WO2018003083A1 - 通信装置、光伝送システムおよび周波数調整方法 - Google Patents

通信装置、光伝送システムおよび周波数調整方法 Download PDF

Info

Publication number
WO2018003083A1
WO2018003083A1 PCT/JP2016/069508 JP2016069508W WO2018003083A1 WO 2018003083 A1 WO2018003083 A1 WO 2018003083A1 JP 2016069508 W JP2016069508 W JP 2016069508W WO 2018003083 A1 WO2018003083 A1 WO 2018003083A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
frequency
signal
communication device
subcarrier
Prior art date
Application number
PCT/JP2016/069508
Other languages
English (en)
French (fr)
Inventor
崇宏 小玉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/069508 priority Critical patent/WO2018003083A1/ja
Publication of WO2018003083A1 publication Critical patent/WO2018003083A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/03WDM arrangements
    • H04J14/0307Multiplexers; Demultiplexers

Definitions

  • the present invention relates to a communication apparatus, an optical transmission system, and a frequency adjustment method for transmitting a plurality of optical signals by frequency multiplexing.
  • optical filters for wavelength selection are arranged in multiple stages in a transmission path, and demultiplexing, multiplexing, and path switching of signals of arbitrary plural subcarriers are performed. For this reason, there is a problem that the signal quality deteriorates due to the phenomenon that the subcarrier signal band other than the transmission band of the optical filter is cut, that is, the signal band narrowing.
  • the condition for maximizing the signal quality of the super channel signal is to arrange each sub carrier so that the signal quality of all the sub carriers is constant, that is, the light of each sub carrier. It is to adjust the frequency. Thereafter, the subcarrier arrangement when the signal quality of the super channel signal is maximum is referred to as the optimum subcarrier arrangement.
  • the types of subcarriers can be classified into outer subcarriers that are affected by narrowing by optical filters and other inner subcarriers.
  • the outer subcarrier is a subcarrier close to the high frequency end of the transmission band of the optical filter or a subcarrier close to the low frequency end.
  • the outer subcarrier is a subcarrier that is subjected to band narrowing. When there are two target subcarriers for frequency division multiplexing, the two subcarriers are both outer subcarriers.
  • Non-Patent Document 1 describes a technique for adjusting the optical frequency of each subcarrier, taking as an example the case of frequency multiplex transmission of two subcarriers.
  • transmission rate change it is considered desirable to be able to change the transmission capacity in the super channel signal according to the signal quality margin. It is also desirable to be able to change the transmission capacity according to the signal quality while avoiding an increase in cost, such as adding new hardware.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a communication apparatus capable of suppressing deterioration in signal quality accompanying a change in transmission rate.
  • the present invention provides a first optical transceiver that transmits an optical signal having a first optical frequency and a second optical signal that transmits an optical signal having a second optical frequency.
  • An optical transceiver When changing the transmission rate, the first optical transceiver transmits four types of first optical signals by sequentially shifting the first optical frequency by two steps to each of the low frequency side and the high frequency side, The second optical transceiver transmits four types of second optical signals by sequentially shifting the second optical frequency by two steps to the low frequency side and the high frequency side, respectively.
  • the second optical transceiver transmits the first optical frequency in the direction opposite to the direction in which the first optical transceiver shifts the first optical frequency.
  • the second optical frequency is shifted by the same shift amount as this shift amount.
  • the first optical transceiver and the second optical transceiver each have the signal quality of the four types of first optical signals, the signal quality of the four types of second optical signals, and the signal band associated with the change of the transmission rate.
  • the first optical frequency and the second optical frequency are adjusted by an adjustment amount determined based on the change amount of the first optical frequency.
  • the communication device has an effect that it is possible to suppress deterioration in signal quality accompanying a change in transmission rate.
  • the figure which shows the example of the relationship between the transmission rate change and the signal quality change of each subcarrier The figure which shows the optimum point of the subcarrier interval after transmission capacity increase The figure which shows the other example of the relationship between the transmission rate change and the signal quality change of each subcarrier. The figure which shows the optimum point of the subcarrier interval after transmission capacity increase The figure which shows the structural example of the optical transmission system concerning embodiment The figure which shows the structural example of the optical transmitter / receiver with which the communication apparatus of a transmission side is provided. The figure which shows an example of the frequency dither given to each subcarrier The figure which shows the structural example of the optical transmitter / receiver with which the communication apparatus of a receiving side is provided.
  • movement of the communication apparatus which adjusts the optical frequency of a subcarrier The flowchart which shows an example of operation
  • interval calculating apparatus The figure which shows an example of the shift
  • achieve the optical frequency shifter of a communication apparatus, a signal quality monitor, a frequency offset device, and an OTN framer The figure which shows the other example of the hardware which implement
  • FIG. 1 is a diagram illustrating an example of a relationship between a transmission rate change and a signal quality change of each subcarrier.
  • FIG. 1 shows the relationship between the frequency arrangement of each subcarrier and the transmission band of the optical filter when the influence of intercarrier interference is larger than the band narrowing when the transmission rate is changed.
  • the band of each subcarrier (SC # 1, SC # 2) after changing the transmission rate is within the transmission band of the optical filter.
  • SC # 1, SC # 2 the optimum point of the SC (Sub Carrier) interval, which is the interval between two subcarriers after the transmission rate change, shifts in the direction in which the SC interval increases.
  • FIG. 3 is a diagram illustrating another example of the relationship between the transmission rate change and the signal quality change of each subcarrier.
  • FIG. 3 shows the relationship between the frequency arrangement of each subcarrier and the transmission band of the optical filter when the influence of the band narrowing is larger than the inter-carrier interference when the transmission rate is changed.
  • the band of each subcarrier after changing the transmission rate is not within the transmission band of the optical filter.
  • the optimum point of the SC interval after the change of the transmission rate is shifted in the direction in which the SC interval decreases. That is, when changing the transmission rate, it is necessary to shift the low frequency side subcarrier (SC # 1) to the high frequency side and the high frequency side subcarrier (SC # 2) to the low frequency side. .
  • the influence of inter-carrier interference or band narrowing after the change is calculated, and the optical frequency of each subcarrier is adjusted according to the calculation result.
  • FIG. 5 is a diagram illustrating a configuration example of the optical transmission system according to the embodiment of the present invention.
  • the optical transmission system 100 according to the present embodiment includes a communication device 1, a communication device 2, and a transmission path 3.
  • the optical frequency of an optical signal transmitted from the communication device 1 and received by the communication device 2 via the transmission path 3 is adjusted.
  • the optical transmission system 100 is a communication system that transmits subcarriers, which are optical signals, by a super channel method, and is a communication network called, for example, a trunk optical communication network.
  • FIG. 5 shows an example in which two subcarriers are multiplexed, the number of subcarriers to be multiplexed is not limited to this example.
  • the portion indicating the optical signal path among the lines connecting the components is indicated by a solid line, and the part indicating the electrical signal path is indicated by a dotted line.
  • the communication device 1 as the first communication device includes an optical frequency shift synchronization device 11, optical transceivers 12-1 and 12-2, and an optical coupler 13.
