WO2019150889A1 - 基地局装置および端末装置 - Google Patents
基地局装置および端末装置 Download PDFInfo
- Publication number
- WO2019150889A1 WO2019150889A1 PCT/JP2019/000234 JP2019000234W WO2019150889A1 WO 2019150889 A1 WO2019150889 A1 WO 2019150889A1 JP 2019000234 W JP2019000234 W JP 2019000234W WO 2019150889 A1 WO2019150889 A1 WO 2019150889A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission
- terminal device
- uplink
- transmission power
- access
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0002—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
- H04L1/0003—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/08—Closed loop power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/247—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/248—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where transmission power control commands are generated based on a path parameter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/54—Signalisation aspects of the TPC commands, e.g. frame structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/54—Signalisation aspects of the TPC commands, e.g. frame structure
- H04W52/58—Format of the TPC bits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/27—Transitions between radio resource control [RRC] states
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0002—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
Definitions
- One embodiment of the present invention relates to a base station device, a terminal device, and a communication method thereof.
- This application claims priority based on Japanese Patent Application No. 2018-13398 filed in Japan on January 30, 2018, the contents of which are incorporated herein by reference.
- MTC massive Machine Type Communications
- URLLC ultra-reliable and low-delay communication
- eMBB enhanced Mobile Broadband
- a terminal device in a communication system such as LTE (Long Term Evolution) and LTE-A (LTE-Advanced) specified in 3GPP, a terminal device (UE: User Termination) is a random access procedure (Random Termination Access Procedure) or scheduling.
- a request (SR: Scheduling Request) or the like is used to request a radio resource for transmitting uplink data from a base station apparatus (also called BS; Base Station, eNB; evolved Node Node B).
- the base station apparatus gives an uplink transmission permission (UL Grant) to each terminal apparatus based on the SR.
- the terminal apparatus When receiving the UL Grant of control information from the base station apparatus, the terminal apparatus transmits uplink data using a predetermined radio resource based on the uplink transmission parameter included in the UL Grant (Scheduled access, grant- based access, referred to as transmission by dynamic scheduling, hereinafter referred to as scheduled access).
- the base station device controls all uplink data transmission (the base station device knows the radio resources of the uplink data transmitted by each terminal device).
- the base station apparatus controls uplink radio resources to realize orthogonal multiple access (OMA).
- OMA orthogonal multiple access
- grant-free access grant free access, grant less access, Contention-based access, Autonomous access, Resource allocation for that the terminal device does not perform random access procedure or SR transmission, and does not perform UL Grant reception etc.
- grant-free access Utilization of uplink transmission without grant, type1 configured grant transmission, etc. (hereinafter referred to as grant-free access) and Semi-persistent scheduling (also referred to as SPS, Type2 configured grant transmission, etc.) Patent Document 3).
- grant-free access an increase in overhead due to control information can be suppressed even when a large number of devices transmit data of a small size.
- One aspect of the present invention has been made in view of such circumstances, and an object thereof is a base station device, a terminal device, and a communication capable of improving reliability when a transport block is transmitted once. It is to provide a method.
- configurations of a base station apparatus, a terminal apparatus, and a communication method according to an aspect of the present invention are as follows.
- One aspect of the present invention is a terminal device that communicates with a base station device, the terminal device including a receiving unit that receives control information and a transmitting unit that transmits data according to the control information,
- the reception unit receives at least RRC and DCI, and sets the target reception power used for PUSCH transmission to the RRC, fractional TPC, closed loop TPC index setting, and at least target reception power as a parameter of transmission power control switched by the DCI.
- fractional TPC information specifying the closed-loop TPC index is included, and when the DCI specifying transmission power value switching is detected, it is notified as a transmission power control parameter for switching transmission power used for data transmission. This is different from the transmission power value calculated with the parameters.
- the DCI that specifies switching of the transmission power value is set by at least one of the conditions of RNTI, aggregation level, search space, and number of OFDM symbols used for data transmission set by RRC
- the transmission power control is switched according to the condition.
- the DCI that specifies switching of the transmission power value switches transmission power control when the value of the Validation field of the DCI of activation of SPS Type 2 is different.
- the DCI that designates switching of the transmission power value indicates switching of at least one of an MCS table, a CQI table, and a PH reporting transmission mode.
- the communication system includes a base station device (cell, small cell, pico cell, serving cell, component carrier, eNodeB (eNB), Home eNodeB, Low Power Node, Remote Radio Head, gNodeB (gNB), control station, Bandwidth. Part (BWP), Supplementary Uplink (SUL) and a terminal device (terminal, mobile terminal, mobile station, UE: User Equipment).
- a base station device cell, small cell, pico cell, serving cell, component carrier, eNodeB (eNB), Home eNodeB, Low Power Node, Remote Radio Head, gNodeB (gNB), control station, Bandwidth. Part (BWP), Supplementary Uplink (SUL) and a terminal device (terminal, mobile terminal, mobile station, UE: User Equipment).
- the base station apparatus in the case of downlink, the base station apparatus is a transmission apparatus (transmission point, transmission antenna group, transmission antenna port group), and the terminal apparatus is a reception apparatus (reception point, reception terminal, reception antenna
- the base station apparatus becomes a receiving apparatus and the terminal apparatus becomes a transmitting apparatus.
- the communication system can also be applied to D2D (Device-to-Device) communication. In that case, both the transmitting device and the receiving device are terminal devices.
- the communication system is not limited to data communication between a terminal device and a base station device in which a human intervenes, but MTC (Machine Type Communication), M2M communication (Machine-to-Machine Communication), IoT (Internet of Things). ) Communication, NB-IoT (Narrow Band-IoT), etc. (hereinafter referred to as MTC) can be applied to data communication forms that do not require human intervention.
- the terminal device is an MTC terminal.
- the communication system includes DFTS-OFDM (Discrete-Fourier-Transform-Spread---Orthogonal-Frequency-Division-Multiplexing, SC-FDMA (also referred to as Single-Carrier--Frequency-Division-Multiple-Access)), CP-OFDM (Cyclic Prefix).
- DFTS-OFDM Discrete-Fourier-Transform-Spread---Orthogonal-Frequency-Division-Multiplexing
- SC-FDMA also referred to as Single-Carrier--Frequency-Division-Multiple-Access
- CP-OFDM Cyclic Prefix
- -Multi-carrier transmission methods such as “Orthogonal”, “Frequency”, “Division” and “Multiplexing” can be used.
- the communication system uses FBMC (Filter Bank-Multi OFDM Carrier) to which a filter is applied, f-OFDM (Filtered-OFDM), UF-OFDM (Universal Filtered-OFDM), W-OFDM (Windowing-OFDM), and sparse code.
- FBMC Filter Bank-Multi OFDM Carrier
- f-OFDM Frtered-OFDM
- UF-OFDM Universal Filtered-OFDM
- W-OFDM Windowing-OFDM
- sparse code A scheme (SCMA: Sparse Code Multiple Multiple Access) or the like can also be used.
- SCMA Sparse Code Multiple Multiple Access
- the communication system may apply a DFT precoding and use a signal waveform using the above filter.
- the communication system may perform code spreading, interleaving, sparse code, and the like in the transmission method. In the following description, it is assumed that at least one of DFTS-OFDM transmission and CP-OF
- the base station apparatus and the terminal apparatus in the present embodiment are a frequency band called a licensed band (licensed band) obtained from a country or region where a wireless provider provides a service (license), and / or Communication is possible in a so-called unlicensed band that does not require a license from the country or region.
- a licensed band obtained from a country or region where a wireless provider provides a service (license)
- / or Communication is possible in a so-called unlicensed band that does not require a license from the country or region.
- unlicensed band communication based on carrier sense (for example, listen before talk method) may be used.
- FIG. 1 is a diagram illustrating a configuration example of a communication system according to the present embodiment.
- the communication system according to the present embodiment includes a base station device 10 and terminal devices 20-1 to 20-n1 (n1 is the number of terminal devices connected to the base station device 10).
- the terminal devices 20-1 to 20-n1 are also collectively referred to as the terminal device 20.
- the coverage 10a is a range (communication area) in which the base station device 10 can connect to the terminal device 20 (also referred to as a cell).
- the radio communication of the uplink r30 includes at least the following uplink physical channels.
- the uplink physical channel is used for transmitting information output from an upper layer.
- the PUCCH is a physical channel used for transmitting uplink control information (UPCI).
- Uplink control information includes downlink acknowledgment (positive acknowledgement: ACK) / downlink transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH, Physical Downlink Shared Channel: PDSCH) / Includes negative acknowledgment (NACK).
- ACK / NACK is also referred to as HARQ-ACK (Hybrid Automatic Repeat request ACKnowledgement), HARQ feedback, HARQ response, or HARQ control information, and a signal indicating delivery confirmation.
- HARQ-ACK Hybrid Automatic Repeat request ACKnowledgement
- the uplink control information includes a scheduling request (Scheduling request: SR) used to request a PUSCH (Uplink-Shared Channel: UL-SCH) resource for initial transmission.
- the scheduling request includes a positive scheduling request (positive scheduling request) or a negative scheduling request (negative scheduling request).
- a positive scheduling request indicates requesting UL-SCH resources for initial transmission.
- a negative scheduling request indicates that no UL-SCH resource is required for initial transmission.
- the uplink control information includes downlink channel state information (Channel State Information: CSI).
- the downlink channel state information includes a rank index (Rank Indicator: RI) indicating a suitable spatial multiplexing number (number of layers), a precoding matrix indicator (Precoding Matrix Indicator: PMI) indicating a suitable precoder, and a suitable transmission rate.
- Rank Indicator: RI Rank Indicator
- PMI Precoding Matrix Indicator
- CQI Channel quality index
- the PMI indicates a code book determined by the terminal device.
- the codebook is related to precoding of the physical downlink shared channel.
- the CQI As the CQI, a suitable modulation scheme (for example, QPSK, 16QAM, 64QAM, 256QAM, etc.) in a predetermined band, a coding rate, and an index (CQI index) indicating frequency utilization efficiency can be used.
- the terminal device selects a CQI index from the CQI table that will be received without the transport block of the PDSCH exceeding a predetermined block error probability (for example, error rate 0.1).
- the terminal device may have a plurality of predetermined error probabilities (error rates) for the transport block. For example, the error rate of eMBB data may be targeted at 0.1, and the error rate of URLLC may be targeted at 0.00001.
- the terminal device may perform CSI feedback for each target error rate (transport block error rate) when configured in an upper layer (for example, set up by RRC signaling from a base station), or multiple targets in an upper layer CSI feedback of the target error rate may be performed when one of the error rates is set in the upper layer.
- the error rate for eMBB (not depending on whether or not the error rate is set by RRC signaling, but whether or not a CQI table that is not a CQI table for eMBB (that is, transmission in which BLER does not exceed 0.1) is selected ( For example, the CSI may be calculated with an error rate other than 0.1).
- PUCCH defines PUCCH formats 0 to 4, PUCCH formats 0 and 2 are transmitted using 1-2 OFDM symbols, and PUCCH formats 1, 3, and 4 are transmitted using 4 to 14 OFDM symbols.
- PUCCH formats 0 and 1 are used for notification of 2 bits or less, and can notify only HARQ-ACK or HARQ-ACK and SR simultaneously.
- PUCCH formats 1, 3, and 4 are used for reporting more than 2 bits, and can simultaneously report ARQ-ACK, SR, and CSI.
- the number of OFDM symbols used for PUCCH transmission is set in an upper layer (for example, setup by RRC signaling), and which PUCCH format is used depends on the timing (slot, OFDM symbol) at which PUCCH is transmitted, It depends on whether there is CSI transmission.
- PUSCH is a physical channel used for transmitting uplink data (Uplink Transport Block, Uplink-Shared Channel: UL-SCH).
- the PUSCH may be used to transmit HARQ-ACK and / or channel state information for downlink data together with the uplink data.
- PUSCH may be used to transmit only channel state information.
- PUSCH may be used to transmit only HARQ-ACK and channel state information.
- RRC signaling is also referred to as RRC message / RRC layer information / RRC layer signal / RRC layer parameter / RRC information element.
- RRC signaling is information / signal processed in the radio resource control layer.
- the RRC signaling transmitted from the base station apparatus may be common signaling for a plurality of terminal apparatuses in the cell.
- the RRC signaling transmitted from the base station apparatus may be dedicated signaling (also referred to as dedicated signaling) for a certain terminal apparatus. That is, user apparatus specific (UE-specific) information is transmitted to a certain terminal apparatus using dedicated signaling.
- the RRC message can include the UE capability of the terminal device.
- UE Capability is information indicating a function supported by the terminal device.
- the PUSCH is used to transmit MAC CE (Medium Access Control Element).
- the MAC CE is information / signal processed (transmitted) in the medium access control layer (Medium Access Control Layer).
- the power headroom (PH: Power Headroom) may be included in the MAC CE and reported via the physical uplink shared channel. That is, the MAC CE field is used to indicate the power headroom level.
- the uplink data can include an RRC message and a MAC CE.
- RRC signaling and / or MAC CE is also referred to as higher layer signaling.
- RRC signaling and / or MAC CE is included in the transport block.
- PRACH is used for transmitting a preamble used for random access.
- PRACH indicates the initial connection establishment (initial connection establishment) procedure, handover procedure, connection re-establishment (connection ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ re-establishment) procedure, synchronization (timing adjustment) for uplink transmission, and PUSCH (UL-SCH) resource requirements Used for.
- an uplink reference signal (Uplink Signal: UL RS) is used as an uplink physical signal.
- the uplink reference signal includes a demodulation reference signal (Demodulation Reference Signal: DMRS) and a sounding reference signal (Sounding Reference Signal: SRS).
- DMRS is related to transmission of physical uplink shared channel / physical uplink control channel.
- the base station apparatus 10 uses a demodulation reference signal to perform channel estimation / channel correction.
- the maximum number of OFDM symbols of the front-loaded DMRS and an additional setting of DMRS symbols (DMRS-add-pos) are designated by the base station apparatus in RRC.
- the frequency domain allocation, the cyclic shift value of the frequency domain, and how much different frequency domain allocation is used in the OFDM symbol including the DMRS is DCI.
- the front-loaded DMRS is 2 OFDM symbols (double symbol DMRS)
- a time spread setting of length 2 is specified by DCI.
- SRS Sounding Reference Signal
- a terminal apparatus transmits SRS based on the parameter notified with the signal (for example, RRC) of the upper layer from the base station apparatus.
- the terminal apparatus performs SRS based on a parameter notified by a higher layer signal (for example, RRC) than the base station apparatus and a physical downlink control channel (for example, DCI) indicating SRS transmission timing.
- the base station apparatus 10 uses the SRS to measure the uplink channel state (CSI Measurement).
- the base station apparatus 10 may perform timing alignment or closed-loop transmission power control from the measurement result obtained by receiving the SRS.
- the following downlink physical channel is used in downlink r31 radio communication.
- the downlink physical channel is used for transmitting information output from an upper layer.
- PBCH Physical broadcast channel
- PDCH Physical downlink control channel
- PDSCH Physical downlink shared channel
- the PBCH is used to broadcast a master information block (Master Information Block: MIB, Broadcast Channel: BCH) commonly used in terminal apparatuses.
- MIB is one type of system information.
- the MIB includes a downlink transmission bandwidth setting and a system frame number (SFN).
- SFN system frame number
- the MIB may include information indicating at least a part of a slot number, a subframe number, and a radio frame number in which the PBCH is transmitted.
- the PDCCH is used to transmit downlink control information (Downlink Control Information: DCI).
- DCI Downlink Control Information
- the downlink control information defines a plurality of formats (also referred to as DCI formats) based on usage.
- the DCI format may be defined based on the type of DCI and the number of bits constituting one DCI format.
- the downlink control information includes control information for downlink data transmission and control information for uplink data transmission.
- the DCI format for downlink data transmission is also called downlink assignment (or downlink grant, DL Grant).
- the DCI format for uplink data transmission is also referred to as an uplink grant (or uplink assignment, UL Grant).
- DCI formats for downlink data transmission include DCI format 1_0 and DCI format 1_1.
- the DCI format 1_0 is for downlink data transmission for fallback, and is configured with a smaller number of bits than the DCI format 1_1 that supports MIMO and the like.
- the DCI format 1_1 can notify MIMO, a plurality of codeword transmissions, ZP CSI-RS trigger, CBG transmission information, and the like. It is added according to the setting of (CE).
- One downlink assignment is used for scheduling one PDSCH in one serving cell.
- the downlink grant may be used at least for scheduling of PDSCH in the same slot / subframe as the slot / subframe in which the downlink grant is transmitted.
- the downlink assignment according to the DCI format 1_0 includes the following fields. For example, identifier of DCI format, frequency domain resource assignment (resource block allocation for PDSCH, resource allocation), time domain resource assignment, mapping from VRB to PRB, MCS (Modulation and Coding Scheme, modulation multivalue for PDSCH) Information indicating the number and coding rate), NDI (NEW Data Indicator) for instructing initial transmission or retransmission, information indicating the HARQ process number in the downlink, information on redundant bits added to the code word during error correction coding Redundancy version (RV), DAI (Downlink Assignment Index), PUCCH transmission power control (TPC: Transmission Power Control) command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator and so on.
- the DCI format for each downlink data transmission includes information (field) necessary for the use among the above information.
- DCI formats for uplink data transmission include DCI format 0_0 and DCI format 0_1.
- the DCI format 0_0 is used for uplink data transmission for fallback, and has a smaller number of bits than the DCI format 0_1 that supports MIMO and the like.
- the DCI format 0_1 includes MIMO, multiple codeword transmission, SRS resource indicator, precoding information, antenna port information, SRS request information, CSI request information, CBG transmission information, uplink PTRS association, DMRS sequence Initialization or the like can be notified, and the presence / absence of some fields and the number of bits are added according to the setting of an upper layer (for example, RRC signaling).
- One uplink grant is used to notify the terminal device of scheduling of one PUSCH in one serving cell.
- the uplink grant according to the DCI format 0_0 includes the following fields. For example, DCI format identifier, frequency domain resource assignment (information on resource block allocation for transmitting PUSCH and time domain resource assignment, frequency hopping flag, information on PUSCH MCS, RV, NDI, HARQ process in uplink There are information indicating a number, a TPC command for PUSCH, a UL / SUL (Supplemental UL) indicator, and the like.
- MCS for PDSCH / PUSCH can use an index (MCS index) indicating the modulation order of PDSCH / PUSCH and the coding rate of the target.
- the modulation order is associated with the modulation scheme.
- Modulation orders “2”, “4”, and “6” indicate “QPSK”, “16QAM”, and “64QAM”, respectively.
- 256QAM or 1024QAM is set in an upper layer (for example, RRC signaling)
- the target coding rate is used to determine a TBS (Transport Block Size) that is the number of bits to be transmitted according to the number of PDSCH / PUSCH resource elements (number of resource blocks) scheduled on the PDCCH.
- Communication system 1 base station apparatus 10 and terminal apparatus 20 calculates transport block size based on MCS, target coding rate, and number of resource elements (number of resource blocks) allocated for PDSCH / PUSCH transmission Share
- the PDCCH is generated by adding a cyclic redundancy check (Cyclic Redundancy Check: CRC) to the downlink control information.
- CRC Cyclic Redundancy Check
- the CRC parity bit is scrambled (also called an exclusive OR operation or mask) using a predetermined identifier.
- the parity bits are C-RNTI (Cell-Radio Network Temporary Identifier), CS (Configured Scheduling) -RNTI, TC (Temporary C) -RNTI, P (Paging) -RNTI, SI (System Information) -RNTI, RA (Random) Access) -RNTI, and scrambled with INT-RNTI, SFI (Slot Format Indicator) -RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, or TPC-SRS-RNTI.
- C-RNTI is an identifier for identifying a terminal device in a cell by dynamic scheduling and CS-RNTI is SPS / grant-free access.
- the Temporary C-RNTI is an identifier for identifying a terminal device that has transmitted a random access preamble during a contention-based random access procedure.
- C-RNTI and Temporary C-RNTI are used to control PDSCH transmission or PUSCH transmission in a single subframe.
- CS-RNTI is used for periodically allocating PDSCH or PUSCH resources.
- P-RNTI is used to transmit a paging message (Paging Channel: PCH).
- SI-RNTI is used to transmit SIB, and RA-RNTI is used to transmit a random access response (message 2 in the random access procedure).
- SFI-RNTI is used to notify the slot format.
- INT-RNTI is used for notifying pre-emption.
- TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, and TPC-SRS-RNTI are used to notify transmission power control values of PUSCH, PUCCH, and SRS, respectively.
- the identifier may include a CS-RNTI for each setting in order to set a plurality of grant-free access / SPS.
- the DCI with the CRC scrambled by CS-RNTI can be used for grant-free access activation, deactivation, parameter change, and retransmission control (ACK / NACK transmission).
- PDSCH is used to transmit downlink data (downlink transport block, DL-SCH).
- the PDSCH is used to transmit a system information message (also referred to as System Information Block: SIB). Part or all of the SIB can be included in the RRC message.
- SIB System Information Block
- the PDSCH is used to transmit RRC signaling.
- the RRC signaling transmitted from the base station apparatus may be common (cell specific) to a plurality of terminal apparatuses in the cell. That is, information common to user apparatuses in the cell is transmitted using cell-specific RRC signaling.
- the RRC signaling transmitted from the base station apparatus may be a message dedicated to a certain terminal apparatus (also referred to as dedicated signaling). That is, user apparatus-specific (UE-Specific) information is transmitted to a certain terminal apparatus using a dedicated message.
- PDSCH is used to transmit MAC CE.
- RRC signaling and / or MAC CE is also referred to as higher layer signaling.
- the PMCH is used to transmit multicast data (Multicast Channel: MCH).
- a synchronization signal (Synchronization signal: SS) and a downlink reference signal (Downlink Signal: DL RS) are used as downlink physical signals.
- SS Synchronization signal
- DL RS Downlink Reference Signal
- the synchronization signal is used for the terminal device to synchronize the downlink frequency domain and time domain.
- the downlink reference signal is used for the terminal apparatus to perform channel estimation / channel correction of the downlink physical channel.
- the downlink reference signal is used to demodulate PBCH, PDSCH, and PDCCH.
- the downlink reference signal can also be used by the terminal device to measure the downlink channel state (CSI measurement).
- the downlink reference signal may include CRS (Cell-specific Reference Signal), CSI-RS (Channel state information Reference Signal), DRS (Discovery Reference Signal), DMRS (Demodulation Reference Signal).
- the downlink physical channel and the downlink physical signal are collectively referred to as a downlink signal.
- the uplink physical channel and the uplink physical signal are collectively referred to as an uplink signal.
- the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel.
- the downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
- BCH, UL-SCH and DL-SCH are transport channels.
- a channel used in the MAC layer is referred to as a transport channel.
- a transport channel unit used in the MAC layer is also referred to as a transport block (TB) or a MAC PDU (Protocol Data Unit).
- the transport block is a unit of data that is delivered (delivered) by the MAC layer to the physical layer. In the physical layer, the transport block is mapped to a code word, and an encoding process or the like is performed for each code word.
- Upper layer processing includes medium access control (Medium Access Control: MAC) layer, packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, radio link control (Radio Link Control: RLC) layer, radio resource control (Radio Resource Control) : Processes higher layers than physical layer such as (RRC) layer.
- Medium Access Control: MAC Medium Access Control
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- Radio Resource Control Radio Resource Control
- Medium Access Control Medium Access Control: MAC
- Packet Data Integration Protocol Packet Data Convergence Protocol: PDCP
- Radio Link Control Radio Link Control: RLC
- Radio Resource Control Radio Resource Control: RRC
- the upper layer processing unit sets various RNTIs for each terminal device.
- the RNTI is used for encryption (scrambling) of PDCCH, PDSCH, and the like.
- downlink data transport block, DL-SCH
- system information specific to terminal equipment System Information Block: ⁇ SIB
- RRC message MAC CE, etc.
- MAC CE MAC CE
- the terminal device 20 In the upper layer processing, information related to the terminal device such as a function supported by the terminal device (UE capability) is received from the terminal device 20.
- the terminal device 20 transmits its own function to the base station device 10 using an upper layer signal (RRC signaling).
- RRC signaling The information regarding the terminal device includes information indicating whether or not the terminal device supports a predetermined function, or information indicating that the terminal device is introduced into the predetermined function and the test is completed. Whether or not to support a predetermined function includes whether or not the installation and test for the predetermined function have been completed.
- the terminal device When the terminal device supports a predetermined function, the terminal device transmits information (parameter) indicating whether the predetermined device is supported. When the terminal device does not support the predetermined function, the terminal device may not transmit information (parameter) indicating whether or not the predetermined device is supported. That is, whether or not to support the predetermined function is notified by whether or not information (parameter) indicating whether or not to support the predetermined function is transmitted. Information (parameter) indicating whether or not a predetermined function is supported may be notified using 1 or 1 bit.
- a base station apparatus 10 and a terminal apparatus 20 are granted grant-free access (grantgfree access, grant less access, Contention-based access, Autonomous access, Resource allocation for uplink transmission without grant, type1 configured grant transmission).
- Multiple access MA: MAMultiple Access
- Grant-free access means a terminal without performing procedures for specifying physical resources and transmission timing of data transmission by UL Grant (also called UL Grant by L1 signaling) using SR transmission by the terminal device and DCI by the base station device. This is a scheme in which a device transmits uplink data (such as a physical uplink channel).
- the terminal device adds the available resource allocation period, target received power, fractional TPC value ( ⁇ ), number of HARQ processes, and RV pattern during repeated transmission of the same transport through RRC signaling (SPS-config).
- SPS-config Physical Resource (frequency domain resource assignment, time domain resource assignment) and transmission parameters (DMRS cyclic shift and OCC, antenna port number, DMRS) that can be used for grant-free access in advance as a configured Uplink Grant of RRC signaling
- the physical resource that is set only when the transmission data is stored in the buffer. It can be used to send data. That is, when the upper layer does not carry a transport block to be transmitted by grant-free access, data transmission for grant-free access is not performed. If the terminal device has received SPS-config but has not received RRC signaling's Configured Uplink Grant, SPS activation by UL Grant sends similar data using SPS (type 2 configured grant transmission). Can also be done.
- the base station device transmits transmission parameters related to grant-free access to the terminal device using a higher layer signal (for example, RRC), and further grant-free access data.
- a higher layer signal for example, RRC
- transmission permission start activation, RRC setup
- permission end deactivation, RRC release
- change of transmission parameters are also transmitted by higher layer signals.
