WO2018003293A1 - Active-energy-beam curable composition and film using same - Google Patents

Active-energy-beam curable composition and film using same Download PDF

Info

Publication number
WO2018003293A1
WO2018003293A1 PCT/JP2017/017495 JP2017017495W WO2018003293A1 WO 2018003293 A1 WO2018003293 A1 WO 2018003293A1 JP 2017017495 W JP2017017495 W JP 2017017495W WO 2018003293 A1 WO2018003293 A1 WO 2018003293A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
mass
curable composition
active energy
Prior art date
Application number
PCT/JP2017/017495
Other languages
French (fr)
Japanese (ja)
Inventor
茂年 西澤
谷岡 隆浩
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2017542206A priority Critical patent/JP6288538B1/en
Priority to CN201780039287.0A priority patent/CN109312012B/en
Priority to KR1020187035874A priority patent/KR102148790B1/en
Publication of WO2018003293A1 publication Critical patent/WO2018003293A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/025Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/025Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16

Definitions

  • the present invention relates to an active energy ray-curable composition capable of forming a hard coat layer having a high refractive index and high antistatic properties on a film surface by coating and curing the film surface, and a film using the same.
  • Antireflective (LR) films used on the surface of flat panel displays (FPD) such as liquid crystal displays (LCDs), organic EL displays (OLEDs), plasma displays (PDPs), etc. have a large refractive index difference on the film substrate
  • FPD flat panel displays
  • LCDs liquid crystal displays
  • OLEDs organic EL displays
  • PDPs plasma displays
  • LR refractive index difference
  • This is realized by a multilayer structure in which two layers are formed (base material / high refractive index layer / low refractive index layer).
  • base material high refractive index layer / low refractive index layer
  • Each of these layers is required to have high scratch resistance in order to prevent scratches in the production process of the antireflection film, and also to have high antistatic properties in order to prevent contamination and blocking of the film.
  • an antireflection film is an optical film, each layer is also required to have high transparency.
  • the problem to be solved by the present invention is to provide an active energy ray-curable composition capable of forming a hard coat layer having both a high refractive index and a high antistatic property, and a film using the same.
  • the active energy ray-curable composition contains a resin having a specific high refractive index polymerizable monomer, an alicyclic structure, and a quaternary ammonium salt. It was found that a hard coat layer having both a high refractive index and a high antistatic property can be formed by blending, and the present invention was completed.
  • the present invention has a high refractive index polymerizable monomer (A) having a refractive index of 1.55 or more, a polyfunctional polymerizable monomer (B), an alicyclic structure and a quaternary ammonium salt.
  • the present invention provides an active energy ray-curable composition containing a resin (C) and an organic solvent (D), and a film using the same.
  • the active energy ray-curable composition of the present invention can form a hard coat layer having a high refractive index and a high antistatic property on the film surface by coating and curing on the film surface. Therefore, the cured coating film of the active energy ray-curable composition of the present invention is very useful as a material for an antireflection film.
  • the film which has a hard-coat layer which consists of a cured coating film of the active energy ray curable composition of this invention is flat panel displays, such as a liquid crystal display (LCD), an organic electroluminescent display (OLED), and a plasma display (PDP) ( It can be suitably used as an optical film used for FPD). Furthermore, since it has excellent antistatic properties when used in these applications, adhesion of dust and the like can be suppressed. Furthermore, when this film is used for a liquid crystal display or the like, malfunction of the display due to generated static electricity can be prevented.
  • LCD liquid crystal display
  • OLED organic electroluminescent display
  • PDP plasma display
  • the active energy ray-curable composition of the present invention comprises a high refractive index polymerizable monomer (A) having a refractive index of 1.55 or more, a polyfunctional polymerizable monomer (B), an alicyclic structure, and It contains a resin (C) having a quaternary ammonium salt and an organic solvent (D).
  • the polymerizable monomer (A) is not particularly limited as long as it has a high refractive index of 1.55 or more before curing.
  • an aromatic polymerizable monomer having 2 to 6 aromatic rings Preferred examples include fluorene polymerizable monomers.
  • polymerizable monomer (A) examples include compounds represented by the following general formula (1): phenylbenzyl such as o-phenylbenzyl (meth) acrylate and p-phenylbenzyl (meth) acrylate (Meth) acrylate compound having a group; (meth) acrylate compound having a phenylphenol group such as phenylphenol EO acrylate; propoxylated bisphenol A di (meth) acrylate, ethoxylated bisphenol A di (meth) acrylate, oxyethylene group Examples thereof include bisphenol compounds having 2 to 4 (meth) acryloyl groups such as bisphenol A di (meth) acrylate having an oxyethylene group and bisphenol A tri (meth) acrylate having an oxyethylene group.
  • phenylbenzyl such as o-phenylbenzyl (meth) acrylate and p-phenylbenzyl (meth) acrylate (Meth) acrylate compound having
  • These polymerizable monomers (A) can be used alone or in combination of two or more.
  • the compound represented by the following general formula (1), a (meth) acrylate compound having a phenylbenzyl group, and a (meth) acryloyl group in a range of 2 to 4 It is preferable to use one or more monomers selected from the group consisting of bisphenol compounds, a compound represented by the following general formula (1) alone, a compound represented by the following general formula (1), and a phenylbenzyl group More preferred is a combined use of a (meth) acrylate compound having a bisphenol compound alone having 2 to 4 (meth) acryloyl groups.
  • the mass ratio thereof may be in the range of 30/70 to 70/30. preferable.
  • R 1 and R 2 each represent a hydrogen group or a methyl group, and m and n each represent an integer of 0 to 5.
  • (meth) acrylate refers to one or both of acrylate and methacrylate
  • (meth) acryloyl refers to one or both of acryloyl and methacryloyl.
  • the polymerizable monomer (B) is a polyfunctional polymerizable monomer and has two or more polymerizable groups in one molecule.
  • the polymerizable group may be any vinyl group that is a carbon-carbon double bond, a (meth) acryloyl group, or the like, but a (meth) acryloyl group is preferred because of excellent curability.
  • Examples of the polymerizable monomer (B) having a (meth) acryloyl group include 1,4-butanediol di (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) acrylate, 1 , 6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 2-methyl-1,8-octanediol di (meth) acrylate, 2-butyl-2-ethyl-1,3-propanediol Di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, Tripropylene glycol di (meta Di (meth) acrylate of dihydric
  • polyfunctional polymerizable monomers (B) can be used alone or in combination of two or more.
  • these polyfunctional polymerizable monomers (B) since the scratch resistance of the cured coating film of the active energy ray-curable composition of the present invention is improved, dipentaerythritol hexa (meth) acrylate, Dipentaerythritol penta (meth) acrylate, pentaerythritol tetra (meth) acrylate, and pentaerythritol tri (meth) acrylate are preferred.
  • the active energy ray-curable composition of the present invention contains urethane (meth) acrylate as a polymerizable component other than the polymerizable monomer (A) and the polymerizable monomer (B). Also good.
  • the urethane (meth) acrylate (E) is obtained by reacting a polyisocyanate (e1) with a (meth) acrylate (e2) having a hydroxyl group.
  • polyisocyanate (e1) examples include aliphatic polyisocyanates and aromatic polyisocyanates. Since the coloring of the cured coating film of the active energy ray-curable composition of the present invention can be reduced, the aliphatic polyisocyanate is preferable.
  • the aliphatic polyisocyanate is a compound in which a portion excluding an isocyanate group is composed of an aliphatic hydrocarbon.
  • Specific examples of the aliphatic polyisocyanate include aliphatic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, and lysine triisocyanate; norbornane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), 1,3-bis (isocyanato).
  • cycloaliphatic polyisocyanates such as methyl) cyclohexane, 2-methyl-1,3-diisocyanatocyclohexane and 2-methyl-1,5-diisocyanatocyclohexane.
  • a trimerized product obtained by trimming the aliphatic polyisocyanate or the alicyclic polyisocyanate can also be used as the aliphatic polyisocyanate.
  • these aliphatic polyisocyanates can be used alone or in combination of two or more.
  • aliphatic polyisocyanates in order to improve the scratch resistance of the coating film, among the aliphatic polyisocyanates, hexamethylene diisocyanate, which is a linear aliphatic hydrocarbon diisocyanate, norbornane diisocyanate, which is an alicyclic diisocyanate, isophorone Diisocyanate is preferred.
  • the (meth) acrylate (e2) is a compound having a hydroxyl group and a (meth) acryloyl group.
  • Specific examples of the (meth) acrylate (e2) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, Dihydric alcohols such as 1,5-pentanediol mono (meth) acrylate, 1,6-hexanediol mono (meth) acrylate, neopentyl glycol mono (meth) acrylate, hydroxypivalate neopentyl glycol mono (meth) acrylate, etc.
  • Mono- or di (meth) acrylate of trivalent alcohols such as relate, glycerin di (meth) acrylate, bis (2- (meth) acryloyloxyethyl) hydroxyethyl isocyanurate, or a part of these alcoholic hydroxyl groups
  • the urethane (meth) acrylate (e2) since it can improve the scratch resistance of the cured coating film of the active energy ray-curable composition of the present invention, it has four or more (meth) acryloyl groups in one molecule. Those are preferred. Since the urethane (meth) acrylate (E) has four or more (meth) acryloyl groups in one molecule, the (meth) acrylate (e2) has two or more (meth) acryloyl groups. What has is preferable.
  • Examples of such (meth) acrylate (e2) include trimethylolpropane di (meth) acrylate, ethylene oxide modified trimethylolpropane di (meth) acrylate, propylene oxide modified trimethylolpropane di (meth) acrylate, glycerin di (Meth) acrylate, bis (2- (meth) acryloyloxyethyl) hydroxyethyl isocyanurate, pentaerythritol tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, etc. .
  • (meth) acrylates (e2) can be used singly or in combination of two or more with respect to one of the aliphatic polyisocyanates.
  • pentaerythritol tri (meth) acrylate and dipentaerythritol penta (meth) acrylate are preferable because they can improve scratch resistance.
  • the reaction between the polyisocyanate (e1) and the (meth) acrylate (e2) can be carried out by a conventional urethanization reaction. Moreover, in order to accelerate
  • urethanization catalyst examples include amine compounds such as pyridine, pyrrole, triethylamine, diethylamine and dibutylamine; phosphorus compounds such as triphenylphosphine and triethylphosphine; dibutyltin dilaurate, octyltin trilaurate, octyltin diacetate, dibutyltin Examples thereof include organic tin compounds such as diacetate and tin octylate, and organic zinc compounds such as zinc octylate.
  • the active energy ray-curable composition of the present invention includes a polymerizable component other than the polymerizable monomer (A), the polymerizable monomer (B), and the urethane (meth) acrylate (E).
  • epoxy (meth) acrylate, polyester (meth) acrylate, polyether (meth) acrylate, or the like can be used.
  • the epoxy (meth) acrylate include those obtained by reacting (meth) acrylic acid with bisphenol-type epoxy resin, novolac-type epoxy resin, polyglycidyl methacrylate and the like and esterifying it.
  • polyester (meth) acrylate (meth) acrylic acid is made to react and esterify with the polyester which the both terminal obtained by polycondensation of polyhydric carboxylic acid and polyhydric alcohol is a hydroxyl group, for example. Or a product obtained by reacting (meth) acrylic acid with ester obtained by adding an alkylene oxide to a polyvalent carboxylic acid.
  • polyether (meth) acrylate what was obtained by reacting (meth) acrylic acid with polyether polyol and esterifying is mentioned, for example.
  • the resin (B) has an alicyclic structure and a quaternary ammonium salt.
  • Examples of the method for producing the resin (C) include the polymerizable monomer (c1) having an alicyclic structure and the polymerizable monomer (c2) having a quaternary ammonium salt as essential components. Examples thereof include a method of copolymerizing the monomer (c1) and the polymerizable monomer (c2) with a copolymerizable polymerizable monomer (c3).
  • the polymerizable monomer (c1) is a polymerizable monomer having an alicyclic structure.
  • the alicyclic structure include a monocyclic alicyclic structure such as a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclononane ring, and a cyclodecane ring; a bicycloundecane ring, a decahydro ring Naphthalene (decalin) ring, tricyclo [5.2.1.0 2,6 ] decane ring, bicyclo [4.3.0] nonane ring, tricyclo [5.3.1.1] dodecane ring, tricyclo [5.
  • polymerizable monomer (c1) examples include cyclohexyl (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, Examples include dicyclopentenyloxyethyl (meth) acrylate and dicyclopentanyl (meth) acrylate.
  • polymerizable monomers (c1) can be used alone or in combination of two or more.
  • Examples of the polymerizable monomer (c2) include those in which the counter anion such as 2-[(meth) acryloyloxy] ethyltrimethylammonium chloride and 3-[(meth) acryloyloxy] propyltrimethylammonium chloride is chloride; Counter anions such as 2-[(meth) acryloyloxy] ethyltrimethylammonium bromide, 3-[(meth) acryloyloxy] propyltrimethylammonium bromide and the like, wherein 2-[(meth) acryloyloxy] ethyltrimethylammonium methylphenyl Sulfonate, 2-[(meth) acryloyloxy] ethyltrimethylammonium methylsulfonate, 3-[(meth) acryloyloxy] propyltrimethylammonium methyl Phenylsulfonate, 3-[(meth) acryloyloxy] propyltrimethylam
  • Examples of the polymerizable monomer (c3) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, n- Pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, Alkyl (meth) acrylates such as dodecyl (meth) acrylate; methoxypolyethylene glycol mono (meth) acrylate, octoxypolyethyleneglycol / polypropyleneglycol mono (meth) acrylate, lauroxypoly
  • the antistatic property of the cured coating film of the active energy ray-curable composition of the present invention can be further improved, mono (meth) acrylate of polyalkylene glycol is preferable, and methoxypolyethylene Glycol mono (meth) acrylate is more preferred.
  • the (meth) acrylate which has a fluorinated alkyl group is also preferable from the effect that the antistatic property of the cured coating film of the active energy ray-curable composition of the present invention can be further improved.
  • the number average molecular weight of the polyalkylene glycol is preferably in the range of 200 to 8,000, more preferably in the range of 300 to 6,000, still more preferably in the range of 400 to 4,000, and 400 to 2 Those in the range of 1,000 are particularly preferred.
  • the ratio of the polymerizable monomer (c1) in the total amount of the raw material of the resin (C) can further improve the antistatic property of the cured coating film of the active energy ray-curable composition of the present invention.
  • the range of mass% is preferable, the range of 10 to 50 mass% is more preferable, and the range of 12 to 45 mass% is more preferable.
  • the ratio of the polymerizable monomer (c2) in the total amount of the raw material of the resin (C) can further improve the antistatic property of the cured coating film of the active energy ray-curable composition of the present invention.
  • the range of ⁇ 90% by mass is preferred, the range of 40 ⁇ 80% by mass is more preferred, and the range of 45 ⁇ 70% by mass is more preferred.
  • the antistatic property of the cured coating film of the active energy ray-curable composition of the present invention can be further improved.
  • the proportion of the poly (alkylene glycol) mono (meth) acrylate in the total amount of the raw material of the resin (C) is preferably in the range of 5 to 60% by mass, more preferably in the range of 10 to 50% by mass, and 20 to 40% by mass. The range of is more preferable.
  • the antistatic property of the cured coating film of the active energy ray-curable composition of the present invention can be further improved.
  • the ratio of the (meth) acrylate having a fluorinated alkyl group in the total amount of the raw material of the resin (C) is preferably in the range of 0.1 to 20% by mass, more preferably in the range of 0.5 to 10% by mass. The range of 1 to 5% by mass is more preferable.
  • the weight average molecular weight of the resin (C) is preferably in the range of 1,000 to 100,000 because the antistatic property of the cured coating film of the active energy ray-curable composition of the present invention can be further improved.
  • the range of ⁇ 50,000 is more preferred, and the range of 3,000 ⁇ 30,000 is more preferred.
  • the weight average molecular weight in this invention is the value in polystyrene conversion measured by the gel permeation chromatography (GPC) method.
  • the polymerizable monomer (A) and the polymerizable monomer The range of 0.1 to 30 parts by mass is preferable, the range of 0.5 to 20 parts by mass is more preferable, and the range of 1 to 10 parts by mass is more preferable with respect to the total of 100 parts by mass of (B). A range of 5 to 7 parts by mass is particularly preferred.
  • the organic solvent (D) can be used without particular limitation as long as it can dissolve other components in the active energy ray-curable composition of the present invention. Further, since the antistatic property of the cured coating film of the active energy ray-curable composition of the present invention can be further improved, the dispersion term ( ⁇ D) in the Hansen solubility parameter is in the range of 15.5 to 16.1 MPa 0.5 . It is preferable that the polarization term ( ⁇ P) is in the range of 6.3 to 10.4 MPa 0.5 and the hydrogen bond term ( ⁇ H) is in the range of 5.1 to 11.6 MPa 0.5 .
  • Hansen solubility parameters For the definition and calculation of Hansen solubility parameters, please refer to Charles M. Hansen, “Hansen Solubility Parameters: A Users Handbook (CRC Press, 2007)”. Further, by using the computer software “Hansen Solubility Parameters in Practice (HSPiP)”, the Hansen solubility parameter can be estimated from the chemical structure of an organic solvent whose parameter value is not described in the literature. In the present invention, the value is used for an organic solvent whose parameter value is described in the literature, and the parameter value estimated using HSPiP version 4.1.06 is used for the organic solvent whose parameter value is not described in the literature. Use.
  • the organic solvent (D) can be used as a single organic solvent or as a mixed solvent using two or more organic solvents in combination. When using 2 or more types together, the value which carried out the weighted average of three parameters of the Hansen solubility parameter of each organic solvent can be used in the said range.
  • the compounding amount of the organic solvent (D) in the active energy ray-curable composition of the present invention is preferably an amount that provides a viscosity suitable for the coating method described later.
  • the active energy ray-curable composition of the present invention can be formed into a cured coating film by irradiating active energy rays after coating on a substrate.
  • the active energy rays refer to ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • a photopolymerization initiator (F) to the active energy ray curable composition of the present invention.
  • a photosensitizer (G) can be further added to improve curability.
  • Examples of the photopolymerization initiator (F) include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, oligo ⁇ 2-hydroxy-2-methyl-1- [4- ( 1-methylvinyl) phenyl] propanone ⁇ , benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy -2-propyl) ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) -Acetophenone compounds such as butanone; benzoin, benzoin methyl ether, benzo Benzoin compounds such as isopropyl ether; acylphosphine oxide compounds such as 2,4,6-
  • Examples of the photosensitizer (G) include tertiary amine compounds such as diethanolamine, N-methyldiethanolamine and tributylamine, urea compounds such as o-tolylthiourea, sodium diethyldithiophosphate, and s-benzylisothiuro. And sulfur compounds such as nitro-p-toluenesulfonate.
  • tertiary amine compounds such as diethanolamine, N-methyldiethanolamine and tributylamine
  • urea compounds such as o-tolylthiourea, sodium diethyldithiophosphate, and s-benzylisothiuro.
  • sulfur compounds such as nitro-p-toluenesulfonate.
  • the photopolymerization initiator (F) and the photosensitizer (G) are used in the amounts of the polymerizable monomer (A) and the polymerizable monomer in the active energy ray-curable composition of the present invention.
  • the total amount of polymerizable components including (B) is preferably 0.05 to 20 parts by mass, and more preferably 0.5 to 10% by mass, based on 100 parts by mass in total.
  • a polymerization inhibitor As a compound other than the above components (A) to (G), a polymerization inhibitor, a surface conditioner, and an antistatic agent are used depending on applications and required characteristics. Addition of antifoaming agent, viscosity modifier, light stabilizer, weathering stabilizer, heat stabilizer, UV absorber, antioxidant, leveling agent, organic pigment, inorganic pigment, pigment dispersant, silica beads, organic beads, etc. Agents: Inorganic fillers such as silicon oxide, aluminum oxide, titanium oxide, zirconia, and antimony pentoxide can be blended. These other blends can be used alone or in combination of two or more.
  • the film of the present invention is obtained by applying the active energy ray-curable composition of the present invention to at least one surface of a film substrate, and then irradiating the active energy ray to form a cured coating film. is there.
  • the material of the film base used in the film of the present invention is preferably a highly transparent resin, for example, a polyester resin such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate; polypropylene, polyethylene, polymethylpentene-1 Polyolefin resins such as cellulose acetate (diacetyl cellulose, triacetyl cellulose, etc.), cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate, cellulose acetate phthalate, cellulose nitrate and other cellulose resins; poly Acrylic resins such as methyl methacrylate; polyvinyl chloride resins such as polyvinyl chloride and polyvinylidene chloride; polyvinyl alcohol; ethylene-acetic acid Nyl copolymer; polystyrene; polyamide; polycarbonate; polysulfone; polyethersulfone; polyetheretherketone; polyimide resin
  • the film substrate may be in the form of a film or a sheet, and the thickness is preferably in the range of 20 to 500 ⁇ m.
  • the thickness is preferably in the range of 20 to 200 ⁇ m, more preferably in the range of 30 to 150 ⁇ m, and still more preferably in the range of 40 to 130 ⁇ m.
  • Examples of the method for applying the active energy ray-curable composition of the present invention to the film substrate include die coating, microgravure coating, gravure coating, roll coating, comma coating, air knife coating, kiss coating, spray coating, and dip coating. , Spinner coating, brush coating, solid coating by silk screen, wire bar coating, flow coating and the like.
  • the active energy ray-curable composition of the present invention contains an organic solvent
  • the organic solvent In order to volatilize and to segregate the resin (B) on the coating film surface, it is preferable to heat or dry at room temperature.
  • the conditions for heat drying are not particularly limited as long as the organic solvent volatilizes. Usually, the heat drying is performed at a temperature in the range of 50 to 100 ° C. and for a time in the range of 0.5 to 10 minutes. preferable.
  • the active energy rays for curing the active energy ray-curable composition of the present invention are ionizing radiations such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • ultraviolet rays examples of devices that emit ultraviolet rays include low-pressure mercury lamps, high-pressure mercury lamps, ultrahigh-pressure mercury lamps, metal halide lamps, electrodeless lamps (fusion lamps), chemical lamps, Examples thereof include a black light lamp, a mercury-xenon lamp, a short arc lamp, a helium / cadmium laser, an argon laser, sunlight, and an LED lamp.
  • the film thickness of the cured coating film when forming the cured coating film of the active energy ray-curable composition of the present invention on the film substrate is sufficient for the hardness of the cured coating film and curing of the coating film. Since the curling of the film due to shrinkage can be suppressed, the range of 1 to 30 ⁇ m is preferable, the range of 3 to 15 ⁇ m is more preferable, and the range of 4 to 10 ⁇ m is more preferable.
  • a solution prepared by dissolving 0.1 parts by mass of a polymerization initiator (azobisisobutyronitrile) with 2.4 parts by mass of PGME was added dropwise over 30 minutes, and then reacted at 65 ° C. for 3 hours.
  • methanol was added for dilution to obtain a 45% by mass solution of a resin (C-3) having an alicyclic structure and a quaternary ammonium salt.
  • the weight average molecular weight of the obtained resin (C-3) was 10,000.
  • a solution prepared by dissolving 0.1 parts by mass of a polymerization initiator (azobisisobutyronitrile) with 2.4 parts by mass of PGME was added dropwise over 30 minutes, and then reacted at 65 ° C. for 3 hours.
  • methanol was added for dilution to obtain a 45% by mass solution of a resin (C-4) having an alicyclic structure and a quaternary ammonium salt.
  • the weight average molecular weight of the obtained resin (C-4) was 10,000.
  • the obtained resin (C-5) had a weight average molecular weight of 10,000.
  • the obtained resin (C′-1) had a weight average molecular weight of 10,000.
  • the obtained resin (C′-2) had a weight average molecular weight of 10,000.
  • the weight average molecular weights of the resins (C-1) to (C-5), (C′-1) and (C′-2) obtained above were determined by gel permeation chromatography (GPC) method. The measurement was performed under the following conditions.
  • Measuring device High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation) Column: The following columns manufactured by Tosoh Corporation were connected in series. "TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000” (7.8 mm ID x 30 cm) x 1 "TSKgel G3000” (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID ⁇ 30 cm) ⁇ 1 detector: RI (differential refractometer) Column temperature: 40 ° C Eluent: Tetrahydrofuran (THF) Flow rate: 1.0 mL / min Injection amount: 100 ⁇ L (tetrahydrofuran solution with a sample concentration of 0.4 mass%) Standard sample: A calibration curve was prepared using the following standard polystyrene.
  • Example 1 High refractive index polymerizable monomer (9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene, refractive index 1.616) (hereinafter abbreviated as “monomer (A-1)”) .) 17 parts by mass, high refractive index polymerizable monomer (equivalent mixture of o-phenylbenzyl acrylate and p-phenylbenzyl acrylate, refractive index 1.591, phenyl) (hereinafter “monomer (A-2 ) ”)) 17 parts by mass, polyfunctional acrylate mixture (mixture of 64% by mass of dipentaerythritol hexaacrylate, 17% by mass of dipentaerythritol pentaacrylate, 19% by mass of dipentaerythritol tetraacrylate) (hereinafter referred to as” single (Abbreviated as “mer (B-1)”) 66 parts by mass,
  • Irgacure 184 1-hydroxycyclohexyl phenyl ketone 5 parts by mass, methyl ethyl ketone (hereinafter abbreviated as “MEK”) 40 parts by mass and PGME 60 Mass parts were mixed uniformly to obtain an active energy ray-curable composition (1) having a nonvolatile content of 50% by mass.
  • MEK methyl ethyl ketone
  • Examples 2 to 7 Active energy ray-curable compositions (2) to (7) were obtained in the same manner as in Example 1 except that the compositions shown in Tables 1 to 3 were changed.
  • the active energy ray-curable composition was applied to a 60 ⁇ m-thick triacetylcellulose (TAC) film (manufactured by Fuji Film Co., Ltd.) with a bar coater so as to have a film thickness of 5 ⁇ m, and then at 60 ° C. for 1.5 minutes. After drying, irradiation was performed at an irradiation light amount of 3 kJ / m 2 using an ultraviolet irradiation device (manufactured by Eye Graphics Co., Ltd., high-pressure mercury lamp) in an air atmosphere, and a TAC film having a cured coating film was obtained as an evaluation sample. .
  • TAC triacetylcellulose
  • the cured coating films of the active energy ray-curable compositions of the present invention of Examples 1 to 7 have a high refractive index and a surface resistance value of 10 on the order of 9 to the 10th power. It was confirmed that the antistatic property was also high.
  • Comparative Examples 1 and 2 are examples using a resin having no alicyclic structure and having a quaternary ammonium salt. In both cases, the refractive index was high, but the surface resistance value exceeded 10 13, confirming that the antistatic property was poor.