  • the optical frequency shift synchronizer 11 is a control device that controls the optical transceivers 12-1 and 12-2, and subcarriers to which a predetermined dither is applied to the optical frequency are transferred to the optical transceivers 12-1 and 12-. 2 is controlled to transmit at a synchronized timing. Dither is a fluctuation.
  • the subcarrier whose dither is given to the optical frequency that is, the subcarrier whose optical frequency is shifted by the amount corresponding to the dither, is an optical signal that is transmitted when the transmission rate is changed, and is a subcarrier that matches the changed transmission rate. It is used to calculate an adjustment amount for adjusting the optical frequency of each subcarrier so as to have an interval. The calculation of the adjustment amount is performed by the communication device 2 that receives the subcarrier whose dither is given to the optical frequency.
  • the optical transceiver 12-1 generates and outputs an optical signal of subcarrier # 1, which is the first subcarrier.
  • the optical transceiver 12-2 generates and outputs an optical signal of subcarrier # 2, which is the second subcarrier.
  • the first subcarrier and the second subcarrier are carriers having different optical frequencies, that is, different optical wavelengths.
  • the optical transceiver 12-1 is a first optical transceiver that transmits an optical signal having a first optical frequency
  • the optical transceiver 12-2 is a second optical transceiver that transmits an optical signal having a second optical frequency. It is a vessel.
  • the optical coupler 13 combines the optical signal output from the optical transceiver 12-1 and the optical signal output from the optical transceiver 12-2 and outputs the combined optical signal to the transmission path 3.
  • the optical coupler 13 demultiplexes the optical signal received from the communication device 2 via the transmission path 3 into two, and outputs one to the optical transceiver 12-1 and the other to the optical transceiver 12-2.
  • the communication device 2 as the second communication device includes an optical demultiplexer 21, optical transceivers 22-1 and 22-2, and an optical frequency interval calculation device 23.
  • the optical demultiplexer 21 demultiplexes the optical signal received from the communication device 1 via the transmission path 3 into two, and outputs one to the optical transceiver 22-1 and the other to the optical transceiver 22-2.
  • the optical demultiplexer 21 outputs subcarrier # 1 to the optical transceiver 22-1 and outputs subcarrier # 2 to the optical transceiver 22-2.
  • the optical demultiplexer 21 combines the optical signal output from the optical transmitter / receiver 22-1 and the optical signal output from the optical transmitter / receiver 22-2, and outputs the combined signal to the transmission line 3.
  • the optical frequency interval computing device 23 uses the signal quality of each subcarrier calculated in the optical transceiver 22-1 and the optical transceiver 22-2, and uses subcarrier # 1 transmitted from the communication device 1 after changing the transmission rate. And the shift amount, that is, the adjustment amount of the optical frequency of each subcarrier for optimizing the interval of # 2 is calculated.
  • the optical frequency interval calculation device 23 is an adjustment amount calculation unit that calculates the adjustment amount of the optical frequency of each subcarrier when adjusting the optical frequencies of the subcarriers # 1 and # 2 with the change of the transmission rate.
  • the communication device 1 when changing the transmission rate, transmits a plurality of types of dithers in order to the optical frequency of each subcarrier.
  • the communication device 2 optimizes the interval between the subcarriers after changing the transmission rate based on the signal quality of the subcarriers to which dither is given.
  • the frequency adjustment amount is calculated and fed back to the communication device 1.
  • the communication device 1 adjusts the optical frequency of each subcarrier to be transmitted according to the feedback adjustment amount. As a result, it is possible to suppress degradation of signal quality due to a change in transmission rate.
  • the communication device 1 optimizes the subcarrier of the optical frequency after adjustment, that is, the optical frequency optimized to the transmission rate until the transmission rate is changed next time. Subcarriers are generated and transmitted.
  • the relationship between the subcarrier spacing and the Q value which is a signal quality value used in optical communication, is such that the Q value is maximum when the horizontal axis indicates the subcarrier spacing and the vertical axis indicates the Q value. It can be approximated by a quadratic function centering on the optimal subcarrier interval. This is because the Q value change with respect to the linear degradation of OSNR (Optical Signal-to-Noise Ratio) can be quadratic approximated when the Q value is in the range of 6 dB to 10 dB.
  • OSNR Optical Signal-to-Noise Ratio
  • the relationship between the subcarrier interval and the Q value can be approximated as a linear function.
  • this relationship is used, and linear approximation is performed using two Q values for each of the narrow interval side and the wide interval side. It is estimated whether the cause is the influence of interference occurring on the narrow interval side or the effect of band narrowing occurring on the wide interval side. Then, the frequency shift amount of each subcarrier to approximate the optimum optical frequency interval is calculated.
  • the transmission rate change amount becomes larger than about 1 GBaud per subcarrier, it cannot be approximated as a linear function. Therefore, if there is a sufficient margin for the signal quality required for the system and the transmission rate can be greatly increased, this problem can be solved by increasing the transmission rate and adjusting the optical frequency interval by dividing into multiple times. It can be avoided.
  • FIG. 6 is a diagram illustrating a configuration example of the optical transceiver included in the communication device 1 on the transmission side.
  • the configurations of the optical transceivers 12-1 and 12-2 constituting the communication device 1 are the same.
  • the optical transceiver 12-1 will be described.
  • the optical transceiver 12-1 includes an optical signal generator 121, a transmission digital signal processor 122, and an optical demodulator 123.
  • the optical signal generation unit 121 includes a light source 124 and an optical modulator 125.
  • the light source 124 emits continuous light.
  • the optical modulator 125 modulates the continuous light transmitted from the light source 124 according to the data signal that is an electrical signal input from the transmission digital signal processing unit 122 to generate an optical signal, and optically combines the generated optical signal. Output to the device 13.
  • the transmission digital signal processing unit 122 includes an optical frequency shifter 126 and a data generator 127.
  • the data generator 127 generates a data signal. Specifically, the data generator 127 performs, for example, processing for error correction coding of information to be transmitted, binary phase modulation (BPSK: Binary Phase Shift Keying), quaternary phase modulation (QPSK: Quadrature Phase Shift Keying) or A data signal is generated by performing symbol mapping processing according to a modulation method such as 16-value amplitude phase modulation (16QAM (Quadrature Amplitude Modulation)), processing for shaping a signal spectrum, and the like.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • a data signal is generated by performing symbol mapping processing according to a modulation method such as 16-value amplitude phase modulation (16QAM (Quadrature Amplitude Modulation)), processing for shaping a signal spectrum, and the like.
  • BPSK Binary Phase Shift Keying
  • the data generator 127 When changing the transmission rate, the data generator 127 receives information on the amount of change in the signal band accompanying the change in the transmission rate. This information is used when the communication apparatus 2 calculates an adjustment amount for adjusting the optical frequency of each subcarrier so that the subcarrier interval matches the transmission rate after the change.
  • the information on the change amount of the signal band is input to the data generator 127 from, for example, a network administrator or a management device that manages the entire optical transmission system via an input unit (not shown).
  • the amount of change in the signal band is the amount of change in the signal band included in the super channel signal before and after the transmission rate change.