- the transmission parameters related to grant-free access include physical resources (time domain and frequency domain resource assignments) usable for grant-free access data transmission, physical resource period, MCS, presence / absence of repeated transmission, and number of repetitions.
- the transmission parameter related to grant-free access and the start of permission for data transmission may be set at the same time, or after the transmission parameter related to grant-free access is set, grant-free at different timings (for SCell, SCell activation, etc.) An access data transmission permission start may be set.
- the base station device transmits the transmission parameters related to grant-free access to the terminal device using a higher layer signal (for example, RRC), and grant-free access data transmission.
- Permission start (activation), permission end (deactivation), and change of transmission parameters are transmitted by DCI (L1 signaling).
- RRC includes the physical resource cycle, the number of repetitions, the setting of RV at the time of repeated transmission, the number of HARQ processes, information on the transform precoder, and information on TPC settings
- the activation start by DCI (activation) May include physical resources (resource block allocation) that can be used for grant-free access.
- Grant-free access transmission parameters and data transmission permission start may be set at the same time, or after grant-free access transmission parameters are set, grant-free access data transmission permission start is set at different times. Also good.
- the present invention may be applied to any of the grant-free access described above.
- SPS Semi-Persistent Scheduling
- DCI Downlink Control Information
- RRC Radio Resource Control
- UL-TWG-type2 is the same in that it starts to activate (activate) with DCI (L1 signaling), but it can be used with SCell, BWP, SUL, the number of repetitions with RRC signaling, and the setting of RV during repeated transmission It may be different in that it is notified. Also, the base station apparatus scrambles using different types of RNTI for DCI (L1 signaling) used in grant-free access (UL-TWG-type1 and UL-TWG-type2) and DCI used in dynamic scheduling. Alternatively, DCI used for UL-TWG-type 1 retransmission control and DCI used for UL-TWG-type 2 activation, deactivation, and retransmission control may be scrambled using the same RNTI.
- the base station device 10 and the terminal device 20 may support non-orthogonal multi-access in addition to orthogonal multi-access. Note that the base station apparatus 10 and the terminal apparatus 20 can also support both grant-free access and scheduled access.
- the scheduled access means that the terminal device 20 transmits data according to the following procedure.
- the terminal device 20 requests a radio resource for transmitting uplink data to the base station device 10 using a random access procedure (SR) and SR.
- SR random access procedure
- the base station apparatus gives UL Grant to each terminal apparatus using DCI based on RACH and SR.
- the terminal apparatus transmits uplink data using a predetermined radio resource based on the uplink transmission parameter included in the UL Grant.
- the downlink control information for uplink physical channel transmission can include a shared field for scheduled access and grant-free access.
- the base station apparatus 10 instructs to transmit an uplink physical channel by grant-free access
- the base station apparatus 10 and the terminal apparatus 20 use the bit sequence stored in the shared field for grant-free access. To be interpreted according to the setting (eg, a lookup table defined for grant-free access).
- the base station apparatus 10 and the terminal apparatus 20 interpret the shared field according to the setting for scheduled access. .
- Transmission of an uplink physical channel in grant-free access is referred to as asynchronous data transmission. Note that the transmission of the uplink physical channel in the scheduled manner is referred to as synchronous data transmission.
- the terminal device 20 may randomly select a radio resource for transmitting uplink data. For example, the terminal apparatus 20 is notified of a plurality of available radio resource candidates from the base station apparatus 10 as a resource pool, and randomly selects a radio resource from the resource pool.
- the radio resource to which the terminal device 20 transmits uplink data may be set in advance by the base station device 10. In this case, the terminal device 20 transmits the uplink data using the wireless resource set in advance without receiving DCI UL Grant (including physical resource designation).
- the radio resource includes a plurality of uplink multi-access resources (resources to which uplink data can be mapped).
- the terminal device 20 transmits uplink data using one or a plurality of uplink multi-access resources selected from a plurality of uplink multi-access resources.
- the radio resource to which the terminal apparatus 20 transmits uplink data may be determined in advance in a communication system including the base station apparatus 10 and the terminal apparatus 20.
- the radio resource for transmitting the uplink data is transmitted from the base station apparatus 10 by a physical broadcast channel (for example, PBCH: Physical Broadcast Channel) / radio resource control RRC (Radio Resource Control) / system information (for example, SIB: System).
- PBCH Physical Broadcast Channel
- RRC Radio Resource Control
- SIB System information
- downlink control channel Physical Downlink control channel
- PDCCH Physical Phys Downlink Control Channel
- EPDCCH Enhanced PDCCH
- MPDCCH MTC PDCCH
- NPDCCH Narrowband PDCCH
- the uplink multi-access resource includes a multi-access physical resource and a multi-access signature resource (Multi-Access Signature Resource).
- the multi-access physical resource is a resource composed of time and frequency.
- the multi-access physical resource and the multi-access signature resource can be used to specify an uplink physical channel transmitted by each terminal apparatus.
- the resource block is a unit in which the base station apparatus 10 and the terminal apparatus 20 can map a physical channel (for example, a physical data shared channel or a physical control channel).
- the resource block includes one or more subcarriers (for example, 12 subcarriers and 16 subcarriers) in the frequency domain.
- the multi-access signature resource is composed of at least one multi-access signature among a plurality of multi-access signature groups (also called a multi-access signature pool).
- the multi-access signature is information indicating characteristics (marks and indices) for distinguishing (identifying) uplink physical channels transmitted by each terminal apparatus.
- Multi-access signatures include spatial multiplexing patterns, spreading code patterns (Walsh code, OCC; OrthogonalgonCover Code, cyclic shift for data spreading, sparse code, etc.), interleave pattern, demodulation reference signal pattern (reference signal sequence, cyclic) Shift, OCC, IFDM) / identification signal pattern, transmission power, etc., at least one of which is included.
- the terminal device 20 transmits uplink data using one or a plurality of multi-access signatures selected from the multi-access signature pool.
- the terminal device 20 can notify the base station device 10 of usable multi-access signatures.
- the base station apparatus 10 can notify the terminal apparatus of a multi-access signature used when the terminal apparatus 20 transmits uplink data.
- the base station apparatus 10 can notify the terminal apparatus 20 of a multi-access signature group that can be used when the terminal apparatus 20 transmits uplink data.
- the usable multi-access signature group may be notified using a broadcast channel / RRC / system information / downlink control channel. In this case, the terminal device 20 can transmit uplink data using the multi-access signature selected from the notified multi-access signature group.
- the terminal device 20 transmits uplink data using the multi-access resource.
- the terminal device 20 can map uplink data to a multi-access resource including a multi-carrier signature resource including one multi-access physical resource and a spreading code pattern.
- the terminal device 20 can also allocate uplink data to a multi-access resource configured by one multi-access physical resource and a multi-carrier signature resource composed of an interleave pattern.
- the terminal device 20 can also map uplink data to a multi-access resource including a multi-access physical resource and a multi-access signature resource including a demodulation reference signal pattern / identification signal pattern.
- the terminal apparatus 20 can also map uplink data to a multi-access resource configured by a multi-access signature resource including one multi-access physical resource and a transmission power pattern (for example, each uplink data) May be set so that a reception power difference is generated in the base station apparatus 10.
- a transmission power pattern for example, each uplink data
- uplink transmissions transmitted by a plurality of terminal apparatuses 20 are provided.
- Link data may be allowed to be transmitted in duplicate (superposition, spatial multiplexing, non-orthogonal multiplexing, collision) in uplink multi-access physical resources.
- the base station apparatus 10 detects an uplink data signal transmitted by each terminal apparatus in grant-free access. In order to detect the uplink data signal, the base station apparatus 10 performs SLIC (Symbol Level Interference Cancellation) that performs interference cancellation based on the demodulation result of the interference signal, and CWIC (Codeword Level) that performs interference cancellation based on the decoding result of the interference signal.
- SLIC Symbol Level Interference Cancellation
- CWIC Codeword Level
- Interference Cancellation Sequential Interference Canceller; SIC and Parallel Interference Canceller; also called PIC
- turbo equalization maximum likelihood detection (MLD: maximum likelihood detection, R-MLD) that searches for the most appropriate one among transmission signal candidates : Reduced complexity maximum likelihood detection
- EMMSE-IRC Enhanced Minimum Mean Error Square Interference Rejection Combining
- BP Belief propagation
- MF Melched Filter
- FIG. 2 is a diagram showing a radio frame configuration example of the communication system according to the present embodiment.
- the radio frame configuration indicates a configuration in a time domain multi-access physical resource.
- One radio frame is composed of a plurality of slots (may be subframes).
- FIG. 2 is an example in which one radio frame is composed of 10 slots.
- the terminal device 20 has a reference subcarrier interval (reference topology).
- the subframe is composed of a plurality of OFDM symbols generated at a reference subcarrier interval.
- FIG. 2 is an example in which the subcarrier interval is 15 kHz, one frame is composed of 10 slots, one subframe is composed of one slot, and one slot is composed of 14 OFDM symbols.
- the subcarrier interval is 15 kHz ⁇ 2 ⁇ ( ⁇ is an integer of 0 or more)
- one frame is composed of 2 ⁇ ⁇ 10 slots and one subframe is composed of 2 ⁇ slots .
- FIG. 2 shows a case where the reference subcarrier interval is the same as the subcarrier interval used for uplink data transmission.
- the slot may be a minimum unit in which the terminal device 20 maps a physical channel (for example, a physical data shared channel or a physical control channel).
- a physical channel for example, a physical data shared channel or a physical control channel.
- one slot is a resource block unit in the time domain.
- the minimum unit for mapping the physical channel by the terminal device 20 may be one or a plurality of OFDM symbols (for example, 2 to 13 OFDM symbols).
- the base station apparatus 10 one or a plurality of OFDM symbols is a resource block unit in the time domain.
- the base station apparatus 10 may signal the minimum unit for mapping the physical channel to the terminal apparatus 20.
- FIG. 3 is a schematic block diagram showing the configuration of the base station apparatus 10 according to the present embodiment.
- the base station apparatus 10 includes a reception antenna 202, a reception unit (reception step) 204, an upper layer processing unit (upper layer processing step) 206, a control unit (control step) 208, a transmission unit (transmission step) 210, and a transmission antenna 212. Consists of including.
- the reception unit 204 includes a radio reception unit (radio reception step) 2040, an FFT unit 2041 (FFT step), a demultiplexing unit (demultiplexing step) 2042, a propagation path estimation unit (propagation path estimation step) 2043, signal detection (signal detection) Step) 2044.
- the transmission unit 210 includes an encoding unit (encoding step) 2100, a modulation unit (modulation step) 2102, a multiple access processing unit (multiple access processing step) 2106, a multiplexing unit (multiplexing step) 2108, a wireless transmission unit (wireless transmission step). ) 2110, IFFT unit (IFFT step) 2109, downlink reference signal generation unit (downlink reference signal generation step) 2112, and downlink control signal generation unit (downlink control signal generation step) 2113.
- the receiving unit 204 demultiplexes, demodulates, and decodes an uplink signal (uplink physical channel, uplink physical signal) received from the terminal apparatus 10 via the reception antenna 202.
- the receiving unit 204 outputs a control channel (control information) separated from the received signal to the control unit 208.
- the receiving unit 204 outputs the decoding result to the higher layer processing unit 206.
- the receiving unit 204 acquires ACK / NACK and CSI for SR and downlink data transmission included in the received signal.
- the radio reception unit 2040 converts the uplink signal received via the reception antenna 202 into a baseband signal by down-conversion, removes unnecessary frequency components, and sets the amplification level so that the signal level is properly maintained. Based on the in-phase component and the quadrature component of the received signal, the signal is quadrature demodulated, and the quadrature demodulated analog signal is converted into a digital signal. Radio reception section 2040 removes a portion corresponding to CP (Cyclic Prefix) from the converted digital signal.
- the FFT unit 2041 performs fast Fourier transform on the downlink signal from which CP is removed (demodulation processing for OFDM modulation), and extracts a frequency domain signal.
- the propagation path estimation unit 2043 performs channel estimation for uplink physical channel signal detection using the demodulation reference signal.
- the propagation path estimation unit 2043 receives, from the control unit 208, the resource to which the demodulation reference signal is mapped and the demodulation reference signal sequence assigned to each terminal apparatus.
- the propagation path estimation unit 2043 measures the channel state (propagation path state) between the base station apparatus 10 and the terminal apparatus 20 using the demodulation reference signal sequence.
- the propagation path estimation unit 2043 can identify the terminal device using the channel estimation results (channel state impulse response, frequency response) (for this reason, it is also referred to as an identification unit).
- the propagation path estimation unit 2043 determines that the terminal device 20 associated with the demodulation reference signal that has successfully extracted the channel state has transmitted the uplink physical channel.
- the demultiplexing unit 2042 receives the frequency domain signal (including signals of a plurality of terminal devices 20) input from the FFT unit 2041 in the resource that the propagation path estimation unit 2043 determines that the uplink physical channel is transmitted. Extract.
- the demultiplexing unit 2042 separates and extracts uplink physical channels (physical uplink control channel, physical uplink shared channel) and the like included in the extracted frequency domain uplink signal.
- the demultiplexing unit outputs the physical uplink channel to the signal detection unit 2044 / control unit 208.
- the signal detection unit 2044 uses the channel estimation result estimated by the propagation path estimation unit 2043 and the frequency domain signal input from the demultiplexing unit 2042 to use the uplink data (uplink physical channel) of each terminal apparatus. ) Signal is detected.
- the signal detection unit 2044 detects the signal of the terminal device 20 associated with the demodulation reference signal (demodulation reference signal for which the channel state has been successfully extracted) assigned to the terminal device 20 that has determined that uplink data has been transmitted. Process.
- FIG. 4 is a diagram illustrating an example of a signal detection unit according to the present embodiment.
- the signal detection unit 2044 includes an equalization unit 2504, multiple access signal separation units 2506-1 to 2506-u, IDFT units 2508-1 to 2508-u, demodulation units 2510-1 to 2510-u, decoding units 2512-1 to 2512-u.
- u determines that the propagation path estimation unit 2043 has transmitted uplink data in the same or overlapping multi-access physical resources (at the same time and the same frequency) (successfully extracted the channel state) ) Terminal device number.
- u is the number of terminal devices that are permitted to transmit uplink data on the same or overlapping multi-access physical resources in DCI (same time, eg, in OFDM symbols and slots).
- Each part constituting the signal detection unit 2044 is controlled using the setting regarding grant-free access of each terminal device input from the control unit 208.
- the equalization unit 2504 generates equalization weights based on the MMSE norm from the frequency response input from the propagation path estimation unit 2043.
- MRC or ZF may be used for the equalization processing.
- the equalization unit 2504 multiplies the equalization weight by the frequency domain signal (including the signal of each terminal device) input from the demultiplexing unit 2042, and extracts the frequency domain signal of each terminal device.
- the equalization unit 2504 outputs the frequency domain signal of each terminal apparatus after equalization to the IDFT units 2508-1 to 2508-u.
- a frequency domain signal is output to the IDFT units 2508-1 to 2508-u.
- frequency domain signals are output to the multiple access signal demultiplexing sections 2506-1 to 2506-u.
- IDFT sections 2508-1 to 2508-u convert the frequency domain signals of the respective terminal devices after equalization into time domain signals.
- the IDFT units 2508-1 to 2508-u correspond to processing performed by the DFT unit of the terminal device 20.
- Multiple access signal demultiplexing sections 2506-1 to 2506-u separate the signals multiplexed by the multi-access signature resource from the time domain signals of each terminal apparatus after IDFT (multiple access signal separation processing). For example, when code spreading is used as a multi-access signature resource, each of the multiple access signal demultiplexing units 2506-1 to 2506-u performs a despreading process using a spreading code sequence assigned to each terminal apparatus. .
- deinterleaving processing is performed on the time domain signal of each terminal apparatus after IDFT (deinterleaving unit).
- the demodulating units 2510-1 to 2510-u receive from the control unit 208 information on modulation schemes (BPSK, QPSK, 16QAM, 64QAM, 256QAM, etc.) of each terminal device that is notified in advance or determined in advance. Is done. Based on the modulation scheme information, the demodulation units 2510-1 to 2510-u perform demodulation processing on the signal after separation of the multiple access signal and output a bit sequence LLR (Log Likelihood Ratio).
- LLR Log Likelihood Ratio
- the decoding units 2512-1 to 2512-u are input from the control unit 208 with information on a coding rate notified in advance or determined in advance.
- Decoding sections 2512-1 to 2512-u perform decoding processing on the LLR sequences output from demodulation sections 2510-1 to 2510-u, and receive the decoded uplink data / uplink control information as an upper layer The data is output to the processing unit 206.
- cancellation processing such as successive interference canceller (SIC: Successive Interference Canceller) or turbo equalization
- the decoding units 2512-1 to 2512 -u generate a replica from the external LLR or the a posteriori LLR output from the decoding unit and cancel it. It may be processed.
- SIC Successive Interference Canceller
- the difference between the external LLR and the posterior LLR is whether or not the prior LLR input to the decoding units 2512-1 to 2512-u is subtracted from the decoded LLR.
- the decoding units 2512-1 to 2512 -u perform a hard decision on the LLR after the decoding process, and the uplink data in each terminal apparatus
- the bit sequence may be output to the upper layer processing unit 206. Not only signal detection using turbo equalization processing, but also replica detection, signal detection without interference cancellation, maximum likelihood detection, EMMSE-IRC, or the like can be used.
- the control unit 208 sets configuration information related to uplink reception / configuration information related to downlink transmission included in uplink physical channels (physical uplink control channel, physical uplink shared channel, etc.) from the base station apparatus to the terminal apparatus.
- the reception unit 204 and the transmission unit 210 are controlled by using RRC, SIB, etc.).
- the control unit 208 acquires setting information related to uplink reception / setting information related to downlink transmission from the higher layer processing unit 206.
- the control unit 208 When the transmission unit 210 transmits a physical downlink control channel, the control unit 208 generates downlink control information (DCI: Downlink Control information) and outputs it to the transmission unit 210.
- DCI Downlink Control information
- a part of the function of the control unit 108 can be included in the upper layer processing unit 102.
- the control unit 208 may control the transmission unit 210 in accordance with a CP length parameter added to the data signal.
- the upper layer processing unit 206 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (PDCP: Packet Data Convergence Protocol) layer, a radio link control (RLC: Radio Link Control) layer, and a radio resource control (RRC). : Processes higher layers than physical layer such as Radio (Resource Control) layer.
- Upper layer processing section 206 generates information necessary for controlling transmission section 210 and reception section 204 and outputs the information to control section 208.
- Upper layer processing section 206 outputs downlink data (for example, DL-SCH), broadcast information (for example, BCH), a hybrid automatic retransmission request (Hybrid Automatic Request) indicator (HARQ indicator), and the like to transmission section 210.
- the upper layer processing unit 206 receives information about the function (UE capability) of the terminal device supported by the terminal device from the receiving unit 204. For example, the upper layer processing unit 206 receives information related to the function of the terminal device through RRC layer signaling.
- the information related to the function of the terminal device includes information indicating whether the terminal device supports a predetermined function, or information indicating that the terminal device has introduced the predetermined function and completed the test. Whether or not to support a predetermined function includes whether or not the installation and test for the predetermined function have been completed.
- the terminal device transmits information (parameter) indicating whether the predetermined device is supported.
- the terminal device may not transmit information (parameter) indicating whether or not the terminal device supports the predetermined function. That is, whether or not to support the predetermined function is notified by whether or not information (parameter) indicating whether or not to support the predetermined function is transmitted.
- Information (parameter) indicating whether or not a predetermined function is supported may be notified using 1 or 1 bit.
- the information on the function of the terminal device includes information indicating that grant-free access is supported (information on whether to support UL-TWG-type 1 and UL-TWG-type 2 respectively).
- the upper layer processing unit 206 can receive information indicating whether to support each function.
- the information indicating that grant-free access is supported includes information indicating multi-access physical resources and multi-access signature resources supported by the terminal device.
- the information indicating that grant-free access is supported may include setting of a reference table for setting the multi-access physical resource and multi-access signature resource.
- Information indicating that grant-free access is supported includes the ability to support a plurality of tables indicating antenna ports, scrambling identities and the number of layers, the ability to support a predetermined number of antenna ports, and a predetermined transmission mode. Some or all of the abilities corresponding to The transmission mode is determined by the number of antenna ports, transmission diversity, the number of layers, presence / absence of grant-free access support, and the like.
- the upper layer processing unit 206 manages various setting information of the terminal device. A part of the various setting information is input to the control unit 208. Various setting information is transmitted from the base station apparatus 10 using the downlink physical channel via the transmission unit 210.
- the various setting information includes setting information related to grant-free access input from the transmission unit 210.
- the setting information related to grant-free access includes setting information for multi-access resources (multi-access physical resources and multi-access signature resources).
- uplink resource block setting starting position of OFDM symbol to be used and number of OFDM symbols / number of resource blocks
- setting of demodulation reference signal / identification signal reference signal sequence, cyclic shift, mapped OFDM symbol, etc.
- Spreading code setting Walsh code, OCC; Orthogonal Cover Code, sparse code and spreading rate of these spreading codes, etc.
- interleave setting transmission power setting, transmission / reception antenna setting, transmission / reception beamforming setting, etc.
- These multi-access signature resources may be associated (may be linked) either directly or indirectly.
- the association of multi-access signature resources is indicated by a multi-access signature process index.
- the setting information related to grant-free access may include setting of a reference table for setting the multi-access physical resource and multi-access signature resource.
- the setting information related to grant-free access may include information indicating setup and release of grant-free access, ACK / NACK reception timing information for an uplink data signal, retransmission timing information for an uplink data signal, and the like.
- the higher-layer processing unit 206 is a grant-free uplink data (transport block) multi-access resource (multi-access physical resource, multi-access signature resource) Manage.
- the upper layer processing unit 206 outputs information for controlling the receiving unit 204 to the control unit 208 based on the setting information regarding grant-free access.
- the higher layer processing unit 206 outputs the generated downlink data (for example, DL-SCH) to the transmission unit 210.
- the downlink data may include a field for storing a UE ID (RNTI).
- the upper layer processing unit 206 adds a CRC to the downlink data.
- the CRC parity bits are generated using the downlink data.
- the CRC parity bits are scrambled (also referred to as exclusive OR operation, masking, or encryption) with the UE ID (RNTI) assigned to the destination terminal device.
- RNTI UE ID
- there are a plurality of types of RNTI there are a plurality of types of RNTI, and the RNTI used differs depending on the data to be transmitted.
- the upper layer processing unit 206 generates or acquires broadcast system information (MIB, SIB) from the upper node.
- the upper layer processing unit 206 outputs the broadcast system information to the transmission unit 210.
- the system information to be broadcast may include information indicating that the base station device 10 supports grant-free access.
- the upper layer processing unit 206 can include part or all of setting information related to grant-free access (setting information related to multi-access resources such as multi-access physical resources and multi-access signature resources) in the system information.
- Uplink The system control information is mapped to a physical broadcast channel / physical downlink shared channel in the transmission unit 210.
- the upper layer processing unit 206 generates downlink data (transport block) mapped to the physical downlink shared channel, system information (SIB), RRC message, MAC CE, or the like, or acquires it from the upper node, and transmits the transmission unit. Output to 210.
- the upper layer processing unit 206 can include a part or all of the setting information regarding grant free access, the setup of grant free access, and the parameter indicating release in these upper layer signals.
- the upper layer processing unit 206 may generate a dedicated SIB for notifying setting information regarding grant-free access.
- the upper layer processing unit 206 maps multi-access resources to the terminal device 20 that supports grant-free access.
- the base station apparatus 10 may hold a setting parameter reference table related to the multi-access signature resource.
- the upper layer processing unit 206 assigns each setting parameter to the terminal device 20.
- the upper layer processing unit 206 uses the multi-access signature resource to generate setting information related to grant-free access for each terminal device.
- the upper layer processing unit 206 generates a downlink shared channel that includes a part or all of the setting information related to grant-free access for each terminal device.
- the upper layer processing unit 206 outputs setting information regarding the grant-free access to the control unit 208 / transmission unit 210.
- the upper layer processing unit 206 sets and notifies the UE ID to each terminal device.
- a wireless network temporary identifier (RNTI: Cell Radio Network Temporary Identifier) can be used.
- the UE ID is used for CRC scrambling added to the downlink control channel and the downlink shared channel.
- the UE ID is used for CRC scrambling added to the uplink shared channel.
- the UE ID is used to generate an uplink reference signal sequence.
- the upper layer processing unit 206 may set a UE ID unique to the SPS / grant free access.
- the upper layer processing unit 206 may set the UE ID by distinguishing whether the terminal device supports grant-free access.
- the downlink physical channel UE ID is different from the downlink physical channel UE ID. It may be set separately.
- the upper layer processing unit 206 outputs the setting information related to the UE ID to the transmission unit 210 / control unit 208 / reception unit 204.
- the higher layer processing unit 206 determines the coding rate, modulation scheme (or MCS), transmission power, etc. of the physical channel (physical downlink shared channel, physical uplink shared channel, etc.).
- the upper layer processing unit 206 outputs the coding rate / modulation method / transmission power to the transmission unit 210 / control unit 208 / reception unit 204.
- the upper layer processing unit 206 can include the coding rate / modulation scheme / transmission power in the upper layer signal.
- the transmission unit 210 transmits a physical downlink shared channel when downlink data to be transmitted is generated. In addition, when transmitting a data transmission resource by DL Grant, the transmission unit 210 transmits a physical downlink shared channel by scheduled access, and transmits an SPS physical downlink shared channel when activating SPS. You may do it.
- the transmission unit 210 generates a physical downlink shared channel and a demodulation reference signal / control signal associated therewith according to the setting related to the scheduled access / SPS input from the control unit 208.
- the encoding unit 2100 encodes downlink data input from the higher layer processing unit 206 (including repetition) using a predetermined encoding method set by the control unit 208.
- a predetermined encoding method set by the control unit 208.
- convolutional encoding turbo encoding
- LDPC Low Density Parity Check
- Polar encoding Polar encoding
- An LDPC code may be used for data transmission and a Polar code may be used for control information transmission, and different error correction coding may be used depending on the downlink channel to be used.
- different error correction coding may be used depending on the size of data to be transmitted and control information. For example, when the data size is smaller than a predetermined value, a convolutional code is used, and otherwise, the above correction coding is used.
- a mother code such as a low encoding rate 1/6 or 1/12 may be used in addition to the encoding rate 1/3.