Abstract

The present invention provides: an active-energy-beam-curable composition that makes it possible to form a hard coat layer that has both a high refractive index and high antistatic properties; and a film that uses the active-energy-beam-curable composition. The present invention uses an active-energy-beam-curable composition that contains: a high-refractive-index polymerizable monomer (A) that has a refractive index of at least 1.55; a polyfunctional polymerizable monomer (B); a resin (C) that has an alicyclic structure and includes a quaternary ammonium salt; and an organic solvent (D). The raw material of the resin (C) is a polymer that uses 5-40 mass% of a polymerizable monomer that has an alicyclic structure. The organic solvent (D) has a dispersion (δD) Hansen solubility parameter of 15.5-16.1 MPa0.5, a polarity (δP) Hansen solubility parameter of 6.3-10.4 MPa0.5, and a hydrogen bonding (δH) Hansen solubility parameter of 5.1-11.6 MPa0.5.

Description

活性エネルギー線硬化性組成物及びそれを用いたフィルムActive energy ray-curable composition and film using the same
 本発明は、フィルムの表面に塗工、硬化させることにより、フィルム表面に高い屈折率と高い帯電防止性を有するハードコート層を形成できる活性エネルギー線硬化性組成物及びそれを用いたフィルムに関する。 The present invention relates to an active energy ray-curable composition capable of forming a hard coat layer having a high refractive index and high antistatic properties on a film surface by coating and curing the film surface, and a film using the same.
 液晶ディスプレイ(LCD)、有機ELディスプレイ(OLED)、プラズマディスプレイ(PDP)等のフラットパネルディスプレイ(FPD)表面に用いられている反射防止(LR)フィルムは、フィルム基材上に屈折率差の大きい2つの層を形成した多層構成(基材/高屈率層/低屈率層)により実現している。これらの各層は、反射防止フィルムの製造過程での傷付き防止のため、高い耐擦傷性が要求されるとともに、フィルムの汚染防止やブロッキング防止のため、高い帯電防止性も要求される。また、反射防止フィルムは光学フィルムであるため、各層には高い透明性も要求される。 Antireflective (LR) films used on the surface of flat panel displays (FPD) such as liquid crystal displays (LCDs), organic EL displays (OLEDs), plasma displays (PDPs), etc. have a large refractive index difference on the film substrate This is realized by a multilayer structure in which two layers are formed (base material / high refractive index layer / low refractive index layer). Each of these layers is required to have high scratch resistance in order to prevent scratches in the production process of the antireflection film, and also to have high antistatic properties in order to prevent contamination and blocking of the film. Moreover, since an antireflection film is an optical film, each layer is also required to have high transparency.
 上記の要求される特性のうち、帯電防止性を付与する手法として、4級アンモニウム塩を有する樹脂を配合した材料を用いることが提案されている(例えば、特許文献1~3を参照。)。しかしながら、これらの材料は高屈折率のものではなかった。 Among the above required properties, it has been proposed to use a material containing a resin having a quaternary ammonium salt as a method for imparting antistatic properties (see, for example, Patent Documents 1 to 3). However, these materials were not of high refractive index.
 そこで、高い屈折率と高い帯電防止性を有するハードコート層を形成できる活性エネルギー線硬化性組成物が求められていた。 Therefore, there has been a demand for an active energy ray-curable composition that can form a hard coat layer having a high refractive index and high antistatic properties.
特開2012-102166号公報JP 2012-102166 A 特開2008-013636号公報JP 2008-013636 A 特開2008-255184号公報JP 2008-255184 A
 本発明が解決しようとする課題は、高い屈折率と高い帯電防止性とを両立したハードコート層を形成できる活性エネルギー線硬化性組成物及びそれを用いたフィルムを提供することである。 The problem to be solved by the present invention is to provide an active energy ray-curable composition capable of forming a hard coat layer having both a high refractive index and a high antistatic property, and a film using the same.
 本発明者等は、上記の課題を解決するため鋭意研究した結果、活性エネルギー線硬化性組成物に、特定の高屈折率重合性単量体、脂環構造及び4級アンモニウム塩を有する樹脂等を配合することにより、高い屈折率と高い帯電防止性とを両立したハードコート層を形成できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found that the active energy ray-curable composition contains a resin having a specific high refractive index polymerizable monomer, an alicyclic structure, and a quaternary ammonium salt. It was found that a hard coat layer having both a high refractive index and a high antistatic property can be formed by blending, and the present invention was completed.
 すなわち、本発明は、屈折率が1.55以上である高屈折率重合性単量体(A)と、多官能重合性単量体(B)と、脂環構造及び4級アンモニウム塩を有する樹脂(C)と、有機溶剤(D)とを含有することを特徴とする活性エネルギー線硬化性組成物及びそれを用いたフィルムを提供するものである。 That is, the present invention has a high refractive index polymerizable monomer (A) having a refractive index of 1.55 or more, a polyfunctional polymerizable monomer (B), an alicyclic structure and a quaternary ammonium salt. The present invention provides an active energy ray-curable composition containing a resin (C) and an organic solvent (D), and a film using the same.
 本発明の活性エネルギー線硬化性組成物は、フィルム表面に塗工、硬化することで、フィルム表面に高い屈折率と高い帯電防止性を有するハードコート層を形成できる。したがって、本発明の活性エネルギー線硬化性組成物の硬化塗膜は、反射防止フィルムの材料として非常に有用である。 The active energy ray-curable composition of the present invention can form a hard coat layer having a high refractive index and a high antistatic property on the film surface by coating and curing on the film surface. Therefore, the cured coating film of the active energy ray-curable composition of the present invention is very useful as a material for an antireflection film.
 また、本発明の活性エネルギー線硬化性組成物の硬化塗膜からなるハードコート層を有するフィルムは、液晶ディスプレイ(LCD)、有機ELディスプレイ(OLED)、プラズマディスプレイ(PDP)等のフラットパネルディスプレイ(FPD)に用いる光学フィルムとして好適に用いることができる。さらに、これらの用途に用いる際にも優れた帯電防止性があることから、埃等の付着を抑制できる。さらに、このフィルムを液晶ディスプレイ等に用いた場合、発生した静電気によるディスプレイの誤動作も防止できる。 Moreover, the film which has a hard-coat layer which consists of a cured coating film of the active energy ray curable composition of this invention is flat panel displays, such as a liquid crystal display (LCD), an organic electroluminescent display (OLED), and a plasma display (PDP) ( It can be suitably used as an optical film used for FPD). Furthermore, since it has excellent antistatic properties when used in these applications, adhesion of dust and the like can be suppressed. Furthermore, when this film is used for a liquid crystal display or the like, malfunction of the display due to generated static electricity can be prevented.
 本発明の活性エネルギー線硬化性組成物は、屈折率が1.55以上である高屈折率重合性単量体(A)と、多官能重合性単量体(B)と、脂環構造及び4級アンモニウム塩を有する樹脂(C)と、有機溶剤(D)とを含有するものである。 The active energy ray-curable composition of the present invention comprises a high refractive index polymerizable monomer (A) having a refractive index of 1.55 or more, a polyfunctional polymerizable monomer (B), an alicyclic structure, and It contains a resin (C) having a quaternary ammonium salt and an organic solvent (D).
 前記重合性単量体(A)は、硬化前の屈折率が1.55以上の高屈折率のものであればよく、例えば、芳香環を2~6個有する芳香族系重合性単量体、フルオレン系重合性単量体等が好ましく挙げられる。また、前記重合性単量体(A)の具体例としては、下記一般式(1)で表される化合物;o-フェニルベンジル(メタ)アクリレート、p-フェニルベンジル(メタ)アクリレート等のフェニルベンジル基を有する(メタ)アクリレート化合物;フェニルフェノールEOアクリレート等のフェニルフェノール基を有する(メタ)アクリレート化合物;プロポキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、オキシエチレン基を有するビスフェノールAジ(メタ)アクリレート、オキシエチレン基を有するビスフェノールAトリ(メタ)アクリレート等の(メタ)アクリロイル基を2~4個の範囲で有するビスフェノール化合物などが挙げられる。これらの重合性単量体(A)は、1種で用いることも2種以上併用することもできる。これらの中でも、屈折率制御の点から、下記一般式(1)で表される化合物、フェニルベンジル基を有する(メタ)アクリレート化合物、及び、(メタ)アクリロイル基を2~4個の範囲で有するビスフェノール化合物からなる群より選ばれる1種以上の単量体を用いることが好ましく、下記一般式(1)で表される化合物単独、下記一般式(1)で表される化合物、及びフェニルベンジル基を有する(メタ)アクリレート化合物の併用、(メタ)アクリロイル基を2~4個の範囲で有するビスフェノール化合物単独がより好ましい。また、下記一般式(1)で表される化合物とフェニルベンジル基を有する(メタ)アクリレート化合物とを併用する場合には、その質量比が、30/70~70/30の範囲であることが好ましい。 The polymerizable monomer (A) is not particularly limited as long as it has a high refractive index of 1.55 or more before curing. For example, an aromatic polymerizable monomer having 2 to 6 aromatic rings Preferred examples include fluorene polymerizable monomers. Specific examples of the polymerizable monomer (A) include compounds represented by the following general formula (1): phenylbenzyl such as o-phenylbenzyl (meth) acrylate and p-phenylbenzyl (meth) acrylate (Meth) acrylate compound having a group; (meth) acrylate compound having a phenylphenol group such as phenylphenol EO acrylate; propoxylated bisphenol A di (meth) acrylate, ethoxylated bisphenol A di (meth) acrylate, oxyethylene group Examples thereof include bisphenol compounds having 2 to 4 (meth) acryloyl groups such as bisphenol A di (meth) acrylate having an oxyethylene group and bisphenol A tri (meth) acrylate having an oxyethylene group. These polymerizable monomers (A) can be used alone or in combination of two or more. Among these, from the viewpoint of refractive index control, the compound represented by the following general formula (1), a (meth) acrylate compound having a phenylbenzyl group, and a (meth) acryloyl group in a range of 2 to 4 It is preferable to use one or more monomers selected from the group consisting of bisphenol compounds, a compound represented by the following general formula (1) alone, a compound represented by the following general formula (1), and a phenylbenzyl group More preferred is a combined use of a (meth) acrylate compound having a bisphenol compound alone having 2 to 4 (meth) acryloyl groups. Further, when the compound represented by the following general formula (1) and the (meth) acrylate compound having a phenylbenzyl group are used in combination, the mass ratio thereof may be in the range of 30/70 to 70/30. preferable.
Figure JPOXMLDOC01-appb-C000001
(式(1)中、R、Rはそれぞれ水素基又はメチル基を示し、m、nはそれぞれ0~5の整数を示す。)
Figure JPOXMLDOC01-appb-C000001
(In the formula (1), R 1 and R 2 each represent a hydrogen group or a methyl group, and m and n each represent an integer of 0 to 5.)
 なお、本発明において、「(メタ)アクリレート」とは、アクリレートとメタクリレートの一方又は両方をいい、「(メタ)アクリロイル」とは、アクリロイルとメタクリロイルの一方又は両方をいう。 In the present invention, “(meth) acrylate” refers to one or both of acrylate and methacrylate, and “(meth) acryloyl” refers to one or both of acryloyl and methacryloyl.
 前記重合性単量体(B)は、多官能重合性単量体であり、1分子中に重合性基を2つ以上有するものである。前記重合性基は、炭素-炭素二重結合であるビニル基、(メタ)アクリロイル基等のものであればよいが、硬化性に優れることから、(メタ)アクリロイル基が好ましい。 The polymerizable monomer (B) is a polyfunctional polymerizable monomer and has two or more polymerizable groups in one molecule. The polymerizable group may be any vinyl group that is a carbon-carbon double bond, a (meth) acryloyl group, or the like, but a (meth) acryloyl group is preferred because of excellent curability.
 (メタ)アクリロイル基を有する前記重合性単量体(B)としては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、2-メチル-1,8-オクタンジオールジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート等の2価アルコールのジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートのジ(メタ)アクリレート、ネオペンチルグリコール1モルに4モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート、ビスフェノールA1モルに2モルのエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、トリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。これらの多官能重合性単量体(B)は、1種で用いることも2種以上併用することもできる。また、これらの多官能重合性単量体(B)の中でも、本発明の活性エネルギー線硬化性組成物の硬化塗膜の耐擦傷性が向上することから、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートが好ましい。 Examples of the polymerizable monomer (B) having a (meth) acryloyl group include 1,4-butanediol di (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) acrylate, 1 , 6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 2-methyl-1,8-octanediol di (meth) acrylate, 2-butyl-2-ethyl-1,3-propanediol Di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, Tripropylene glycol di (meta Di (meth) acrylate of dihydric alcohol such as acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, di (meth) acrylate of tris (2-hydroxyethyl) isocyanurate, 1 mol of neopentyl glycol Di (meth) acrylate of a diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol, Di (meth) acrylate of a diol obtained by adding 2 mol of ethylene oxide or propylene oxide to 1 mol of bisphenol A, Trimethylolpropane tri (meth) acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate Rate, ditrimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, tris (2- (meth) acryloyloxyethyl) isocyanurate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, Examples include dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate. These polyfunctional polymerizable monomers (B) can be used alone or in combination of two or more. Among these polyfunctional polymerizable monomers (B), since the scratch resistance of the cured coating film of the active energy ray-curable composition of the present invention is improved, dipentaerythritol hexa (meth) acrylate, Dipentaerythritol penta (meth) acrylate, pentaerythritol tetra (meth) acrylate, and pentaerythritol tri (meth) acrylate are preferred.
 また、本発明の活性エネルギー線硬化性組成物には、前記重合性単量体(A)及び前記重合性単量体(B)以外の重合性成分として、ウレタン(メタ)アクリレートを配合してもよい。前記ウレタン(メタ)アクリレート(E)は、ポリイソシアネート(e1)と水酸基を有する(メタ)アクリレート(e2)とを反応させて得られたものである。 Moreover, the active energy ray-curable composition of the present invention contains urethane (meth) acrylate as a polymerizable component other than the polymerizable monomer (A) and the polymerizable monomer (B). Also good. The urethane (meth) acrylate (E) is obtained by reacting a polyisocyanate (e1) with a (meth) acrylate (e2) having a hydroxyl group.
 前記ポリイソシアネート(e1)としては、脂肪族ポリイソシアネートと芳香族ポリイソシアネートとが挙げられるが、本発明の活性エネルギー線硬化性組成物の硬化塗膜の着色を低減できることから、脂肪族ポリイソシアネートが好ましい。 Examples of the polyisocyanate (e1) include aliphatic polyisocyanates and aromatic polyisocyanates. Since the coloring of the cured coating film of the active energy ray-curable composition of the present invention can be reduced, the aliphatic polyisocyanate is preferable.