  • the signal band change amount per subcarrier becomes 1 GHz, which changes in the entire superchannel signal.
  • the signal band of 2 GHz is the amount of change in the signal band.
  • the data generator 127 generates a data signal based on the input change amount when the change amount of the signal band accompanying the change of the transmission rate is input. Note that the amount of change in the signal band accompanying the change in the transmission rate may be transmitted by either one of the optical transceivers 12-1 and 12-2.
  • the amount of change in the signal band accompanying the change in the transmission rate is input to the optical transceiver 12-1, and the optical transceiver 12-1 transmits the amount of change in the signal band accompanying the change in the transmission rate.
  • the optical frequency shifter 126 is the frequency shift amount of the subcarrier transmitted by the optical transceiver 12-1 calculated by the optical frequency interval calculation device 23 of the communication device 2 with respect to the data signal generated by the data generator 127.
  • the frequency shift is electrically added.
  • the optical frequency shifter 126 applies frequency dither to the subcarrier that is the optical signal generated by the optical signal generation unit 121. Since frequency dither refers to frequency fluctuation, the optical frequency of the subcarrier may be increased or the optical frequency may be decreased. That is, the frequency polarity of the frequency dither may be positive or negative.
  • the frequency dither polarity is simply referred to as “dither polarity”.
  • the amplitude of the frequency dither takes a plurality of values.
  • each amplitude of the frequency dither is simply referred to as a “dither amplitude level”.
  • the dither polarity indicates the direction in which the optical frequency is shifted.
  • a frequency dither with a polarity of + is added, the optical frequency of the subcarrier is shifted to the high frequency side, and when a frequency dither with a polarity of-is added, the optical frequency of the subcarrier is shifted to the low frequency side.
  • the frequency dither given to the subcarrier by the optical frequency shifter 126 has an amplitude level of a certain polarity for a certain time.
  • the frequency dither is given to the subcarrier by the optical frequency shifter 126 changing the polarity and amplitude level at regular time intervals using the electric clock signal to change the frequency shift amount.
  • FIG. 7 is a diagram illustrating an example of frequency dither given to each subcarrier in the communication apparatus 1.
  • the upper part of FIG. 7 shows the frequency dither given to the subcarrier # 1 by the optical frequency shifter 126 of the optical transceiver 12-1, and the lower part of FIG. 7 shows the subdivision of the optical frequency shifter 126 of the optical transceiver 12-2.
  • the frequency dither given to carrier # 2 is shown.
  • the communication device 1 sequentially provides four types of frequency dithers having predetermined amplitudes for each subcarrier.
  • the four different dither intervals are generated by sequentially providing the dithers.
  • the optimum optical frequency interval is an optical frequency interval that balances the influence on signal quality due to inter-subcarrier interference and the influence on signal quality due to signal band narrowing, and maximizes the signal quality.
  • the four types of optical frequency interval dithers are composed of two types on the narrow interval side, that is, the side where the frequency interval is narrowed, and two types on the wide interval side, that is, the side where the frequency interval is widened.
  • the optical transceivers 12-1 and 12-2 firstly use the first frequency dither ( ⁇ f 1A , ⁇ f 2D) that makes the optical frequency interval between the subcarriers # 1 and # 2 the smallest. ) Are given to subcarriers # 1 and # 2, respectively, and after a certain period of time, the second frequency dither ( ⁇ f 1B , ⁇ f 2C ) is given to subcarriers # 1 and # 2, respectively. ( ⁇ f 1C , ⁇ f 2B ) and a fourth frequency dither ( ⁇ f 1D , ⁇ f 2A ) are sequentially given to subcarriers # 1 and # 2.
  • the first frequency dither ⁇ f 1A , ⁇ f 2D
  • optical transceiver 12-1, subcarrier # 1 of the optical signal of the optical frequency f 1 of the low frequency side and high frequency side four kinds shifted one by two steps in each optical frequency different light transmits a signal
  • the optical transceiver 12-1 when the optical transceiver 12-1 to shift the optical frequency f 1 of the sub-carrier # 1, the optical transceiver 12-2, the optical transceiver 12-1 to reverse the direction of shifting the optical frequency f 1 Then, the optical frequency f 2 of the subcarrier # 2 is shifted by the same shift amount as that of the optical transceiver 12-1.
  • the order in which the optical transceivers 12-1 and 12-2 give the four types of frequency dither to each subcarrier does not have to be the one shown in FIG. 7, and the four types of frequency dither given to the four types of frequency dither Any order may be used as long as subcarriers are transmitted.
  • the relationship between the frequency dither that the optical transceiver 12-1 gives to the subcarrier # 1 and the frequency dither that the optical transceiver 12-2 gives to the subcarrier # 2 at a certain time has the same amplitude level and the opposite polarity. Shall.
  • the optical demodulation unit 123 includes a reception digital signal processor 128 and a coherent receiver 129. Continuous light generated by the light source 124 of the optical signal generator 121 is input to the coherent receiver 129. The optical frequency of the continuous light that is input is the same as the optical frequency of the optical signal received from the communication device 2 that the optical transceiver 12-1 faces.
  • the coherent receiver 129 converts the optical signal received from the communication device 2 via the transmission path 3 and the optical coupler 13 into an electrical signal and outputs the electrical signal. Specifically, the light of a desired wavelength is converted into an electric signal by causing the optical signal input from the optical coupler 13 and the continuous light transmitted from the light source 124 to interfere with each other.
  • the reception digital signal processor 128 demodulates the electrical signal output from the coherent receiver 129. Also, the reception digital signal processor 128 outputs the frequency shift amount notified from the communication device 2 among the data obtained by demodulation to the optical frequency shifter 126. The frequency shift amount is calculated by the optical frequency interval calculation device 23 of the communication device 2.
  • FIG. 8 is a diagram illustrating a configuration example of an optical transceiver included in the communication device 2 on the reception side.
  • the configurations of the optical transceivers 22-1 and 22-2 constituting the communication device 2 are the same.
  • the optical transceiver 22-1 will be described.
  • the optical transceiver 22-1 includes an optical demodulator 221 and an optical signal generator 222.
  • the optical demodulator 221 includes a coherent receiver 223, a received digital signal processor 224, a signal quality monitor 225, and a frequency offset unit 226.
  • the optical signal generation unit 222 includes a light source 227 and an optical modulator 228. Light generated by the light source 227 is input to the optical modulator 228 and the coherent receiver 223.
  • the coherent receiver 223 performs coherent detection of the optical signal input from the optical demultiplexer 21 and converts it into an electrical signal. That is, the coherent receiver 223 converts light having a desired wavelength into an electrical signal by causing the optical signal input from the optical demultiplexer 21 to interfere with the light transmitted from the light source 227.
  • the light transmitted from the light source 227 to the coherent receiver 223 is continuous light having the same optical frequency as the optical signal input from the optical demultiplexer 21 to the coherent receiver 223.
  • the reception digital signal processor 224 restores the information transmitted from the communication device 1 on the transmission side. For example, when the data generator 127 of the communication apparatus 1 on the transmission side performs modulation, demodulation corresponding to the modulation is performed, and when error correction coding is performed in the data generator 127. Perform error correction decoding.