- the coding rate used for data transmission may be realized by rate matching (puncturing).
- the modulation unit 2102 uses the downlink control information such as BPSK, QPSK, 16QAM, 64QAM, and 256QAM (which may also include ⁇ / 2 shift BPSK and ⁇ / 4 shift QPSK) for the encoded bits input from the encoding unit 2100. Modulation is performed using the notified modulation scheme or a modulation scheme predetermined for each channel.
- Multiple access processing section 2106 allows base station apparatus 10 to detect a signal even if a plurality of data is multiplexed according to the multi-access signature resource input from control section 208 for the sequence output from modulation section 2102
- the signal is converted as follows.
- the multi-access signature resource is spread, the spread code sequence is multiplied according to the spread code sequence setting.
- the multiple access processing unit 2106 can be replaced with the interleaving unit.
- the interleave unit performs interleaving processing on the sequence output from modulation unit 2102 according to the setting of the interleave pattern input from control unit 208.
- the transmission unit 210 When code spreading and interleaving are set as multi-access signature resources, the transmission unit 210 performs multiple processing and interleaving by the multiple access processing unit 2106. The same applies when other multi-access signature resources are applied, and a sparse code or the like may be applied.
- the multiple access processing unit 2106 inputs the signal after the multiple access processing to the multiplexing unit 2108.
- the downlink reference signal generation unit 2112 generates a demodulation reference signal according to the demodulation reference signal setting information input from the control unit 208.
- the setting information of the demodulation reference signal / identification signal is based on information such as the number of OFDM symbols notified by the base station apparatus in the downlink control information, the OFDM symbol position where the DMRS is arranged, the cyclic shift, and the time domain spreading. A sequence obtained according to a predetermined rule is generated.
- the multiplexing unit 2108 multiplexes (maps and arranges) the downlink physical channel and the downlink reference signal to the resource element for each transmission antenna port.
- the multiplexing unit 2108 arranges the downlink physical channel in the resource element according to the SCMA resource pattern input from the control unit 208.
- the IFFT unit 2109 performs inverse fast Fourier transform (Inverse Fourier Transform: IFFT) on the multiplexed signal, modulates the OFDM method, and generates an OFDM symbol.
- the wireless transmission unit 2110 adds a CP to the OFDM-modulated symbol to generate a baseband digital signal. Further, the wireless transmission unit 2110 converts the baseband digital signal into an analog signal, removes excess frequency components, converts it to a carrier frequency by up-conversion, amplifies the power, and transmits the terminal device via the transmission antenna 212. 20 to send.
- Radio transmission section 2110 includes a transmission power control function (transmission power control section). The transmission power control follows the transmission power setting information input from the control unit 208. Note that when FBMC, UF-OFDM, or F-OFDM is applied, the OFDM symbol is subjected to filter processing in subcarrier units or subband units.
- FIG. 5 is a schematic block diagram showing the configuration of the terminal device 20 in the present embodiment.
- the base station apparatus 10 includes an upper layer processing unit (upper layer processing step) 102, a transmission unit (transmission step) 104, a transmission antenna 106, a control unit (control step) 108, a reception antenna 110, and a reception unit (reception step) 112. Consists of including.
- the transmission unit 104 includes an encoding unit (encoding step) 1040, a modulation unit (modulation step) 1042, a multiple access processing unit (multiple access processing step) 1043, a multiplexing unit (multiplexing step) 1044, and a DFT unit (DFT step) 1045.
- the reception unit 112 includes a radio reception unit (radio reception step) 1120, an FFT unit (FFT step) 1121, a propagation path estimation unit (propagation path estimation step) 1122, a demultiplexing unit (demultiplexing step) 1124, and a signal detection unit (signal Detection step) 1126.
- the upper layer processing unit 102 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (PDCP: Packet Data Convergence Protocol) layer, a radio link control (RLC: Radio Link Control) layer, and a radio resource control (RRC). : Processes higher layers than physical layer such as Radio (Resource Control) layer.
- MAC Medium Access Control
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- RRC radio resource control
- Processes higher layers than physical layer such as Radio (Resource Control) layer.
- Upper layer processing section 102 generates information necessary for controlling transmission section 104 and reception section 112 and outputs the information to control section 108.
- the upper layer processing unit 102 outputs uplink data (for example, UL-SCH), uplink control information, and the like to the transmission unit 104.
- the higher layer processing unit 102 transmits information on the terminal device such as the function (UE capability) of the terminal device from the base station device 10 (via the transmission unit 104).
- the information regarding the terminal device includes information indicating that grant-free access is supported and information indicating whether to support each function.
- Information indicating that grant-free access is supported and information indicating whether to support each function may be distinguished by the transmission mode.
- the control unit 108 controls the transmission unit 104 and the reception unit 112 based on various setting information input from the higher layer processing unit 102.
- the control unit 108 generates uplink control information (UCI) based on the setting information related to control information input from the higher layer processing unit 102 and outputs the uplink control information (UCI) to the transmission unit 104.
- UCI uplink control information
- the transmission unit 104 encodes and modulates the uplink control information, the uplink shared channel, and the like input from the higher layer processing unit 102 for each terminal device, and sets the physical uplink control channel and the physical uplink shared channel. Generate.
- the encoding unit 1040 encodes the uplink control information and the uplink shared channel (including repetition) using a predetermined encoding method notified by the control information. As the encoding method, convolutional encoding, turbo encoding, LDPC (Low Density Parity Check) encoding, Polar encoding, and the like can be applied.
- Modulation section 1042 modulates the coded bits input from coding section 1040 using a modulation scheme notified by predetermined / control information such as BPSK, QPSK, 16QAM, 64QAM, and 256QAM.
- Multiple access processing section 1043 allows base station apparatus 10 to detect a signal even if a plurality of data is multiplexed according to the multi-access signature resource input from control section 108 for the sequence output from modulation section 1042
- the signal is converted as follows.
- the multi-access signature resource is spread, the spread code sequence is multiplied according to the spread code sequence setting.
- the setting of the spreading code sequence may be associated with other grant-free access settings such as the demodulation reference signal / identification signal.
- the multiple access processing may be performed on the series after the DFT processing.
- the multi-access processing unit 1043 can be replaced with an interleaving unit when interleaving is set as a multi-access signature resource.
- the interleave unit performs interleaving processing on the sequence output from the DFT unit according to the setting of the interleave pattern input from the control unit 108.
- code spreading and interleaving are set as multi-access signature resources
- the transmission unit 104 performs multiple processing and interleaving by the multiple access processing unit 1043. The same applies when other multi-access signature resources are applied, and a sparse code or the like may be applied.
- the multiple access processing unit 1043 inputs the signal after the multiple access processing to the DFT unit 1045 or the multiplexing unit 1044 depending on whether the signal waveform is DFTS-OFDM or OFDM.
- the DFT unit 1045 rearranges the modulation symbols after the multiple access processing output from the multiple access processing unit 1043 in parallel, and then performs discrete Fourier transform (Discrete Fourier Transform: DFT) processing.
- DFT discrete Fourier Transform
- a signal waveform using a zero interval instead of CP may be used for the time signal after IFFT by adding a zero symbol string to the modulation symbol and performing DFT.
- a specific waveform such as a Gold sequence or a Zadoff-Chu sequence may be added to the modulation symbol, and a signal waveform using a specific pattern instead of CP for the time signal after IFFT may be performed by performing DFT.
- the signal waveform is OFDM, since DFT is not applied, the signal after the multiple access processing is input to the multiplexing unit 1044.
- the control unit 108 sets the setting of the zero symbol string (such as the number of bits of the symbol string) and the setting of the specific sequence (such as the seed of the sequence and the sequence length) included in the setting information regarding the grant-free access. Use and control.
- the uplink control signal generation unit 1046 adds a CRC to the uplink control information input from the control unit 108 to generate a physical uplink control channel.
- the uplink reference signal generation unit 1048 generates an uplink reference signal.
- the multiplexing unit 1044 maps the modulation symbol, physical uplink control channel, and uplink reference signal of each uplink physical channel modulated by the multiple access processing unit 1043 or the DFT unit 1045 to resource elements.
- the multiplexing unit 1044 maps the physical uplink shared channel and the physical uplink control channel to resources allocated to each terminal device.
- the IFFT unit 1049 generates an OFDM symbol by performing an inverse fast Fourier transform (Inverse Fourier Transform: IFFT) on the multiplexed modulation symbol of each uplink physical channel.
- the wireless transmission unit 1050 generates a baseband digital signal by adding a cyclic prefix ( ⁇ CP) to the OFDM symbol. Further, the wireless transmission unit 1050 converts the digital signal into an analog signal, removes excess frequency components by filtering, up-converts to a carrier frequency, amplifies the power, and outputs to the transmission antenna 106 for transmission.
- the receiving unit 112 detects the downlink physical channel transmitted from the base station apparatus 10 using the demodulation reference signal.
- the receiving unit 112 detects a downlink physical channel based on setting information notified by control information (DCI, RRC, SIB, etc.) from the base station apparatus.
- the radio reception unit 1120 converts an uplink signal received via the reception antenna 110 into a baseband signal by down-conversion, removes unnecessary frequency components, and an amplification level so that the signal level is appropriately maintained. And quadrature demodulation based on the in-phase and quadrature components of the received signal, and converting the quadrature demodulated analog signal into a digital signal. Radio receiving section 1120 removes a portion corresponding to CP from the converted digital signal.
- the FFT unit 1121 performs Fast Fourier Transform (FFT) on the signal from which the CP is removed, and extracts a signal in the frequency domain.
- FFT Fast Fourier Transform
- the propagation path estimation unit 1122 performs channel estimation for signal detection of the downlink physical channel using the demodulation reference signal.
- the propagation path estimation unit 1122 receives the resource to which the demodulation reference signal is mapped and the demodulation reference signal sequence assigned to each terminal apparatus from the control unit 108.
- the propagation path estimation unit 1122 measures the channel state (propagation path state) between the base station apparatus 10 and the terminal apparatus 20 using the demodulation reference signal sequence.
- the demultiplexing unit 1124 extracts a frequency domain signal (including signals from a plurality of terminal devices 20) input from the wireless reception unit 1120.
- the signal detection unit 1126 detects a downlink data (uplink physical channel) signal using the channel estimation result and the frequency domain signal input from the demultiplexing unit 1124.
- the upper layer processing unit 102 acquires downlink data (bit sequence after hard decision) from the signal detection unit 1126.
- the upper layer processing unit 102 performs descrambling (exclusive OR operation) on the CRC included in the downlink data after decoding of each terminal device, using the UE ID (RNTI) assigned to each terminal. Do.
- the upper layer processing unit 102 determines that the downlink data has been correctly received when there is no error in the downlink data as a result of error detection by descrambling.
- FIG. 6 is a diagram illustrating an example of a signal detection unit according to the present embodiment.
- the signal detection unit 1126 includes an equalization unit 1504, multiple access signal separation units 1506-1 to 1506-c, demodulation units 1510-1 to 1510-c, and decoding units 1512-1 to 1512-c.
- the equalization unit 1504 generates equalization weights based on the MMSE norm from the frequency response input from the propagation path estimation unit 1122.
- MRC or ZF may be used for the equalization processing.
- the equalization unit 1504 multiplies the equalization weight by the frequency domain signal input from the demultiplexing unit 1124 to extract the frequency domain signal.
- the equalization unit 1504 outputs the equalized frequency domain signals to the multiple access signal separation units 1506-1 to 1506-c.
- c is 1 or more, and is the number of signals received in the same subframe, the same slot, and the same OFDM symbol, for example, PUSCH and PUCCH. Other downlink channels may be received at the same timing.
- the multiple access signal demultiplexing units 1506-1 to 1506-c separate the signals multiplexed by the multi-access signature resource from the time domain signals (multiple access signal separation processing). For example, when code spreading is used as the multi-access signature resource, each of the multiple access signal demultiplexing units 1506-1 to 1506-c performs despreading processing using the used spreading code sequence. When interleaving is applied as a multi-access signature resource, deinterleaving processing is performed on a time domain signal (deinterleaving unit).
- Demodulation units 1510-1 to 1510-c are input from the control unit 108 with information on modulation schemes that are notified in advance or determined in advance. Based on the modulation scheme information, the demodulation units 1510-1 to 1510-c perform demodulation processing on the signal after separation of the multiple access signal and output a bit sequence LLR (Log Likelihood Ratio).
- LLR Log Likelihood Ratio
- Decoding units 1512-1 to 1512-c are input from the control unit 108 with information on a coding rate that is notified in advance or determined in advance.
- Decoding sections 1512-1 to 1512-c perform decoding processing on the LLR sequences output from demodulation sections 1510-1 to 1510-c.
- the decoding units 1512-1 to 1512-c generate a replica from the external LLR or the posterior LLR output from the decoding unit and cancel it. It may be processed.
- the difference between the external LLR and the posterior LLR is whether or not the prior LLR input to the decoding units 1512-1 to 1512-c is subtracted from the decoded LLR.
- P PUSCH, f, c (i, j, q d , l) min ⁇ P CMAX, f, c (i), P O_PUSCH, f, c (j) +10 log 10 ( 2 ⁇ M PUSCH_RB, f, c (i)) + ⁇ f, c (j) ⁇ PL f, c (q d ) + ⁇ TF, f, c (i) + f f, c (i, l) ⁇
- min selects a small value in ⁇ .
- P CMAX, f, c (i) is the maximum allowable transmission power of the terminal device of the i-th subframe in carrier f and serving cell c
- P O_PUSCH, f, c (j) is the upper layer (RRC)
- the nominal target received power per RB in scheduling j in the serving cell c, j is a value depending on the type of scheduling and the transmission signal
- ⁇ f, c (j) Is the parameter of the fractional transmission power control in the carrier f, serving cell c, PL f , c (q d ) is the serving cell c, the path loss in the resource q d of the reference signal for path loss measurement, ⁇ TF, f, c
- P O_PUSCH, f, c (j) used for transmission power calculation is determined by the sum of P O_NOMINAL_PUSCH, f, c (j) and P O_UE_PUSCH, f, c (j).
- RRC delta PREAMBLE_Msg3 notified by the higher layer
- a plurality of values for SPS / grant-free access and dynamic scheduling are set.
- P CMAX, f, c (i ) is MPR (Maximum Power Reduction), A -MPR (Additional-MPR), P CMAX_L determined from P-MPR (Power Management-MPR ), and c (i), P EMAX, c And P CMAX_H , c (i) determined from P PowerClass are set according to the PA (Power Amplifier) capability of the terminal device.
- the target received power PO_PUSCH, f, c (j) and the fractional transmission power control parameter ⁇ f, c (j) that changes depending on the type of scheduling can be designated by DCI and can be dynamically changed. Since it is specified by DCI SRI which of multiple target received powers PO_PUSCH, f, c (j) is used in dynamic scheduling, there is no SRI field in fallback DCI format 0_0. Cannot be switched.
- the DCI format 0_1 supports multi-antenna transmission and has an SRI field, but the number of bits (payload size) constituting the DCI format is large. In LTE and NR, the DCI format places the DCI format in a predetermined resource element (search space).
- the terminal device 20 receives (sets up RRC) a transmission parameter set that matches the reliability of data to be transmitted by a higher layer signal (for example, RRC signaling) than the base station device 10.
- This transmission parameter set includes H-RNTI used for CRC decoding of blind decoding of DCI format 0_0, target received power, fractional TPC parameters, designation of path loss to be used, index l of closed loop control to be used (l May be either 1 or 2, or a value such as 0 or 3 or more may be added.
- the transmission parameter set may include a set of (j, q d , l) index combinations, a new target received power, a fractional TPC parameter, a path loss specification to be used, An index of the closed loop control to be used may be set.
- P PUSCH, f, c (i, j, q d , l) min ⁇ P CMAX, f, c (i), P O_PUSCH, f, c (j) +10 log 10 (2 ⁇ M PUSCH_RB, f, c (i)) + ⁇ f, c (j) ⁇ PL f, c (q d ) + ⁇ TF, f, c (i) + Q f, c (r) + f f, c ( i, l) ⁇ and a term of Q f, c (r) (term set by QoS or QCI (QoS Class Indicator) of data to be transmitted) according to the reliability of data is added, and a transmission parameter set is added. May include Q f, c (r).
- the terminal device 20 performs blind decoding of a search space (CSS: Common Search Space or USS: UE-specific SS), detects DCI format 0_0 using H-RNTI, and detects DCI format using C-RNTI or CS-RNTI. Transmission power control is switched when 0_0 is detected. When DCI format 0_0 is detected by C-RNTI or CS-RNTI, conventional transmission power control is applied, and when DCI format 0_0 is detected by H-RNTI, transmission power control for highly reliable data transmission is performed. Do.
- target reception power notified as a transmission parameter set For example, when DCI format 0_0 is detected by H-RNTI, target reception power notified as a transmission parameter set, fractional TPC parameters, designation of path loss to be used, index 1 of closed loop control to be used, or the like are applied.
- Q f, c (r) matched to the reliability of data may be set to a value of 0 or more (a value notified by an upper layer).
- the maximum transmission power P CMAX, f at the time of transmission of multiple uplink data (PUSCH) or simultaneous transmission of PUSCH and PUCCH in the same slot and the same OFDM symbol You may set the minimum guarantee electric power when c (i) is exceeded.
- the lowest compensation coefficient ⁇ (a value between 0 and 1 and the upper layer (RRC) ⁇ P PUSCH, f, c (i, j, q d , l) multiplied by (notified)) is set as the minimum guaranteed power.
- a correction term ⁇ may be multiplied by a part of a parameter (transmission parameter set described above) used to calculate a transmission power control value for reliable data transmission, and a target for reliable data transmission may be obtained.
- other terms included in the transmission parameter set may be multiplied by the correction term ⁇ .
- DCI format 0_0 when DCI format 0_0 is detected by H-RNTI, if the maximum transmission power is exceeded by multiple PUSCH transmissions or simultaneous transmissions of PUSCH and PUCCH in the same slot and the same OFDM symbol, highly reliable data is required. May be allocated to the PUSCH or PUCCH that simultaneously transmits the remaining guaranteed power.
- carrier aggregation may or may not be applied to Dual Connectivity.
- Dual Connectivity the above transmission power control may be performed according to the reliability required for data in the PCell and SCell in the MCG, and it is also applied to the PSCell and SCell in the SCG.
- transmission power control may be switched depending on whether DCI format 0_0 is detected by H-RNTI or DCI format 0_0 is detected by C-RNTI or CS-RNTI. good. Since SUL is used to ensure uplink coverage, a frequency lower than the frequency of a serving cell that is not SUL is set. That is, the path loss of the SUL serving cell is smaller than that of the non-SUL serving cell. Since the SUL is an uplink-only cell and the path loss cannot be measured by the downlink signal, transmission power control is performed by correcting the path loss from a non-SUL serving cell.
- PL SUL is a term for correcting from a path loss of a serving cell that is not a SUL to a path loss of the SUL, and is 0 or more.
- DCI format 0_0 In addition, although this embodiment demonstrated in DCI format 0_0, you may apply to DCI format 0_1. Note that this embodiment is limited to the DCI format 0_0 and may not be applied to the DCI format 0_1.
- H-RNTIs may be prepared and each parameter set may be notified. For example, it may be set for highly reliable dynamic scheduling and for highly reliable SPS / grant-free access. There are a plurality of reliability level settings, and H-RNTI may be set for each reliability level.
- transmission power control is dynamically switched by adding RNTI used for detection of the DCI format as transmission power control for realizing high reliability.
- This embodiment is another example in which transmission power control is dynamically switched to achieve high reliability.
- the communication system according to the present embodiment includes the base station device 10 and the terminal device 20 described with reference to FIGS. 3, 4, 5, and 6.
- differences / additional points from the first embodiment will be mainly described.
- the terminal device 20 receives (sets up RRC) a transmission parameter set that matches the reliability of data to be transmitted by a higher layer signal (for example, RRC signaling) than the base station device 10.
- a dynamic transmission power control switching indicator, target reception power, fractional TPC parameters, path loss to be used, and closed loop control index to be used (l may be either 1 or 2). And a value such as 0 or 3 or more may be added).
- P PUSCH, f, c (i, j, q d , l) min ⁇ P CMAX, f, c (i), P O_PUSCH, f, c (j) +10 log 10 (2 ⁇ M PUSCH_RB, f, c (i)) + ⁇ f, c (j) ⁇ PL f, c (q d ) + ⁇ TF, f, c (i) + Q f, c (r) + f f, c ( i, l) ⁇ and a term of Q f, c (r) (term set by QoS or QCI (QoS Class Indicator) of data to be transmitted) according to the reliability of data is added, and a transmission parameter set is added. May include Q f, c (r).
- the dynamic transmission power control switching indicator is highly reliable when a parameter notified from the base station apparatus 10 by DCI (uplink grant), that is, a field included in the DCI format satisfies a predetermined condition.
- the predetermined condition may be that a blind decoding setting of a DCI format (referred to as DCI format 0_2 in this specification) whose payload size is smaller than that of DCI format 0_0 is set up by RRC, and DCI format 0_2 is detected.
- the DCI format 0_2 has only a part of the fields of the DCI format 0_0. For example, only the time domain resource assignment, MCS, NDI, and RV may be used.
- the present invention is not limited to this example, and the DCI format 0_2 may include an SRI field.
- a part of the setting of the search space for detecting the DCI format may be set up by RRC, and the DCI format may be detected under the set condition.
- a predetermined aggregation level (aggregation level 4 or higher, or 8 or higher) is specified. This means that by specifying a high aggregation level, it is limited to when the uplink grant is transmitted at a low coding rate, and the high reliability of the PDCCH uplink grant and the PUSCH data can be satisfied. it can.
- the setting of the resource assignment in the time domain to be notified in the DCI format may be set up by RRC, and the DCI format of the set condition may be detected.
- the number of OFDM symbols used for data transmission included in the resource assignment in the time domain is equal to or less than a predetermined value
- the value K 2 from the received slot of the DCI format to the slot for transmitting the PUSCH is It is assumed that the value is equal to or less than a predetermined value.
- the number of OFDM symbols set up by RRC may be the number of OFDM symbols excluding OFDM symbols of DMRS, or the number of OFDM symbols included.
- error correction coding for data transmission that requires high reliability error correction coding for URLLC
- error correction coding for data transmission that does not require high reliability may be dynamically switched to URLLC error correction coding by any of the methods described in the previous embodiment and this embodiment.
- PH reporting for data transmission PHLC reporting for URLLC
- high reliability are required. If there is PH reporting for data transmission that is not required, it may be dynamically switched to PH reporting for URLLC by any of the methods described in the previous embodiment and this embodiment.
- SRS transmission mode for data transmission requiring high reliability / SRS transmission power control URLLC SRS transmission
- SRS transmission mode for data transmission that does not require high reliability / SRS transmission power control any of those described in the previous embodiment and this embodiment at the time of trigger reception of SRS transmission
- the method may be switched dynamically to URLLC SRS transmission.
- PUCCH transmission mode / PUCCH transmission power control for data transmission that requires high reliability URLLC PUCCH transmission
- PUCCH transmission mode for data transmission that does not require high reliability / PUCCH transmission power control when downlink data is received on PDSCH, as described in the previous embodiment and this embodiment It may be dynamically switched to URLLC PUCCH transmission by any method.
- the transmission power control for realizing high reliability when the DCI format detection or the field included in the DCI satisfies a predetermined condition, the transmission power control is dynamically switched. As a result, reliability in one transport block transmission can be increased, and low delay and high reliability can be achieved.
- the present embodiment is an example in which transmission power control is dynamically switched using SPS Type 2 in order to achieve high reliability.
- the communication system according to this embodiment includes the base station device 10 and the terminal device 20 described with reference to FIGS. 3, 4, 5, and 6.
- differences / additional points from the first embodiment will be mainly described.
- the base station device 10 transmits transmission parameters related to SPS / grant-free access to the terminal device 20 using a higher layer signal (for example, RRC), and SPS / grant Free access data transmission permission start (activation) and permission end (deactivation / release), and transmission parameter changes are transmitted by DCI (L1 signaling).
- a higher layer signal for example, RRC
- transmission parameter changes are transmitted by DCI (L1 signaling).
- DCI L1 signaling
- the NDI, RV, HARQ process number in the DCI format, the most significant bit of the MCS, and the TPC command are used for validation, and in the SPS permission end, in addition to the fields used for transmission permission, the time domain and frequency Use the resource assignment of the region for Validation.
- DCI format 0_1 information on antenna ports to be used, DMRS information, and SRI may be used.
- the field used in Validation is not limited to this example, but the case of the above example in DCI format 0_0 will be described below.
- NDI, RV, HARQ process number, most significant bit of MCS, and TPC command are set to 0 in DCI of SPS transmission permission transmitted by base station apparatus 10, and SPS permission end of DCI is set in NDI, RV, HARQ process number, all bits of MCS, TPC command, time domain and frequency domain resource assignment are set to 1.
- the terminal device 20 performs validation by confirming that the DCI detected by CS-RNTI is the above setting.
- the terminal device 20 receives (sets up RRC) a transmission parameter set that matches the reliability of data to be transmitted by a higher layer signal (for example, RRC signaling) than the base station device 10.
- a transmission parameter set a dynamic transmission power control switching indicator, target reception power, fractional TPC parameters, path loss to be used, and closed loop control index to be used (l may be either 1 or 2). And a value such as 0 or 3 or more may be added).
- P PUSCH, f, c (i, j, q d , l) min ⁇ P CMAX, f, c (i), P O_PUSCH, f, c (j) +10 log 10 (2 ⁇ M PUSCH_RB, f, c (i)) + ⁇ f, c (j) ⁇ PL f, c (q d ) + ⁇ TF, f, c (i) + Q f, c (r) + f f, c ( i, l) ⁇ and a term of Q f, c (r) (term set by QoS or QCI (QoS Class Indicator) of data to be transmitted) according to the reliability of data is added, and a transmission parameter set is added. May include Q f, c (r).
- the SPS Type 2 transmission permission and permission termination described above are set to values different from the DCI Validation.
- permission to send SPS Type 2 is specified in DCI.
- the number may be taken out and assigned from the most significant bit. For example, it is “0” if the NDI is 1 bit, “01” if the RV is 2 bits, and “0101” in the HARQ process number.
- the present invention is not limited to this embodiment, and the extracted sequence may be assigned to each field from the least significant bit.
- the transmission parameter set includes the MCS table for data transmission that requires high reliability (URLCS MCS table), the CQI table for data transmission that requires high reliability (CQI table for URLLC), and high reliability.