 前記脂肪族ポリイソシアネートは、イソシアネート基を除く部位が脂肪族炭化水素から構成される化合物である。この脂肪族ポリイソシアネートの具体例としては、ヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等の脂肪族ポリイソシアネート;ノルボルナンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、1,3-ビス(イソシアナトメチル)シクロヘキサン、2-メチル-1,3-ジイソシアナトシクロヘキサン、2-メチル-1,5-ジイソシアナトシクロヘキサン等の脂環式ポリイソシアネートなどが挙げられる。また、前記脂肪族ポリイソシアネート又は脂環式ポリイソシアネートを3量化した3量化物も前記脂肪族ポリイソシアネートとして用いることができる。また、これらの脂肪族ポリイソシアネートは、1種で用いることも2種以上併用することもできる。 The aliphatic polyisocyanate is a compound in which a portion excluding an isocyanate group is composed of an aliphatic hydrocarbon. Specific examples of the aliphatic polyisocyanate include aliphatic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, and lysine triisocyanate; norbornane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), 1,3-bis (isocyanato). And cycloaliphatic polyisocyanates such as methyl) cyclohexane, 2-methyl-1,3-diisocyanatocyclohexane and 2-methyl-1,5-diisocyanatocyclohexane. A trimerized product obtained by trimming the aliphatic polyisocyanate or the alicyclic polyisocyanate can also be used as the aliphatic polyisocyanate. Moreover, these aliphatic polyisocyanates can be used alone or in combination of two or more.
 前記脂肪族ポリイソシアネートの中でも塗膜の耐擦傷性を向上させるには、脂肪族ポリイソシアネートの中でも、直鎖脂肪族炭化水素のジイソシアネートであるヘキサメチレンジイソシアネート、脂環式ジイソシアネートであるノルボルナンジイソシアネート、イソホロンジイソシアネートが好ましい。 Among the aliphatic polyisocyanates, in order to improve the scratch resistance of the coating film, among the aliphatic polyisocyanates, hexamethylene diisocyanate, which is a linear aliphatic hydrocarbon diisocyanate, norbornane diisocyanate, which is an alicyclic diisocyanate, isophorone Diisocyanate is preferred.
 前記(メタ)アクリレート(e2)は、水酸基と(メタ)アクリロイル基とを有する化合物である。この(メタ)アクリレート(e2)の具体例としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、1,5-ペンタンジオールモノ(メタ)アクリレート、1,6-ヘキサンジオールモノ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールモノ(メタ)アクリレート等の2価アルコールのモノ(メタ)アクリレート;トリメチロールプロパンジ(メタ)アクリレート、エチレンオキサイド(EO)変性トリメチロールプロパン(メタ)アクリレート、プロピレンオキサイド(PO)変性トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ビス(2-(メタ)アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレート等の3価のアルコールのモノ又はジ(メタ)アクリレート、あるいは、これらのアルコール性水酸基の一部をε-カプロラクトンで変性した水酸基を有するモノ及びジ(メタ)アクリレート;ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の1官能の水酸基と3官能以上の(メタ)アクリロイル基を有する化合物、あるいは、該化合物をさらにε-カプロラクトンで変性した水酸基を有する多官能(メタ)アクリレート;ジプロピレングリコールモノ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート等のオキシアルキレン鎖を有する(メタ)アクリレート;ポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート、ポリオキシブチレン-ポリオキシプロピレンモノ(メタ)アクリレート等のブロック構造のオキシアルキレン鎖を有する(メタ)アクリレート;ポリ(エチレングリコール-テトラメチレングリコール)モノ(メタ)アクリレート、ポリ(プロピレングリコール-テトラメチレングリコール)モノ(メタ)アクリレート等のランダム構造のオキシアルキレン鎖を有する(メタ)アクリレートなどが挙げられる。これらの(メタ)アクリレート(e2)は、1種で用いることも2種以上併用することもできる。 The (meth) acrylate (e2) is a compound having a hydroxyl group and a (meth) acryloyl group. Specific examples of the (meth) acrylate (e2) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, Dihydric alcohols such as 1,5-pentanediol mono (meth) acrylate, 1,6-hexanediol mono (meth) acrylate, neopentyl glycol mono (meth) acrylate, hydroxypivalate neopentyl glycol mono (meth) acrylate, etc. Mono (meth) acrylate; trimethylolpropane di (meth) acrylate, ethylene oxide (EO) modified trimethylolpropane (meth) acrylate, propylene oxide (PO) modified trimethylolpropane di (meth) acrylate Mono- or di (meth) acrylate of trivalent alcohols such as relate, glycerin di (meth) acrylate, bis (2- (meth) acryloyloxyethyl) hydroxyethyl isocyanurate, or a part of these alcoholic hydroxyl groups Mono- and di (meth) acrylates having hydroxyl groups modified with ε-caprolactone; monofunctional hydroxyl groups such as pentaerythritol tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and 3 A compound having a functional (meth) acryloyl group or a polyfunctional (meth) acrylate having a hydroxyl group in which the compound is further modified with ε-caprolactone; dipropylene glycol mono (meth) acrylate, diethyleneglycol (Meth) acrylates having an oxyalkylene chain, such as polyethylene glycol-polypropylene glycol mono (meth) acrylate, polyoxybutylene-polyoxy (Meth) acrylate having an oxyalkylene chain having a block structure such as propylene mono (meth) acrylate; poly (ethylene glycol-tetramethylene glycol) mono (meth) acrylate, poly (propylene glycol-tetramethylene glycol) mono (meth) acrylate And (meth) acrylate having a random structure oxyalkylene chain. These (meth) acrylates (e2) can be used alone or in combination of two or more.
 前記ウレタン(メタ)アクリレート(e2)の中でも、本発明の活性エネルギー線硬化性組成物の硬化塗膜の耐擦傷性を向上できるため、1分子中に4つ以上の(メタ)アクリロイル基を有するものが好ましい。前記ウレタン(メタ)アクリレート(E)を1分子中に4つ以上の(メタ)アクリロイル基を有するものとするため、前記(メタ)アクリレート(e2)としては、(メタ)アクリロイル基は2つ以上有するものが好ましい。このような(メタ)アクリレート(e2)としては、例えば、トリメチロールプロパンジ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパンジ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ビス(2-(メタ)アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。これらの(メタ)アクリレート(e2)は、前記脂肪族ポリイソシアネートの1種に対して、1種を用いることも2種以上併用することもできる。また、これらの(メタ)アクリレート(e2)の中でも、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートは、耐擦傷性を向上できるため好ましい。 Among the urethane (meth) acrylate (e2), since it can improve the scratch resistance of the cured coating film of the active energy ray-curable composition of the present invention, it has four or more (meth) acryloyl groups in one molecule. Those are preferred. Since the urethane (meth) acrylate (E) has four or more (meth) acryloyl groups in one molecule, the (meth) acrylate (e2) has two or more (meth) acryloyl groups. What has is preferable. Examples of such (meth) acrylate (e2) include trimethylolpropane di (meth) acrylate, ethylene oxide modified trimethylolpropane di (meth) acrylate, propylene oxide modified trimethylolpropane di (meth) acrylate, glycerin di (Meth) acrylate, bis (2- (meth) acryloyloxyethyl) hydroxyethyl isocyanurate, pentaerythritol tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, etc. . These (meth) acrylates (e2) can be used singly or in combination of two or more with respect to one of the aliphatic polyisocyanates. Among these (meth) acrylates (e2), pentaerythritol tri (meth) acrylate and dipentaerythritol penta (meth) acrylate are preferable because they can improve scratch resistance.
 前記ポリイソシアネート(e1)と前記(メタ)アクリレート(e2)との反応は、常法のウレタン化反応により行うことができる。また、ウレタン化反応の進行を促進するために、ウレタン化触媒の存在下でウレタン化反応を行うことが好ましい。前記ウレタン化触媒としては、例えば、ピリジン、ピロール、トリエチルアミン、ジエチルアミン、ジブチルアミン等のアミン化合物;トリフェニルホスフィン、トリエチルホスフィン等のリン化合物;ジブチル錫ジラウレート、オクチル錫トリラウレート、オクチル錫ジアセテート、ジブチル錫ジアセテート、オクチル酸錫等の有機錫化合物、オクチル酸亜鉛等の有機亜鉛化合物などが挙げられる。 The reaction between the polyisocyanate (e1) and the (meth) acrylate (e2) can be carried out by a conventional urethanization reaction. Moreover, in order to accelerate | stimulate progress of a urethanation reaction, it is preferable to perform a urethanation reaction in presence of a urethanization catalyst. Examples of the urethanization catalyst include amine compounds such as pyridine, pyrrole, triethylamine, diethylamine and dibutylamine; phosphorus compounds such as triphenylphosphine and triethylphosphine; dibutyltin dilaurate, octyltin trilaurate, octyltin diacetate, dibutyltin Examples thereof include organic tin compounds such as diacetate and tin octylate, and organic zinc compounds such as zinc octylate.
 また、本発明の活性エネルギー線硬化性組成物には、前記重合性単量体(A)、前記重合性単量体(B)及びウレタン(メタ)アクリレート(E)の以外の重合性成分として、必要に応じて、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート等を用いることができる。前記エポキシ(メタ)アクリレートとしては、例えば、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ポリグリシジルメタクリレート等に、(メタ)アクリル酸を反応しエステル化することにより得られるものが挙げられる。また、前記ポリエステル(メタ)アクリレートとしては、例えば、多価カルボン酸と多価アルコールを重縮合して得られた両末端が水酸基であるポリエステルに、(メタ)アクリル酸を反応しエステル化することにより得られたもの、あるいは、多価カルボン酸にアルキレンオキシドを付加したものに(メタ)アクリル酸を反応しエステル化することにより得られたものが挙げられる。さらに、前記ポリエーテル(メタ)アクリレートとしては、例えば、ポリエーテルポリオールに(メタ)アクリル酸を反応しエステル化することにより得られたものが挙げられる。 The active energy ray-curable composition of the present invention includes a polymerizable component other than the polymerizable monomer (A), the polymerizable monomer (B), and the urethane (meth) acrylate (E). If necessary, epoxy (meth) acrylate, polyester (meth) acrylate, polyether (meth) acrylate, or the like can be used. Examples of the epoxy (meth) acrylate include those obtained by reacting (meth) acrylic acid with bisphenol-type epoxy resin, novolac-type epoxy resin, polyglycidyl methacrylate and the like and esterifying it. Moreover, as said polyester (meth) acrylate, (meth) acrylic acid is made to react and esterify with the polyester which the both terminal obtained by polycondensation of polyhydric carboxylic acid and polyhydric alcohol is a hydroxyl group, for example. Or a product obtained by reacting (meth) acrylic acid with ester obtained by adding an alkylene oxide to a polyvalent carboxylic acid. Furthermore, as said polyether (meth) acrylate, what was obtained by reacting (meth) acrylic acid with polyether polyol and esterifying is mentioned, for example.
 前記樹脂(B)は、脂環構造及び4級アンモニウム塩を有するものである。 The resin (B) has an alicyclic structure and a quaternary ammonium salt.
 前記樹脂(C)の製造方法としては、例えば、脂環構造を有する重合性単量体(c1)及び4級アンモニウム塩を有する重合性単量体(c2)を必須成分として、前記重合性単量体(c1)及び前記重合性単量体(c2)と、共重合可能な重合性単量体(c3)とを共重合する方法が挙げられる。 Examples of the method for producing the resin (C) include the polymerizable monomer (c1) having an alicyclic structure and the polymerizable monomer (c2) having a quaternary ammonium salt as essential components. Examples thereof include a method of copolymerizing the monomer (c1) and the polymerizable monomer (c2) with a copolymerizable polymerizable monomer (c3).
 前記重合性単量体(c1)は、脂環構造を有する重合性単量体である。前記脂環構造としては、例えば、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロノナン環、シクロデカン環等の単環脂環構造;ビシクロウンデカン環、デカヒドロナフタレン(デカリン)環、トリシクロ[5.2.1.02,6]デカン環、ビシクロ[4.3.0]ノナン環、トリシクロ[5.3.1.1]ドデカン環、トリシクロ[5.3.1.1]ドデカン環、スピロ[3.4]オクタン環等の多環脂環構造などが挙げられる。また、前記重合性単量体(c1)の具体例としては、シクロヘキシル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等が挙げられる。これらの重合性単量体(c1)は、1種で用いることも2種以上併用することもできる。 The polymerizable monomer (c1) is a polymerizable monomer having an alicyclic structure. Examples of the alicyclic structure include a monocyclic alicyclic structure such as a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclononane ring, and a cyclodecane ring; a bicycloundecane ring, a decahydro ring Naphthalene (decalin) ring, tricyclo [5.2.1.0 2,6 ] decane ring, bicyclo [4.3.0] nonane ring, tricyclo [5.3.1.1] dodecane ring, tricyclo [5. 3.1.1] Polycyclic alicyclic structures such as dodecane ring and spiro [3.4] octane ring. Specific examples of the polymerizable monomer (c1) include cyclohexyl (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, Examples include dicyclopentenyloxyethyl (meth) acrylate and dicyclopentanyl (meth) acrylate. These polymerizable monomers (c1) can be used alone or in combination of two or more.
 前記重合性単量体(c2)としては、例えば、2-[(メタ)アクリロイルオキシ]エチルトリメチルアンモニウムクロライド、3-[(メタ)アクリロイルオキシ]プロピルトリメチルアンモニウムクロライド等のカウンターアニオンがクロライドのもの;2-[(メタ)アクリロイルオキシ]エチルトリメチルアンモニウムブロマイド、3-[(メタ)アクリロイルオキシ]プロピルトリメチルアンモニウムブロマイド等のカウンターアニオンがブロマイドのもの;2-[(メタ)アクリロイルオキシ]エチルトリメチルアンモニウムメチルフェニルスルホネート、2-[(メタ)アクリロイルオキシ]エチルトリメチルアンモニウムメチルスルホネート、3-[(メタ)アクリロイルオキシ]プロピルトリメチルアンモニウムメチルフェニルスルホネート、3-[(メタ)アクリロイルオキシ]プロピルトリメチルアンモニウムメチルスルホネート、2-[(メタ)アクリロイルオキシ]エチルトリメチルアンモニウムメチルスルフェート、3-[(メタ)アクリロイルオキシ]プロピルトリメチルアンモニウムメチルスルフェート等のカウンターアニオンが非ハロゲン系のものなどが挙げられる。これらの重合性単量体(c2)は、1種で用いることも2種以上併用することもできる。 Examples of the polymerizable monomer (c2) include those in which the counter anion such as 2-[(meth) acryloyloxy] ethyltrimethylammonium chloride and 3-[(meth) acryloyloxy] propyltrimethylammonium chloride is chloride; Counter anions such as 2-[(meth) acryloyloxy] ethyltrimethylammonium bromide, 3-[(meth) acryloyloxy] propyltrimethylammonium bromide and the like, wherein 2-[(meth) acryloyloxy] ethyltrimethylammonium methylphenyl Sulfonate, 2-[(meth) acryloyloxy] ethyltrimethylammonium methylsulfonate, 3-[(meth) acryloyloxy] propyltrimethylammonium methyl Phenylsulfonate, 3-[(meth) acryloyloxy] propyltrimethylammonium methylsulfonate, 2-[(meth) acryloyloxy] ethyltrimethylammonium methylsulfate, 3-[(meth) acryloyloxy] propyltrimethylammonium methylsulfate, etc. These counter anions are non-halogen type. These polymerizable monomers (c2) can be used alone or in combination of two or more.
 前記重合性単量体(c3)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-ヘプチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート等のアルキル(メタ)アクリレート;メトキシポリエチレングリコールモノ(メタ)アクリレート、オクトキシポリエチレングリコール・ポリプロピレングリコールモノ(メタ)アクリレート、ラウロキシポリエチレングリコールモノ(メタ)アクリレート、ステアロキシポリエチレングリコールモノ(メタ)アクリレート、フェノキシポリエチレングリコールモノ(メタ)アクリレート、フェノキシポリエチレングリコール・ポリプロピレングリコールモノ(メタ)アクリレート、ノニルフェノキシポリプロピレングリコールモノ(メタ)アクリレート、ノニルフェノキシポリ(エチレングリコール・プロピレングリコール)モノ(メタ)アクリレート等のポリアルキレングリコールのモノ(メタ)アクリレート;2-パーフルオロヘキシルエチル(メタ)アクリレート等のフッ素化アルキル基を有する(メタ)アクリレートなどが挙げられる。これらの重合性単量体(c3)は、1種で用いることも2種以上併用することもできる。 Examples of the polymerizable monomer (c3) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, n- Pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, Alkyl (meth) acrylates such as dodecyl (meth) acrylate; methoxypolyethylene glycol mono (meth) acrylate, octoxypolyethyleneglycol / polypropyleneglycol mono (meth) acrylate, lauroxypolyethyleneglycol (Meth) acrylate, stearoxy polyethylene glycol mono (meth) acrylate, phenoxy polyethylene glycol mono (meth) acrylate, phenoxy polyethylene glycol / polypropylene glycol mono (meth) acrylate, nonylphenoxy polypropylene glycol mono (meth) acrylate, nonylphenoxy poly ( Examples thereof include mono (meth) acrylates of polyalkylene glycols such as ethylene glycol / propylene glycol) mono (meth) acrylate; (meth) acrylates having a fluorinated alkyl group such as 2-perfluorohexylethyl (meth) acrylate. These polymerizable monomers (c3) can be used alone or in combination of two or more.