  • the received digital signal processor 224 outputs the change amount of the signal band to the optical frequency interval calculation device 23 when the change amount of the signal band accompanying the change of the transmission rate is transmitted from the communication device 1.
  • the signal quality monitor 225 calculates the quality of the signal received from the communication device 1 using the information output from the reception digital signal processor 224, and outputs the calculated signal quality to the optical frequency interval calculation device 23.
  • a signal quality calculation method in the signal quality monitor 225 for example, there is a method of calculating a Q value indicating the quality of an optical signal using a noise distribution of received signal point arrangement on a complex plane.
  • the information output from the reception digital signal processor 224 is the noise distribution of the reception signal point arrangement on the complex plane.
  • As another method for calculating the signal quality in the signal quality monitor 225 there is a method for calculating a BER (Bit Error Rate) using the number of bits corrected in error correction decoding. In this case, the information output from the reception digital signal processor 224 is the number of bits subjected to error correction in error correction decoding.
  • the signal quality calculation method in the signal quality monitor 225 is not limited to the method described above, and any method may be used.
  • the frequency offset unit 226 calculates the frequency dither, that is, the polarity and amplitude level of the frequency shift added in the communication apparatus 1, and outputs the calculated dither polarity and amplitude level to the optical frequency interval calculation device 23. For example, the frequency offset unit 226 calculates the frequency of the signal received without the frequency dither, that is, the frequency of the data signal received from the received digital signal processor 224, and holds it as a reference frequency. When the frequency offset unit 226 receives the data signal received with the frequency dither added from the received digital signal processor 224, the frequency offset unit 226 calculates the frequency of the received data signal, and uses the calculated frequency and the reference frequency to dither. Calculate the polarity and amplitude level.
  • the frequency offset unit 226 updates the held reference frequency. Specifically, the frequency offset unit 226 adjusts the optical frequency of the subcarrier based on the frequency shift amount fed back from the optical frequency interval calculation device 23 in the optical transceivers 12-1 and 12-2 of the communication device 1. After that, the held reference frequency is updated.
  • the frequency offset unit 226 may be configured to update the reference frequency when a predetermined time has elapsed since the frequency shift amount is fed back, or received a notification from the communication device 1 that the adjustment has been completed. In this case, the reference frequency may be updated.
  • the optical signal generator 222 includes a light source 227 and an optical modulator 228.
  • the light source 227 emits continuous light.
  • Information indicating the frequency shift amount calculated by the optical frequency interval calculation device 23 is input to the optical modulator 228 as an electrical signal, and continuous light generated by the light source 227 is input.
  • the optical modulator 228 modulates the continuous light transmitted from the light source 227 according to the information on the frequency shift amount, generates an optical signal, and outputs the generated optical signal to the optical demultiplexer 21.
  • the optical signal generated by modulating the continuous light according to the information on the frequency shift amount is an optical signal indicating the frequency shift amount fed back to the optical transceiver 12-1 of the communication apparatus 1.
  • the optical transceiver 22-2 performs the same operation.
  • the signal quality, dither polarity, and amplitude level calculated by the optical transceiver 22-2 are output to the optical frequency interval arithmetic unit 23.
  • the optical transceiver 22-2 receives the information on the frequency shift amount calculated by the optical frequency interval calculation device 23, generates an optical signal indicating the frequency shift amount, and transmits the optical signal to the communication device 1.
  • the optical frequency interval calculation device 23 calculates the amount of frequency shift to be fed back to the communication device 1 based on the signal quality input from the optical transceivers 22-1 and 22-2, the dither polarity and amplitude level, respectively. .
  • the calculated frequency shift amount is an adjustment amount of the optical frequency of each subcarrier when the communication apparatus 1 changes the transmission rate. A method by which the optical frequency interval calculation device 23 calculates the frequency shift amount will be described later.
  • the communication device 1 includes the optical frequency shift synchronization device and the communication device 2 includes the optical frequency interval calculation device.
  • both the communication devices 1 and 2 are optical.
  • a frequency shift synchronization device and an optical frequency interval calculation device may be provided so that the optical frequency interval of subcarriers transmitted from the communication device 2 to the communication device 1 can be adjusted.
  • FIG. 9 is a flowchart illustrating an example of the operation of the communication apparatus 1 that adjusts the optical frequency of the subcarrier.
  • FIG. 10 is a flowchart illustrating an example of the operation of the communication device 2 facing the communication device 1 that adjusts the optical frequency of the subcarrier.
  • the first frequency dither having the same amplitude and the opposite polarity is given to the subcarriers # 1 and # 2, and is transmitted to the communication apparatus 2 for a certain time (step S11). ). That is, in the communication device 1, the optical frequency shift synchronization device 11 instructs the optical transceivers 12-1 and 12-2 to start transmission of subcarriers having the first frequency dither, and the optical transceiver 12-1 Starts transmission of SC # 1 having the first frequency dither, and the optical transceiver 12-2 starts transmission of SC # 2 having the first frequency dither.
  • the first frequency dither given to SC # 1 by the optical transceiver 12-1 is ⁇ f 1A shown in FIG. 7, and the first frequency dither given to SC # 2 by the optical transceiver 12-2 is shown in FIG. ⁇ f 2D .
  • the communication device 2 receives SC # 1 and SC # 2 having the first frequency dither transmitted from the communication device 1, calculates the signal quality of each received subcarrier, and each subcarrier has The frequency dither that is present is calculated (step S21). That is, the optical transceiver 22-1 of the communication device 2 calculates the signal quality Q 1A of SC # 1, calculates the frequency dither ⁇ f 1A possessed by SC # 1, and outputs it to the optical frequency interval calculation device 23. Then, the optical transceiver 22-2 calculates the signal quality Q 2D of SC # 2, calculates the frequency dither ⁇ f 2D possessed by SC # 2, and outputs it to the optical frequency interval arithmetic unit 23.
  • the signal quality Q 1A is calculated by the signal quality monitor 225 of the optical transceiver 22-1
  • the signal quality Q 2D is calculated by the signal quality monitor 225 of the optical transceiver 22-2
  • the frequency dither ⁇ f 1A is calculated by the optical signal.
  • the frequency offset unit 226 of the transceiver 22-1 performs the calculation, and the frequency dither ⁇ f 2D is calculated by the frequency offset unit 226 of the optical transceiver 22-2.
  • the communication apparatus 1 gives the second frequency dither having the same amplitude and the opposite polarity to the subcarriers # 1 and # 2, and transmits it to the communication apparatus 2 for a certain time (step S12). That is, in the communication device 1, the optical frequency shift synchronizer 11 performs sub-steps having the second frequency dither for the optical transceivers 12-1 and 12-2 after a predetermined time has elapsed since the execution of step S11. Instructs the start of carrier transmission. Then, the optical transceiver 12-1 starts transmission of SC # 1 having the second frequency dither, and the optical transceiver 12-2 starts transmission of SC # 2 having the second frequency dither.
