018-086484 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019208719A1 true WO2019208719A1 (ja) 2019-10-31

Family

ID=68294104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017747 WO2019208719A1 (ja) 2018-04-27 2019-04-25 端末装置

Country Status (3)

Country Link
US (1) US11265912B2 (ja)
JP (1) JP7066503B2 (ja)
WO (1) WO2019208719A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11080777B2 (en) 2014-03-31 2021-08-03 Monticello Enterprises LLC System and method for providing a social media shopping experience
WO2019160360A1 (ko) * 2018-02-14 2019-08-22 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송을 수행하기 위한 방법 및 이를 위한 장치
US11464007B2 (en) 2018-07-17 2022-10-04 Lg Electronics Inc. Method and device for determining TBS in NR V2X
KR102574099B1 (ko) * 2018-07-24 2023-09-04 주식회사 아이티엘 차량 통신을 지원하는 무선통신 시스템에서 무선 통신을 수행하는 방법 및 그 장치
US11956788B2 (en) * 2018-07-30 2024-04-09 Qualcomm Incorporated Expiration periods for low latency communications
CN112544051A (zh) * 2018-08-10 2021-03-23 苹果公司 用于新无线电超可靠低延时通信的物理上行链路共享信道增强
WO2020168235A1 (en) * 2019-02-14 2020-08-20 Hua Zhou Uplink transmission with uplink grant processing prioritization
US11497042B2 (en) * 2019-02-15 2022-11-08 Qualcomm Incorporated Resource scheduling techniques in wireless systems
US11224055B2 (en) * 2020-03-27 2022-01-11 Verizon Patent And Licensing Inc. Systems and methods for dynamic uplink grant policy based on medium access control (“MAC”) protocol data unit (“PDU”) padding
US11611984B2 (en) 2019-07-18 2023-03-21 Samsung Electronics Co., Ltd. System and method for preserving wireless transmissions
US10986695B1 (en) * 2019-11-07 2021-04-20 PanPsy Technologies, LLC Uplink cancellation indication signaling
WO2021155605A1 (zh) * 2020-02-07 2021-08-12 Oppo广东移动通信有限公司 配置授权定时器的使用方法与装置、终端设备和网络设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10932278B2 (en) * 2017-03-20 2021-02-23 Convida Wireless, Llc Scheduling and control in new radio using preemption indication
US10448423B2 (en) * 2017-03-22 2019-10-15 Ofinno, Llc Data multiplexing in a wireless device and wireless network
US10892860B2 (en) * 2017-03-23 2021-01-12 Panasonic Intellectual Property Corporation Of America Method, apparatus and system for controlling retransmission scheme
US10873934B2 (en) * 2017-09-28 2020-12-22 Ofinno, Llc Pre-emption indication in a wireless device
EP3547780B1 (en) * 2018-03-30 2022-02-16 Comcast Cable Communications LLC Wireless communications for uplink preemption and downlink preemption

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VIVO: "Discussion on handling UL multiplexing of transmissions with different reliability requirements", 3GPP TSG RAN WG1 #926 R1- 1803848, 6 April 2018 (2018-04-06), XP051413030 *
VIVO: "Summary of handling UL multiplexing of transmission with different reliability requirements", 3GPP TSG RAN WG1 #92B R1- 1805629, 18 April 2018 (2018-04-18), XP051427669 *

Also Published As

Publication number Publication date
US20210076409A1 (en) 2021-03-11
JP2019193193A (ja) 2019-10-31
JP7066503B2 (ja) 2022-05-13
US11265912B2 (en) 2022-03-01

Similar Documents

Publication Publication Date Title
US11109267B2 (en) Base station apparatus, terminal apparatus, and communication method for these apparatuses
WO2020031983A1 (ja) 端末装置および基地局装置
US11265912B2 (en) Terminal apparatus
US11937263B2 (en) Terminal apparatus for transmitting data using uplink grants
WO2019208774A1 (ja) 端末装置
WO2019194270A1 (ja) 端末装置
US11115960B2 (en) Terminal apparatus and communication method
WO2018123746A1 (ja) 基地局装置、端末装置およびその通信方法
WO2019138912A1 (ja) 基地局装置および端末装置
CN112673700B (zh) 终端装置
WO2019150889A1 (ja) 基地局装置および端末装置
WO2017195815A1 (ja) 基地局装置、端末装置およびその通信方法
JPWO2018143174A1 (ja) 基地局装置、端末装置およびその通信方法
WO2018123720A1 (ja) 基地局装置、端末装置およびその通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793647

Country of ref document: EP

Kind code of ref document: A1