 前記重合性単量体(c3)の中でも、本発明の活性エネルギー線硬化性組成物の硬化塗膜の帯電防止性をより向上できることから、ポリアルキレングリコールのモノ(メタ)アクリレートが好ましく、メトキシポリエチレングリコールモノ(メタ)アクリレートがより好ましい。また、フッ素化アルキル基を有する(メタ)アクリレートも本発明の活性エネルギー線硬化性組成物の硬化塗膜の帯電防止性をより向上できる効果があることから好ましい。 Among the polymerizable monomers (c3), since the antistatic property of the cured coating film of the active energy ray-curable composition of the present invention can be further improved, mono (meth) acrylate of polyalkylene glycol is preferable, and methoxypolyethylene Glycol mono (meth) acrylate is more preferred. Moreover, the (meth) acrylate which has a fluorinated alkyl group is also preferable from the effect that the antistatic property of the cured coating film of the active energy ray-curable composition of the present invention can be further improved.
 前記ポリアルキレングリコールのモノ(メタ)アクリレートの中でも、本発明の活性エネルギー線硬化性組成物の硬化塗膜の帯電防止性をさらに向上できることから、前記ポリアルキレングリコールのモノ(メタ)アクリレートの原料となるポリアルキレングリコールの数平均分子量が200~8,000の範囲のものが好ましく、300~6,000の範囲のものがより好ましく、400~4,000の範囲のものがさらに好ましく、400~2,000の範囲のものが特に好ましい。 Among the poly (alkylene glycol) mono (meth) acrylates, since the antistatic property of the cured coating film of the active energy ray-curable composition of the present invention can be further improved, The number average molecular weight of the polyalkylene glycol is preferably in the range of 200 to 8,000, more preferably in the range of 300 to 6,000, still more preferably in the range of 400 to 4,000, and 400 to 2 Those in the range of 1,000 are particularly preferred.
 前記樹脂(C)の原料全量中の前記重合性単量体(c1)の比率は、本発明の活性エネルギー線硬化性組成物の硬化塗膜の帯電防止性をより向上できることから、5~55質量%の範囲が好ましく、10~50質量%の範囲がより好ましく、12~45質量%の範囲がさらに好ましい。 The ratio of the polymerizable monomer (c1) in the total amount of the raw material of the resin (C) can further improve the antistatic property of the cured coating film of the active energy ray-curable composition of the present invention. The range of mass% is preferable, the range of 10 to 50 mass% is more preferable, and the range of 12 to 45 mass% is more preferable.
 また、前記樹脂(C)の原料全量中の前記重合性単量体(c2)の比率は、本発明の活性エネルギー線硬化性組成物の硬化塗膜の帯電防止性をより向上できることから、30~90質量%の範囲が好ましく、40~80質量%の範囲がより好ましく、45~70質量%の範囲がより好ましい。 Further, the ratio of the polymerizable monomer (c2) in the total amount of the raw material of the resin (C) can further improve the antistatic property of the cured coating film of the active energy ray-curable composition of the present invention. The range of ˜90% by mass is preferred, the range of 40˜80% by mass is more preferred, and the range of 45˜70% by mass is more preferred.
 さらに、前記重合性単量体(c3)として前記ポリアルキレングリコールのモノ(メタ)アクリレートを用いる場合は、本発明の活性エネルギー線硬化性組成物の硬化塗膜の帯電防止性をより向上できることから、前記樹脂(C)の原料全量中のポリアルキレングリコールのモノ(メタ)アクリレートの比率は、5~60質量%の範囲が好ましく、10~50質量%の範囲がより好ましく、20~40質量%の範囲がさらに好ましい。 Furthermore, when the poly (alkylene glycol) mono (meth) acrylate is used as the polymerizable monomer (c3), the antistatic property of the cured coating film of the active energy ray-curable composition of the present invention can be further improved. The proportion of the poly (alkylene glycol) mono (meth) acrylate in the total amount of the raw material of the resin (C) is preferably in the range of 5 to 60% by mass, more preferably in the range of 10 to 50% by mass, and 20 to 40% by mass. The range of is more preferable.
 また、前記重合性単量体(c3)として前記フッ素化アルキル基を有する(メタ)アクリレートを用いる場合は、本発明の活性エネルギー線硬化性組成物の硬化塗膜の帯電防止性をより向上できることから、前記樹脂(C)の原料全量中のフッ素化アルキル基を有する(メタ)アクリレートの比率は、0.1~20質量%の範囲が好ましく、0.5~10質量%の範囲がより好ましく、1~5質量%の範囲がさらに好ましい。 When the (meth) acrylate having the fluorinated alkyl group is used as the polymerizable monomer (c3), the antistatic property of the cured coating film of the active energy ray-curable composition of the present invention can be further improved. From the above, the ratio of the (meth) acrylate having a fluorinated alkyl group in the total amount of the raw material of the resin (C) is preferably in the range of 0.1 to 20% by mass, more preferably in the range of 0.5 to 10% by mass. The range of 1 to 5% by mass is more preferable.
 前記樹脂(C)の重量平均分子量は、本発明の活性エネルギー線硬化性組成物の硬化塗膜の帯電防止性をより向上できることから、1,000~100,000の範囲が好ましく、2,000~50,000の範囲がより好ましく、3,000~30,000の範囲がさらに好ましい。なお、本発明における重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定したポリスチレン換算での値である。 The weight average molecular weight of the resin (C) is preferably in the range of 1,000 to 100,000 because the antistatic property of the cured coating film of the active energy ray-curable composition of the present invention can be further improved. The range of ˜50,000 is more preferred, and the range of 3,000˜30,000 is more preferred. In addition, the weight average molecular weight in this invention is the value in polystyrene conversion measured by the gel permeation chromatography (GPC) method.
 前記樹脂(C)の配合量は、本発明の活性エネルギー線硬化性組成物の硬化塗膜の帯電防止性をより向上できることから、前記重合性単量体(A)及び前記重合性単量体(B)の合計100質量部に対して、0.1~30質量部の範囲が好ましく、0.5~20質量部の範囲がより好ましく、1~10質量部の範囲がさらに好ましく、1.5~7質量部の範囲が特に好ましい。 Since the compounding amount of the resin (C) can further improve the antistatic property of the cured coating film of the active energy ray-curable composition of the present invention, the polymerizable monomer (A) and the polymerizable monomer The range of 0.1 to 30 parts by mass is preferable, the range of 0.5 to 20 parts by mass is more preferable, and the range of 1 to 10 parts by mass is more preferable with respect to the total of 100 parts by mass of (B). A range of 5 to 7 parts by mass is particularly preferred.
 前記有機溶剤(D)は、本発明の活性エネルギー線硬化性組成物中の他の成分を溶解できるものであれば特に制限なく用いることができる。また、本発明の活性エネルギー線硬化性組成物の硬化塗膜の帯電防止性をより向上できることから、ハンセン溶解度パラメータでの分散項(δD)が15.5~16.1MPa0.5の範囲であり、分極項(δP)が6.3~10.4MPa0.5の範囲であり、水素結合項(δH)が5.1~11.6MPa0.5の範囲であるものが好ましい。 The organic solvent (D) can be used without particular limitation as long as it can dissolve other components in the active energy ray-curable composition of the present invention. Further, since the antistatic property of the cured coating film of the active energy ray-curable composition of the present invention can be further improved, the dispersion term (δD) in the Hansen solubility parameter is in the range of 15.5 to 16.1 MPa 0.5 . It is preferable that the polarization term (δP) is in the range of 6.3 to 10.4 MPa 0.5 and the hydrogen bond term (δH) is in the range of 5.1 to 11.6 MPa 0.5 .
 なお、ハンセン溶解度パラメータの定義と計算は、Charles M.Hansen著「Hansen Solubility Parameters;A Users Handbook(CRC Press,2007)」に記載されている。また、コンピュータソフトウェア「Hansen Solubility Parameters in Practice(HSPiP)」を用いることにより、文献にパラメータ値の記載がない有機溶剤に関しても、その化学構造からハンセン溶解度パラメータを推算することができる。本発明では、文献にパラメータ値の記載がある有機溶剤については、その値を用い、文献にパラメータ値の記載がない有機溶剤に関しては、HSPiPバージョン4.1.06を用いて推算したパラメータ値を用いる。 For the definition and calculation of Hansen solubility parameters, please refer to Charles M. Hansen, “Hansen Solubility Parameters: A Users Handbook (CRC Press, 2007)”. Further, by using the computer software “Hansen Solubility Parameters in Practice (HSPiP)”, the Hansen solubility parameter can be estimated from the chemical structure of an organic solvent whose parameter value is not described in the literature. In the present invention, the value is used for an organic solvent whose parameter value is described in the literature, and the parameter value estimated using HSPiP version 4.1.06 is used for the organic solvent whose parameter value is not described in the literature. Use.
 前記有機溶剤(D)は、1種の有機溶剤で用いることも2種以上の有機溶剤を併用して混合溶剤として用いることもできる。2種以上併用する場合は、それぞれの有機溶剤のハンセン溶解度パラメータの3つのパラメータを加重平均した値が、上記の範囲内となる組み合わせで用いることができる。 The organic solvent (D) can be used as a single organic solvent or as a mixed solvent using two or more organic solvents in combination. When using 2 or more types together, the value which carried out the weighted average of three parameters of the Hansen solubility parameter of each organic solvent can be used in the said range.
 2種以上の有機溶剤を併用して、前記有機溶剤(D)として用いる場合、そのハンセン溶解度パラメータの範囲に調整する方法としては、例えば、エタノール(δD=15.8MPa0.5、δP=8.8MPa0.5、δH=19.4MPa0.5)等のアルコール溶剤と、メチルエチルケトン(δD=16.0MPa0.5、δP=9.0MPa0.5、δH=5.1MPa0.5)等のケトン溶剤との組み合わせが挙げられ、前記ケトン系溶剤と酢酸メチル(δD=15.5MPa0.5、δP=7.2MPa0.5、δH=7.6MPa0.5)等のエステル溶剤との組み合わせも挙げられる。また、このアルコール溶剤とケトン溶剤との組み合わせに加え、さらにダイアセトンアルコール(δD=15.8MPa0.5、δP=8.2MPa0.5、δH=10.8MPa0.5)、アセチルアセトン(δD=16.1MPa0.5、δP=10.0MPa0.5、δH=6.2MPa0.5)、ジメチルカルビトール(δD=15.7MPa0.5、δP=6.1MPa0.5、δH=6.5MPa0.5)、プロピレングリコールモノメチルエーテルアセテート(δD=15.6MPa0.5、δP=5.6MPa0.5、δH=9.8MPa0.5)等の沸点100~180℃の高沸点溶剤を前記有機溶剤(D)中に3~40質量%含有させることにより、塗工安定性が向上でき、硬化塗膜にヒビが入るのを防止し、塗膜外観を優れたものとすることができることから好ましい。 When two or more organic solvents are used in combination as the organic solvent (D), the method for adjusting the Hansen solubility parameter range is, for example, ethanol (δD = 15.8 MPa 0.5 , δP = 8 .8MPa 0.5, δH = 19.4MPa 0.5) and an alcohol solvent such as methyl ethyl ketone (δD = 16.0MPa 0.5, δP = 9.0MPa 0.5, δH = 5.1MPa 0.5) It includes a combination of a ketone solvent etc., the ketone-based solvent and methyl acetate (δD = 15.5MPa 0.5, δP = 7.2MPa 0.5, δH = 7.6MPa 0.5) ester solvents such as A combination with is also mentioned. In addition to combination with the alcohol solvent and a ketone solvent, further diacetone alcohol (δD = 15.8MPa 0.5, δP = 8.2MPa 0.5, δH = 10.8MPa 0.5), acetylacetone ([delta] D = 16.1MPa 0.5, δP = 10.0MPa 0.5 , δH = 6.2MPa 0.5), dimethyl carbitol (δD = 15.7MPa 0.5, δP = 6.1MPa 0.5, δH = 6.5 MPa 0.5), propylene glycol monomethyl ether acetate (δD = 15.6MPa 0.5, δP = 5.6MPa 0.5, δH = 9.8MPa 0.5) or the like having a boiling point of 100 ~ 180 ° C. of By containing 3 to 40% by mass of a high boiling point solvent in the organic solvent (D), the coating stability can be improved, and the cured coating film can be prevented from cracking, It preferred because it can be provided with excellent Makugaikan.
 本発明の活性エネルギー線硬化性組成物中の前記有機溶剤(D)の配合量は、後述する塗工方法に適した粘度になる量とすることが好ましい。 The compounding amount of the organic solvent (D) in the active energy ray-curable composition of the present invention is preferably an amount that provides a viscosity suitable for the coating method described later.
 また、本発明の活性エネルギー線硬化性組成物は、基材に塗工後、活性エネルギー線を照射することで硬化塗膜とすることができる。この活性エネルギー線とは、紫外線、電子線、α線、β線、γ線等の電離放射線をいう。活性エネルギー線として紫外線を照射して硬化塗膜とする場合には、本発明の活性エネルギー線硬化性組成物中に光重合開始剤(F)を添加し、硬化性を向上することが好ましい。また、必要であればさらに光増感剤(G)を添加して、硬化性を向上することもできる。一方、電子線、α線、β線、γ線等の電離放射線を用いる場合には、光重合開始剤(F)や光増感剤(G)を用いなくても速やかに硬化するので、特に光重合開始剤(F)や光増感剤(G)を添加する必要はない。 Moreover, the active energy ray-curable composition of the present invention can be formed into a cured coating film by irradiating active energy rays after coating on a substrate. The active energy rays refer to ionizing radiation such as ultraviolet rays, electron beams, α rays, β rays, and γ rays. When irradiating ultraviolet rays as active energy rays to form a cured coating film, it is preferable to improve the curability by adding a photopolymerization initiator (F) to the active energy ray curable composition of the present invention. Further, if necessary, a photosensitizer (G) can be further added to improve curability. On the other hand, when ionizing radiation such as electron beam, α-ray, β-ray, γ-ray, etc. is used, it cures quickly without using a photopolymerization initiator (F) or photosensitizer (G). It is not necessary to add a photopolymerization initiator (F) or a photosensitizer (G).
 前記光重合開始剤(F)としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、オリゴ{2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン}、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等のアセトフェノン系化合物;ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン系化合物;2,4,6-トリメチルベンゾインジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド等のアシルホスフィンオキシド系化合物;ベンジル(ジベンゾイル)、メチルフェニルグリオキシエステル、オキシフェニル酢酸2-(2-ヒドロキシエトキシ)エチルエステル、オキシフェニル酢酸2-(2-オキソ-2-フェニルアセトキシエトキシ)エチルエステル等のベンジル系化合物;ベンゾフェノン、o-ベンゾイル安息香酸メチル-4-フェニルベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-メチルベンゾフェノン等のベンゾフェノン系化合物;2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン等のチオキサントン系化合物;ミヒラ-ケトン、4,4’-ジエチルアミノベンゾフェノン等のアミノベンゾフェノン系化合物;10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、9,10-フェナンスレンキノン、カンファーキノン、1-[4-(4-ベンゾイルフェニルサルファニル)フェニル]-2-メチル-2-(4-メチルフェニルサルフォニル)プロパン-1-オン等が挙げられる。これらの光重合開始剤(F)は、1種で用いることも、2種以上併用することもできる。 Examples of the photopolymerization initiator (F) include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, oligo {2-hydroxy-2-methyl-1- [4- ( 1-methylvinyl) phenyl] propanone}, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy -2-propyl) ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) -Acetophenone compounds such as butanone; benzoin, benzoin methyl ether, benzo Benzoin compounds such as isopropyl ether; acylphosphine oxide compounds such as 2,4,6-trimethylbenzoin diphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide; benzyl (dibenzoyl), methyl Benzyl compounds such as phenylglyoxyester, oxyphenylacetic acid 2- (2-hydroxyethoxy) ethyl ester, oxyphenylacetic acid 2- (2-oxo-2-phenylacetoxyethoxy) ethyl ester; benzophenone, o-benzoylbenzoic acid Methyl-4-phenylbenzophenone, 4,4′-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide, acrylated benzophenone, 3,3 ′ Benzophenone compounds such as 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 3,3′-dimethyl-4-methoxybenzophenone, 2,4,6-trimethylbenzophenone, 4-methylbenzophenone; 2-isopropylthioxanthone Thioxanthone compounds such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone; aminobenzophenone compounds such as Michler-ketone and 4,4′-diethylaminobenzophenone; 10-butyl-2 -Chloroacridone, 2-ethylanthraquinone, 9,10-phenanthrenequinone, camphorquinone, 1- [4- (4-benzoylphenylsulfanyl) phenyl] -2-methyl-2- (4-methylphenyl) Sulphonyl ) Propan-1-one and the like. These photopolymerization initiators (F) can be used alone or in combination of two or more.