- Data transmission error correction coding URLLC error correction coding
- high reliability data transmission PH reporting URLLC PH reporting
- high reliability data transmission SRS transmission mode / SRS transmission power control URLLC SRS transmission
- PUCCH transmission mode / PUCCH transmission power control may be transmitted to achieve high reliability.
- P PUCCH, f, c (i, q u , q d , l) min ⁇ P CMAX, f, c (i), P O_PUCCH, f, c (q u ) + PL f , c (q d ) + ⁇ F_PUCCH (F) + ⁇ TF, f, c (q u ) + g f, c (i, l) ⁇ .
- min selects a small value in ⁇ .
- P CMAX, f, c (i) is the maximum allowable transmission power of the terminal device of the i-th subframe in carrier f and serving cell c
- P O_PUCCH, f, c (q u ) is the upper layer (RRC)
- the nominal target received power per RB in scheduling j in the serving cell c, q u is determined by a set of reference signal resources set in the upper layer (RRC) for dynamic scheduling
- PL f, c (q d ) is the serving cell c
- ⁇ F_PUCCH (F) is a value depending on the PUCCH format set in the higher layer (RRC)
- ⁇ TF, f, c (i) a variation of the i th subframe in the carrier f
- the serving cell c Parameters with multi-level number, g f, c (i, l) is the parameters to the terminal
- the value of l used in the downlink SPS may be set, and the other may be used for downlink dynamic scheduling.
- F F
- index of closed loop control to be used l is one of 1 and 2
- at least one of 0 or 3 or more may be added to the parameter for high reliability.
- the transmission power control of PUCCH that requires high reliability when carrier aggregation is applied or when dual connectivity is applied, the same operation as described in the first embodiment may be performed. .
- the method of the first embodiment or the second embodiment is a mode 1 for data transmission that requires high reliability
- the method of the third embodiment is a mode 2 for data transmission that requires high reliability.
- Either of the two transmission modes may be used.
- the terminal device 20 performs a notification that supports any transmission mode with a function (UE capability) supported by the terminal device, and the base station device 10 uses the transmission mode for each terminal device 20 based on the notification. You may send the transmission permission by DCI.
- transmission power control for realizing high reliability in the DCI of SPS type 2, if the field used in Validation is the above-mentioned pattern, transmission power control is dynamically switched. As a result, reliability in one transport block transmission can be increased, and low delay and high reliability can be achieved.
- the communication system according to the present embodiment includes the base station device 10 and the terminal device 20 described with reference to FIGS. 3, 4, 5, and 6. Hereinafter, differences / additional points from the first embodiment will be mainly described.
- the bandwidth of one serving cell is wider than LTE (maximum 20 MHz). Therefore, in order to reduce the power consumption of the terminal device 20, when transmitting a large amount of data, the bandwidth (number of RBs) used in one serving cell is widened (bandwidth usable for data transmission / reception). In other cases, the bandwidth to be used may be narrowed.
- the terminal device 20 may receive and use the default BWP used when connected to the serving cell and the BWP setting specified by the control information from the base station device 10.
- a timer is set for the BWP to be specified and used by the control information, and transmission / reception (PDSCH / PDCCH (detects DCI addressed to own station) / PUSCH / PUCCH (in the case of SR, UL Grant) while the timer is valid If there is no))), it may be switched to the default BWP.
- PDSCH / PDCCH detects DCI addressed to own station
- PUSCH / PUCCH in the case of SR, UL Grant
- BWPs may be configured for one serving cell, the first includes all RBs that can be used in one serving cell, the second includes the number of RBs that is half of the number of RBs that can be used in one serving cell, The third may be the number of RBs that is 1/4 of the number of usable RBs, and the fourth may be the number of RBs that is 1/20 of the number of usable RBs.
- a common RB may be included, or there may be a BWP that does not contain a common RB.
- a synchronization signal and a broadcast channel are always set, and a common RB may be included in all the BWPs.
- the number of BWPs that can be activated in one serving cell may be one.
- the RB at the end of the serving cell may be activated or the RB at the center of the serving cell may be activated.
- an example of switching of transmission power control by the BWP activated in this way will be described.
- the terminal device 20 is P CMAX, P CMAX_L use in determining f, c and (i), c (i) is, MPR, A-MPR, determined by the P-MPR.
- MPR is determined by the bandwidth of one serving cell, the bandwidth (number of RBs) used for uplink data transmission, and the modulation scheme (number of modulation multi-values).
- the A-MPR is notified of an NS value (Network Signaling Value) from the network in order to satisfy the demand for additional adjacent channel leakage power (ACLR) and spectrum emission, and is calculated by a calculation formula corresponding to the NS value. Desired.
- NS_03 is calculated based on the serving cell bandwidth and the number of resource blocks used for data transmission.
- NS_05 is calculated according to E-UTRA Band in addition to the NS_03 condition.
- the A-MPR is calculated based on the minimum value of the index of the resource block (resource block to be transmitted) used for data transmission and the number of RBs.
- the A-MPR is calculated from the maximum value of the index of the resource block (resource block to be transmitted) used for data transmission and the number of RBs.
- P-MPR is a value set to comply with laws and regulations.
- the MPR of this embodiment uses the number of RBs of the activated BWP, not the number of RBs used for data transmission.
- the A-MPR of this embodiment uses the number of RBs of the activated BWP, not the number of RBs used for data transmission, and activates not the minimum / maximum index of RBs used for data transmission.
- the MPR of the present embodiment is calculated by the number of activated BWP RBs, the serving cell bandwidth, and the modulation method. Therefore, MPR can be calculated without depending on the number of RBs used for data transmission notified by DCI. Further, this MPR calculation method may be applied when the activated BWP is only a part of the RBs that can be used by the serving cell. This MPR calculation method may be applied only when it is set (set up) in an upper layer (for example, RRC). In addition, this MPR calculation method may be applied only in the case of OFDM, depending on whether the waveform is applied or not.
- the A-MPR of this embodiment is calculated by the minimum / maximum index of the activated BWP among the number of RBs of the activated BWP, the bandwidth of the serving cell, and the RB index usable in the serving cell. . Therefore, the A-MPR can be calculated without depending on the minimum / maximum index of RBs used for data transmission notified by DCI. Further, this A-MPR calculation method may be applied to the case where the activated BWP is only a part of the usable RBs of the serving cell. Also, this A-MPR calculation method may be applied only when it is set (set up) in an upper layer (for example, RRC).
- an upper layer for example, RRC
- this A-MPR calculation method may or may not be applied depending on the waveform, and may be applied only for OFDM.
- the A-MPR in the present embodiment has min ⁇ N RB -Ne when the minimum index of the activated BWP is Ns and the maximum index is Ne among the RB indexes usable in the serving cell. , Ns ⁇ may be used for calculation.
- N RB is the total number of RBs in the serving cell.
- transmission power control is switched according to the activated BWP.
- MPR and A-MPR can be easily calculated.
- the communication system according to the present embodiment includes the base station device 10 and the terminal device 20 described with reference to FIGS. 3, 4, 5, and 6.
- differences / additional points from the first embodiment will be mainly described.
- the terminal device 20 receives the uplink Pre-empty setting with the higher layer control information.
- the setting of the uplink pre-extension may include the position of the RB to be pre-empted and the number of RBs.
- the base station apparatus 10 notifies the terminal apparatus 20 of the position and number of relative RBs used for uplink Pre-emption among RBs used for uplink data transmission that is not URLLC.
- the start position and the number of RBs used for uplink data transmission that is not URLLC are M start and M RB, and the relative RB positions used for pre-emption for URLLC uplink data transmission.
- the numbers are N offset and N BW , respectively.
- the end position of the RB in which the URLLC data is arranged may be determined by min ⁇ M start + M RB , N start + N RB ⁇ .
- the RBs in which the URLLC data is arranged may be all RBs of the M RBs .
- non-URLLC data of the terminal device 20 by the waveform.
- non-URLLC data and URLLC data are multiplexed.
- DFT-S-OFDM non-URLLC data and URLLC data are not multiplexed.
- the terminal device can transmit it simultaneously.
- the program that operates in the apparatus related to the present invention may be a program that controls the central processing unit (CPU) and the like to function the computer so as to realize the functions of the above-described embodiments related to the present invention.
- the program or the information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) during processing, or stored in nonvolatile memory such as flash memory or Hard Disk Drive (HDD).
- RAM Random Access Memory
- HDD Hard Disk Drive
- the CPU reads and corrects / writes.
- a program for realizing the functions of the embodiments may be recorded on a computer-readable recording medium.
- the “computer system” here is a computer system built in the apparatus, and includes hardware such as an operating system and peripheral devices.
- the “computer-readable recording medium” may be any of a semiconductor recording medium, an optical recording medium, a magnetic recording medium, and the like.
- Computer-readable recording medium means a program that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
- a volatile memory inside a computer system serving as a server or a client may be included, which holds a program for a certain period of time.
- the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
- each functional block or various features of the apparatus used in the above-described embodiments can be implemented or executed by an electric circuit, that is, typically an integrated circuit or a plurality of integrated circuits.
- Electrical circuits designed to perform the functions described herein can be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or others Programmable logic devices, discrete gate or transistor logic, discrete hardware components, or a combination thereof.
- a general purpose processor may be a microprocessor or a conventional processor, controller, microcontroller, or state machine.
- the electric circuit described above may be configured with a digital circuit or an analog circuit.
- an integrated circuit based on the technology can be used.
- the present invention is not limited to the above-described embodiment.
- an example of an apparatus has been described.
- the present invention is not limited to this, and a stationary or non-movable electronic device installed indoors or outdoors, such as an AV device, a kitchen device, It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
- One embodiment of the present invention is suitable for use in a base station device, a terminal device, and a communication method.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
基地局装置と通信する端末装置であって、前記端末装置は、制御情報を受信する受信部と前記制御情報に従ってデータ送信する送信部と、を有し、前記受信部は少なくともRRCとDCIを受信し、前記RRCに、PUSCHの送信に用いる目標受信電力、フラクショナルTPC、閉ループのTPCのインデックスの設定と前記DCIにより切り替える送信電力制御のパラメータとして少なくとも目標受信電力とフラクショナルTPC、閉ループのTPCのインデックスを指定する情報が含まれ、送信電力値の切り替えを指定する前記DCIを検出したときに、データ送信に用いる送信電力を前記切り替える送信電力制御のパラメータとして通知されたパラメータで算出する送信電力値と異なる。
Description
本発明の一態様は、基地局装置、端末装置およびその通信方法に関する。
本願は、2018年1月30日に、日本に出願された特願2018-13398号に基づき優先権を主張し、その内容をここに援用する。
本願は、2018年1月30日に、日本に出願された特願2018-13398号に基づき優先権を主張し、その内容をここに援用する。
近年、第5世代移動通信システム(5G: 5th Generation mobile telecommunication systems)が注目されており、主に多数の端末装置によるMTC(mMTC;Massive Machine Type Communications)、超高信頼・低遅延通信(URLLC;Ultra-reliable and low latency communications)、大容量・高速通信(eMBB;enhanced Mobile BroadBand)を実現する通信技術の仕様化が見込まれている。3GPP(3rd Generation Partnership Project)では、5Gの通信技術としてNR(New Radio)の検討が行われており、NRのマルチアクセス(MA: Multiple Access)の議論が進められている。
5Gでは、これまでネットワークに接続されていなかった多様な機器を接続するIoT(Internet of Things)の実現が見込まれ、mMTCの実現が重要な要素の一つになっている。3GPPにおいて、小さいサイズのデータ送受信を行う端末装置を収容するMTC(Machine Type Communication)として、M2M(Machine-to-Machine)通信技術の標準化が既に行われている(非特許文献1)。さらに、低レートでのデータ送信を狭帯域でサポートするため、NB-IoT(Narrow Band-IoT)の仕様化が行われている(非特許文献2)。5Gでは、これらの標準規格よりもさらなる多数端末の収容を実現すると共に、超高信頼・低遅延通信が必要なIoTの機器も収容することが期待されている。
一方、3GPPで仕様化されているLTE(Long Term Evolution)、LTE-A(LTE-Advanced)等の通信システムにおいて、端末装置(UE:User Equipment)は、ランダムアクセスプロシージャ(Random Access Procedure)やスケジューリング要求(SR:Scheduling Request)等を使用して、基地局装置(BS;Base Station、eNB;evolved Node Bとも呼称される)に、上りリンクのデータを送信するための無線リソースを要求する。前記基地局装置は、SRを基に各端末装置に上り送信許可(UL Grant)を与える。前記端末装置は、前記基地局装置から制御情報のUL Grantを受信すると、そのUL Grantに含まれる上りリンク送信パラメータに基づき、所定の無線リソースで上りリンクのデータを送信する(Scheduled access、grant-based access、ダイナミックスケジューリングによる伝送と呼ばれる、以下スケジュールドアクセスとする)。このように、基地局装置は、全ての上りリンクのデータ送信を制御する(基地局装置は、各端末装置よって送信される上りリンクのデータの無線リソースを把握している)。スケジュールドアクセスにおいて、基地局装置が上りリンク無線リソースを制御することにより、直交多元接続(OMA:Orthogonal Multiple Access)を実現できる。
5GのmMTCでは、スケジュールドアクセスを用いると制御情報量が増大することが問題である。また、URLLCではスケジュールドアクセスを用いると遅延が長くなることが問題である。そこで、端末装置がランダムアクセスプロシージャもしくはSR送信をしない、かつUL Grant受信等を行うことなくデータ送信を行うグラントフリーアクセス(grant free access、grant less access、Contention-based access、Autonomous accessやResource allocation for uplink transmission without grant、type1 configured grant transmissionなどとも呼称される、以下、グラントフリーアクセスとする)やSemi-persistent scheduling(SPS、Type2 configured grant transmissionなどとも呼称される)の活用が検討されている(非特許文献3)。グラントフリーアクセスでは、多数デバイスが小さいサイズのデータの送信を行う場合でも、制御情報によるオーバーヘッドの増加を抑えることができる。さらに、グラントフリーアクセスでは、UL Grant受信等を行わないため、送信データの発生から送信までの時間を短くできる。また、SPSでは一部の送信パラメータを上位層の制御情報で通知し、上位層で通知していない送信パラメータと共に周期的なリソースの使用許可を示すアクティベーションのUL Grantで通知することでデータ送信が可能となる。
また、URLLCは、低遅延と同時に高信頼性を担保する必要があるため、データの繰り返し送信を使用することが検討されている。また、スケジュールドアクセスでURLLCを実現するためには、データ送信もしくは受信の都度、DL GrantやUL Grantを受信するため、これらの制御情報の高信頼性の担保も必要になる。
3GPP, TR36.888 V12.0.0, "Study on provision of low-cost Machine-Type Communications (MTC) User Equipments (UEs) based on LTE," Jun. 2013
3GPP, TR45.820 V13.0.0, "Cellular system support for ultra-low complexity and low throughput Internet of Things (CIoT)," Aug. 2015