  • the second frequency dither that the optical transceiver 12-1 gives to SC # 1 is ⁇ f 1B shown in FIG. 7
  • the second frequency dither that the optical transceiver 12-2 gives to SC # 2 is shown in FIG. ⁇ f 2C .
  • the communication device 2 receives SC # 1 and SC # 2 having the second frequency dither transmitted from the communication device 1, calculates the signal quality of each received subcarrier, and each subcarrier has A frequency dither is calculated (step S22). That is, the optical transceiver 22-1 of the communication apparatus 2 calculates the signal quality Q 1B of SC # 1, calculates the frequency dither ⁇ f 1B possessed by SC # 1, and outputs it to the optical frequency interval calculator 23. Then, the optical transceiver 22-2 calculates the signal quality Q 2C of SC # 2, calculates the frequency dither ⁇ f 2C possessed by SC # 2, and outputs it to the optical frequency interval arithmetic unit 23.
  • the signal quality Q 1B is calculated by the signal quality monitor 225 of the optical transceiver 22-1; the signal quality Q 2C is calculated by the signal quality monitor 225 of the optical transceiver 22-2; and the frequency dither ⁇ f 1B is calculated by the optical signal.
  • the frequency offset unit 226 of the transceiver 22-1 performs the calculation, and the frequency dither ⁇ f 2C is calculated by the frequency offset unit 226 of the optical transceiver 22-2.
  • the communication device 1 gives the third frequency dither having the same amplitude and the opposite polarity to the subcarriers # 1 and # 2, and transmits it to the communication device 2 for a certain time (step S13). That is, in the communication device 1, the optical frequency shift synchronizer 11 performs sub-steps having a third frequency dither for the optical transceivers 12-1 and 12-2 after a predetermined time has elapsed since the execution of step S12. Instructs the start of carrier transmission. Then, the optical transceiver 12-1 starts transmission of SC # 1 having the third frequency dither, and the optical transceiver 12-2 starts transmission of SC # 2 having the third frequency dither.
  • the third frequency dither given to SC # 1 by the optical transceiver 12-1 is ⁇ f 1C shown in FIG. 7, and the third frequency dither given to SC # 2 by the optical transceiver 12-2 is shown in FIG. ⁇ f 2B .
  • the communication device 2 receives SC # 1 and SC # 2 having the third frequency dither transmitted from the communication device 1, calculates the signal quality of each received subcarrier, and each subcarrier has The frequency dither is calculated (step S23). That is, the optical transceiver 22-1 of the communication apparatus 2 calculates the signal quality Q 1C of SC # 1, calculates the frequency dither ⁇ f 1C possessed by SC # 1, and outputs it to the optical frequency interval calculation apparatus 23. Then, the optical transceiver 22-2 calculates the signal quality Q 2B of SC # 2, calculates the frequency dither ⁇ f 2B of SC # 2, and outputs it to the optical frequency interval arithmetic unit 23.
  • the signal quality Q 1C is calculated by the signal quality monitor 225 of the optical transceiver 22-1
  • the signal quality Q 2B is calculated by the signal quality monitor 225 of the optical transceiver 22-2
  • the frequency dither ⁇ f 1C is calculated by the optical signal.
  • the frequency offset unit 226 of the transceiver 22-1 performs the calculation
  • the frequency dither ⁇ f 2B is calculated by the frequency offset unit 226 of the optical transceiver 22-2.
  • the communication device 1 gives the fourth frequency dither having the same amplitude and the opposite polarity to the subcarriers # 1 and # 2, and transmits it to the communication device 2 for a predetermined time (step S14). That is, in the communication apparatus 1, the optical frequency shift synchronizer 11 performs sub-steps having a fourth frequency dither for the optical transceivers 12-1 and 12-2 after a predetermined time has elapsed since the execution of step S13. Instructs the start of carrier transmission. Then, the optical transceiver 12-1 starts transmission of SC # 1 having the fourth frequency dither, and the optical transceiver 12-2 starts transmission of SC # 2 having the fourth frequency dither.
  • the fourth frequency dither given to SC # 1 by the optical transceiver 12-1 is ⁇ f 1D shown in FIG. 7, and the fourth frequency dither given to SC # 2 by the optical transceiver 12-2 is shown in FIG. ⁇ f 2A .
  • the optical transceiver 12-1 terminates the transmission of the SC # 1 having the fourth frequency dither when a certain time has elapsed from the start of the transmission of the SC # 1 having the fourth frequency dither.
  • the unit 12-2 ends the transmission of the SC # 2 having the fourth frequency dither when a certain time has elapsed since the start of the transmission of the SC # 2 having the fourth frequency dither.
  • the communication device 2 receives SC # 1 and SC # 2 having the fourth frequency dither transmitted from the communication device 1, calculates the signal quality of each received subcarrier, and each subcarrier has A frequency dither is calculated (step S24). That is, the optical transceiver 22-1 of the communication apparatus 2 calculates the signal quality Q 1D of SC # 1, calculates the frequency dither ⁇ f 1D possessed by SC # 1, and outputs it to the optical frequency interval calculation apparatus 23. Then, the optical transceiver 22-2 calculates the signal quality Q 2A of SC # 2, calculates the frequency dither ⁇ f 2A possessed by SC # 2, and outputs it to the optical frequency interval arithmetic unit 23.
  • the signal quality Q 1D is calculated by the signal quality monitor 225 of the optical transceiver 22-1
  • the signal quality Q 2A is calculated by the signal quality monitor 225 of the optical transceiver 22-2
  • the frequency dither ⁇ f 1D is calculated by the optical signal.
  • the frequency offset unit 226 of the transceiver 22-1 performs the calculation
  • the frequency dither ⁇ f 2A is calculated by the frequency offset unit 226 of the optical transceiver 22-2.
  • the communication device 1 transmits the amount of change in the signal band that accompanies the transmission rate change (step S15). That is, in the optical transceiver 12-1 of the communication apparatus 1, the data generation unit 127 generates a data signal including information on the amount of change in the signal band accompanying the change in transmission rate, and uses this data signal to perform optical modulation. The unit 125 generates and transmits an optical signal of SC # 1. Although the optical transceiver 12-1 transmits the change amount of the signal band accompanying the change of the transmission rate, the optical transceiver 12-2 may be configured to transmit.
  • the optical frequency adjustment amount of each subcarrier is calculated (step S25). That is, the optical frequency interval calculation device 23 of the communication device 2 uses the signal band change amount accompanying the transmission rate change and the signal qualities Q 1A , Q of the four types of SC # 1 calculated in the above steps S21 to S24.
  • FIG. 11 is a diagram illustrating a configuration example and an operation example of the optical frequency interval calculation device 23.
  • FIG. 12 is a diagram illustrating an example of a shift in the optimum subcarrier interval that occurs when the transmission rate is changed.
  • the optical frequency interval calculation device 23 includes calculation units 231 to 236, and these calculation units 231 to 236 execute the calculation shown below, thereby adjusting the optical frequency adjustment amount of each subcarrier.
  • FIG. 12 shows the relationship between the shift with respect to the optimum subcarrier interval before changing the transmission rate and the signal quality, and the calculation contents by each calculation unit.