 また、前記光増感剤(G)としては、例えば、ジエタノールアミン、N-メチルジエタノールアミン、トリブチルアミン等の3級アミン化合物、o-トリルチオ尿素等の尿素化合物、ナトリウムジエチルジチオホスフェート、s-ベンジルイソチウロニウム-p-トルエンスルホネート等の硫黄化合物などが挙げられる。 Examples of the photosensitizer (G) include tertiary amine compounds such as diethanolamine, N-methyldiethanolamine and tributylamine, urea compounds such as o-tolylthiourea, sodium diethyldithiophosphate, and s-benzylisothiuro. And sulfur compounds such as nitro-p-toluenesulfonate.
 上記の光重合開始剤(F)及び光増感剤(G)の使用量は、本発明の活性エネルギー線硬化性組成物中の前記重合性単量体(A)及び前記重合性単量体(B)を含む重合性成分合計100質量部に対し、各々0.05~20質量部が好ましく、0.5~10質量%がより好ましい。 The photopolymerization initiator (F) and the photosensitizer (G) are used in the amounts of the polymerizable monomer (A) and the polymerizable monomer in the active energy ray-curable composition of the present invention. The total amount of polymerizable components including (B) is preferably 0.05 to 20 parts by mass, and more preferably 0.5 to 10% by mass, based on 100 parts by mass in total.
 本発明の活性エネルギー線硬化性組成物には、上記の成分(A)~(G)以外のその他の配合物として、用途、要求特性に応じて、重合禁止剤、表面調整剤、帯電防止剤、消泡剤、粘度調整剤、耐光安定剤、耐候安定剤、耐熱安定剤、紫外線吸収剤、酸化防止剤、レベリング剤、有機顔料、無機顔料、顔料分散剤、シリカビーズ、有機ビーズ等の添加剤;酸化ケイ素、酸化アルミニウム、酸化チタン、ジルコニア、五酸化アンチモン等の無機充填剤などを配合することができる。これらその他の配合物は、1種で用いることも2種以上併用することもできる。 In the active energy ray-curable composition of the present invention, as a compound other than the above components (A) to (G), a polymerization inhibitor, a surface conditioner, and an antistatic agent are used depending on applications and required characteristics. Addition of antifoaming agent, viscosity modifier, light stabilizer, weathering stabilizer, heat stabilizer, UV absorber, antioxidant, leveling agent, organic pigment, inorganic pigment, pigment dispersant, silica beads, organic beads, etc. Agents: Inorganic fillers such as silicon oxide, aluminum oxide, titanium oxide, zirconia, and antimony pentoxide can be blended. These other blends can be used alone or in combination of two or more.
 本発明のフィルムは、フィルム基材の少なくとも1面に、本発明の活性エネルギー線硬化性組成物を塗工し、その後活性エネルギー線を照射して硬化塗膜とすることで得られたものである。 The film of the present invention is obtained by applying the active energy ray-curable composition of the present invention to at least one surface of a film substrate, and then irradiating the active energy ray to form a cured coating film. is there.
 本発明のフィルムで用いる前記フィルム基材の材質としては、透明性の高い樹脂が好ましく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリプロピレン、ポリエチレン、ポリメチルペンテン-1等のポリオレフィン系樹脂;セルロースアセテート(ジアセチルセルロース、トリアセチルセルロース等)、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートプロピオネートブチレート、セルロースアセテートフタレート、硝酸セルロース等のセルロース系樹脂;ポリメチルメタクリレート等のアクリル系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン等の塩化ビニル系樹脂;ポリビニルアルコール;エチレン-酢酸ビニル共重合体;ポリスチレン;ポリアミド;ポリカーボネート;ポリスルホン;ポリエーテルスルホン;ポリエーテルエーテルケトン;ポリイミド、ポリエーテルイミド等のポリイミド系樹脂;ノルボルネン系樹脂(例えば、日本ゼオン株式会社製「ゼオノア」)、変性ノルボルネン系樹脂(例えば、JSR株式会社製「アートン」)、環状オレフィン共重合体(例えば、三井化学株式会社製「アペル」)などが挙げられる。さらに、これらの樹脂からなる基材を2種以上貼り合わせたものを用いても構わない。 The material of the film base used in the film of the present invention is preferably a highly transparent resin, for example, a polyester resin such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate; polypropylene, polyethylene, polymethylpentene-1 Polyolefin resins such as cellulose acetate (diacetyl cellulose, triacetyl cellulose, etc.), cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate, cellulose acetate phthalate, cellulose nitrate and other cellulose resins; poly Acrylic resins such as methyl methacrylate; polyvinyl chloride resins such as polyvinyl chloride and polyvinylidene chloride; polyvinyl alcohol; ethylene-acetic acid Nyl copolymer; polystyrene; polyamide; polycarbonate; polysulfone; polyethersulfone; polyetheretherketone; polyimide resin such as polyimide and polyetherimide; norbornene resin (for example, “ZEONOR” manufactured by ZEON Corporation), modified Examples include norbornene resins (for example, “Arton” manufactured by JSR Corporation), cyclic olefin copolymers (for example, “Appel” manufactured by Mitsui Chemicals, Inc.), and the like. Furthermore, you may use what bonded together 2 or more types of base materials which consist of these resin.
 また、前記フィルム基材は、フィルム状でもシート状でもよく、その厚さは、20~500μmの範囲が好ましい。また、フィルム状の基材フィルムを用いる場合には、その厚さは、20~200μmの範囲が好ましく、30~150μmの範囲がより好ましく、40~130μmの範囲がさらに好ましい。フィルム基材の厚さを当該範囲とすることで、フィルムの片面に、本発明の活性エネルギー線硬化性組成物によりハードコート層を設けた場合にもカールを抑制しやすくなる。 The film substrate may be in the form of a film or a sheet, and the thickness is preferably in the range of 20 to 500 μm. When a film-like base film is used, the thickness is preferably in the range of 20 to 200 μm, more preferably in the range of 30 to 150 μm, and still more preferably in the range of 40 to 130 μm. By setting the thickness of the film base in the above range, curling can be easily suppressed even when a hard coat layer is provided on one side of the film with the active energy ray-curable composition of the present invention.
 前記フィルム基材に本発明の活性エネルギー線硬化性組成物を塗工する方法としては、例えば、ダイコート、マイクログラビアコート、グラビアコート、ロールコート、コンマコート、エアナイフコート、キスコート、スプレーコート、ディップコート、スピンナーコート、刷毛塗り、シルクスクリーンによるベタコート、ワイヤーバーコート、フローコート等が挙げられる。 Examples of the method for applying the active energy ray-curable composition of the present invention to the film substrate include die coating, microgravure coating, gravure coating, roll coating, comma coating, air knife coating, kiss coating, spray coating, and dip coating. , Spinner coating, brush coating, solid coating by silk screen, wire bar coating, flow coating and the like.
 また、本発明の活性エネルギー線硬化性組成物中に有機溶媒を含む場合は、活性エネルギー線硬化性組成物を基材フィルムへの塗工した後、活性エネルギー線を照射する前に、有機溶媒を揮発させ、また、前記樹脂(B)を塗膜表面に偏析させるために、加熱又は室温乾燥することが好ましい。加熱乾燥の条件としては、有機溶剤が揮発する条件であれば、特に限定しないが、通常は、温度50~100℃の範囲で、時間は0.5~10分の範囲で加熱乾燥することが好ましい。 In addition, when the active energy ray-curable composition of the present invention contains an organic solvent, after applying the active energy ray-curable composition to the substrate film, before irradiating the active energy ray, the organic solvent In order to volatilize and to segregate the resin (B) on the coating film surface, it is preferable to heat or dry at room temperature. The conditions for heat drying are not particularly limited as long as the organic solvent volatilizes. Usually, the heat drying is performed at a temperature in the range of 50 to 100 ° C. and for a time in the range of 0.5 to 10 minutes. preferable.
 本発明の活性エネルギー線硬化性組成物を硬化させる活性エネルギー線としては、上記の通り、紫外線、電子線、α線、β線、γ線等の電離放射線である。ここで、活性エネルギー線として紫外線を用いる場合、その紫外線を照射する装置としては、例えば、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、無電極ランプ(フュージョンランプ)、ケミカルランプ、ブラックライトランプ、水銀-キセノンランプ、ショートアーク灯、ヘリウム・カドミニウムレーザー、アルゴンレーザー、太陽光、LEDランプ等が挙げられる。 As described above, the active energy rays for curing the active energy ray-curable composition of the present invention are ionizing radiations such as ultraviolet rays, electron beams, α rays, β rays, and γ rays. Here, when ultraviolet rays are used as the active energy rays, examples of devices that emit ultraviolet rays include low-pressure mercury lamps, high-pressure mercury lamps, ultrahigh-pressure mercury lamps, metal halide lamps, electrodeless lamps (fusion lamps), chemical lamps, Examples thereof include a black light lamp, a mercury-xenon lamp, a short arc lamp, a helium / cadmium laser, an argon laser, sunlight, and an LED lamp.
 前記フィルム基材上に本発明の活性エネルギー線硬化性組成物の硬化塗膜を形成する際の硬化塗膜の膜厚は、硬化塗膜の硬さを充分なものとし、かつ塗膜の硬化収縮によるフィルムのカールを抑制できることから、1~30μmの範囲が好ましいが、3~15μmの範囲がより好ましく、4~10μmの範囲がさらに好ましい。 The film thickness of the cured coating film when forming the cured coating film of the active energy ray-curable composition of the present invention on the film substrate is sufficient for the hardness of the cured coating film and curing of the coating film. Since the curling of the film due to shrinkage can be suppressed, the range of 1 to 30 μm is preferable, the range of 3 to 15 μm is more preferable, and the range of 4 to 10 μm is more preferable.
 以下に実施例により本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
(製造例1:脂環構造及び4級アンモニウム塩を有する樹脂(C-1)の製造)
 攪拌装置、還流冷却管及び窒素導入管を備えたフラスコ中に、窒素ガスを導入して、フラスコ内の空気を窒素ガスで置換した。その後、フラスコに2-(メタクリロイルオキシ)エチルトリメチルアンモニウムクロライド53.7質量部、シクロヘキシルメタクリレート29.3質量部、メトキシポリエチレングリコールメタクリレート(日油株式会社製「ブレンマー PME-1000」;繰り返し単位数n≒23、分子量1,000)14.6質量部、2-パーフルオロヘキシルエチルアクリレート1.9質量部、メタクリル酸0.5質量部、メタノール50質量部及びプロピレングリコールモノメチルエーテル(以下、「PGME」と略記する。)10質量部を加えた。次いで、重合開始剤(アゾビスイソブチロニトリル)0.1質量部をPGME2.4質量部で溶解した溶液を30分かけて滴下した後、65℃で3時間反応させた。次いで、メタノールを加えて希釈し、脂環構造及び4級アンモニウム塩を有する樹脂(C-1)の45質量%溶液を得た。得られた樹脂(C-1)の重量平均分子量は1万であった。
(Production Example 1: Production of resin (C-1) having alicyclic structure and quaternary ammonium salt)
Nitrogen gas was introduced into a flask equipped with a stirrer, a reflux condenser, and a nitrogen introduction tube, and the air in the flask was replaced with nitrogen gas. Thereafter, 53.7 parts by mass of 2- (methacryloyloxy) ethyltrimethylammonium chloride, 29.3 parts by mass of cyclohexyl methacrylate, methoxypolyethylene glycol methacrylate (“Blemmer PME-1000” manufactured by NOF Corporation); 23, molecular weight 1,000) 14.6 parts by mass, 1.9 parts by mass of 2-perfluorohexylethyl acrylate, 0.5 parts by mass of methacrylic acid, 50 parts by mass of methanol and propylene glycol monomethyl ether (hereinafter referred to as “PGME”) Abbreviated.) 10 parts by weight were added. Next, a solution prepared by dissolving 0.1 parts by mass of a polymerization initiator (azobisisobutyronitrile) with 2.4 parts by mass of PGME was added dropwise over 30 minutes, and then reacted at 65 ° C. for 3 hours. Next, methanol was added for dilution to obtain a 45 mass% solution of resin (C-1) having an alicyclic structure and a quaternary ammonium salt. The weight average molecular weight of the obtained resin (C-1) was 10,000.
(製造例2:脂環構造及び4級アンモニウム塩を有する樹脂(C-2)の製造)
 攪拌装置、還流冷却管及び窒素導入管を備えたフラスコ中に、窒素ガスを導入して、フラスコ内の空気を窒素ガスで置換した。その後、フラスコに2-(メタクリロイルオキシ)エチルトリメチルアンモニウムクロライド53.7質量部、シクロヘキシルメタクリレート14.6質量部、メトキシポリエチレングリコールメタクリレート(日油株式会社製「ブレンマー PME-1000」;繰り返し単位数n≒23、分子量1,000)29.3質量部、2-パーフルオロヘキシルエチルメタアクリレート1.9質量部、メタクリル酸0.5質量部、メタノール50質量部及びPGME10質量部を加えた。次いで、重合開始剤(アゾビスイソブチロニトリル)0.1質量部をPGME2.4質量部で溶解した溶液を30分かけて滴下した後、65℃で3時間反応させた。次いで、メタノールを加えて希釈し、脂環構造及び4級アンモニウム塩を有する樹脂(C-2)の45質量%溶液を得た。得られた樹脂(C-2)の重量平均分子量は1万であった。
(Production Example 2: Production of resin (C-2) having alicyclic structure and quaternary ammonium salt)
Nitrogen gas was introduced into a flask equipped with a stirrer, a reflux condenser, and a nitrogen introduction tube, and the air in the flask was replaced with nitrogen gas. Thereafter, 53.7 parts by mass of 2- (methacryloyloxy) ethyltrimethylammonium chloride, 14.6 parts by mass of cyclohexyl methacrylate, methoxypolyethyleneglycol methacrylate (“Blemmer PME-1000” manufactured by NOF Corporation); 23, molecular weight 1,000) 29.3 parts by mass, 1.9 parts by mass of 2-perfluorohexylethyl methacrylate, 0.5 parts by mass of methacrylic acid, 50 parts by mass of methanol and 10 parts by mass of PGME. Next, a solution prepared by dissolving 0.1 parts by mass of a polymerization initiator (azobisisobutyronitrile) with 2.4 parts by mass of PGME was added dropwise over 30 minutes, and then reacted at 65 ° C. for 3 hours. Subsequently, methanol was added to dilute to obtain a 45% by mass solution of resin (C-2) having an alicyclic structure and a quaternary ammonium salt. The weight average molecular weight of the obtained resin (C-2) was 10,000.
(製造例3:脂環構造及び4級アンモニウム塩を有する樹脂(C-3)の製造)
 攪拌装置、還流冷却管及び窒素導入管を備えたフラスコ中に、窒素ガスを導入して、フラスコ内の空気を窒素ガスで置換した。その後、フラスコに2-(メタクリロイルオキシ)エチルトリメチルアンモニウムクロライド53.7質量部、シクロヘキシルメタクリレート14.6質量部、メトキシポリエチレングリコールメタクリレート(日油株式会社製「ブレンマー PME-1000」;繰り返し単位数n≒23、分子量1,000)29.3質量部、2-パーフルオロヘキシルエチルアクリレート1.9質量部、メタクリル酸0.5質量部、メタノール50質量部及びPGME10質量部を加えた。次いで、重合開始剤(アゾビスイソブチロニトリル)0.1質量部をPGME2.4質量部で溶解した溶液を30分かけて滴下した後、65℃で3時間反応させた。次いで、メタノールを加えて希釈し、脂環構造及び4級アンモニウム塩を有する樹脂(C-3)の45質量%溶液を得た。得られた樹脂(C-3)の重量平均分子量は1万であった。
(Production Example 3: Production of resin (C-3) having alicyclic structure and quaternary ammonium salt)
Nitrogen gas was introduced into a flask equipped with a stirrer, a reflux condenser, and a nitrogen introduction tube, and the air in the flask was replaced with nitrogen gas. Thereafter, 53.7 parts by mass of 2- (methacryloyloxy) ethyltrimethylammonium chloride, 14.6 parts by mass of cyclohexyl methacrylate, methoxypolyethyleneglycol methacrylate (“Blemmer PME-1000” manufactured by NOF Corporation); 23, molecular weight 1,000) 29.3 parts by mass, 1.9 parts by mass of 2-perfluorohexylethyl acrylate, 0.5 parts by mass of methacrylic acid, 50 parts by mass of methanol and 10 parts by mass of PGME. Next, a solution prepared by dissolving 0.1 parts by mass of a polymerization initiator (azobisisobutyronitrile) with 2.4 parts by mass of PGME was added dropwise over 30 minutes, and then reacted at 65 ° C. for 3 hours. Next, methanol was added for dilution to obtain a 45% by mass solution of a resin (C-3) having an alicyclic structure and a quaternary ammonium salt. The weight average molecular weight of the obtained resin (C-3) was 10,000.
(製造例4:脂環構造及び4級アンモニウム塩を有する樹脂(C-4)の製造)