3GPP,TS38.214 V2.0.0, "Physical layer procedures for data (Release 15)," Dec. 2017
URLLCを実現する場合、同一のデータ(同一トランスポートブロック)の繰り返し送信で高信頼を実現すると遅延時間が長くなるという問題がある。
本発明の一態様はこのような事情を鑑みてなされたものであり、その目的は、トランスポートブロックを1回送信する場合の信頼性を向上することが可能な基地局装置、端末装置及び通信方法を提供することにある。
上述した課題を解決するために本発明の一態様に係る基地局装置、端末装置および通信方法の構成は、次の通りである。
(1)本発明の一態様は、基地局装置と通信する端末装置であって、前記端末装置は、制御情報を受信する受信部と前記制御情報に従ってデータ送信する送信部と、を有し、前記受信部は少なくともRRCとDCIを受信し、前記RRCに、PUSCHの送信に用いる目標受信電力、フラクショナルTPC、閉ループのTPCのインデックスの設定と前記DCIにより切り替える送信電力制御のパラメータとして少なくとも目標受信電力とフラクショナルTPC、閉ループのTPCのインデックスを指定する情報が含まれ、送信電力値の切り替えを指定する前記DCIを検出したときに、データ送信に用いる送信電力を前記切り替える送信電力制御のパラメータとして通知されたパラメータで算出する送信電力値と異なる。
(2)また、本発明の一態様は送信電力値の切り替えを指定する前記DCIは、RRCにより設定されたRNTI、アグリゲーションレベル、サーチスペース、データ送信に用いるOFDMシンボル数の少なくとも1つの条件が設定され、前記条件によって送信電力制御を切り替える。
(3)また、本発明の一態様は、送信電力値の切り替えを指定する前記DCIは、SPS Type2のアクティベーションのDCIのValidationフィールドの値が異なる場合に送信電力制御を切り替える。
(4)また、本発明の一態様は、送信電力値の切り替えを指定する前記DCIは、MCSテーブル、CQIテーブル、PHレポーティングの送信モードの少なくとも1つの切り替えを示す。
本発明の一又は複数の態様によれば、信頼性の高いデータ送信する実現することができる。
本実施形態に係る通信システムは、基地局装置(セル、スモールセル、ピコセル、サービングセル、コンポーネントキャリア、eNodeB(eNB)、Home eNodeB、Low Power Node、Remote Radio Head、gNodeB(gNB)、制御局、Bandwidth Part(BWP)、Supplementary Uplink(SUL)とも呼称される)および端末装置(端末、移動端末、移動局、UE:User Equipmentとも呼称される)を備える。該通信システムにおいて、下りリンクの場合、基地局装置は送信装置(送信点、送信アンテナ群、送信アンテナポート群)となり、端末装置は受信装置(受信点、受信端末、受信アンテナ群、受信アンテナポート群)となる。上りリンクの場合、基地局装置は受信装置となり、端末装置は送信装置となる。前記通信システムは、D2D(Device-to-Device)通信にも適用可能である。その場合、送信装置も受信装置も共に端末装置になる。
前記通信システムは、人間が介入する端末装置と基地局装置間のデータ通信に限定されるものではなく、MTC(Machine Type Communication)、M2M通信(Machine-to-Machine Communication)、IoT(Internet of Things)用通信、NB-IoT(Narrow Band-IoT)等(以下、MTCと呼ぶ)の人間の介入を必要としないデータ通信の形態にも、適用することができる。この場合、端末装置がMTC端末となる。前記通信システムは、上りリンク及び下りリンクにおいて、DFTS-OFDM(Discrete Fourier Transform Spread - Orthogonal Frequency Division Multiplexing、SC-FDMA(Single Carrier - Frequency Division Multiple Access)とも称される)、CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing)等のマルチキャリア伝送方式を用いることができる。前記通信システムは、フィルタを適用したFBMC(Filter Bank Multi Carrier)、f-OFDM(Filtered - OFDM)、UF-OFDM(Universal Filtered - OFDM)、W-OFDM(Windowing - OFDM)、スパース符号を用いる伝送方式(SCMA:Sparse Code Multiple Access)などを用いることもできる。さらに、前記通信システムは、DFTプレコーディングを適用し、上記のフィルタを用いる信号波形を用いてもよい。さらに、前記通信システムは、前記伝送方式において、符号拡散、インターリーブ、スパース符号等を施すこともできる。なお、以下では、上りリンクはDFTS-OFDM伝送とCP-OFDM伝送の少なくとも一つを用い、下りリンクはCP-OFDM伝送を用いた場合で説明するが、これに限らず、他の伝送方式を適用することができる。
本実施形態における基地局装置及び端末装置は、無線事業者がサービスを提供する国や地域から使用許可(免許)が得られた、いわゆるライセンスバンド(licensed band)と呼ばれる周波数バンド、及び/又は、国や地域からの使用許可(免許)を必要としない、いわゆるアンライセンスバンド(unlicensed band)と呼ばれる周波数バンドで通信することができる。アンライセンスバンドでは、キャリアセンス(例えば、listen before talk方式)に基づく通信としても良い。
本実施形態において、“X/Y”は、“XまたはY”の意味を含む。本実施形態において、“X/Y”は、“XおよびY”の意味を含む。本実施形態において、“X/Y”は、“Xおよび/またはY”の意味を含む。
(第1の実施形態)
図1は、本実施形態に係る通信システムの構成例を示す図である。本実施形態における通信システムは、基地局装置10、端末装置20-1~20-n1(n1は基地局装置10と接続している端末装置数)を備える。端末装置20-1~20-n1を総称して端末装置20とも称する。カバレッジ10aは、基地局装置10が端末装置20と接続可能な範囲(通信エリア)である(セルとも呼ぶ)。
(第1の実施形態)
図1は、本実施形態に係る通信システムの構成例を示す図である。本実施形態における通信システムは、基地局装置10、端末装置20-1~20-n1(n1は基地局装置10と接続している端末装置数)を備える。端末装置20-1~20-n1を総称して端末装置20とも称する。カバレッジ10aは、基地局装置10が端末装置20と接続可能な範囲(通信エリア)である(セルとも呼ぶ)。
図1において、上りリンクr30の無線通信は、少なくとも以下の上りリンク物理チャネルを含む。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・物理上りリンク制御チャネル(PUCCH)
・物理上りリンク共有チャネル(PUSCH)
・物理ランダムアクセスチャネル(PRACH)
PUCCHは、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる物理チャネルである。上りリンク制御情報は、下りリンクデータ(Downlink transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH, Physical Downlink Shared Channel: PDSCH)に対する肯定応答(positive acknowledgement: ACK)/否定応答(Negative acknowledgement: NACK)を含む。ACK/NACKは、HARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)、HARQフィードバック、HARQ応答、または、HARQ制御情報、送達確認を示す信号とも称される。
・物理上りリンク制御チャネル(PUCCH)
・物理上りリンク共有チャネル(PUSCH)
・物理ランダムアクセスチャネル(PRACH)
PUCCHは、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる物理チャネルである。上りリンク制御情報は、下りリンクデータ(Downlink transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH, Physical Downlink Shared Channel: PDSCH)に対する肯定応答(positive acknowledgement: ACK)/否定応答(Negative acknowledgement: NACK)を含む。ACK/NACKは、HARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)、HARQフィードバック、HARQ応答、または、HARQ制御情報、送達確認を示す信号とも称される。
上りリンク制御情報は、初期送信のためのPUSCH(Uplink-Shared Channel: UL-SCH)リソースを要求するために用いられるスケジューリングリクエスト(Scheduling Request: SR)を含む。スケジューリングリクエストは、正のスケジューリングリクエスト(positive scheduling request)、または、負のスケジューリングリクエスト(negative scheduling request)を含む。正のスケジューリングリクエストは、初期送信のためのUL-SCHリソースを要求することを示す。負のスケジューリングリクエストは、初期送信のためのUL-SCHリソースを要求しないことを示す。
上りリンク制御情報は、下りリンクのチャネル状態情報(Channel State Information: CSI)を含む。前記下りリンクのチャネル状態情報は、好適な空間多重数(レイヤ数)を示すランク指標(Rank Indicator: RI)、好適なプレコーダを示すプレコーディング行列指標(Precoding Matrix Indicator: PMI)、好適な伝送レートを指定するチャネル品質指標(Channel Quality Indicator: CQI)などを含む。前記PMIは、端末装置によって決定されるコードブックを示す。該コードブックは、物理下りリンク共有チャネルのプレコーディングに関連する。前記CQIは、所定の帯域における好適な変調方式(例えば、QPSK、16QAM、64QAM、256QAMなど)、符号化率(coding rate)、および周波数利用効率を指し示すインデックス(CQIインデックス)を用いることができる。端末装置は、PDSCHのトランスポートブロックが所定のブロック誤り確率(例えば、誤り率0.1)を超えずに受信可能であろうCQIインデックスをCQIテーブルから選択する。ここで、端末装置は、トランスポートブロック用の所定の誤り確率(誤り率)を複数有してもよい。例えば、eMBBのデータの誤り率は0.1をターゲットとし、URLLCの誤り率は0.00001をターゲットとしても良い。端末装置は、上位レイヤ(例えば、基地局からRRCシグナリングでセットアップ)で設定された場合にターゲットの誤り率(トランスポートブロック誤り率)毎のCSIフィードバックを行っても良いし、上位レイヤで複数ターゲットの誤り率のうち1つが上位レイヤで設定された場合に設定されたターゲットの誤り率のCSIフィードバックを行っても良い。なおRRCシグナリングで誤り率が設定されたか否かではなく、eMBB(つまりBLERが0.1を超えない伝送)用のCQIテーブルではないCQIテーブルが選択されたか否かによって、eMBB用の誤り率(例えば0.1)ではない誤り率によってCSIを算出してもよい。
PUCCHは、PUCCHフォーマット0~4が定義されており、PUCCHフォーマット0、2は1~2OFDMシンボルで送信、PUCCHフォーマット1,3、4は4~14OFDMシンボルで送信する。PUCCHフォーマット0と1は、2ビット以下の通知に用いられ、HARQ-ACKのみ、もしくはHARQ-ACKとSRを同時に通知できる。PUCCHフォーマット1、3、4は、2ビットより多いビットの通知に用いられ、ARQ-ACK、SR、CSIを同時に通知できる。PUCCHの送信に使用するOFDMシンボル数は、上位レイヤ(例えば、RRCシグナリングでセットアップ)で設定され、いずれのPUCCHフォーマットを使用するかはPUCCHを送信するタイミング(スロット、OFDMシンボル)で、SR送信やCSI送信があるか否かによって決まる。
PUSCHは、上りリンクデータ(Uplink Transport Block、Uplink-Shared Channel: UL-SCH)を送信するために用いられる物理チャネルである。PUSCHは、前記上りリンクデータと共に、下りリンクデータに対するHARQ-ACKおよび/またはチャネル状態情報を送信するために用いられてもよい。PUSCHは、チャネル状態情報のみを送信するために用いられてもよい。PUSCHはHARQ-ACKおよびチャネル状態情報のみを送信するために用いられてもよい。
PUSCHは、無線リソース制御(Radio Resource Control: RRC)シグナリングを送信するために用いられる。RRCシグナリングは、RRCメッセージ/RRC層の情報/RRC層の信号/RRC層のパラメータ/RRC情報要素とも称される。RRCシグナリングは、無線リソース制御層において処理される情報/信号である。基地局装置から送信されるRRCシグナリングは、セル内における複数の端末装置に対して共通のシグナリングであってもよい。基地局装置から送信されるRRCシグナリングは、ある端末装置に対して専用のシグナリング(dedicated signalingとも称する)であってもよい。すなわち、ユーザ装置固有(UE-specific)な情報は、ある端末装置に対して専用のシグナリングを用いて送信される。RRCメッセージは、端末装置のUE Capabilityを含めることができる。UE Capabilityは、該端末装置がサポートする機能を示す情報である。
PUSCHは、MAC CE(Medium Access Control Element)を送信するために用いられる。MAC CEは、媒体アクセス制御層(Medium Access Control layer)において処理(送信)される情報/信号である。例えば、パワーヘッドルーム(PH: Power Headroom)は、MAC CEに含まれ、物理上りリンク共有チャネルを経由して報告されてもよい。すなわち、MAC CEのフィールドが、パワーヘッドルームのレベルを示すために用いられる。上りリンクデータは、RRCメッセージ、MAC CEを含むことができる。RRCシグナリング、および/または、MAC CEを、上位層の信号(higher layer signaling)とも称する。RRCシグナリング、および/または、MAC CEは、トランスポートブロックに含まれる。
PRACHは、ランダムアクセスに用いるプリアンブルを送信するために用いられる。PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャ、上りリンク送信に対する同期(タイミング調整)、およびPUSCH(UL-SCH)リソースの要求を示すために用いられる。
上りリンクの無線通信では、上りリンク物理信号として上りリンク参照信号(Uplink Reference Signal: UL RS)が用いられる。上りリンク参照信号には、復調用参照信号(Demodulation Reference Signal: DMRS)、サウンディング参照信号(Sounding Reference Signal: SRS)が含まれる。DMRSは、物理上りリンク共有チャネル/物理上りリンク制御チャネルの送信に関連する。例えば、基地局装置10は、物理上りリンク共有チャネル/物理上りリンク制御チャネルを復調するとき、伝搬路推定/伝搬路補正を行うために復調用参照信号を使用する。上りリンクのDMRSは、front-loaded DMRSの最大のOFDMシンボル数とDMRSシンボルの追加の設定(DMRS-add―pos)がRRCで基地局装置により指定される。front-loaded DMRSが1OFDMシンボル(シングルシンボルDMRS)の場合、周波数領域配置、周波数領域のサイクリックシフトの値、DMRSが含まれるOFDMシンボルにおいて、どの程度異なる周波数領域配置が使用されるかがDCIで指定され、front-loaded DMRSが2OFDMシンボル(ダブルシンボルDMRS)の場合、上記に加え、長さ2の時間拡散の設定がDCIで指定される。
SRS(Sounding Reference Signal)は、物理上りリンク共有チャネル/物理上りリンク制御チャネルの送信に関連しない。つまり、上りリンクのデータ送信の有無に関わらず、端末装置は周期的もしくは非周期的にSRSを送信する。周期的なSRSでは、端末装置は基地局装置より上位層の信号(例えばRRC)で通知されたパラメータに基づいてSRSを送信する。一方、非周期的なSRSでは、端末装置は基地局装置より上位層の信号(例えばRRC)で通知されたパラメータとSRSの送信タイミングを示す物理下りリンク制御チャネル(例えば、DCI)に基づいてSRSを送信する。基地局装置10は、上りリンクのチャネル状態を測定(CSI Measurement)するためにSRSを使用する。基地局装置10は、SRSの受信により得られた測定結果から、タイミングアライメントや閉ループ送信電力制御を行っても良い。
図1において、下りリンクr31の無線通信では、少なくとも以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・物理報知チャネル(PBCH)
・物理下りリンク制御チャネル(PDCCH)
・物理下りリンク共有チャネル(PDSCH)
PBCHは、端末装置で共通に用いられるマスターインフォメーションブロック(Master Information Block: MIB, Broadcast Channel: BCH)を報知するために用いられる。MIBはシステム情報の1つである。例えば、MIBは、下りリンク送信帯域幅設定、システムフレーム番号(SFN:System Frame number)を含む。MIBは、PBCHが送信されるスロットの番号、サブフレームの番号、および、無線フレームの番号の少なくとも一部を指示する情報を含んでもよい。
・物理報知チャネル(PBCH)
・物理下りリンク制御チャネル(PDCCH)
・物理下りリンク共有チャネル(PDSCH)
PBCHは、端末装置で共通に用いられるマスターインフォメーションブロック(Master Information Block: MIB, Broadcast Channel: BCH)を報知するために用いられる。MIBはシステム情報の1つである。例えば、MIBは、下りリンク送信帯域幅設定、システムフレーム番号(SFN:System Frame number)を含む。MIBは、PBCHが送信されるスロットの番号、サブフレームの番号、および、無線フレームの番号の少なくとも一部を指示する情報を含んでもよい。
PDCCHは、下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる。下りリンク制御情報は、用途に基づいた複数のフォーマット(DCIフォーマットとも称する)が定義される。1つのDCIフォーマットを構成するDCIの種類やビット数に基づいて、DCIフォーマットは定義されてもよい。下りリンク制御情報は、下りリンクデータ送信のための制御情報と上りリンクデータ送信のための制御情報を含む。下りリンクデータ送信のためのDCIフォーマットは、下りリンクアサインメント(または、下りリンクグラント、DL Grant)とも称する。上りリンクデータ送信のためのDCIフォーマットは、上りリンクグラント(または、上りリンクアサインメント、UL Grant)とも称する。
下りリンクのデータ送信のためのDCIフォーマットには、DCIフォーマット1_0とDCIフォーマット1_1などがある。DCIフォーマット1_0はフォールバック用の下りリンクのデータ送信用であり、MIMOなどをサポートするDCIフォーマット1_1よりも少ないビット数で構成されている。一方、DCIフォーマット1_1はMIMOや複数のコードワード伝送、ZP CSI-RSトリガー、CBG送信情報などが通知可能であり、さらに、一部のフィールドの有無やビット数は上位層(例えばRRCシグナリング、MAC CE)の設定に応じて、追加される。1つの下りリンクアサインメントは、1つのサービングセル内の1つのPDSCHのスケジューリングに用いられる。下りリンクグラントは、該下りリンクグラントが送信されたスロット/サブフレームと同じスロット/サブフレーム内のPDSCHのスケジューリングのために、少なくとも用いられてもよい。DCIフォーマット1_0による下りリンクアサインメントには、以下のフィールドが含まれる。例えば、DCIフォーマットの識別子、周波数領域リソースアサインメント(PDSCHのためのリソースブロック割り当て、リソース割当)、時間領域リソースアサインメント、VRBからPRBへのマッピング、PDSCHに対するMCS(Modulation and Coding Scheme、変調多値数と符号化率を示す情報)、初期送信または再送信を指示するNDI(NEW Data Indicator)、下りリンクにおけるHARQプロセス番号を示す情報、誤り訂正符号化時にコードワードに加えられた冗長ビットの情報を示すRedudancy version(RV)、DAI(Downlink Assignment Index)、PUCCHの送信電力制御(TPC:Transmission Power Control)コマンド、PUCCHのリソースインディケータ、PDSCHからHARQフィードバックタイミングのインディケータなどがある。なお、各下りリンクデータ送信のためのDCIフォーマットには、上記情報のうち、その用途のために必要な情報(フィールド)が含まれる。
上りリンクのデータ送信のためのDCIフォーマットには、DCIフォーマット0_0とDCIフォーマット0_1などがある。DCIフォーマット0_0はフォールバック用の上りリンクのデータ送信用であり、MIMOなどをサポートするDCIフォーマット0_1よりも少ないビット数で構成されている。一方、DCIフォーマット0_1はMIMOや複数のコードワード伝送、SRSリソースインディケータ、プレコーディング情報、アンテナポートの情報、SRS要求の情報、CSI要求の情報、CBG送信情報、上りリンクのPTRSアソシエーション、DMRSのシーケンス初期化などが通知可能であり、さらに、一部のフィールドの有無やビット数は上位層(例えばRRCシグナリング)の設定に応じて、追加される。1つの上りリンクグラントは、1つのサービングセル内の1つのPUSCHのスケジューリングを端末装置に通知するために用いられる。DCIフォーマット0_0による上りリンクグラントは、以下のフィールドが含まれる。例えば、DCIフォーマットの識別子、周波数領域リソースアサインメント(PUSCHを送信するためのリソースブロック割り当てに関する情報および時間領域リソースアサインメント、周波数ホッピングフラグ、PUSCHのMCSに関する情報、RV、NDI、上りリンクにおけるHARQプロセス番号を示す情報、PUSCHに対するTPCコマンド、UL/SUL(Supplemental UL)インディケータなどがある。
PDSCH/PUSCHに対するMCSは、該PDSCH/該PUSCHの変調オーダーおよびターゲットの符号化率を指し示すインデックス(MCSインデックス)を用いることができる。変調オーダーは、変調方式と対応づけられる。変調オーダー「2」、「4」、「6」は各々、「QPSK」、「16QAM」、「64QAM」を示す。さらに、上位レイヤ(例えばRRCシグナリング)で256QAMや1024QAMの設定がされた場合、変調オーダー「8」、「10」の通知が可能であり、それぞれ「256QAM」、「1024QAM」を示す。ターゲット符号化率は、前記PDCCHでスケジュールされたPDSCH/PUSCHのリソースエレメント数(リソースブロック数)に応じて、送信するビット数であるTBS(トランスポートブロックサイズ)の決定に使用される。通信システム1(基地局装置10及び端末装置20)は、MCSとターゲットの符号化率と前記PDSCH/PUSCH送信のために割当てられたリソースエレメント数(リソースブロック数)によってトランスポートブロックサイズの算出方法を共有する。
PDCCHは、下りリンク制御情報に巡回冗長検査(Cyclic Redundancy Check: CRC)を付加して生成される。PDCCHにおいて、CRCパリティビットは、所定の識別子を用いてスクランブル(排他的論理和演算、マスクとも呼ぶ)される。パリティビットは、C-RNTI(Cell-Radio Network Temporary Identifier)、CS(Configured Scheduling)-RNTI、TC(Temporary C)-RNTI、P(Paging)-RNTI、SI(System Information)-RNTI、RA(Random Access)-RNTIで、INT-RNTI、SFI(Slot Format Indicator)-RNTI、TPC-PUSCH-RNTI、TPC-PUCCH-RNTI、またはTPC-SRS-RNTIでスクランブルされる。C-RNTIはダイナミックスケジューリング、CS-RNTIはSPS/グラントフリーアクセスでセル内における端末装置を識別するための識別子である。Temporary C-RNTIは、コンテンションベースランダムアクセス手順(contention based random access procedure)中に、ランダムアクセスプリアンブルを送信した端末装置を識別するための識別子である。C-RNTIおよびTemporary C-RNTIは、単一のサブフレームにおけるPDSCH送信またはPUSCH送信を制御するために用いられる。CS-RNTIは、PDSCHまたはPUSCHのリソースを周期的に割り当てるために用いられる。P-RNTIは、ページングメッセージ(Paging Channel: PCH)を送信するために用いられる。SI-RNTIは、SIBを送信するために用いられる、RA-RNTIは、ランダムアクセスレスポンス(ランダムアクセスプロシージャーにおけるメッセージ2)を送信するために用いられる。SFI-RNTIはスロットフォーマットを通知するために用いられる。INT-RNTIはプリエンプション(Pre-emption)を通知するために用いられる。TPC-PUSCH-RNTIとTPC-PUCCH-RNTI、TPC-SRS-RNTIは、それぞれPUSCHとPUCCH、SRSの送信電力制御値を通知するために用いられる。なお、前記識別子は、グラントフリーアクセス/SPSを複数設定するために、設定毎のCS-RNTIを含んでもよい。CS-RNTIによってスクランブルされたCRCを付加したDCIは、グラントフリーアクセスのアクティベーション、ディアクティベーション、パラメータ変更や再送制御(ACK/NACK送信)のために使用することができ、パラメータはリソース設定(DMRSの設定パラメータ、グラントフリーアクセスの周波数領域・時間領域のリソース、グラントフリーアクセスに用いられるMCS、繰り返し回数、周波数ホッピングの有無など)を含むことができる。
PDSCHは、下りリンクデータ(下りリンクトランスポートブロック、DL-SCH)を送信するために用いられる。PDSCHは、システムインフォメーションメッセージ(System Information Block: SIBとも称する。)を送信するために用いられる。SIBの一部又は全部は、RRCメッセージに含めることができる。
PDSCHは、RRCシグナリングを送信するために用いられる。基地局装置から送信されるRRCシグナリングは、セル内における複数の端末装置に対して共通(セル固有)であってもよい。すなわち、そのセル内のユーザ装置共通の情報は、セル固有のRRCシグナリングを使用して送信される。基地局装置から送信されるRRCシグナリングは、ある端末装置に対して専用のメッセージ(dedicated signalingとも称する)であってもよい。すなわち、ユーザ装置固有(UE-Specific)な情報は、ある端末装置に対して専用のメッセージを使用して送信される。
PDSCHは、MAC CEを送信するために用いられる。RRCシグナリングおよび/またはMAC CEを、上位層の信号(higher layer signaling)とも称する。PMCHは、マルチキャストデータ(Multicast Channel: MCH)を送信するために用いられる。
図1の下りリンクの無線通信では、下りリンク物理信号として同期信号(Synchronization signal: SS)、下りリンク参照信号(Downlink Reference Signal: DL RS)が用いられる。
同期信号は、端末装置が下りリンクの周波数領域および時間領域の同期を取るために用いられる。下りリンク参照信号は、端末装置が、下りリンク物理チャネルの伝搬路推定/伝搬路補正を行なうために用いられる。例えば、下りリンク参照信号は、PBCH、PDSCH、PDCCHを復調するために用いられる。下りリンク参照信号は、端末装置が、下りリンクのチャネル状態の測定(CSI measurement)するために用いることもできる。下りリンク参照信号には、CRS(Cell-specific Reference Signal)、CSI-RS(Channel state information Reference Signal)、DRS(Discovery Reference Signal)、DMRS(Demodulation Reference Signal)を含むことができる。
下りリンク物理チャネルおよび下りリンク物理信号を総称して、下りリンク信号とも称する。また、上りリンク物理チャネルおよび上りリンク物理信号を総称して、上りリンク信号とも称する。また、下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルとも称する。また、下りリンク物理信号および上りリンク物理信号を総称して、物理信号とも称する。
BCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。MAC層で用いられるチャネルを、トランスポートチャネルと称する。MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(TB:Transport Block)、または、MAC PDU(Protocol Data Unit)とも称する。トランスポートブロックは、MAC層が物理層に渡す(deliverする)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理などが行なわれる。
上位層処理は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層などの物理層より上位層の処理を行なう。
媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層などの物理層より上位層の処理を行なう。
上位層の処理部では、各端末装置のための各種RNTIを設定する。前記RNTIは、PDCCH、PDSCHなどの暗号化(スクランブリング)に用いられる。上位層の処理では、PDSCHに配置される下りリンクデータ(トランスポートブロック、DL-SCH)、端末装置固有のシステムインフォメーション(System Information Block: SIB)、RRCメッセージ、MAC CEなどを生成、又は上位ノードから取得し、送信する。上位層の処理では、端末装置20の各種設定情報の管理をする。なお、無線リソース制御の機能の一部は、MACレイヤや物理レイヤで行われてもよい。
上位層の処理では、端末装置がサポートする機能(UE capability)等、端末装置に関する情報を端末装置20から受信する。端末装置20は、自身の機能を基地局装置10に上位層の信号(RRCシグナリング)で送信する。端末装置に関する情報は、その端末装置が所定の機能をサポートするかどうかを示す情報、または、その端末装置が所定の機能に対する導入およびテストの完了を示す情報を含む。所定の機能をサポートするかどうかは、所定の機能に対する導入およびテストを完了しているかどうかを含む。
端末装置が所定の機能をサポートする場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信する。端末装置が所定の機能をサポートしない場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信しなくてもよい。すなわち、その所定の機能をサポートするかどうかは、その所定の機能をサポートするかどうかを示す情報(パラメータ)を送信するかどうかによって通知される。なお、所定の機能をサポートするかどうかを示す情報(パラメータ)は、1または0の1ビットを用いて通知してもよい。