  • the arithmetic unit 231 receives the signal quality Q 1A , Q 1B , Q 1C , Q 1D of SC # 1 from the signal quality monitor 225 of the optical transceiver 22-1 and the signal quality of the optical transceiver 22-2.
  • Signal quality Q 2A , Q 2B , Q 2C , Q 2D of SC # 2 is input from the monitor 225.
  • Frequency dithers ⁇ f 1A , ⁇ f 1B , ⁇ f 1C , and ⁇ f 1D possessed by SC # 1 are input from the frequency offset unit 226 of the optical transceiver 22-1 to the calculation unit 232, and the optical transceiver 22-2
  • Frequency dithers ⁇ f 2A , ⁇ f 2B , ⁇ f 2C , and ⁇ f 2D included in the SC # 2 are input from the frequency offset unit 226.
  • the calculation unit 231 performs minimum signal quality in each of the four types of optical frequency intervals, that is, min ⁇ Q 1A , Q 2A ⁇ , min ⁇ Q 1B , Q 2B ⁇ , min ⁇ Q 1C , Q 2C ⁇ , min ⁇ Q 1D , Q 2D ⁇ are calculated. Further, the frequency divergence ⁇ f 2A ⁇ f 1A , ⁇ f 2B ⁇ f 1B , ⁇ f 2C ⁇ f 1C , ⁇ f with respect to the frequency interval before the frequency interval change is calculated from the frequency dither that the arithmetic unit 232 has two subcarriers. 2D- ⁇ f 1D is calculated.
  • the calculation unit 233 has min ⁇ Q 1A , Q 2A ⁇ , min ⁇ Q 1B , Q 2B ⁇ , min ⁇ Q that are the minimum Q values in the four types of optical frequency intervals calculated by the calculation unit 231.
  • the processing of the calculation unit 233 is expressed by the following equation (1).
  • the optical frequency interval computing device 23 compares the absolute values
  • the arithmetic unit 234 uses the signal band change amount k accompanying the transmission rate change and the a 1 , a 2 , b 1 , b 2 calculated by the arithmetic unit 233 to center the estimated optimum subcarrier interval.
  • a Q value is calculated so that the Q value deteriorated by the band narrowing and the Q value deteriorated by the interference become equal.
  • the calculated Q value be Q e .
  • the process of the calculating part 234 is represented by following Formula (2).
  • the calculation unit 235 uses the a 1 , a 2 , b 1 , b 2 calculated by the calculation unit 233 and Q e calculated by the calculation unit 234 to use the optimum subcarriers before and after changing the transmission rate.
  • the interval deviation amount fe is calculated according to the following equation (3).
  • the calculation unit 236 uses the fe calculated by the calculation unit 235 to set the estimated optimum subcarrier interval, and the optical frequency shift amount ⁇ f 1 of subcarrier # 1 and the subcarrier # 2 An optical frequency shift amount ⁇ f 2 is calculated.
  • the processing of the calculation unit 236 is expressed by the following equation (4).
  • the optical frequency shift amounts ⁇ f 1 and ⁇ f 2 calculated by the calculation unit 236 become the optical frequency adjustment amount of each subcarrier.
  • Step S26 the optical transmitter / receiver 22-1 puts the information of the optical frequency adjustment amount of SC # 1, that is, the optical frequency shift amount ⁇ f 1 calculated by the optical frequency interval calculation device 23, on the optical signal.
  • the optical transceiver 22-2 transmits the optical frequency adjustment amount of SC # 2, that is, the information of the optical frequency shift amount ⁇ f 2 calculated by the optical frequency interval computing device 23 to the optical signal. Is transmitted to the optical transceiver 12-2 of the communication apparatus 1. As a result, the optical frequency adjustment amount of each subcarrier is fed back to the communication apparatus 1.
  • the communication device 1 When the communication device 1 acquires the information on the optical frequency adjustment amount of each subcarrier fed back from the communication device 2 (step S16), the communication device 1 adjusts the optical frequency of each subcarrier based on the acquired optical frequency adjustment amount. (Step S17). That is, the optical transceiver 12-1 adjusts the optical frequency of SC # 1 according to the optical frequency shift amount ⁇ f 1 acquired from the communication apparatus 2, and the optical transceiver 12-2 acquires the optical frequency shift acquired from the communication apparatus 2. The optical frequency of SC # 2 is adjusted according to the amount ⁇ f 2 . As a result, the optical frequency interval between the two subcarriers transmitted by the communication apparatus 1, that is, the interval between the optical frequency of SC # 1 and the optical frequency of SC # 2, is adjusted to the optimum value after changing the transmission rate.
  • step S15 for transmitting the change amount of the signal band accompanying the change in the transmission rate is executed. However, this processing is executed before steps S11 to S14. May be.
  • the optical transceivers 22-1 and 22-2 of the communication device 2 may transmit the optical frequency adjustment amount of each subcarrier separately from the data signal transmitted to the communication device 1, or together with the data signal. May be sent to.
  • the communication device 2 may be used to modulate the optical signal by inputting it to the optical modulator 228 together with the data signal.
  • the communication device 2 may transmit using the available area in the data frame that is a frame for transmitting the data signal. Good.
  • the configuration of the optical transceivers 22-1 and 22-2 of the communication apparatus 2 is as shown in FIG. That is, the optical transceivers 22-1 and 22-2 have a configuration in which an OTN framer 229 is added to the configuration of the optical transceiver shown in FIG.
  • the OTN framer 229 is configured to receive the data signal and the optical frequency adjustment amount of each subcarrier.
  • the OTN framer 229 generates an OTN frame in which the data signal and the optical frequency adjustment amount of each subcarrier are stored. Output to the optical modulator 228.
  • the optical frequency adjustment amount of each subcarrier may be transmitted using the dark fiber.
  • the signal output from the optical demultiplexer 21 of the communication device 2 can be output to the dark fiber, and the signal via the dark fiber can be input to the optical coupler 13 of the communication device 1.
  • the optical frequency adjustment amount of each subcarrier may be transmitted using a free optical frequency that is not used for data transmission, that is, a free wavelength.
  • the light sources 124 and 227 are realized by, for example, a semiconductor laser.
  • the optical modulators 125 and 228 are realized by an optical modulator such as an LN (lithium niobate) modulator or an InP (indium phosphide) modulator.
  • the optical frequency shifter 126 is realized by an electronic circuit that shifts and outputs the frequency of the data signal when a data signal that is an electrical signal is input.
  • the data generator 127 includes an encoder, a modulator, a modem, and the like, and is realized by an electronic circuit that performs encoding, modulation, and the like on information to be transmitted.
  • the reception digital signal processors 128 and 224 include a decoder, a demodulator, a modem, and the like, and are realized by an electronic circuit that restores information included in the received signal.
  • the coherent receivers 129 and 223 include a beam combiner, a photodiode, an analog / digital converter, and the like, and are realized by an optical receiving circuit that converts an optical signal into an electric signal.