 攪拌装置、還流冷却管及び窒素導入管を備えたフラスコ中に、窒素ガスを導入して、フラスコ内の空気を窒素ガスで置換した。その後、フラスコに2-(メタクリロイルオキシ)エチルトリメチルアンモニウムクロライド53.7質量部、シクロヘキシルメタクリレートを43.9質量部、2-パーフルオロヘキシルエチルアクリレート1.9質量部、メタクリル酸0.5質量部、メタノール50質量部及びPGME10質量部を加えた。次いで、重合開始剤(アゾビスイソブチロニトリル)0.1質量部をPGME2.4質量部で溶解した溶液を30分かけて滴下した後、65℃で3時間反応させた。次いで、メタノールを加えて希釈し、脂環構造及び4級アンモニウム塩を有する樹脂(C-4)の45質量%溶液を得た。得られた樹脂(C-4)の重量平均分子量は1万であった。
(Production Example 4: Production of resin (C-4) having alicyclic structure and quaternary ammonium salt)
Nitrogen gas was introduced into a flask equipped with a stirrer, a reflux condenser, and a nitrogen introduction tube, and the air in the flask was replaced with nitrogen gas. Thereafter, 53.7 parts by mass of 2- (methacryloyloxy) ethyltrimethylammonium chloride, 43.9 parts by mass of cyclohexyl methacrylate, 1.9 parts by mass of 2-perfluorohexylethyl acrylate, 0.5 parts by mass of methacrylic acid, 50 parts by mass of methanol and 10 parts by mass of PGME were added. Next, a solution prepared by dissolving 0.1 parts by mass of a polymerization initiator (azobisisobutyronitrile) with 2.4 parts by mass of PGME was added dropwise over 30 minutes, and then reacted at 65 ° C. for 3 hours. Next, methanol was added for dilution to obtain a 45% by mass solution of a resin (C-4) having an alicyclic structure and a quaternary ammonium salt. The weight average molecular weight of the obtained resin (C-4) was 10,000.
(製造例5:脂環構造及び4級アンモニウム塩を有する樹脂(C-5)の製造)
 攪拌装置、還流冷却管及び窒素導入管を備えたフラスコ中に、窒素ガスを導入して、フラスコ内の空気を窒素ガスで置換した。その後、フラスコに2-(メタクリロイルオキシ)エチルトリメチルアンモニウムクロライド54.7質量部、シクロヘキシルメタクリレート19.9質量部、メトキシポリエチレングリコールメタクリレート(日油株式会社製「ブレンマー PME-1000」;繰り返し単位数n≒23、分子量1,000)24.9質量部、メタクリル酸0.5質量部、メタノール50質量部及びPGME10質量部を加えた。次いで、重合開始剤(アゾビスイソブチロニトリル)0.1質量部をPGME2.4質量部で溶解した溶液を30分かけて滴下した後、65℃で3時間反応させた。次いで、メタノールを加えて希釈し、脂環構造及び4級アンモニウム塩を有する樹脂(C-5)の45質量%溶液を得た。得られた樹脂(C-5)の重量平均分子量は1万であった。
(Production Example 5: Production of resin (C-5) having alicyclic structure and quaternary ammonium salt)
Nitrogen gas was introduced into a flask equipped with a stirrer, a reflux condenser, and a nitrogen introduction tube, and the air in the flask was replaced with nitrogen gas. Thereafter, 54.7 parts by mass of 2- (methacryloyloxy) ethyltrimethylammonium chloride, 19.9 parts by mass of cyclohexyl methacrylate, methoxypolyethylene glycol methacrylate (“Blemmer PME-1000” manufactured by NOF Corporation); 23, molecular weight 1,000) 24.9 parts by mass, methacrylic acid 0.5 parts by mass, methanol 50 parts by mass and PGME 10 parts by mass were added. Next, a solution prepared by dissolving 0.1 part by mass of a polymerization initiator (azobisisobutyronitrile) with 2.4 parts by mass of PGME was dropped over 30 minutes, and then reacted at 65 ° C. for 3 hours. Next, methanol was added for dilution to obtain a 45% by mass solution of a resin (C-5) having an alicyclic structure and a quaternary ammonium salt. The obtained resin (C-5) had a weight average molecular weight of 10,000.
(製造例6:脂環構造及び4級アンモニウム塩を有する樹脂(C’-1)の製造)
 攪拌装置、還流冷却管及び窒素導入管を備えたフラスコ中に、窒素ガスを導入して、フラスコ内の空気を窒素ガスで置換した。その後、フラスコに2-(メタクリロイルオキシ)エチルトリメチルアンモニウムクロライド54.0質量部、メトキシポリエチレングリコールメタクリレート(日油株式会社製「ブレンマー PME-1000」;繰り返し単位数n≒23、分子量1,000)44.1質量部、2-パーフルオロヘキシルエチルアクリレート1.9質量部、メタノール50質量部及びPGME10質量部を加えた。次いで、重合開始剤(アゾビスイソブチロニトリル)0.1質量部をPGME2.4質量部で溶解した溶液を30分かけて滴下した後、65℃で3時間反応させた。次いで、メタノールを加えて希釈し、脂環構造及び4級アンモニウム塩を有する樹脂(C’-1)の45質量%溶液を得た。得られた樹脂(C’-1)の重量平均分子量は1万であった。
(Production Example 6: Production of resin (C′-1) having alicyclic structure and quaternary ammonium salt)
Nitrogen gas was introduced into a flask equipped with a stirrer, a reflux condenser, and a nitrogen introduction tube, and the air in the flask was replaced with nitrogen gas. Thereafter, 54.0 parts by mass of 2- (methacryloyloxy) ethyltrimethylammonium chloride, methoxypolyethylene glycol methacrylate (“Blenmer PME-1000” manufactured by NOF Corporation; number of repeating units n≈23, molecular weight 1,000) 44 0.1 part by mass, 1.9 parts by mass of 2-perfluorohexylethyl acrylate, 50 parts by mass of methanol and 10 parts by mass of PGME were added. Next, a solution prepared by dissolving 0.1 parts by mass of a polymerization initiator (azobisisobutyronitrile) with 2.4 parts by mass of PGME was added dropwise over 30 minutes, and then reacted at 65 ° C. for 3 hours. Next, methanol was added for dilution to obtain a 45% by mass solution of a resin (C′-1) having an alicyclic structure and a quaternary ammonium salt. The obtained resin (C′-1) had a weight average molecular weight of 10,000.
(製造例7:脂環構造及び4級アンモニウム塩を有する樹脂(C’-2)の製造)
 攪拌装置、還流冷却管及び窒素導入管を備えたフラスコ中に、窒素ガスを導入して、フラスコ内の空気を窒素ガスで置換した。その後、フラスコに2-(メタクリロイルオキシ)エチルトリメチルアンモニウムクロライド54.7質量部、メトキシポリエチレングリコールメタクリレート(日油株式会社製「ブレンマー PME-1000」;繰り返し単位数n≒23、分子量1,000)44.8質量部、メタクリル酸0.5質量部、メタノール50質量部及びPGME10質量部を加えた。次いで、重合開始剤(アゾビスイソブチロニトリル)0.1質量部をPGME2.4質量部で溶解した溶液を30分かけて滴下した後、65℃で3時間反応させた。次いで、メタノールを加えて希釈し、脂環構造及び4級アンモニウム塩を有する樹脂(C’-2)の45質量%溶液を得た。得られた樹脂(C’-2)の重量平均分子量は1万であった。
(Production Example 7: Production of resin (C′-2) having alicyclic structure and quaternary ammonium salt)
Nitrogen gas was introduced into a flask equipped with a stirrer, a reflux condenser, and a nitrogen introduction tube, and the air in the flask was replaced with nitrogen gas. Thereafter, 54.7 parts by mass of 2- (methacryloyloxy) ethyltrimethylammonium chloride, methoxypolyethyleneglycol methacrylate (“Blenmer PME-1000” manufactured by NOF Corporation; number of repeating units n≈23, molecular weight 1,000) 44 .8 parts by mass, 0.5 parts by mass of methacrylic acid, 50 parts by mass of methanol and 10 parts by mass of PGME were added. Next, a solution prepared by dissolving 0.1 parts by mass of a polymerization initiator (azobisisobutyronitrile) with 2.4 parts by mass of PGME was added dropwise over 30 minutes, and then reacted at 65 ° C. for 3 hours. Next, methanol was added for dilution to obtain a 45% by mass solution of a resin (C′-2) having an alicyclic structure and a quaternary ammonium salt. The obtained resin (C′-2) had a weight average molecular weight of 10,000.
 上記で得られた樹脂(C-1)~(C-5)、(C’-1)及び(C’-2)の重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により、下記の条件で測定した。 The weight average molecular weights of the resins (C-1) to (C-5), (C′-1) and (C′-2) obtained above were determined by gel permeation chromatography (GPC) method. The measurement was performed under the following conditions.
測定装置:高速GPC装置(東ソー株式会社製「HLC-8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
 「TSKgel G5000」(7.8mmI.D.×30cm)×1本
 「TSKgel G4000」(7.8mmI.D.×30cm)×1本
 「TSKgel G3000」(7.8mmI.D.×30cm)×1本
 「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度0.4質量%のテトラヒドロフラン溶液)
標準試料:下記の標準ポリスチレンを用いて検量線を作成した。
Measuring device: High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series.
"TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000" (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID × 30 cm) × 1 detector: RI (differential refractometer)
Column temperature: 40 ° C
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Injection amount: 100 μL (tetrahydrofuran solution with a sample concentration of 0.4 mass%)
Standard sample: A calibration curve was prepared using the following standard polystyrene.
(標準ポリスチレン)
 東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-10」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
(Standard polystyrene)
"TSKgel standard polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-550" manufactured by Tosoh Corporation
(実施例1)
 高屈折率重合性単量体(9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、屈折率1.616)(以下、「単量体(A-1)」と略記する。)17質量部、高屈折率重合性単量体(o-フェニルベンジルアクリレートとp-フェニルベンジルアクリレートの等量混合物、屈折率1.591、フェニル)(以下、「単量体(A-2)」と略記する。)17質量部、多官能アクリレート混合物(ジペンタエリスリトールヘキサアクリレート64質量%、ジペンタエリスリトールペンタアクリレート17質量%、ジペンタエリスリトールテトラアクリレート19質量%の混合物)(以下、「単量体(B-1)」と略記する。)66質量部、製造例1で得られた樹脂(C-1)の45質量%溶液6.7質量部(樹脂(C-1)として3質量部)、光重合開始剤(BASFジャパン株式会社「イルガキュア 184」;1-ヒドロキシシクロヘキシルフェニルケトン)5質量部、メチルエチルケトン(以下、「MEK」と略記する。)40質量部及びPGME60質量部を均一に混合して、不揮発分50質量%の活性エネルギー線硬化性組成物(1)を得た。
Example 1
High refractive index polymerizable monomer (9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene, refractive index 1.616) (hereinafter abbreviated as “monomer (A-1)”) .) 17 parts by mass, high refractive index polymerizable monomer (equivalent mixture of o-phenylbenzyl acrylate and p-phenylbenzyl acrylate, refractive index 1.591, phenyl) (hereinafter “monomer (A-2 ) ")) 17 parts by mass, polyfunctional acrylate mixture (mixture of 64% by mass of dipentaerythritol hexaacrylate, 17% by mass of dipentaerythritol pentaacrylate, 19% by mass of dipentaerythritol tetraacrylate) (hereinafter referred to as" single (Abbreviated as “mer (B-1)”) 66 parts by mass, 6.7 parts by mass of resin (C-1) 45% by mass obtained in Production Example 1 (resin (C 1) 3 parts by mass), photopolymerization initiator (BASF Japan Ltd. “Irgacure 184”; 1-hydroxycyclohexyl phenyl ketone) 5 parts by mass, methyl ethyl ketone (hereinafter abbreviated as “MEK”) 40 parts by mass and PGME 60 Mass parts were mixed uniformly to obtain an active energy ray-curable composition (1) having a nonvolatile content of 50% by mass.
(実施例2~7)
 表1~3に示した組成に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(2)~(7)を得た。
(Examples 2 to 7)
Active energy ray-curable compositions (2) to (7) were obtained in the same manner as in Example 1 except that the compositions shown in Tables 1 to 3 were changed.
(比較例1~2)
 表3に示した組成に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(R1)及び(R2)を得た。
(Comparative Examples 1 and 2)
Except having changed into the composition shown in Table 3, it carried out like Example 1 and obtained active energy ray hardening composition (R1) and (R2).
 なお、表1~3に記載の略号は、下記のものを表す。
単量体(A-3):DIC株式会社製「UNIDIC EQS-1179」(ビスフェノールA型多官能アクリレート、屈折率1.555)
DMC:ジメチルカーボネート
Abbreviations in Tables 1 to 3 represent the following.
Monomer (A-3): “UNIDIC EQS-1179” (bisphenol A polyfunctional acrylate, refractive index 1.555) manufactured by DIC Corporation
DMC: Dimethyl carbonate
 上記の実施例1~7及び比較例1~2で得られた活性エネルギー線硬化性組成物(1)~(7)、(R1)及び(R2)を用いて、下記の試験、測定を行った。 Using the active energy ray-curable compositions (1) to (7), (R1) and (R2) obtained in Examples 1 to 7 and Comparative Examples 1 and 2, the following tests and measurements were performed. It was.
[評価用サンプルの作製]
 活性エネルギー線硬化性組成物を、厚さ60μmのトリアセチルセルロース(TAC)フィルム(富士フイルム株式会社製)に、バーコーターで膜厚5μmとなるように塗工し、60℃で1.5分間乾燥した後、空気雰囲気下で紫外線照射装置(アイグラフィックス株式会社製、高圧水銀ランプ)を用いて照射光量3kJ/mで照射し、硬化塗膜を有するTACフィルムを評価用サンプルとして得た。
[Preparation of sample for evaluation]
The active energy ray-curable composition was applied to a 60 μm-thick triacetylcellulose (TAC) film (manufactured by Fuji Film Co., Ltd.) with a bar coater so as to have a film thickness of 5 μm, and then at 60 ° C. for 1.5 minutes. After drying, irradiation was performed at an irradiation light amount of 3 kJ / m 2 using an ultraviolet irradiation device (manufactured by Eye Graphics Co., Ltd., high-pressure mercury lamp) in an air atmosphere, and a TAC film having a cured coating film was obtained as an evaluation sample. .
[鉛筆硬さの測定]
 上記で得られた評価用サンプルの硬化塗膜の表面について、JIS試験方法K5600-5-4:1999に準拠して、鉛筆硬さを測定した。
[Measurement of pencil hardness]
With respect to the surface of the cured coating film of the evaluation sample obtained above, the pencil hardness was measured in accordance with JIS test method K5600-5-4: 1999.
[ヘーズの測定(透明性の評価)]
 上記で得られた評価用サンプルについて、JIS試験方法K7136:2000に準拠して、ヘーズメーター(日本電色工業株式会社製「NDH2000」)を用いてヘーズ値を測定した。
[Measurement of haze (evaluation of transparency)]
About the sample for evaluation obtained above, based on JIS test method K7136: 2000, haze value was measured using the haze meter (Nippon Denshoku Industries Co., Ltd. "NDH2000").
[屈折率の測定]
 上記で得られた評価用サンプルについて、JIS試験方法K7142:2014のA法に準拠して、アッベ屈折率計(株式会社アタゴ製「DR-M2」)を用いて屈折率を測定した。
[Measurement of refractive index]
The refractive index of the sample for evaluation obtained above was measured using an Abbe refractometer (“DR-M2” manufactured by Atago Co., Ltd.) in accordance with method A of JIS test method K7142: 2014.
[表面抵抗値の測定(帯電防止性の評価)]
 上記で得られた評価用サンプルの硬化塗膜の表面について、JIS試験方法K6911-1995に準拠して、高抵抗率計(株式会社三菱化学アナリテック製「ハイレスタ-UP MCP-HT450」)を用いて、印加電圧500V、測定時間10秒で表面抵抗値を測定した。
[Measurement of surface resistance (evaluation of antistatic properties)]
For the surface of the cured coating film of the evaluation sample obtained above, a high resistivity meter (“HIRESTA-UP MCP-HT450” manufactured by Mitsubishi Chemical Analytech Co., Ltd.) was used in accordance with JIS test method K6911-1995. The surface resistance value was measured at an applied voltage of 500 V and a measurement time of 10 seconds.
 上記で測定した結果を表1~3に示す。 The results measured above are shown in Tables 1-3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~3に示した評価結果から、実施例1~7の本発明の活性エネルギー線硬化性組成物の硬化塗膜は、屈折率は高く、表面抵抗値も10の9~10乗オーダーで帯電防止性も高いことが確認できた。 From the evaluation results shown in Tables 1 to 3, the cured coating films of the active energy ray-curable compositions of the present invention of Examples 1 to 7 have a high refractive index and a surface resistance value of 10 on the order of 9 to the 10th power. It was confirmed that the antistatic property was also high.
 一方、比較例1及び2は、脂環構造を有さず、4級アンモニウム塩を有する樹脂を用いた例である。これらはともに、屈折率は高かったが、表面抵抗値は10の13乗を超えており、帯電防止性に劣ることが確認できた。 On the other hand, Comparative Examples 1 and 2 are examples using a resin having no alicyclic structure and having a quaternary ammonium salt. In both cases, the refractive index was high, but the surface resistance value exceeded 10 13, confirming that the antistatic property was poor.