図1において、基地局装置10及び端末装置20は、上りリンクにおいて、グラントフリーアクセス(grant free access、grant less access、Contention-based access、Autonomous accessやResource allocation for uplink transmission without grant、type1 configured grant transmissionなどとも呼称される、以下、グラントフリーアクセスとする)を用いた多元接続(MA: Multiple Access)をサポートする。グラントフリーアクセスとは、端末装置によるSRの送信と基地局装置によるDCIを使ったUL Grant(L1 signalingによるUL Grantとも呼ばれる)によるデータ送信の物理リソースと送信タイミングの指定の手順を行わずに端末装置が上りリンクのデータ(物理上りリンクチャネルなど)を送信する方式である。よって、端末装置は、RRCシグナリング(SPS-config)により、使用できるリソースの割当て周期、目標受信電力、フラクショナルTPCの値(α)、HARQプロセス数、同一トランスポートの繰り返し送信時のRVパターンに加え、RRCシグナリングのConfigured Uplink Grantとして、予めグラントフリーアクセスに使用できる物理リソース(周波数領域のリソースアサインメント、時間領域のリソースアサインメント)や送信パラメータ(DMRSのサイクリックシフトやOCC、アンテナポート番号、DMRSを配置するOFDMシンボルの位置や数、同一トランスポートの繰り返し送信回数などを含んでも良い)を受信しておき、送信データがバッファに入っている場合のみ、設定されている物理リソースを使用してデータ送信することができる。つまり、上位層がグラントフリーアクセスで送信するトランスポートブロックを運んでこない場合は、グラントフリーアクセスのデータ送信は行わない。また、端末装置は、SPS-configを受信しているが、RRCシグナリングのConfigured Uplink Grantを受信していない場合、UL GrantによるSPSのアクティベーションにより、SPS(type2 configured grant transmission)で同様のデータ送信を行うこともできる。
グラントフリーアクセスには以下の2つのタイプが存在する。1つ目のtype1 configured grant transmission (UL-TWG-type1)は、基地局装置がグラントフリーアクセスに関する送信パラメータを端末装置に上位層の信号(例えば、RRC)で送信し、さらにグラントフリーアクセスのデータ送信の許可開始(アクティベーション、RRCセットアップ)と許可終了(ディアクティベーション、RRCリリース)、送信パラメータの変更も上位層の信号で送信する方式である。ここで、グラントフリーアクセスに関する送信パラメータには、グラントフリーアクセスのデータ送信に使用可能な物理リソース(時間領域と周波数領域のリソースアサインメント)、物理リソースの周期、MCS、繰り返し送信の有無、繰り返し回数、繰り返し送信時のRVの設定、周波数ホッピングの有無、ホッピングパターン、DMRSの設定(front-loaded DMRSのOFDMシンボル数、サイクリックシフトと時間拡散の設定など)、HARQのプロセス数、トランスフォーマプレコーダの情報、TPCに関する設定に関する情報が含まれても良い。グラントフリーアクセスに関する送信パラメータとデータ送信の許可開始は、同時に設定されても良いし、グラントフリーアクセスに関する送信パラメータが設定された後、異なるタイミング(SCellであれば、SCellアクティベーションなど)でグラントフリーアクセスのデータ送信の許可開始が設定されても良い。2つ目のtype2 configured grant transmission (UL-TWG-type2)は、基地局装置がグラントフリーアクセスに関する送信パラメータを端末装置に上位層の信号(例えば、RRC)で送信し、グラントフリーアクセスのデータ送信の許可開始(アクティベーション)と許可終了(ディアクティベーション)、送信パラメータの変更はDCI(L1 signaling)で送信する。ここで、RRCで物理リソースの周期、繰り返し回数、繰り返し送信時のRVの設定、HARQのプロセス数、トランスフォーマプレコーダの情報、TPCに関する設定に関する情報が含まれ、DCIによる許可開始(アクティベーション)にはグラントフリーアクセスに使用可能な物理リソース(リソースブロックの割当て)が含まれても良い。グラントフリーアクセスに関する送信パラメータとデータ送信の許可開始は、同時に設定されても良いし、グラントフリーアクセスに関する送信パラメータが設定された後、異なるタイミングでグラントフリーアクセスのデータ送信の許可開始が設定されても良い。本発明は、上記のグラントフリーアクセスのいずれに適用しても良い。
一方、SPS(Semi-Persistent Scheduling)という技術がLTEで導入されており、主にVoIP(Voice over Internet Protocol)の用途で周期的なリソース割当てが可能である。SPSでは、DCIを使い、物理リソースの指定(リソースブロックの割当て)やMCSなどの送信パラメータを含むUL Grantで許可開始(アクティベーション)を行う。そのため、グラントフリーアクセスの上位層の信号(例えば、RRC)で許可開始(アクティベーション)する2つのタイプ(UL-TWG-type1)は、SPSと開始手順が異なる。また、UL-TWG-type2は、DCI(L1 signaling)で許可開始(アクティベーション)する点は同じだが、SCellやBWP、SULで使用できる点やRRCシグナリングで繰り返し回数、繰り返し送信時のRVの設定を通知する点で異なっても良い。また、基地局装置はグラントフリーアクセス(UL-TWG-type1とUL-TWG-type2)で使用されるDCI(L1 signaling)とダイナミックスケジューリングで使用されるDCIで異なる種類のRNTIを使ってスクランブルしても良いし、UL-TWG-type1の再送制御で使用するDCIとUL-TWG-type2のアクティベーションとディアクティベーションと再送制御で使用するDCIで同じRNTIを使ってスクランブルしても良い。
基地局装置10及び端末装置20は、直交マルチアクセスに加えて、非直交マルチアクセスをサポートしても良い。なお、基地局装置10及び端末装置20は、グラントフリーアクセス及びスケジュールドアクセスの両方をサポートすることもできる。ここで、スケジュールドアクセスとは、以下の手順により端末装置20がデータ送信するこという。端末装置20は、ランダムアクセスプロシージャ(Random Access Procedure)やSRを使用して、基地局装置10に、上りリンクのデータを送信するための無線リソースを要求する。前記基地局装置は、RACHやSRを基に各端末装置にDCIでUL Grantを与える。前記端末装置は、前記基地局装置から制御情報のUL Grantを受信すると、そのUL Grantに含まれる上りリンク送信パラメータに基づき、所定の無線リソースで上りリンクのデータを送信する。
上りリンクの物理チャネル送信のための下りリンク制御情報は、スケジュールドアクセスとグラントフリーアクセスで共有フィールドを含むことができる。この場合、基地局装置10がグラントフリーアクセスで上りリンクの物理チャネルを送信することを指示した場合、基地局装置10及び端末装置20は、前記共有フィールドに格納されたビット系列をグラントフリーアクセスのための設定(例えば、グラントフリーアクセスのために定義された参照テーブル)に従って解釈する。同様に、基地局装置10がスケジュールドアクセスで上りリンクの物理チャネルを送信することを指示した場合、基地局装置10及び端末装置20は、前記共有フィールドをスケジュールドアクセスのために設定に従って解釈する。グラントフリーアクセスにおける上りリンクの物理チャネルの送信は、アシンクロナスデータ送信(Asynchronous data transmission)と称される。なお、スケジュールドにおける上りリンクの物理チャネルの送信は、シンクロナスデータ送信(Synchronous data transmission)と称される。
グラントフリーアクセスにおいて、端末装置20は、上りリンクのデータを送信する無線リソースをランダムに選択するようにしてもよい。例えば、端末装置20は、利用可能な複数の無線リソースの候補がリソースプールとして基地局装置10から通知されており、該リソースプールからランダムに無線リソースを選択する。グラントフリーアクセスにおいて、端末装置20が上りリンクのデータを送信する無線リソースは、基地局装置10によって予め設定されてもよい。この場合、端末装置20は、予め設定された前記無線リソースを用いて、DCIのUL Grant(物理リソースの指定を含む)を受信せずに、前記上りリンクのデータを送信する。前記無線リソースは、複数の上りリンクのマルチアクセスリソース(上りリンクのデータをマッピングすることができるリソース)から構成される。端末装置20は、複数の上りリンクのマルチアクセスリソースから選択した1又は複数の上りリンクのマルチアクセスリソースを用いて、上りリンクのデータを送信する。なお、端末装置20が上りリンクのデータを送信する前記無線リソースは、基地局装置10及び端末装置20で構成される通信システムにおいて予め決定されていてもよい。前記上りリンクのデータを送信する前記無線リソースは、基地局装置10によって、物理報知チャネル(例えば、PBCH:Physical Broadcast Channel)/無線リソース制御RRC(Radio Resource Control)/システムインフォメーション(例えば、SIB:System Information Block)/物理下りリンク制御チャネル(下りリンク制御情報、例えばPDCCH:Physical Downlink Control Channel、EPDCCH:Enhanced PDCCH、MPDCCH:MTC PDCCH、NPDCCH:Narrowband PDCCH)を用いて、端末装置20に通知されてもよい。
グラントフリーアクセスにおいて、前記上りリンクのマルチアクセスリソースは、マルチアクセスの物理リソースとマルチアクセス署名リソース(Multi Access Signature Resource)で構成される。前記マルチアクセスの物理リソースは、時間と周波数から構成されるリソースである。マルチアクセスの物理リソースとマルチアクセス署名リソースは、各端末装置が送信した上りリンクの物理チャネルを特定することに用いられうる。前記リソースブロックは、基地局装置10及び端末装置20が物理チャネル(例えば、物理データ共有チャネル、物理制御チャネル)をマッピングすることができる単位である。前記リソースブロックは、周波数領域において、1以上のサブキャリア(例えば、12サブキャリア、16サブキャリア)から構成される。
マルチアクセス署名リソースは、複数のマルチアクセス署名群(マルチアクセス署名プールとも呼ばれる)のうち、少なくとも1つのマルチアクセス署名で構成される。マルチアクセス署名は、各端末装置が送信する上りリンクの物理チャネルを区別(同定)する特徴(目印、指標)を示す情報である。マルチアクセス署名は、空間多重パターン、拡散符号パターン(Walsh符号、OCC;Orthogonal Cover Code、データ拡散用のサイクリックシフト、スパース符号など)、インターリーブパターン、復調用参照信号パターン(参照信号系列、サイクリックシフト、OCC、IFDM)/識別信号パターン、送信電力、等であり、これらの中の少なくとも一つが含まれる。グラントフリーアクセスにおいて、端末装置20は、マルチアクセス署名プールから選択した1つ又は複数のマルチアクセス署名を用いて、上りリンクのデータを送信する。端末装置20は、使用可能なマルチアクセス署名を基地局装置10に通知することができる。基地局装置10は、端末装置20が上りリンクのデータを送信する際に使用するマルチアクセス署名を端末装置に通知することができる。基地局装置10は、端末装置20が上りリンクのデータを送信する際に使用可能なマルチアクセス署名群を端末装置20に通知することができる。使用可能なマルチアクセス署名群は、報知チャネル/RRC/システムインフォメーション/下りリンク制御チャネルを用いて、通知されてもよい。この場合、端末装置20は、通知されたマルチアクセス署名群から選択したマルチアクセス署名を用いて、上りリンクのデータを送信することができる。
端末装置20は、マルチアクセスリソースを用いて、上りリンクのデータを送信する。例えば、端末装置20は、1つのマルチアクセスの物理リソースと拡散符号パターンなどからなるマルチキャリア署名リソースで構成されるマルチアクセスリソースに、上りリンクのデータをマッピングすることができる。端末装置20は、1つのマルチアクセスの物理リソースとインターリーブパターンからなるマルチキャリア署名リソースで構成されるマルチアクセスリソースに、上りリンクのデータを割当てることもできる。端末装置20は、1つのマルチアクセスの物理リソースと復調用参照信号パターン/識別信号パターンからなるマルチアクセス署名リソースで構成されるマルチアクセスリソースに、上りリンクのデータをマッピングすることもできる。端末装置20は、1つのマルチアクセスの物理リソースと送信電力パターンからなるマルチアクセス署名リソースで構成されるマルチアクセスリソースに、上りリンクのデータをマッピングすることもできる(例えば、前記各上りリンクのデータの送信電力は、基地局装置10において受信電力差が生じるように、設定されてもよい。)このようなグラントフリーアクセスにおいて、本実施形態の通信システムでは、複数の端末装置20が送信した上りリンクのデータが、上りリンクのマルチアクセスの物理リソースにおいて、重複(重畳、空間多重、非直交多重、衝突)して送信されること、を許容しても良い。
基地局装置10は、グラントフリーアクセスにおいて、各端末装置によって送信した上りリンクのデータの信号を検出する。基地局装置10は、前記上りリンクのデータ信号を検出するために、干渉信号の復調結果によって干渉除去を行うSLIC(Symbol Level Interference Cancellation)、干渉信号の復号結果によって干渉除去を行うCWIC(Codeword Level Interference Cancellation、逐次干渉キャンセラ;SICや並列干渉キャンセラ;PICとも呼称される)、ターボ等化、送信信号候補の中から最もそれらしいものを探索する最尤検出(MLD:maximum likelihood detection、R-MLD:Reduced complexity maximum likelihood detection)、干渉信号を線形演算によって抑圧するEMMSE-IRC(Enhanced Minimum Mean Square Error-Interference Rejection Combining)、メッセージパッシングによる信号検出(BP:Belief propagation)やマッチドフィルタとBPを組み合わせたMF(Matched Filter)-BPなどを備えても良い。
図2は、本実施形態に係る通信システムの無線フレーム構成例を示す図である。無線フレーム構成は、時間領域のマルチアクセスの物理リソースにおける構成を示す。1つの無線フレームは、複数のスロット(サブフレームでも良い)から構成される。図2は、1つの無線フレームが10個のスロットから構成される例である。端末装置20は、リファレンスとなるサブキャリア間隔(リファレンスニューメロロジー)を持つ。前記サブフレームは、リファレンスとなるサブキャリア間隔において生成される複数のOFDMシンボルで構成される。図2は、サブキャリア間隔が15kHzであり、1フレームが10スロット、1つのサブフレームが1スロットで構成され、1スロットが14つのOFDMシンボルから構成される例である。サブキャリア間隔が15kHz×2μ(μは0以上の整数)の場合、1フレームが2μ×10スロット、1サブフレームが2μスロットで構成される。
図2は、リファレンスとなるサブキャリア間隔と上りリンクのデータ送信に用いるサブキャリア間隔が同一である場合である。本実施形態に係る通信システムは、スロットを、端末装置20が物理チャネル(例えば、物理データ共有チャネル、物理制御チャネル)をマッピングする最小単位としてもよい。この場合、前記マルチアクセスの物理リソースにおいて、1つのスロットが時間領域におけるリソースブロック単位となる。さらに、本実施形態に係る通信システムは、端末装置20が物理チャネルをマッピングする最小単位を1もしくは複数のOFDMシンボル(例えば、2~13OFDMシンボル)としても良い。基地局装置10は、1もしくは複数のOFDMシンボルが時間領域におけるリソースブロック単位となる。基地局装置10は、物理チャネルをマッピングする最小単位を端末装置20にシグナリングしても良い。
図3は、本実施形態に係る基地局装置10の構成を示す概略ブロック図である。基地局装置10は、受信アンテナ202、受信部(受信ステップ)204、上位層処理部(上位層処理ステップ)206、制御部(制御ステップ)208、送信部(送信ステップ)210、送信アンテナ212を含んで構成される。受信部204は、無線受信部(無線受信ステップ)2040、FFT部2041(FFTステップ)、多重分離部(多重分離ステップ)2042、伝搬路推定部(伝搬路推定ステップ)2043、信号検出(信号検出ステップ)2044を含んで構成される。送信部210は、符号化部(符号化ステップ)2100、変調部(変調ステップ)2102、多元接続処理部(多元接続処理ステップ)2106、多重部(多重ステップ)2108、無線送信部(無線送信ステップ)2110、IFFT部(IFFTステップ)2109、下りリンク参照信号生成部(下りリンク参照信号生成ステップ)2112、下りリンク制御信号生成部(下りリンク制御信号生成ステップ)2113を含んで構成される。
受信部204は、受信アンテナ202を介して端末装置10からの受信した上りリンク信号(上りリンクの物理チャネル、上りリンク物理信号)を多重分離、復調、復号する。受信部204は、受信信号から分離した制御チャネル(制御情報)を制御部208に出力する。受信部204は、復号結果を上位層処理部206に出力する。受信部204は、前記受信信号に含まれるSRや下りリンクのデータ送信に対するACK/NACK、CSIを取得する。
無線受信部2040は、受信アンテナ202を介して受信した上りリンク信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部2040は、変換したディジタル信号からCP(Cyclic Prefix)に相当する部分を除去する。FFT部2041はCPを除去した下りリンク信号に対して高速フーリエ変換を行い(OFDM変調に対する復調処理)、周波数領域の信号を抽出する。
伝搬路推定部2043は、復調用参照信号を用いて、上りリンクの物理チャネルの信号検出のためのチャネル推定を行う。伝搬路推定部2043には、復調用参照信号がマッピングされているリソース及び各端末装置に割当てた復調用参照信号系列が制御部208から入力される。伝搬路推定部2043は、前記復調用参照信号系列を用いて、基地局装置10と端末装置20の間のチャネル状態(伝搬路状態)を測定する。伝搬路推定部2043は、グラントフリーアクセスの場合、チャネル推定の結果(チャネル状態のインパルス応答、周波数応答)を用いて、端末装置の識別を行うことができる(このため、識別部とも称する)。伝搬路推定部2043は、チャネル状態の抽出に成功した復調用参照信号に関連付けられる端末装置20が、上りリンクの物理チャネルを送信したと判断する。多重分離部2042は、伝搬路推定部2043が上りリンクの物理チャネルが送信されたと判断したリソースにおいて、FFT部2041から入力された周波数領域の信号(複数の端末装置20の信号が含まれる)を抽出する。
多重分離部2042は、前記抽出した周波数領域の上りリンク信号に含まれる上りリンクの物理チャネル(物理上りリンク制御チャネル、物理上りリンク共有チャネル)等を分離抽出する。多重分離部は、物理上りリンクチャネルを信号検出部2044/制御部208に出力する。
信号検出部2044は、伝搬路推定部2043で推定されたチャネル推定結果及び多重分離部2042から入力される前記周波数領域の信号を用いて、各端末装置の上りリンクのデータ(上りリンクの物理チャネル)の信号を検出する。信号検出部2044は、上りリンクのデータを送信したと判断した端末装置20に割当てた復調用参照信号(チャネル状態の抽出に成功した復調用参照信号)に関連付けられた端末装置20の信号の検出処理を行う。
図4は、本実施形態に係る信号検出部の一例を示す図である。信号検出部2044は、等化部2504、多元接続信号分離部2506-1~2506-u、IDFT部2508-1~2508-u、復調部2510-1~2510-u、復号部2512-1~2512-uから構成される。uは、グラントフリーアクセスの場合、同一又は重複するマルチアクセスの物理リソースにおいて(同一時間及び同一周波数において)、伝搬路推定部2043が上りリンクのデータを送信したと判断(チャネル状態の抽出に成功)した端末装置数である。uは、スケジュールドアクセスの場合、DCIで同一又は重複するマルチアクセスの物理リソースにおいて(同一時間、例えばOFDMシンボル、スロットにおいて)、上りリンクのデータ送信を許可した端末装置数である。信号検出部2044を構成する各部位は、制御部208から入力される各端末装置のグラントフリーアクセスに関する設定を用いて、制御される。
等化部2504は、伝搬路推定部2043より入力された周波数応答よりMMSE規範に基づく等化重みを生成する。ここで、等化処理は、MRCやZFを用いても良い。等化部2504は、該等化重みを多重分離部2042から入力される周波数領域の信号(各端末装置の信号が含まれる)に乗算し、各端末装置の周波数領域の信号を抽出する。等化部2504は、等化後の各端末装置の周波数領域の信号をIDFT部2508-1~2508-uに出力する。ここで、信号波形をDFTS-OFDMとした端末装置20が送信したデータを検出する場合、IDFT部2508-1~2508-uに周波数領域の信号を出力する。また、信号波形をOFDMとした端末装置20が送信したデータを受信する場合、多元接続信号分離部2506-1~2506-uに周波数領域の信号を出力する。
IDFT部2508-1~2508-uは、等化後の各端末装置の周波数領域の信号を時間領域の信号に変換する。なお、IDFT部2508-1~2508-uは、端末装置20のDFT部で施された処理に対応する。多元接続信号分離部2506-1~2506-uは、IDFT後の各端末装置の時間領域の信号に対して、マルチアクセス署名リソースにより多重されている信号を分離する(多元接続信号分離処理)。例えば、マルチアクセス署名リソースとして符号拡散を用いた場合は、多元接続信号分離部2506-1~2506-uの各々は、各端末装置に割当てられた拡散符号系列を用いて、逆拡散処理を行う。なお、マルチアクセス署名リソースとしてインターリーブが適用される場合、IDFT後の各端末装置の時間領域の信号に対して、デインターリーブ処理が行われる(デインターリーブ部)。
復調部2510-1~2510-uには、予め通知されている、又は予め決められている各端末装置の変調方式の情報(BPSK、QPSK、16QAM、64QAM、256QAM等)が制御部208から入力される。復調部2510-1~2510-uは、前記変調方式の情報に基づき、多元接続信号の分離後の信号に対して復調処理を施し、ビット系列のLLR(Log Likelihood Ratio)を出力する。
復号部2512-1~2512-uには、予め通知されている、又は予め決められている符号化率の情報が制御部208から入力される。復号部2512-1~2512-uは、前記復調部2510-1~2510-uから出力されたLLRの系列に対して復号処理を行い、復号した上りリンクのデータ/上りリンク制御情報を上位層処理部206へ出力する。逐次干渉キャンセラ(SIC: Successive Interference Canceller)やターボ等化等のキャンセル処理を行うために、復号部2512-1~2512-uは、復号部出力の外部LLRもしくは事後LLRからレプリカを生成し、キャンセル処理をしても良い。外部LLRと事後LLRの違いは、それぞれ復号後のLLRから復号部2512-1~2512-uに入力される事前LLRを減算するか、否かである。復号部2512-1~2512-uは、SICやターボ等化の繰り返し回数が所定の回数に達した場合、復号処理後のLLRに対して硬判定を行い、各端末装置における上りリンクのデータのビット系列を、上位層処理部206に出力しても良い。なお、ターボ等化処理を用いた信号検出に限らず、レプリカ生成し、干渉除去を用いない信号検出や最尤検出、EMMSE-IRCなどを用いることもできる。
制御部208は、上りリンクの物理チャネル(物理上りリンク制御チャネル、物理上りリンク共有チャネル等)に含まれる上りリンク受信に関する設定情報/下りリンク送信に関する設定情報(基地局装置から端末装置へDCIやRRC、SIBなどで通知)を用いて、受信部204及び送信部210の制御を行う。制御部208は、前記上りリンク受信に関する設定情報/下りリンク送信に関する設定情報を上位層処理部206から取得する。送信部210が物理下りリンク制御チャネルを送信する場合、制御部208は、下りリンク制御情報(DCI:Downlink Control information)を生成し、送信部210に出力する。なお、制御部108の機能の一部は、上位層処理部102に含めることができる。なお、制御部208はデータ信号に付加するCPの長さのパラメータに従って、送信部210を制御しても良い。
上位層処理部206は、媒体アクセス制御(MAC:Medium Access Control)層、パケットデータ統合プロトコル(PDCP:Packet Data Convergence Protocol)層、無線リンク制御(RLC:Radio Link Control)層、無線リソース制御(RRC:Radio Resource Control)層などの物理層より上位層の処理を行なう。上位層処理部206は、送信部210および受信部204の制御を行なうために必要な情報を生成し、制御部208に出力する。上位層処理部206は、下りリンクのデータ(例えば、DL-SCH)、報知情報(例えば、BCH)、ハイブリッド自動再送要求(Hybrid Automatic Request)インジケータ(HARQインジケータ)などを送信部210に出力する。上位層処理部206は、端末装置からサポートしている端末装置の機能(UE capability)に関する情報を受信部204から入力される。例えば、上位層処理部206は、前記端末装置の機能に関する情報をRRC層のシグナリングで受信する。
前記端末装置の機能に関する情報は、その端末装置が所定の機能をサポートするかどうかを示す情報、または、その端末装置が所定の機能に対する導入およびテストの完了を示す情報を含む。所定の機能をサポートするかどうかは、所定の機能に対する導入およびテストを完了しているかどうかを含む。端末装置が所定の機能をサポートする場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信する。端末装置が所定の機能をサポートしない場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信しないようにしてよい。すなわち、その所定の機能をサポートするかどうかは、その所定の機能をサポートするかどうかを示す情報(パラメータ)を送信するかどうかによって通知される。なお、所定の機能をサポートするかどうかを示す情報(パラメータ)は、1または0の1ビットを用いて通知してもよい。
前記端末装置の機能に関する情報は、グラントフリーアクセスをサポートすることを示す情報(UL-TWG-type1とUL-TWG-type2をそれぞれサポートするか否かの情報)を含む。グラントフリーアクセスに対応する機能が複数ある場合、上位層処理部206は、機能毎にサポートするかどうかを示す情報を受信することができる。グラントフリーアクセスをサポートすることを示す情報は、端末装置がサポートしているマルチアクセスの物理リソース、マルチアクセス署名リソースを示す情報を含む。グラントフリーアクセスをサポートすることを示す情報は、前記マルチアクセスの物理リソース、マルチアクセス署名リソースの設定のための参照テーブルの設定を含んでもよい。グラントフリーアクセスをサポートすることを示す情報は、アンテナポート、スクランブリングアイデンティティ及びレイヤ数を示す複数のテーブルに対応している能力、所定数のアンテナポート数に対応している能力、所定の送信モードに対応している能力の一部又は全部を含んでも良い。送信モードは、アンテナポート数、送信ダイバーシチ、レイヤ数、グラントフリーアクセスのサポート等の有無により定められる。
上位層処理部206は、端末装置の各種設定情報の管理をする。前記各種設定情報の一部は、制御部208に入力される。各種設定情報は、送信部210を介して下りリンクの物理チャネルを用いて、基地局装置10から送信される。前記各種設定情報は、送信部210から入力されたグラントフリーアクセスに関する設定情報を含む。前記グラントフリーアクセスに関する設定情報は、マルチアクセスリソース(マルチアクセスの物理リソース、マルチアクセス署名リソース)の設定情報を含む。例えば、上りリンクのリソースブロック設定(使用するOFDMシンボルの開始位置とOFDMシンボル数/リソースブロック数)、復調用参照信号/識別信号の設定(参照信号系列、サイクリックシフト、マッピングされるOFDMシンボル等)、拡散符号設定(Walsh符号、OCC;Orthogonal Cover Code、スパース符号やこれらの拡散符号の拡散率など)、インターリーブ設定、送信電力設定、送受信アンテナ設定、送受信ビームフォーミング設定、等のマルチアクセス署名リソースに関する設定(端末装置20が送信した上りリンクの物理チャネルを同定するための目印に基づいて施される処理に関する設定)が含まれうる。これらのマルチアクセス署名リソースは、直接的又は間接的に、関連付けられてもよい(結び付けられてもよい)。マルチアクセス署名リソースの関連付けは、マルチアクセス署名プロセスインデックスによって示される。また、前記グラントフリーアクセスに関する設定情報には、前記マルチアクセスの物理リソース、マルチアクセス署名リソースの設定のための参照テーブルの設定が含まれてもよい。前記グラントフリーアクセスに関する設定情報は、グラントフリーアクセスのセットアップ、リリースを示す情報、上りリンクのデータ信号に対するACK/NACKの受信タイミング情報、上りリンクのデータ信号の再送タイミング情報などを含めてもよい。
上位層処理部206は、制御情報として通知したグラントフリーアクセスに関する設定情報に基づいて、グラントフリーで上りリンクのデータ(トランスポートブロック)のマルチアクセスリソース(マルチアクセスの物理リソース、マルチアクセス署名リソース)を管理する。上位層処理部206は、グラントフリーアクセスに関する設定情報に基づき、受信部204を制御するための情報を制御部208に出力する。
上位層処理部206は、生成された下りリンクのデータ(例えば、DL-SCH)を、送信部210に出力する。前記下りリンクのデータには、UE ID(RNTI)を格納するフィールドを有しても良い。上位層処理部206は、前記下りリンクのデータにCRCを付加する。前記CRCのパリティビットは、前記下りリンクのデータを用いて生成される。前記CRCのパリティビットは、宛先の端末装置に割当てられたUE ID(RNTI)でスクランブル(排他的論理和演算、マスク、暗号化とも呼ぶ)される。ただし、RNTIは前述の通り、複数の種類が存在し、送信するデータなどによって使用するRNTIが異なる。
上位層処理部206は、ブロードキャストするシステムインフォメーション(MIB、SIB)を生成、又は上位ノードから取得する。上位層処理部206は、前記ブロードキャストするシステムインフォメーションを送信部210に出力する。前記ブロードキャストするシステムインフォメーションは、基地局装置10がグラントフリーアクセスをサポートすることを示す情報を含めることができる。上位層処理部206は、前記システムインフォメーションに、グラントフリーアクセスに関する設定情報(マルチアクセスの物理リソース、マルチアクセス署名リソースなどのマルチアクセスリソースに関する設定情報など)の一部又は全部を含めることができる。上りリンク前記システム制御情報は、送信部210において、物理報知チャネル/物理下りリンク共有チャネルにマッピングされる。
上位層処理部206は、物理下りリンク共有チャネルにマッピングされる下りリンクのデータ(トランスポートブロック)、システムインフォメーション(SIB)、RRCメッセージ、MAC CEなどを生成、又は上位ノードから取得し、送信部210に出力する。上位層処理部206は、これらの上位層の信号にグラントフリーアクセスに関する設定情報、グラントフリーアクセスのセットアップ、リリースを示すパラメータの一部又は全部を含めることができる。上位層処理部206は、グラントフリーアクセスに関する設定情報を通知するための専用SIBを生成してもよい。
上位層処理部206は、グラントフリーアクセスをサポートしている端末装置20に対して、マルチアクセスリソースをマッピングする。基地局装置10は、マルチアクセス署名リソースに関する設定パラメータの参照テーブルを保持しても良い。上位層処理部206は、前記端末装置20に対して各設定パラメータを割当てる。上位層処理部206は、前記マルチアアクセス署名リソースを用いて、各端末装置に対するグラントフリーアクセスに関する設定情報を生成する。上位層処理部206は、各端末装置に対するグラントフリーアクセスに関する設定情報の一部又は全部を含む下りリンク共有チャネルを生成する。上位層処理部206は、前記グラントフリーアクセスに関する設定情報を、制御部208/送信部210に出力する。