  • Each component of the optical frequency shifter 126, the signal quality monitor 225, the frequency offset unit 226, and the OTN framer 229 includes a dedicated processing circuit or a processor and a memory for realizing the functions of these components. This is realized by a configured control circuit.
  • the hardware configuration when each of these components is realized by a dedicated processing circuit is as shown in FIG.
  • the processing circuit 101 shown in FIG. 14 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. It is a thing.
  • the signal quality monitor 225, the frequency offset unit 226, and the OTN framer 229 may be realized by a single processing circuit 101, or may be realized by an individual processing circuit 101 for each component. May be.
  • the processor 102 shown in FIG. 15 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP), system LSI (Large Scale Integration), or the like.
  • the memory 103 is nonvolatile or volatile, such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory), etc.
  • a semiconductor memory is generally used.
  • the optical frequency shifter 126, the signal quality monitor 225, the frequency offset unit 226, and the OTN framer 229 are realized by the processor 102 reading the corresponding program from the memory 103 and executing it.
  • the optical frequency shifter 126, the signal quality monitor 225, the frequency offset unit 226, and the OTN framer 229 are partly realized by the processing circuit 101 shown in FIG. 14, and the rest are the processor 102 and the memory 103 shown in FIG. It may be a configuration realized by.
  • the optical frequency shift synchronization device 11 and the optical frequency interval calculation device 23 are the same as the processing circuit 101 shown in FIG. This is realized by the processor 102 and the memory 103.
  • the communication device on the receiving side of each subcarrier includes an optical frequency interval calculation device, and calculates the adjustment amount of the optical frequency of each subcarrier required when the transmission rate is changed.
  • the communication device on the transmission side that is, the transmission rate changing side may include an optical frequency interval calculation device, and the communication device on the transmission side may calculate the optical frequency adjustment amount itself.
  • the receiving communication apparatus calculates the signal quality of each subcarrier given the frequency dither and feeds back to the transmitting communication apparatus.
  • the frequency dither given to each subcarrier does not need to be fed back because the transmitting communication device is known. That is, the communication device on the receiving side may not include the frequency offset device.
  • FIGS. 16 shows a configuration example of an optical transmission system
  • FIG. 17 shows a configuration example of an optical transceiver included in a transmission-side communication device
  • FIG. 18 shows a configuration of an optical transmission / reception device included in a reception-side communication device. An example is shown.
  • the communication device 1a on the transmission side includes the optical frequency interval calculation device 14 that performs the same processing as the optical frequency interval calculation device 23 shown in FIG.
  • the optical frequency interval calculation device 14 transmits from the optical frequency shift synchronization device 11 the first frequency dither information added to the subcarrier # 1 transmitted by the optical transceiver 12a-1 and the optical transceiver 12a-2. Information on the second frequency dither added to subcarrier # 2 is received. Further, the optical frequency interval calculation device 14 receives the signal quality of the subcarrier # 1 measured by the receiving-side communication device 2a from the optical transceiver 12a-1, and receives the signal quality of the subcarrier # 2 from the optical transceiver 12a-. Receive from 2.
  • the optical frequency interval calculation device 14 calculates the optical frequency adjustment amount of the subcarriers # 1 and # 2 in the same procedure as the optical frequency interval calculation device 23 described above, and calculates the calculated optical frequency adjustment amount of the subcarrier # 1. To the optical transceiver 12a-1, and notifies the optical transceiver 12a-2 of the calculated optical frequency adjustment amount of the subcarrier # 2.
  • the reception digital signal processor 128 demodulates the electrical signal output from the coherent receiver 129, and information on the signal quality of the subcarrier # 1 fed back from the communication device 2a. Is obtained, it is output to the optical frequency interval calculation device 14.
  • the optical frequency shifter 126 when notified of the optical frequency adjustment amount of the subcarrier # 1 from the optical frequency interval calculation device 14, electrically shifts the frequency of the data signal generated by the data generator 127 according to the notification content. To add. Other operations are the same as those of the optical transceiver 12-1.
  • the configuration and operation of the optical transceiver 12a-2 are the same as those of the optical transceiver 12a-1.
  • the optical transceiver 22a-1 shown in FIG. 18 has a configuration in which the signal quality information of the subcarrier # 1 calculated by the signal quality monitor 225 is input to the optical modulator 228, and the signal quality information of the subcarrier # 1 is received. Feedback to the communication device 1a.
  • the optical demodulator 221a has a configuration in which the frequency offset unit 226 is deleted from the optical demodulator 221 of the optical transceiver 22-1 shown in FIG.
  • the configuration and operation of the optical transceiver 22a-2 are the same as those of the optical transceiver 22a-1.
  • each optical signal in a state where the optical frequency is optimized in accordance with the transmission rate before the change.
  • the four types of frequency dithers having the same amplitude and opposite polarity are sequentially given to the optical signal, the optical frequency shift states are generated and transmitted, and the optical quality is based on the signal quality of each transmitted optical signal.
  • the adjustment amount calculated by the communication device on the receiving side is acquired, and the optical frequency of each optical signal is adjusted by the acquired adjustment amount.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • optical demultiplexer 100, 100a optical transmission system, 121, 222 optical signal generation unit, 122 transmission digital signal processing unit, 123, 221, 221a Optical demodulator, 124, 227 Light source, 125, 228 Optical modulator, 126 Frequency shifter, 127 Data generator, 128, 224 Receive digital signal processor, 129, 223 Coherent receiver, 225 Signal quality monitor, 226 Frequency offset unit, 229 OTN framer, 231 to 236 arithmetic unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

通信装置(1)は、第1の光周波数の光信号を送信する光送受信器(12-1)と、第2の光周波数の光信号を送信する光送受信器(12-2)と、を備え、伝送レートを変更する場合、光送受信器(12-1)は、第1の光周波数を低周波側および高周波側にシフトさせて4種類の第1の光信号を送信し、光送受信器(12-2)は、第2の光周波数を低周波側および高周波側にシフトさせて4種類の第2の光信号を送信し、光送受信器(12-1)が第1の光周波数をシフトさせる時には、光送受信器(12-2)が、第1の光周波数をシフトさせる方向の逆方向へ同じシフト量だけ第2の光周波数をシフトさせ、光送受信器(12-1)および光送受信器(12-2)は、4種類の第1の光信号の信号品質および4種類の第2の光信号の信号品質と、伝送レートの変更に伴う信号帯域の変化量とに基づいて決まる調整量で光周波数を調整する。

Description

通信装置、光伝送システムおよび周波数調整方法
 本発明は、複数の光信号を周波数多重で伝送する通信装置、光伝送システムおよび周波数調整方法に関する。
 幹線系光通信網では、1本の光ファイバ内において100Gbpsを超える大容量伝送、すなわち超100Gbps級の伝送が求められている。超100Gbps級の伝送を実現する手法として、サブキャリアとよばれる搬送波を極めて密に複数配置して信号伝送するスーパーチャネル伝送の検討が進んでいる。スーパーチャネル伝送は、光周波数の利用効率を高め、大容量化を実現する。
 しかし、スーパーチャネル伝送では、サブキャリアが光周波数上で高密度に配置されるため、隣接するサブキャリア間で干渉が発生し信号品質が劣化するという問題がある。
 また、幹線系光通信網のスーパーチャネル伝送では、伝送路中に波長選択用の光フィルタが多段に配置され、任意の複数のサブキャリアの信号の分波、合波および経路切り替えが行われる。このため、光フィルタの透過帯域以外のサブキャリア信号帯域が削られる現象すなわち信号帯域狭窄により、信号品質が劣化するという課題も存在する。
 幹線系光通信網のスーパーチャネル伝送において、スーパーチャネル信号の信号品質が最大化する条件は、全サブキャリアの信号品質が一定になるように各サブキャリアを配置すること、すなわち各サブキャリアの光周波数を調整することである。これ以降、スーパーチャネル信号の信号品質が最大となる場合のサブキャリア配置を最適なサブキャリア配置とよぶ。サブキャリアの種類は、光フィルタによる狭窄化の影響を受ける外側サブキャリアとそれ以外の内側サブキャリアに分類できる。外側サブキャリアとは、光フィルタの透過帯域の高周波側の端部に近いサブキャリアまたは低周波側の端部に近いサブキャリアである。外側サブキャリアは帯域狭窄を受けるサブキャリアである。周波数多重伝送の対象サブキャリアが2つの場合、2つのサブキャリアはともに、外側サブキャリアとなる。
 スーパーチャネル信号の信号品質を最大化する場合、外側サブキャリアはサブキャリア間干渉による信号品質劣化と帯域狭窄による信号品質劣化とが均衡するように光周波数を配置する。内側サブキャリアは、各内側サブキャリアが隣接するサブキャリアから受けるサブキャリア間干渉の影響が均衡するように光周波数を配置する。非特許文献1には、2つのサブキャリアを周波数多重伝送する場合を例とした、各サブキャリアの光周波数を調整する技術が記載されている。
小玉崇宏,吉田剛,佐野勇人,宇藤健一,鈴木巨生,野田雅樹,"サブキャリア間連携光周波数制御方式に関する一検討"、B-10-47,電子情報通信学会通信ソサイエティ大会2015.