Claims (6)

  1.  屈折率が1.55以上である高屈折率重合性単量体(A)と、多官能重合性単量体(B)と、脂環構造及び4級アンモニウム塩を有する樹脂(C)と、有機溶剤(D)とを含有することを特徴とする活性エネルギー線硬化性組成物。 A high refractive index polymerizable monomer (A) having a refractive index of 1.55 or more, a polyfunctional polymerizable monomer (B), a resin (C) having an alicyclic structure and a quaternary ammonium salt; An active energy ray-curable composition comprising an organic solvent (D).
  2.  前記樹脂(C)が、原料として脂環構造を有する重合性単量体を5~40質量%用いた重合体である請求項1記載の活性エネルギー線硬化性組成物。 The active energy ray-curable composition according to claim 1, wherein the resin (C) is a polymer using 5 to 40% by mass of a polymerizable monomer having an alicyclic structure as a raw material.
  3.  前記有機溶剤(D)が、ハンセン溶解度パラメータでの分散項(δD)が15.5~16.1MPa0.5の範囲であり、分極項(δP)が6.3~10.4MPa0.5の範囲であり、水素結合項(δH)が5.1~11.6MPa0.5の範囲であるものである請求項1又は2記載の活性エネルギー線硬化性組成物。 The organic solvent (D) has a dispersion term (δD) in the range of 15.5 to 16.1 MPa 0.5 with a Hansen solubility parameter and a polarization term (δP) of 6.3 to 10.4 MPa 0.5. The active energy ray-curable composition according to claim 1 or 2, wherein the hydrogen bond term (δH) is in the range of 5.1 to 11.6 MPa 0.5 .
  4.  前記樹脂(C)の配合量が、前記重合性単量体(A)及び前記重合性単量体(B)の合計100質量部に対して、0.1~30質量部の範囲である請求項1~3のいずれか1項記載の活性エネルギー線硬化性組成物。 The blending amount of the resin (C) is in the range of 0.1 to 30 parts by mass with respect to 100 parts by mass in total of the polymerizable monomer (A) and the polymerizable monomer (B). Item 4. The active energy ray-curable composition according to any one of Items 1 to 3.
  5.  請求項1~4のいずれか1記載の活性エネルギー線硬化性組成物の硬化物。 A cured product of the active energy ray-curable composition according to any one of claims 1 to 4.
  6.  請求項1~4のいずれか1記載の活性エネルギー線硬化性組成物の硬化塗膜を有することを特徴とするフィルム。 A film having a cured coating film of the active energy ray-curable composition according to any one of claims 1 to 4.
PCT/JP2017/017495 2016-06-27 2017-05-09 Active-energy-beam curable composition and film using same WO2018003293A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017542206A JP6288538B1 (en) 2016-06-27 2017-05-09 Active energy ray-curable composition and film using the same
CN201780039287.0A CN109312012B (en) 2016-06-27 2017-05-09 Active energy ray-curable composition and film using same
KR1020187035874A KR102148790B1 (en) 2016-06-27 2017-05-09 Active energy ray-curable composition and film using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016126673 2016-06-27
JP2016-126673 2016-06-27