上位層処理部206は、各端末装置に対してUE IDを設定し、通知する。UE IDは、無線ネットワーク一時的識別子(RNTI:Cell Radio Network Temporary Identifier)を用いることができる。UE IDは、下りリンク制御チャネル、下りリンク共有チャネルに付加されるCRCのスクランブルに用いられる。UE IDは、上りリンク共有チャネルに付加されるCRCのスクランブリングに用いられる。UE IDは、上りリンク参照信号系列の生成に用いられる。上位層処理部206は、SPS/グラントフリーアクセス固有のUE IDを設定してもよい。上位層処理部206は、グラントフリーアクセスをサポートする端末装置か否かで区別して、UE IDを設定してもよい。例えば、下りリンクの物理チャネルがスケジュールドアクセスで送信され、上りリンクの物理チャネルがグラントフリーアクセスで送信される場合、下りリンクの物理チャネル用UE IDは、下りリンクの物理チャネル用UE IDと区別して設定してもよい。上位層処理部206は、前記UE IDに関する設定情報を、送信部210/制御部208/受信部204に出力する。
上位層処理部206は、物理チャネル(物理下りリンク共有チャネル、物理上りリンク共有チャネルなど)の符号化率、変調方式(あるいはMCS)および送信電力などを決定する。上位層処理部206は、前記符号化率/変調方式/送信電力を送信部210/制御部208/受信部204に出力する。上位層処理部206は、前記符号化率/変調方式/送信電力を上位層の信号に含めることができる。
送信部210は、送信する下りリンクのデータが発生した場合、物理下りリンク共有チャネルを送信する。また、送信部210は、DL Grantによりデータ送信用のリソースを送信している場合、スケジュールドアクセスで物理下りリンク共有チャネルを送信し、SPSをアクティベーション時はSPSの物理下りリンク共有チャネルを送信しても良い。送信部210は、制御部208から入力されたスケジュールドアクセス/SPSに関する設定に従って、物理下りリンク共有チャネル及びそれに関連付けられた復調用参照信号/制御信号を生成する。
符号化部2100は、予め定められた/制御部208が設定した符号化方式を用いて、上位層処理部206から入力された下りリンクのデータを符号化する(リピティションを含む)。符号化方式は、畳み込み符号化、ターボ符号化、LDPC(Low Density Parity Check)符号化、Polar符号化、等を適用することができる。データ送信ではLDPC符号、制御情報の送信ではPolar符号を用い、使用する下りリンクのチャネルによって異なる誤り訂正符号化を用いても良い。また、送信するデータや制御情報のサイズによって異なる誤り訂正符号化を用いても良く、例えばデータサイズが所定の値よりも小さい場合には畳み込み符号を用い、それ以外は前記の訂正符号化を用いても良い。前記符号化は、符号化率1/3に加え、低い符号化率1/6や1/12などのマザーコードを用いてもよい。また、マザーコードより高い符号化率を用いる場合には、レートマッチング(パンクチャリング)によりデータ伝送に用いる符号化率を実現しても良い。変調部2102は、符号化部2100から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等(π/2シフトBPSK、π/4シフトQPSKも含んでもよい)の下りリンク制御情報で通知された変調方式または、チャネル毎に予め定められた変調方式で変調する。
多元接続処理部2106は、変調部2102から出力される系列に対して、制御部208から入力されるマルチアクセス署名リソースに従って、複数のデータが多重されても基地局装置10が信号の検出が可能なように信号を変換する。マルチアクセス署名リソースが拡散の場合は、拡散符号系列の設定に従って拡散符号系列を乗算する。なお、なお、多元接続処理部2106は、マルチアクセス署名リソースとしてインターリーブが設定された場合、前記多元接続処理部2106は、インターリーブ部に置換えることができる。インターリーブ部は、変調部2102から出力される系列に対して、制御部208から入力されるインターリーブパターンの設定に従ってインターリーブ処理を行う。マルチアクセス署名リソースとして符号拡散及びインターリーブが設定された場合、送信部210は、多元接続処理部2106は拡散処理とインターリーブを行う。その他のマルチアクセス署名リソースが適用された場合でも、同様であり、スパース符号などを適用しても良い。
多元接続処理部2106は、信号波形をOFDMとする場合、多元接続処理後の信号を多重部2108に入力する。下りリンク参照信号生成部2112は、制御部208から入力される復調用参照信号の設定情報に従って、復調用参照信号を生成する。復調用参照信号/識別信号の設定情報は、基地局装置が下りリンク制御情報で通知するOFDMシンボル数、DMRSの配置するOFDMシンボル位置、サイクリックシフト、時間領域の拡散などの情報を基に、予め定められた規則で求まる系列を生成する。
多重部2108は、下りリンクの物理チャネルと下りリンク参照信号を送信アンテナポート毎にリソースエレメントへ多重(マッピング、配置)する。多重部2108は、SCMAを用いる場合、制御部208から入力されるSCMAリソースパターンに従って、前記下りリンクの物理チャネルをリソースエレメントに配置する。
IFFT部2109は多重された信号を逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、OFDM方式の変調を行い、OFDMシンボルを生成する。無線送信部2110は、前記OFDM方式の変調されたシンボルにCPを付加し、ベースバンドのディジタル信号を生成する。さらに、無線送信部2110は、前記ベースバンドのディジタル信号をアナログ信号に変換し、余分な周波数成分を除去し、アップコンバートにより搬送周波数に変換し、電力増幅し、送信アンテナ212を介して端末装置20に送信する。無線送信部2110は、送信電力制御機能(送信電力制御部)を含む。前記送信電力制御は、制御部208から入力される送信電力の設定情報に従う。なお、FBMC、UF-OFDM、F-OFDMが適用される場合、前記OFDMシンボルに対して、サブキャリア単位又はサブバンド単位でフィルタ処理が行われる。
図5は、本実施形態における端末装置20の構成を示す概略ブロック図である。基地局装置10は、上位層処理部(上位層処理ステップ)102、送信部(送信ステップ)104、送信アンテナ106、制御部(制御ステップ)108、受信アンテナ110、受信部(受信ステップ)112を含んで構成される。送信部104は、符号化部(符号化ステップ)1040、変調部(変調ステップ)1042、多元接続処理部(多元接続処理ステップ)1043、多重部(多重ステップ)1044、DFT部(DFTステップ)1045、上りリンク制御信号生成部(上りリンク制御信号生成ステップ)1046、上りリンク参照信号生成部(上りリンク参照信号生成ステップ)1048、IFFT部1049(IFFTステップ)及び無線送信部(無線送信ステップ)1050を含んで構成される。受信部112は、無線受信部(無線受信ステップ)1120、FFT部(FFTステップ)1121、伝搬路推定部(伝搬路推定ステップ)1122、多重分離部(多重分離ステップ)1124及び信号検出部(信号検出ステップ)1126を含んで構成される。
上位層処理部102は、媒体アクセス制御(MAC:Medium Access Control)層、パケットデータ統合プロトコル(PDCP:Packet Data Convergence Protocol)層、無線リンク制御(RLC:Radio Link Control)層、無線リソース制御(RRC:Radio Resource Control)層などの物理層より上位層の処理を行なう。上位層処理部102は、送信部104および受信部112の制御を行なうために必要な情報を生成し、制御部108に出力する。上位層処理部102は、上りリンクのデータ(例えば、UL-SCH)、上りリンクの制御情報のなどを送信部104に出力する。
上位層処理部102は、端末装置の機能(UE capability)等の端末装置に関する情報を、基地局装置10から(送信部104を介して)送信する。端末装置に関する情報は、グラントフリーアクセスをサポートすることを示す情報、その機能毎にサポートするかどうかを示す情報を含む。グラントフリーアクセスをサポートすることを示す情報、その機能毎にサポートするかどうかを示す情報は、送信モードで区別されてもよい。
制御部108は、上位層処理部102から入力された各種設定情報に基づいて、送信部104および受信部112の制御を行なう。制御部108は、上位層処理部102から入力された制御情報に関する設定情報に基づいて、上りリンク制御情報(UCI)を生成し、送信部104に出力する。
送信部104は、各端末装置のために、上位層処理部102から入力された上りリンク制御情報、上りリンク共有チャネル等を符号化および変調し、物理上りリンク制御チャネル、物理上りリンク共有チャネルを生成する。符号化部1040は、予め定められた/制御情報で通知された符号化方式を用いて、上りリンク制御情報、上りリンク共有チャネルを符号化する(リピティションを含む)。符号化方式は、畳み込み符号化、ターボ符号化、LDPC(Low Density Parity Check)符号化、Polar符号化、等を適用することができる。変調部1042は、符号化部1040から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の予め定められた/制御情報で通知された変調方式で変調する。
多元接続処理部1043は、変調部1042から出力される系列に対して、制御部108から入力されるマルチアクセス署名リソースに従って、複数のデータが多重されても基地局装置10が信号の検出が可能なように信号を変換する。マルチアクセス署名リソースが拡散の場合は、拡散符号系列の設定に従って拡散符号系列を乗算する。前記拡散符号系列の設定は、前記復調用参照信号/識別信号などの他のグラントフリーアクセスに関する設定と関連付けられても良い。なお、多元接続処理は、DFT処理後の系列に対して行ってもよい。なお、多元接続処理部1043は、マルチアクセス署名リソースとしてインターリーブが設定された場合、前記多元接続処理部1043は、インターリーブ部に置換えることができる。インターリーブ部は、DFT部から出力される系列に対して、制御部108から入力されるインターリーブパターンの設定に従ってインターリーブ処理を行う。マルチアクセス署名リソースとして符号拡散及びインターリーブが設定された場合、送信部104は、多元接続処理部1043は拡散処理とインターリーブを行う。その他のマルチアクセス署名リソースが適用された場合でも、同様であり、スパース符号などを適用しても良い。
多元接続処理部1043は、信号波形をDFTS-OFDMとするか、OFDMとするかによって、多元接続処理後の信号をDFT部1045もしくは多重部1044に入力する。信号波形をDFTS-OFDMとする場合、DFT部1045は、多元接続処理部1043から出力される多元接続処理後の変調シンボルを並列に並び替えてから離散フーリエ変換(Discrete Fourier Transform: DFT)処理をする。ここで,前記変調シンボルにゼロのシンボル列を付加して、DFTを行うことでIFFT後の時間信号にCPの代わりにゼロ区間を使う信号波形としても良い。また、変調シンボルにGold系列やZadoff-Chu系列などの特定の系列を付加して、DFTを行うことでIFFT後の時間信号にCPの代わりに特定パターンを使う信号波形としても良い。信号波形をOFDMとする場合は、DFTを適用しないため、多元接続処理後の信号を多重部1044に入力する。制御部108は、前記グラントフリーアクセスに関する設定情報に含まれる前記ゼロのシンボル列の設定(シンボル列のビット数など)、前記特定の系列の設定(系列の種(seed)、系列長など)を用いて、制御する。
上りリンク制御信号生成部1046は、制御部108から入力される上りリンク制御情報にCRCを付加して、物理上りリンク制御チャネルを生成する。上りリンク参照信号生成部1048は、上りリンク参照信号を生成する。
多重部1044は、多元接続処理部1043もしくはDFT部1045の変調された各上りリンクの物理チャネルの変調シンボル、物理上りリンク制御チャネルと上りリンク参照信号をリソースエレメントにマッピングする。多重部1044は、物理上りリンク共有チャネル、物理上りリンク制御チャネルを、各端末装置に割当てられたリソースにマッピングする。
IFFT部1049は、多重された各上りリンクの物理チャネルの変調シンボルを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)してOFDMシンボルを生成する。無線送信部1050は、前記OFDMシンボルにサイクリックプレフィックス(cyclic prefix: CP)を付加してベースバンドのディジタル信号を生成する。さらに、無線送信部1050は、前記ディジタル信号をアナログ信号に変換し、フィルタリングにより余分な周波数成分を除去し、搬送周波数にアップコンバートし、電力増幅し、送信アンテナ106に出力して送信する。
受信部112は、基地局装置10から送信された下りリンクの物理チャネルを、復調用参照信号を用いて検出する。受信部112は、基地局装置より制御情報(DCIやRRC、SIBなど)で通知された設定情報に基づいて、下りリンクの物理チャネルの検出を行う。
無線受信部1120は、受信アンテナ110を介して受信した上りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部1120は、変換したディジタル信号からCPに相当する部分を除去する。FFT部1121は、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出する。
伝搬路推定部1122は、復調用参照信号を用いて、下りリンクの物理チャネルの信号検出のためのチャネル推定を行う。伝搬路推定部1122には、復調用参照信号がマッピングされているリソース及び各端末装置に割当てた復調用参照信号系列が制御部108から入力される。伝搬路推定部1122は、前記復調用参照信号系列を用いて、基地局装置10と端末装置20の間のチャネル状態(伝搬路状態)を測定する。多重分離部1124は、無線受信部1120から入力された周波数領域の信号(複数の端末装置20の信号が含まれる)を抽出する。信号検出部1126は、前記チャネル推定結果及び多重分離部1124から入力される前記周波数領域の信号を用いて、下りリンクのデータ(上りリンクの物理チャネル)の信号を検出する。
上位層処理部102は、信号検出部1126から下りリンクのデータ(硬判定後のビット系列)を取得する。上位層処理部102は、各端末装置の復号後の下りリンクのデータに含まれるCRCに対して、各端末に割当てたUE ID(RNTI)を用いて、デスクランブル(排他的論理和演算)を行う。上位層処理部102は、デスクランブルによる誤り検出の結果、下りリンクのデータに誤りが無い場合、下りリンクのデータを正しく受信できたと判断する。
図6は、本実施形態に係る信号検出部の一例を示す図である。信号検出部1126は、等化部1504、多元接続信号分離部1506-1~1506-c、復調部1510-1~1510-c、復号部1512-1~1512-cから構成される。
等化部1504は、伝搬路推定部1122より入力された周波数応答よりMMSE規範に基づく等化重みを生成する。ここで、等化処理は、MRCやZFを用いても良い。等化部1504は、該等化重みを多重分離部1124から入力される周波数領域の信号に乗算し、周波数領域の信号を抽出する。等化部1504は、等化後の周波数領域の信号を多元接続信号分離部1506-1~1506-cに出力する。cは1以上であり、同一サブフレーム、同一スロット、同一OFDMシンボルで受信した信号、例えばPUSCHとPUCCHなどの数である。その他の下りリンクのチャネルの受信を同一のタイミングで受信としても良い。
多元接続信号分離部1506-1~1506-cは、時間領域の信号に対して、マルチアクセス署名リソースにより多重されている信号を分離する(多元接続信号分離処理)。例えば、マルチアクセス署名リソースとして符号拡散を用いた場合は、多元接続信号分離部1506-1~1506-cの各々は、使用された拡散符号系列を用いて、逆拡散処理を行う。なお、マルチアクセス署名リソースとしてインターリーブが適用される場合、時間領域の信号に対して、デインターリーブ処理が行われる(デインターリーブ部)。
復調部1510-1~1510-cには、予め通知されている、又は予め決められている変調方式の情報が制御部108から入力される。復調部1510-1~1510-cは、前記変調方式の情報に基づき、多元接続信号の分離後の信号に対して復調処理を施し、ビット系列のLLR(Log Likelihood Ratio)を出力する。
復号部1512-1~1512-cには、予め通知されている、又は予め決められている符号化率の情報が制御部108から入力される。復号部1512-1~1512-cは、前記復調部1510-1~1510-cから出力されたLLRの系列に対して復号処理を行う。逐次干渉キャンセラ(SIC: Successive Interference Canceller)やターボ等化等のキャンセル処理を行うために、復号部1512-1~1512-cは、復号部出力の外部LLRもしくは事後LLRからレプリカを生成し、キャンセル処理をしても良い。外部LLRと事後LLRの違いは、それぞれ復号後のLLRから復号部1512-1~1512-cに入力される事前LLRを減算するか、否かである。
本実施形態における高信頼性を実現するための送信電力制御方法について説明する。従来の上りリンクの送信電力制御はPPUSCH,f,c(i,j,qd,l)=min{PCMAX,f,c(i),PO_PUSCH,f,c(j)+10log10(2μMPUSCH_RB,f,c(i))+αf,c(j)・PLf,c(qd)+ΔTF,f,c(i)+ff,c(i,l)}で算出される。ここで、minは{}内で小さい値を選択するものとする。PCMAX,f,c(i)は、キャリアf、サービングセルcにおけるi番目のサブフレームの端末装置の許容される最大送信電力であり、PO_PUSCH,f,c(j)は上位層(RRC)で設定されるキャリアf、サービングセルcにおけるスケジューリングjにおける1RBあたりの名目上の目標受信電力、jはスケジューリングの種類や送信信号に依存する値であり、j=0はRACH、j=1はSPS/グラントフリーアクセス、j=2~J-1はダイナミックスケジューリング用に上位層(RRC)で複数設定された後、DCI(例えばSRI(SRS Resource Indicator)フィールド)で指定され、αf,c(j)はキャリアf、サービングセルcにおけるフラクショナル送信電力制御のパラメータ、PLf,c(qd)はサービングセルc、パスロス測定用の参照信号のリソースqdにおけるパスロス、ΔTF,f,c(i)はキャリアf、サービングセルcにおけるi番目のサブフレームの変調多値数によるパラメータ、ff,c(i,l)はキャリアf、サービングセルcにおける閉ループ制御を行うために基地局装置から端末装置に通知されるパラメータであり、lは複数の閉ループ制御を可能とするための変数である。例えば、通常はl=1とし、上位層(RRC)によりl={1、2}と設定されると、l=1もしくはl=2のいずれかのTPCコマンドを送信すると、一方のみに反映することが可能となる。また、l=1とl=2の使い分けとして、SPS/グラントフリーアクセスで使用するlの値を設定することで、他方をダイナミックスケジューリング用として使用しても良い。送信電力の算出に用いるPO_PUSCH,f,c(j)は、PO_NOMINAL_PUSCH,f,c(j)とPO_UE_PUSCH,f,c(j)の和で決まる。PO_NOMINAL_PUSCH,f,c(j)は、j=0の場合は上位層(RRC)で通知されるPO_PREとΔPREAMBLE_Msg3の和で決まり、j=1、2の場合は上位層(RRC)で設定され、それぞれSPS/グラントフリーアクセス用とダイナミックスケジューリング用の複数の値が設定される。PO_UE_PUSCH,c(j)は、j=0の場合は0であり、j=1、2の場合の値が上位層(RRC)で通知され、それぞれSPS/グラントフリーアクセス用とダイナミックスケジューリング用の複数の値が設定される。
PCMAX,f,c(i)はMPR(Maximum Power Reduction)、A-MPR(Additional-MPR)、P-MPR(Power Management-MPR)から決まるPCMAX_L,c(i)と、PEMAX,cやPPowerClassから決まるPCMAX_H,c(i)の間で、端末装置の持つPA(Power Amplifier)の能力に応じて設定される。
従来は、目標受信電力のPO_PUSCH,f,c(j)とスケジューリングの種類により変わるフラクショナル送信電力制御のパラメータのαf,c(j)のみがDCIで指定でき、ダイナミックに変更できる。ダイナミックスケジューリングで複数の目標受信電力のPO_PUSCH,f,c(j)のいずれを使用するかはDCIのSRIで指定する場合に、フォールバックのDCIフォーマット0_0にSRIのフィールドが存在しないため、ダイナミックな切換えができない。DCIフォーマット0_1ではマルチアンテナ送信をサポートし、SRIのフィールドが存在するが、DCIフォーマットを構成するビット数(ペイロードサイズ)が大きい。LTEやNRではDCIフォーマットは予め決められたリソースエレメント(サーチスペース)にDCIフォーマットを置くため、リソースエレメント数を一定とすると、ペイロードサイズの小さいDCIフォーマットと比較してペイロードサイズの大きいDCIフォーマットを送信する符号化率が高くなり、高信頼性を満たすことが難しくなる。また、ダイナミックスケジューリングでも高信頼性が要求されるデータと、高信頼性が必要なデータが存在することや、SPS/グラントフリーアクセスでも同様にデータで要求される信頼性が異なることがある。そこで、DCIフォーマットの高信頼性とデータに要求される信頼性を満たしつつ、ダイナミックに信頼性に合わせた送信電力制御を切り替える。
まず、上りリンクのフォールバック用のDCIフォーマット0_0を使用して、信頼性に合わせた送信電力制御の切り替えを行う。端末装置20は、基地局装置10より上位層の信号(例えばRRCシグナリング)で送信するデータの信頼性に合わせた送信パラメータセットを受信(RRCのセットアップ)する。この送信パラメータセットには、DCIフォーマット0_0のブラインドデコーディングのCRCのマスクに使用するH-RNTIと、目標受信電力、フラクショナルTPCのパラメータ、使用するパスロスの指定、使用する閉ループ制御のインデックスl(lは1、2のいずれかでも良いし、0や3以上などの値が追加されても良い)の少なくとも1つが含まれても良い。また、この送信パラメータセットには、設定されている(j,qd,l)のインデックスの組合せが含まれても良いし、新たな目標受信電力、フラクショナルTPCのパラメータ、使用するパスロスの指定、使用する閉ループ制御のインデックスを設定しても良い。なお、上りリンクの送信電力制御として、PPUSCH,f,c(i,j,qd,l)=min{PCMAX,f,c(i),PO_PUSCH,f,c(j)+10log10(2μMPUSCH_RB,f,c(i))+αf,c(j)・PLf,c(qd)+ΔTF,f,c(i)+Qf,c(r)+ff,c(i,l)}のようにデータの信頼性に合わせたQf,c(r)の項(送信するデータのQoSもしくはQCI(QoS Class Indicator)により設定される項)を追加し、送信パラメータセットにQf,c(r)を含めても良い。
端末装置20は、サーチスペース(CSS:Common Search SpaceやUSS:UE固有SS)のブラインドデコーディングを行い、H-RNTIでDCIフォーマット0_0を検出した場合と、C-RNTIもしくはCS-RNTIでDCIフォーマット0_0を検出した場合で送信電力制御を切り替える。C-RNTIやCS-RNTIでDCIフォーマット0_0を検出した場合は、従来の送信電力制御が適用され、H-RNTIでDCIフォーマット0_0を検出した場合は高信頼性のデータ送信用の送信電力制御を行う。例えば、H-RNTIでDCIフォーマット0_0を検出した場合は、送信パラメータセットとして通知された目標受信電力、フラクショナルTPCのパラメータ、使用するパスロスの指定、使用する閉ループ制御のインデックスlなどを適用する、もしくはデータの信頼性に合わせたQf,c(r)を0以上の値(上位層で通知されている値)に設定するとしても良い。また、別の例は、キャリアアグリゲーションが適用される場合、同一スロット、同一のOFDMシンボルで複数の上りリンクのデータ(PUSCH)送信もしくはPUSCHとPUCCHの同時送信時に、最大送信電力PCMAX,f,c(i)を超過時の最低保証電力を設定しても良い。従来は、複数のPUSCHの同時送信時に最大送信電力を超過する場合、最大送信電力PCMAX,f,c(i)から一律に送信電力を分配するスケーリングが適用される。一方、従来のPUSCHとPUCCHの同時送信時に最大送信電力を超過する場合、最大送信電力からPUCCHを差し引いた送信電力がPUCSHに割り当てられる。そこで、高い信頼が要求されるデータの送信では、上記のような最大送信電力を超過する場合にも最低保証電力を確保することで、信頼性を落とさないようにできる。具体的な一例では、高信頼のデータ送信の送信電力値PPUSCH,f,c(i,j, qd,l)に対し、最低補償係数β(0以上1以下の値、上位層(RRC)で通知される)を乗算したβPPUSCH,f,c(i,j,qd,l)を最低保証電力とするなどである。また別の例では、高信頼のデータ送信の送信電力制御値の算出に用いるパラメータ(上述の送信パラメータセット)の一部に補正項βを乗算しても良く、高信頼のデータ送信用の目標受信電力にβを乗算して得られた送信電力値min{PCMAX,f,c(i),βPO_PUSCH,f,c(j)+10log10(2μMPUSCH_RB,f,c(i))+αf,c(j)・PLf,c(qd)+ΔTF,f,c(i)+ff,c(i,l)}とする。また、送信パラメータセットに含まれる他の項に補正項βを乗算しても良い。従って、H-RNTIでDCIフォーマット0_0を検出した場合、さらに同一スロット、同一のOFDMシンボルで複数のPUSCH送信もしくはPUSCHとPUCCHの同時送信で最大送信電力を超過する場合、高信頼が要求されるデータに最低保証電力を割当て、残りを同時送信するPUSCHもしくはPUCCHに割り当てても良い。なお、キャリアアグリゲーションはDual Connectivityが適用されていても、適用されていなくても良い。Dual Connectivityが適用されている場合、MCGの中のPCellとSCellでデータに要求される信頼性に応じて、上述の送信電力制御を行っても良い、SCGの中のPSCellとSCellにも適用しても良いし、MCGとSCGの電力分配の前に高いし欄性が要求されるデータに対して最低保証電力の割当てを行い、残りの送信電力をMCGとSCGの他の信号に分配しても良い。なお、PUSCHとSRSの同時送信にも適用しても良い。なお、最大送信電力から最低保証電力を差し引いた送信電力が予め通知されている(例えばRRC)、もしくは予め決められている閾値を下回る場合は、信号の種類によって送信しないとしても良い。例えば、PUSCHとSRSは送信せず、PUCCHは割当てできる送信電力によらず、必ず送信するなどである。
SULで高い信頼性が要求されるデータ送信時にも、H-RNTIでDCIフォーマット0_0を検出したか、C-RNTIもしくはCS-RNTIでDCIフォーマット0_0を検出したかにより、送信電力制御を切り替えても良い。SULは上りリンクのカバレッジを確保するために使用されるため、SULでないサービングセルの周波数より低い周波数が設定される。つまり、SULでないサービングセルに対し、SULのサービングセルはパスロスが小さくなる。SULは上りリンクのみのセルのため下りリンクの信号によりパスロスの測定ができないため、SULでないサービングセルからパスロスを補正した送信電力制御を行う。例えば、H-RNTIでDCIフォーマット0_0を検出した場合、DCIフォーマットがSULのスケジューリングを示す場合は、PPUSCH,f,c(i,j,qd,l)=min{PCMAX,f,c(i),PO_PUSCH,f,c(j)+10log10(2μMPUSCH_RB,f,c(i))+αf,c(j)・PLf,c(qd)-PLSUL+ΔTF,f,c(i)+ff,c(i,l)}で算出する。ここで、PLSULはSULでないサービングセルのパスロスからSULのパスロスへ補正する項であり、0以上とする。ただし、PLSUL=0で得られる送信電力値はSULでないサービングセルの送信電力値を意味する。H-RNTIでDCIフォーマット0_0を検出した場合は、PLSUL=0としてパスロスの補正をしないとしても良い。
なお、本実施形態はDCIフォーマット0_0で説明したが、DCIフォーマット0_1に適用しても良い。なお、本実施形態はDCIフォーマット0_0に限定して適用し、DCIフォーマット0_1に適用しないとしても良い。
なお、H-RNTIは複数用意し、それぞれパラメータセットを通知しても良い。例えば、高信頼のダイナミックスケジューリング用と、高信頼のSPS/グラントフリーアクセス用に設定しても良い。複数の信頼性のレベルの設定があり、信頼性のレベル毎にH-RNTIを設定しても良い。
本実施形態では、高信頼性を実現するための送信電力制御として、DCIフォーマットの検出に用いるRNTIを追加することで、ダイナミックに送信電力制御を切り替える。その結果、1回のトランスポートブロックの伝送における信頼を高めることができ、低遅延と高信頼の達成が可能となる。
(第2の実施形態)
本実施形態は、高信頼性を実現するために、ダイナミックに送信電力制御を切り替える別の例である。本実施形態に係る通信システムは、図3、図4、図5及び図6で説明した基地局装置10及び端末装置20で構成される。以下、第1の実施形態との相違点/追加点を主に説明する。
本実施形態は、高信頼性を実現するために、ダイナミックに送信電力制御を切り替える別の例である。本実施形態に係る通信システムは、図3、図4、図5及び図6で説明した基地局装置10及び端末装置20で構成される。以下、第1の実施形態との相違点/追加点を主に説明する。
前実施形態では、ブラインドデコーディングでDCIフォーマット(上りリンクグラント)の検出に使ったRNTIの種類によって、ダイナミックな送信電力制御の切り替えを行った。本実施形態では、異なる条件によりダイナミックな送信電力制御の切り替えを行う例を説明する。端末装置20は、基地局装置10より上位層の信号(例えばRRCシグナリング)で送信するデータの信頼性に合わせた送信パラメータセットを受信(RRCのセットアップ)する。この送信パラメータセットには、ダイナミックな送信電力制御の切り替えインディケータと、目標受信電力、フラクショナルTPCのパラメータ、使用するパスロスの指定、使用する閉ループ制御のインデックスl(lは1、2のいずれかでも良いし、0や3以上などの値が追加されても良い)の少なくとも1つが含まれても良い。なお、上りリンクの送信電力制御として、PPUSCH,f,c(i,j,qd,l)=min{PCMAX,f,c(i),PO_PUSCH,f,c(j)+10log10(2μMPUSCH_RB,f,c(i))+αf,c(j)・PLf,c(qd)+ΔTF,f,c(i)+Qf,c(r)+ff,c(i,l)}のようにデータの信頼性に合わせたQf,c(r)の項(送信するデータのQoSもしくはQCI(QoS Class Indicator)により設定される項)を追加し、送信パラメータセットにQf,c(r)を含めても良い。
ここで、ダイナミックな送信電力制御の切り替えインディケータは、基地局装置10からDCI(上りリンクグラント)により通知されるパラメータ、つまりDCIフォーマットに含まれるフィールドが所定の条件を満たす場合に、高い信頼性が要求されるデータ用の送信パラメータセットを使用する。所定の条件は、DCIフォーマット0_0よりもペイロードサイズが小さいDCIフォーマット(本明細書ではDCIフォーマット0_2と呼ぶ)のブラインドデコーディングの設定がRRCでセットアップされ、DCIフォーマット0_2を検出時としても良い。DCIフォーマット0_2は、DCIフォーマット0_0の一部のフィールドしか持たず、例えば時間領域のリソースアサインメント、MCS、NDI、RVのみとしても良い。なお、本発明はこの例に限定されず、DCIフォーマット0_2はSRIのフィールドを含んでも良い。
ダイナミックな送信電力制御の切り替えインディケータの所定の条件の例は、DCIフォーマットを検出するサーチスペースの一部の設定がRRCでセットアップされ、設定された条件でDCIフォーマットを検出時としても良い。具体的には、CSSもしくはUSSのいずれかを指定する、所定のアグリゲーションレベル(アグリゲーションレベル4以上または8以上)を指定するなどである。これは、高いアグリゲーションレベルを指定することで、上りリンクグラントが低い符号化率で送信される場合に限定することを意味し、PDCCHの上りリンクグラントとPUSCHのデータの高信頼性を満たすことができる。
ダイナミックな送信電力制御の切り替えインディケータの所定の条件の例は、DCIフォーマットで通知する時間領域のリソースアサインメントの設定がRRCでセットアップされ、設定された条件のDCIフォーマットを検出時としても良い。具体的には、時間領域のリソースアサインメントに含まれるデータ送信に使用するOFDMシンボル数が所定の値以下の場合とする、DCIフォーマットの受信したスロットからPUSCHを送信するスロットまでの値K2が所定の値以下の場合とする、などである。なお、RRCでセットアップされるOFDMシンボル数はDMRSのOFDMシンボルを除いたOFDMシンボル数でも良いし、含んだOFDMシンボル数でも良い。URLLCにより高信頼性に加えて低遅延を実現するため、データ送信はスロット単位ではなく、ミニスロット(ノンスロットベース、スロットに含まれるOFDMシンボルの一部のみを使用)単位の場合を所定の条件としても良い。また、同様に、DCIフォーマットの受信したスロットからPUSCHを送信するスロットまでの値K2は、低遅延が要求されるデータの場合、より小さい値が指定されるため、K2を所定の条件としても良い。