Publications (1)

Publication Number Publication Date
WO2018003293A1 true WO2018003293A1 (en) 2018-01-04

Family

ID=60786033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017495 WO2018003293A1 (en) 2016-06-27 2017-05-09 Active-energy-beam curable composition and film using same

Country Status (5)

Country Link
JP (1) JP6288538B1 (en)
KR (1) KR102148790B1 (en)
CN (1) CN109312012B (en)
TW (1) TWI731090B (en)
WO (1) WO2018003293A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124049A1 (en) * 2017-12-18 2019-06-27 Dic株式会社 Active energy ray-curable composition and film using same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000187102A (en) * 1998-10-14 2000-07-04 Tomoegawa Paper Co Ltd Antireflection material and polarizing film using the same
JP2007269993A (en) * 2006-03-31 2007-10-18 Toppan Printing Co Ltd Glare-proof antistatic hard coat resin composition and glare-proof antistatic hard coat film formed body coated with the same
JP2010064332A (en) * 2008-09-10 2010-03-25 Nippon Shokubai Co Ltd Laminate and front plate for display device
JP2012031297A (en) * 2010-07-30 2012-02-16 Arakawa Chem Ind Co Ltd Antistatic agent for active energy ray-curable type resin composition, active energy ray-curable type composition, cured coating film, and antistatic-treated optical film
JP2012102166A (en) * 2010-11-05 2012-05-31 Toyo Ink Sc Holdings Co Ltd Antistatic coating composition
JP2014167104A (en) * 2013-02-04 2014-09-11 Arakawa Chem Ind Co Ltd Antistatic for active energy ray-curable resin composition, active energy ray-curable resin composition, cured film and optical film with antistatic treatment
JP2015062070A (en) * 2009-11-12 2015-04-02 凸版印刷株式会社 Antireflection film and anti-reflection film manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4976763B2 (en) 2006-07-04 2012-07-18 第一工業製薬株式会社 Antistatic hard coat resin composition
JP2008164854A (en) * 2006-12-27 2008-07-17 Jsr Corp Film-like light waveguide
JP5376770B2 (en) 2007-04-03 2013-12-25 三菱樹脂株式会社 Polyester film for surface protection film and polyester film for surface protection of optical member
JP6287615B2 (en) * 2014-06-17 2018-03-07 荒川化学工業株式会社 Active energy ray-curable resin composition, cured film and antistatic treatment optical film
JP6365239B2 (en) * 2014-10-29 2018-08-01 三菱ケミカル株式会社 Curable composition, cured product, optical film and laminate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000187102A (en) * 1998-10-14 2000-07-04 Tomoegawa Paper Co Ltd Antireflection material and polarizing film using the same
JP2007269993A (en) * 2006-03-31 2007-10-18 Toppan Printing Co Ltd Glare-proof antistatic hard coat resin composition and glare-proof antistatic hard coat film formed body coated with the same
JP2010064332A (en) * 2008-09-10 2010-03-25 Nippon Shokubai Co Ltd Laminate and front plate for display device
JP2015062070A (en) * 2009-11-12 2015-04-02 凸版印刷株式会社 Antireflection film and anti-reflection film manufacturing method
JP2012031297A (en) * 2010-07-30 2012-02-16 Arakawa Chem Ind Co Ltd Antistatic agent for active energy ray-curable type resin composition, active energy ray-curable type composition, cured coating film, and antistatic-treated optical film
JP2012102166A (en) * 2010-11-05 2012-05-31 Toyo Ink Sc Holdings Co Ltd Antistatic coating composition
JP2014167104A (en) * 2013-02-04 2014-09-11 Arakawa Chem Ind Co Ltd Antistatic for active energy ray-curable resin composition, active energy ray-curable resin composition, cured film and optical film with antistatic treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124049A1 (en) * 2017-12-18 2019-06-27 Dic株式会社 Active energy ray-curable composition and film using same

Also Published As

Publication number Publication date
JP6288538B1 (en) 2018-03-07
CN109312012A (en) 2019-02-05
JPWO2018003293A1 (en) 2018-07-05
KR102148790B1 (en) 2020-08-27
CN109312012B (en) 2021-08-27
KR20190008293A (en) 2019-01-23
TWI731090B (en) 2021-06-21
TW201819424A (en) 2018-06-01

Similar Documents

Publication Publication Date Title
WO2015198959A1 (en) Active energy ray-curable composition and film using same
KR102597331B1 (en) Active energy ray-curable composition and film using the same
JP6388189B1 (en) Active energy ray-curable composition, cured product, and film
JP6725864B2 (en) Active energy ray curable composition and film using the same
JP6288538B1 (en) Active energy ray-curable composition and film using the same
JP6418474B2 (en) Active energy ray-curable composition and film using the same
JP6766969B2 (en) An active energy ray-curable composition and a film using the same.
KR102625535B1 (en) Active energy ray-curable composition and film using the same
CN109666173B (en) Laminate body

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017542206

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187035874

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819660

Country of ref document: EP

Kind code of ref document: A1