なお、前実施形態と本実施形態では、ダイナミックに送信電力制御を切り替える方法として、複数の例を説明したが、高信頼が要求されるデータ送信用のMCSテーブル(URLLC用MCSテーブル)と高信頼が要求されないデータ送信用のMCSテーブルが存在した場合、前実施形態と本実施形態で説明したいずれかの方法でダイナミックにURLLC用MCSテーブルへ切り替えても良い。
なお、前実施形態と本実施形態では、ダイナミックに送信電力制御を切り替える方法として、複数の例を説明したが、高信頼が要求されるデータ送信用のCQIテーブル(URLLC用CQIテーブル)と高信頼が要求されないデータ送信用のCQIテーブルが存在した場合、CQIレポーティングのトリガー受信時に、前実施形態と本実施形態で説明したいずれかの方法でダイナミックにURLLC用CQIテーブルへ切り替えても良い。
なお、前実施形態と本実施形態では、ダイナミックに送信電力制御を切り替える方法として、複数の例を説明したが、高信頼が要求されるデータ送信用の誤り訂正符号化(URLLC用誤り訂正符号化)と高信頼が要求されないデータ送信用の誤り訂正符号化が存在した場合、前実施形態と本実施形態で説明したいずれかの方法でダイナミックにURLLC用誤り訂正符号化へ切り替えても良い。
なお、前実施形態と本実施形態では、ダイナミックに送信電力制御を切り替える方法として、複数の例を説明したが、高信頼が要求されるデータ送信用のPHレポーティング(URLLC用PHレポーティング)と高信頼が要求されないデータ送信用のPHレポーティングが存在した場合、前実施形態と本実施形態で説明したいずれかの方法でダイナミックにURLLC用PHレポーティングへ切り替えても良い。
なお、前実施形態と本実施形態では、ダイナミックに送信電力制御を切り替える方法として、複数の例を説明したが、高信頼が要求されるデータ送信用のSRSの送信モード/SRSの送信電力制御(URLLC用SRS送信)と高信頼が要求されないデータ送信用のSRSの送信モード/SRSの送信電力制御が存在した場合、SRS送信のトリガー受信時に、前実施形態と本実施形態で説明したいずれかの方法でダイナミックにURLLC用SRS送信へ切り替えても良い。
なお、前実施形態と本実施形態では、ダイナミックに送信電力制御を切り替える方法として、複数の例を説明したが、高信頼が要求されるデータ送信用のPUCCHの送信モード/PUCCHの送信電力制御(URLLC用PUCCH送信)と高信頼が要求されないデータ送信用のPUCCHの送信モード/PUCCHの送信電力制御が存在した場合、下りリンクのデータをPDSCHで受信時に、前実施形態と本実施形態で説明したいずれかの方法でダイナミックにURLLC用PUCCH送信へ切り替えても良い。
本実施形態では、高信頼性を実現するための送信電力制御として、DCIフォーマットの検出もしくはDCIに含まれるフィールドが所定の条件を満たす場合に、ダイナミックに送信電力制御を切り替える。その結果、1回のトランスポートブロックの伝送における信頼を高めることができ、低遅延と高信頼の達成が可能となる。
(第3の実施形態)
本実施形態は、高信頼性を実現するために、SPS Type2でダイナミックに送信電力制御を切り替える例である。本実施形態に係る通信システムは、図3、図4、図5及び図6で説明した基地局装置10及び端末装置20で構成される。以下、第1の実施形態との相違点/追加点を主に説明する。
本実施形態は、高信頼性を実現するために、SPS Type2でダイナミックに送信電力制御を切り替える例である。本実施形態に係る通信システムは、図3、図4、図5及び図6で説明した基地局装置10及び端末装置20で構成される。以下、第1の実施形態との相違点/追加点を主に説明する。
SPS Type2(type2 configured grant transmission 、UL-TWG-type2)では、基地局装置10がSPS/グラントフリーアクセスに関する送信パラメータを端末装置20に上位層の信号(例えば、RRC)で送信し、SPS/グラントフリーアクセスのデータ送信の許可開始(アクティベーション)と許可終了(ディアクティベーション/リリース)、送信パラメータの変更はDCI(L1 signaling)で送信する。DCIで送信許可もしくは許可終了を通知する場合、DCIフォーマットの一部のフィールドを使って、SPSの送信許可もしくは許可終了の通知が正しいか、端末装置20がチェックするValidationが行われる。例えば、SPSの送信許可ではDCIフォーマットのNDI、RV、HARQプロセス番号、MCSの最上位ビット、TPCコマンドをValidationに使い、SPSの許可終了では送信許可で使用するフィールドに加えて、時間領域と周波数領域のリソースアサインメントをValidationに使う。マルチアンテナのDCIフォーマット(DCIフォーマット0_1)を使用する場合は、使用するアンテナポートの情報やDMRSの情報、SRIを使っても良い。本発明では、Validationで使用するフィールドはこの例に限定されるものではないが、以下、DCIフォーマット0_0で上述の例の場合について説明する。
本実施形態の一例として、基地局装置10が送信するSPSの送信許可のDCIでNDI、RV、HARQプロセス番号、MCSの最上位ビット、TPCコマンドに0が設定され、SPSの許可終了のDCIでNDI、RV、HARQプロセス番号、MCSの全ビット、TPCコマンド、時間領域と周波数領域のリソースアサインメントに1が設定される。端末装置20は、CS-RNTIで検出したDCIが上述の設定であることを確認することでValidationを行う。
端末装置20は、基地局装置10より上位層の信号(例えばRRCシグナリング)で送信するデータの信頼性に合わせた送信パラメータセットを受信(RRCのセットアップ)する。この送信パラメータセットには、ダイナミックな送信電力制御の切り替えインディケータと、目標受信電力、フラクショナルTPCのパラメータ、使用するパスロスの指定、使用する閉ループ制御のインデックスl(lは1、2のいずれかでも良いし、0や3以上などの値が追加されても良い)の少なくとも1つが含まれても良い。なお、上りリンクの送信電力制御として、PPUSCH,f,c(i,j,qd,l)=min{PCMAX,f,c(i),PO_PUSCH,f,c(j)+10log10(2μMPUSCH_RB,f,c(i))+αf,c(j)・PLf,c(qd)+ΔTF,f,c(i)+Qf,c(r)+ff,c(i,l)}のようにデータの信頼性に合わせたQf,c(r)の項(送信するデータのQoSもしくはQCI(QoS Class Indicator)により設定される項)を追加し、送信パラメータセットにQf,c(r)を含めても良い。
本実施形態では、高信頼が要求されるデータ送信用にSPS Type2の送信許可をDCIで通知する場合、上述したSPS Type2の送信許可や許可終了をDCIのValidationと異なる値とする。例えば、高信頼が要求されるデータ送信用にSPS Type2の送信許可をDCIでは、NDI、RV、HARQプロセス番号、MCSの最上位ビット、TPCコマンドに01010101…の系列を左から各フィールドの所定ビット数だけ取り出し、最上位ビットから割り当てても良い。例えば、NDIが1ビットであれば“0”、RVが2ビットであれば“01”、HARQプロセス番号では“0101”とする。ただし、本発明はこの実施形態に拘束されるものではなく、取り出した系列を各フィールドに最下位ビットから割り当てても良い。
端末装置20は、上述の方法で高信頼が要求されるデータ送信用にSPS Type2の送信許可を受信すれば、前述の送信パラメータセットを使ったデータ送信を行い、高信頼性を達成しても良い。また、前述の送信パラメータセットには、高信頼が要求されるデータ送信用のMCSテーブル(URLLC用MCSテーブル)、高信頼が要求されるデータ送信用のCQIテーブル(URLLC用CQIテーブル)、高信頼が要求されるデータ送信用の誤り訂正符号化(URLLC用誤り訂正符号化)、高信頼が要求されるデータ送信用のPHレポーティング(URLLC用PHレポーティング)、高信頼が要求されるデータ送信用のSRSの送信モード/SRSの送信電力制御(URLLC用SRS送信)が含まれても良い。なお、上述の方法で高信頼が要求される下りリンクのデータ受信用に下りリンクのSPSの送信許可を受信すれば、前述の送信パラメータセットを使ったデータ受信と下りリンクのデータに対するACK/NACKを送信するPUCCHの送信モード/PUCCHの送信電力制御(URLLC用PUCCH送信)のPUCCH送信を行い、高信頼性を達成しても良い。
なお、PUCCHの送信電力制御はPPUCCH,f,c(i,qu,qd,l)=min{PCMAX,f,c(i),PO_PUCCH,f,c(qu)+PLf,c(qd)+ΔF_PUCCH(F)+ΔTF,f,c(qu)+gf,c(i,l)}で算出される。ここで、minは{}内で小さい値を選択するものとする。PCMAX,f,c(i)は、キャリアf、サービングセルcにおけるi番目のサブフレームの端末装置の許容される最大送信電力であり、PO_PUCCH,f,c(qu)は上位層(RRC)で設定されるキャリアf、サービングセルcにおけるスケジューリングjにおける1RBあたりの名目上の目標受信電力、quはダイナミックスケジューリング用に上位層(RRC)で複数設定される参照信号のリソースのセットにより決まり、PLf,c(qd)はサービングセルc、パスロス測定用の参照信号のリソースqdにおけるパスロス、ΔF_PUCCH(F)は上位層(RRC)で設定されるPUCCHフォーマットに依存する値であり、ΔTF,f,c(i)はキャリアf、サービングセルcにおけるi番目のサブフレームの変調多値数によるパラメータ、gf,c(i,l)はキャリアf、サービングセルcにおける閉ループ制御を行うために基地局装置から端末装置に通知されるパラメータであり、lは複数の閉ループ制御を可能とするための変数である。例えば、通常はl=1とし、上位層(RRC)によりl={1、2}と設定されると、l=1もしくはl=2のいずれかのTPCコマンドを送信すると、一方のみに反映することが可能となる。また、l=1とl=2の使い分けとして、下りリンクのSPSで使用するlの値を設定することで、他方を下りリンクのダイナミックスケジューリング用として使用しても良い。高信頼の下りリンクのデータ送信に対するACK/NACKを含むPUCCH送信では、目標受信電力、使用するパスロスの指定、ΔF_PUCCH(F)、使用する閉ループ制御のインデックスl(lは1、2のいずれかでも良いし、0や3以上などの値が追加されても良い)の少なくとも1つが高信頼用のパラメータに変更されても良い。なお、この高信頼性が要求されるPUCCHの送信電力制御に関して、キャリアアグリゲーションが適用される場合、もしくはDual Connectiityが適用される場合、第1の実施形態に記載と同様の動作をしても良い。
なお、第1の実施形態もしくは第2の実施形態の方法を高信頼が要求されるデータ送信のモード1とし、第3の実施形態の方法を高信頼が要求されるデータ送信のモード2とし、両方の送信モードのいずれかを使用するとしても良い。例えば、端末装置20が端末装置のサポートする機能(UE capability)でいずれかの送信モードをサポートする通知を行い、基地局装置10はその通知に基づき端末装置20毎に、いずれかの送信モードでDCIによる送信許可を送っても良い。
本実施形態では、高信頼性を実現するための送信電力制御として、SPS type2のDCIにおいて、Validationで使用するフィールドに上述のパターンであれば、ダイナミックに送信電力制御を切り替える。その結果、1回のトランスポートブロックの伝送における信頼を高めることができ、低遅延と高信頼の達成が可能となる。
(第4の実施形態)
本実施形態は、BWPにおける送信電力制御の例について説明する。本実施形態に係る通信システムは、図3、図4、図5及び図6で説明した基地局装置10及び端末装置20で構成される。以下、第1の実施形態との相違点/追加点を主に説明する。
(第4の実施形態)
本実施形態は、BWPにおける送信電力制御の例について説明する。本実施形態に係る通信システムは、図3、図4、図5及び図6で説明した基地局装置10及び端末装置20で構成される。以下、第1の実施形態との相違点/追加点を主に説明する。
NRは高周波に対応するため、1サービングセル(コンポーネントキャリア(CC))の帯域幅がLTE(最大20MHz)よりも広くなる。そのため、端末装置20の消費電力を抑えるために、大容量のデータ送信をする場合は1サービングセルの中で使用する帯域幅(RB数)を広くし(データ送信/受信に使用可能な帯域幅)、それ以外の場合は使用する帯域幅を狭くしても良い。端末装置20は、サービングセルに接続したときに使用するデフォルトのBWP、制御情報により指定されて使用するBWPの設定を基地局装置10から受信し、使用しても良い。なお、制御情報により指定されて使用するBWPはタイマーが設定され、タイマーが有効な間に送信/受信(PDSCH/PDCCH(自局宛のDCIを検出)/PUSCH/PUCCH(SRの場合はUL Grantを受信した場合))がなければ、デフォルトのBWPへ切り替えられても良い。1サービングセルに対して、4つのBWPが設定されても良く、1つ目は1サービングセルで使用可能な全RBが含まれ、2つ目は1サービングセルで使用可能なRB数の半分のRB数、3つ目は使用可能なRB数の1/4のRB数、4つ目は使用可能なRB数の1/20のRB数としても良い。全てのBWPにおいて、共通のRBが含まれても良いし、共通のRBが入らないBWPがあっても良い。また、下りリンクのBWPは、同期信号や報知チャネルが必ず設定され、全てのBWPにおいて、共通のRBが含まれても良い。1つのサービングセルの中で、アクティベーションできるBWPの数は1としても良い。
ここで、BWPがサービングセルの中で使用可能なRBの一部のみの場合、サービングセルの端のRBがアクティベーションされる場合とサービングセルの中央のRBがアクティベーションされる場合がある。本実施形態では、このようにアクティベーションされるBWPによって送信電力制御の切り替えの例について説明する。
端末装置20がPCMAX,f,c(i)を決定する際に使用するPCMAX_L,c(i)は、MPR、A-MPR、P-MPRから決まる。MPRは、1サービングセルの帯域幅、上りリンクのデータ送信に使用する帯域幅(RB数)、変調方式(変調多値数)によって決まる。A-MPRは、追加の隣接チャネル漏洩電力費(ACLR:Adjacent Channel Leak Ratio)やスペクトルエミッションの要求を満たすため、ネットワークからNS値(Network Signalling Value)が通知され、NS値に応じた算出式により求められる。例えば、NS_03であれば、サービングセルの帯域幅とデータ送信に使用するリソースブロック数により算出され、NS_05では、NS_03の条件に加えてE-UTRA Bandに応じて算出される。NS_07やNS_10では、データ送信に使用されるリソースブロック(送信されるリソースブロック)のインデックスの最小の値とRB数によりA-MPRが算出される。NS_15では、データ送信に使用されるリソースブロック(送信されるリソースブロック)のインデックスの最大の値とRB数によりA-MPRが算出される。P-MPRは法規制を守るために設定される値である。
NRでは、ミニスロット(ノンスロットベース、スロットに含まれるOFDMシンボルの一部のみを使用)単位のデータ送信やSelf-Containedによる1msecでUL Grantからデータ送信、ACK/NACKまでを実現することが検討されている。そのため、データ送信に使用するRB数や位置は、LTEよりも短い間隔で変わり、MPR、A-MPRの算出で使用可能な時間は限られる。そこで、本実施形態のMPRはデータ送信で使用するRB数ではなく、アクティベーションされているBWPのRB数を使用する。また、本実施形態のA-MPRはデータ送信で使用するRB数ではなく、アクティベーションされているBWPのRB数を使用し、データ送信で使用するRBの最小/最大のインデックスではなく、アクティベーションされているBWPのRBの最小/最大のインデックスを使用する。つまり、サービングセルの全RBの中における、アクティベーションされているBWPのRBのインデックスの最小値/最大値を使用することを意味する。
本実施形態のMPRは、アクティベーションされているBWPのRB数とサービングセルの帯域幅、変調方式で算出する。そのため、DCIで通知されるデータ送信に使用するRB数に依存することなく、MPRを算出することができる。また、このMPRの算出方法は、アクティベーションされたBWPがサービングセルの使用可能なRBの一部のみの場合に適用しても良い。また、このMPRの算出方法は、上位層(例えば、RRC)で設定(セットアップ)された場合のみ適用しても良い。また、このMPRの算出方法は、ウェーブフォームによって適用の有無が変わり、OFDMの時のみ適用されても良い。
本実施形態のA-MPRは、アクティベーションされているBWPのRB数とサービングセルの帯域幅、サービングセルで使用可能なRBのインデックスの中で、アクティベーションされたBWPの最小/最大のインデックスで算出する。そのため、DCIで通知されるデータ送信に使用するRBの最小/最大のインデックスに依存することなく、A-MPRを算出することができる。また、このA-MPRの算出方法は、アクティベーションされたBWPがサービングセルの使用可能なRBの一部のみの場合に適用しても良い。また、このA-MPRの算出方法は、上位層(例えば、RRC)で設定(セットアップ)された場合のみ適用しても良い。また、このA-MPRの算出方法は、ウェーブフォームによって適用の有無が変わり、OFDMの時のみ適用されても良い。また、本実施形態におけるA-MPRは、サービングセルで使用可能なRBのインデックスの中で、アクティベーションされたBWPの最小のインデックスをNs、最大のインデックスをNeとする場合、min{NRB-Ne,Ns}を使って算出しても良い。なお、NRBはサービングセルの中の全体のRB数である。
本実施形態では、アクティベーションされるBWPに応じて送信電力制御を切り替える。その結果、MPRやA-MPRの算出が簡単にできる。
(第5の実施形態)
本実施形態は、端末装置がeMBBのデータ送信時にURLLCのパケット到着した場合にeMBBのリソースを上りリンクPre-emptionを行い、URLLCのデータ送信をする例について説明する。本実施形態に係る通信システムは、図3、図4、図5及び図6で説明した基地局装置10及び端末装置20で構成される。以下、第1の実施形態との相違点/追加点を主に説明する。
(第5の実施形態)
本実施形態は、端末装置がeMBBのデータ送信時にURLLCのパケット到着した場合にeMBBのリソースを上りリンクPre-emptionを行い、URLLCのデータ送信をする例について説明する。本実施形態に係る通信システムは、図3、図4、図5及び図6で説明した基地局装置10及び端末装置20で構成される。以下、第1の実施形態との相違点/追加点を主に説明する。
本実施形態の一例では、端末装置20は、上りリンクPre-emptionの設定を上位層の制御情報で受信する。ここで、上りリンクPre-emptionの設定にはPre-emptionするRBの位置とRB数が含まれても良い。
基地局装置10は、端末装置20に対してURLLCでない上りリンクのデータ送信用に使用しているRBの中で、上りリンクPre-emptionに使用する相対的なRBの位置と数を通知する。例えば、URLLCでない上りリンクのデータ送信用に使用しているRBの開始位置と数はMstartとMRBとし、URLLCの上りリンクのデータ送信用にPre-emptionに使用する相対的なRBの位置と数をそれぞれNoffset、NBWである。
まず、MRB≧NBWの場合、URLLCのデータを配置するRBは、Nstart=Mstart+Noffsetで決めても良い。URLLCのデータを配置するRBの終了位置は、min{Mstart+MRB,Nstart+NRB}で決定もして良い。また、別の一例では、URLLCのデータを配置するRBの開始位置は、Nstart=Nend-NBWで決定しても良い。次に、MRB<NBWの場合、URLLCのデータを配置するRBは、MRBの全部のRBとしても良い。
また、ウェーブフォームによって端末装置20のURLLCでないデータとの多重を行わないとしても良い。例えば、OFDMの場合は、URLLCでないデータとURLLCのデータを多重する。一方、DFT-S-OFDMの場合は、URLLCでないデータとURLLCのデータを多重しない。
本実施形態では、端末装置はeMBBのデータ送信中にURLLCのパケットが発生した場合は、同時に送信できる。
なお、本明細書の実施形態は、複数の実施形態を組み合わせて適用しても良いし、各実施形態のみを適用しても良い。
本発明に関わる装置で動作するプログラムは、本発明に関わる上述した実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、処理時に一時的にRandom Access Memory(RAM)などの揮発性メモリに読み込まれ、あるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。
なお、上述した実施形態における装置の一部、をコンピュータで実現するようにしても良い。その場合、実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体等のいずれであっても良い。
さらに「コンピュータが読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、すなわち典型的には集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、ディジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。
以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
本発明の一態様は、基地局装置、端末装置および通信方法に用いて好適である。
Claims (4)
- 基地局装置と通信する端末装置であって、
前記端末装置は、制御情報を受信する受信部と前記制御情報に従ってデータ送信する送信部と、を有し、
前記受信部は少なくともRRCとDCIを受信し、
前記RRCに、PUSCHの送信に用いる目標受信電力、フラクショナルTPC、閉ループのTPCのインデックスの設定と前記DCIにより切り替える送信電力制御のパラメータとして少なくとも目標受信電力とフラクショナルTPC、閉ループのTPCのインデックスを指定する情報が含まれ、
送信電力値の切り替えを指定する前記DCIを検出したときに、データ送信に用いる送信電力を前記切り替える送信電力制御のパラメータとして通知されたパラメータで算出する送信電力値と異なることを特徴とする端末装置。 - 送信電力値の切り替えを指定する前記DCIは、RRCにより設定されたRNTI、アグリゲーションレベル、サーチスペース、データ送信に用いるOFDMシンボル数の少なくとも1つの条件が設定され、前記条件によって送信電力制御を切り替えること、を特徴とする請求項1に記載の端末装置。
- 送信電力値の切り替えを指定する前記DCIは、SPS Type2のアクティベーションのDCIのValidationフィールドの値が異なる場合に送信電力制御を切り替えること、を特徴とする請求項1に記載の端末装置。
- 送信電力値の切り替えを指定する前記DCIは、MCSテーブル、CQIテーブル、PHレポーティングの送信モードの少なくとも1つの切り替えを示すこと、を特徴とする請求項1に記載の端末装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/965,143 US20210045092A1 (en) | 2018-01-30 | 2019-01-08 | Base station apparatus and terminal apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-013398 | 2018-01-30 | ||
JP2018013398A JP2019134249A (ja) | 2018-01-30 | 2018-01-30 | 基地局装置および端末装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019150889A1 true WO2019150889A1 (ja) | 2019-08-08 |
Family
ID=67479441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/000234 WO2019150889A1 (ja) | 2018-01-30 | 2019-01-08 | 基地局装置および端末装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20210045092A1 (ja) |
JP (1) | JP2019134249A (ja) |
WO (1) | WO2019150889A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021163167A1 (en) * | 2020-02-10 | 2021-08-19 | Qualcomm Incorporated | Uplink aspects for narrowband internet of things |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2020011233A (es) * | 2018-05-08 | 2020-11-11 | Panasonic Ip Corp America | Terminal y metodo de transmision. |
PL3796707T3 (pl) * | 2018-05-18 | 2024-01-08 | Ntt Docomo, Inc. | Terminal, odpowiedni sposób i system |
WO2020062051A1 (zh) * | 2018-09-28 | 2020-04-02 | 株式会社Ntt都科摩 | 用于上行功率控制的方法及设备 |
US11258570B2 (en) * | 2018-12-13 | 2022-02-22 | Apple Inc. | Joint optimization of bandwidth part, search space and connected mode discontinuous reception operation in 5G New Radio |
CN111491375A (zh) * | 2019-01-28 | 2020-08-04 | 华为技术有限公司 | 通信方法及通信装置 |
WO2020167030A1 (en) * | 2019-02-14 | 2020-08-20 | Samsung Electronics Co., Ltd. | Method and apparatus for configuring reference signal in wireless communication system |
US11228976B2 (en) * | 2019-02-15 | 2022-01-18 | Mediatek Inc. | Power saving for new radio carrier aggregation |
CN112566195B (zh) * | 2019-09-25 | 2022-07-12 | 华为技术有限公司 | 一种信息传输方法、装置及系统 |
CN112584447A (zh) * | 2019-09-29 | 2021-03-30 | 索尼公司 | 无线通信系统中的电子设备和方法 |
EP4040885A4 (en) * | 2019-10-04 | 2023-05-03 | Ntt Docomo, Inc. | COMMUNICATION TERMINAL AND METHOD |
JP6989577B2 (ja) * | 2019-10-16 | 2022-01-05 | ソフトバンク株式会社 | 通信システム、情報処理装置、無線端末、情報処理装置の制御方法、無線端末の制御方法、および、プログラム |
KR102458106B1 (ko) * | 2021-09-07 | 2022-10-24 | 주식회사 블랙핀 | 무선 이동 통신 시스템에서 축소된 성능의 단말이 복수의 pucch 공통 설정 정보를 이용해서 랜덤 액세스를 수행하는 방법 및 장치 |
CN117768070A (zh) * | 2022-07-27 | 2024-03-26 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014181836A1 (ja) * | 2013-05-09 | 2014-11-13 | シャープ株式会社 | 端末装置、通信方法および集積回路 |
WO2016114078A1 (ja) * | 2015-01-13 | 2016-07-21 | シャープ株式会社 | 送信装置 |
-
2018
- 2018-01-30 JP JP2018013398A patent/JP2019134249A/ja active Pending
-
2019
- 2019-01-08 US US16/965,143 patent/US20210045092A1/en not_active Abandoned
- 2019-01-08 WO PCT/JP2019/000234 patent/WO2019150889A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014181836A1 (ja) * | 2013-05-09 | 2014-11-13 | シャープ株式会社 | 端末装置、通信方法および集積回路 |
WO2016114078A1 (ja) * | 2015-01-13 | 2016-07-21 | シャープ株式会社 | 送信装置 |
Non-Patent Citations (2)
Title |
---|
ERICSSON: "Remaining issues of closed loop power control in NR", 3GPP TSG RAN WG1 #91 R1- 1721031, 1 December 2017 (2017-12-01), XP051370392 * |
ZTE: "Sanechips, Offline proposals for NR power control in non- CA aspects", 3GPP TSG RAN WG1 ADHOC_NR_AH_1801 R1-1801137, 26 January 2018 (2018-01-26), pages 1 - 3, XP051385335 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021163167A1 (en) * | 2020-02-10 | 2021-08-19 | Qualcomm Incorporated | Uplink aspects for narrowband internet of things |
CN115053620A (zh) * | 2020-02-10 | 2022-09-13 | 高通股份有限公司 | 用于窄带物联网的上行链路方面 |
US12058674B2 (en) | 2020-02-10 | 2024-08-06 | Qualcomm Incorporated | Uplink aspects for narrowband internet of things |
Also Published As
Publication number | Publication date |
---|---|
JP2019134249A (ja) | 2019-08-08 |
US20210045092A1 (en) | 2021-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019194270A1 (ja) | 端末装置 | |
CN111937466B (zh) | 终端装置 | |
WO2019150889A1 (ja) | 基地局装置および端末装置 | |
US12052722B2 (en) | Terminal device | |
WO2020031983A1 (ja) | 端末装置および基地局装置 | |
WO2019208774A1 (ja) | 端末装置 | |
CN110999381B (zh) | 终端装置以及通信方法 | |
US11265912B2 (en) | Terminal apparatus | |
JP6723388B2 (ja) | 基地局装置、端末装置およびその通信方法 | |
WO2019138912A1 (ja) | 基地局装置および端末装置 | |
US11424874B2 (en) | Base station apparatus, terminal apparatus, and communication method for base station apparatus and terminal apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19747925 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19747925 Country of ref document: EP Kind code of ref document: A1 |