 スーパーチャネル伝送では、伝送中に経由する光フィルタ数が少ない場合または各伝送区間の距離が短い場合、システムに要求される信号品質に対して過剰にマージンを持つことがある。すなわち、伝送可能な最大データ量よりも少ないデータ量のデータを伝送する状態となる場合がある。例えば、信号品質に対して本来使用可能な変調方式よりも変調多値数が少ない変調方式を使用している、または、データを誤り訂正符号化する際の符号化率が必要以上に低い、といった状態となる場合がある。
 そのため、スーパーチャネル信号内の伝送容量を信号品質のマージンに応じて変更可能とすることが望ましいと考えられる。また、新規ハードウェアを追加するなどのコストの増加が発生するのを回避しつつ、信号品質に応じて伝送容量を変更できるようにすることが望ましい。デジタル信号処理によってサブキャリア当たりの伝送容量を変更する手法を使用した場合、新規ハードウェアを追加することなくスーパーチャネル内の伝送容量を効率的に変更することが可能である。なお、これ以降、サブキャリア当たりの伝送容量を増大させることを伝送レート変更とよぶ。
 しかし、伝送レートを変更した場合には上述したサブキャリア間干渉による信号品質への影響と帯域狭窄による信号品質への影響との均衡が崩れて信号品質が劣化する可能性がある。
 本発明は、上記に鑑みてなされたものであって、伝送レートの変更に伴う信号品質の劣化を抑制可能な通信装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、第1の光周波数の光信号を送信する第1の光送受信器と、第2の光周波数の光信号を送信する第2の光送受信器と、を備える通信装置である。伝送レートを変更する場合、第1の光送受信器は、第1の光周波数を低周波側および高周波側のそれぞれに2段階ずつ順番にシフトさせて4種類の第1の光信号を送信し、第2の光送受信器は、第2の光周波数を低周波側および高周波側のそれぞれに2段階ずつ順番にシフトさせて4種類の第2の光信号を送信する。第1の光送受信器が第1の光周波数をシフトさせる時には、第2の光送受信器が、第1の光送受信器が第1の光周波数をシフトさせる方向の逆方向へ第1の光周波数のシフト量と同じシフト量だけ第2の光周波数をシフトさせる。また、第1の光送受信器および第2の光送受信器は、4種類の第1の光信号の信号品質および4種類の第2の光信号の信号品質と、伝送レートの変更に伴う信号帯域の変化量とに基づいて決まる調整量で第1の光周波数および第2の光周波数を調整する。
 本発明にかかる通信装置は、伝送レートの変更に伴う信号品質の劣化を抑制できる、という効果を奏する。
伝送レート変更と各サブキャリアの信号品質変化の関係の例を示す図 伝送容量増大後のサブキャリア間隔の最適点を示す図 伝送レート変更と各サブキャリアの信号品質変化の関係の他の例を示す図 伝送容量増大後のサブキャリア間隔の最適点を示す図 実施の形態にかかる光伝送システムの構成例を示す図 送信側の通信装置が備える光送受信器の構成例を示す図 各サブキャリアに与える周波数ディザの一例を示す図 受信側の通信装置が備える光送受信器の構成例を示す図 サブキャリアの光周波数を調整する通信装置の動作の一例を示すフローチャート サブキャリアの光周波数を調整する通信装置と対向している通信装置の動作の一例を示すフローチャート 光周波数間隔演算装置の構成例および動作例を示す図 伝送レート変更時に生じる最適サブキャリア間隔のずれの一例を示す図 受信側の通信装置が備える光送受信器の構成例を示す図 通信装置の光周波数シフト器、信号品質モニタ、周波数オフセット器およびOTNフレーマを実現するハードウェア構成の一例を示す図 通信装置の光周波数シフト器、信号品質モニタ、周波数オフセット器およびOTNフレーマを実現するハードウェアの他の例を示す図 光伝送システムの構成例を示す図 送信側の通信装置が備えている光送受信器の構成例を示す図 受信側の通信装置が備えている光送受信器の構成例を示す図
 以下に、本発明の実施の形態にかかる通信装置、光伝送システムおよび周波数調整方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
 本発明の詳細を説明する前に、まず、伝送レート変更とサブキャリアの信号品質の変化の関係について、簡単に説明する。
 図1は、伝送レート変更と各サブキャリアの信号品質変化の関係の例を示す図である。図1は、伝送レートの変更時に帯域狭窄よりもキャリア間干渉の影響が大きい場合の各サブキャリアの周波数配置と光フィルタの透過帯域の関係を示している。図1に示した例では、伝送レート変更後の各サブキャリア(SC#1,SC#2)の帯域が光フィルタの透過帯域内に収まっている。図1に示した例の場合、図2に示すように、伝送レート変更後の2つのサブキャリアの間隔であるSC(Sub Carrier)間隔の最適点はSC間隔が増大する方向にシフトする。すなわち、伝送レートを変更する場合には、低周波側のサブキャリア(SC#1)については低周波側に、高周波側のサブキャリア(SC#2)について高周波側に、それぞれシフトさせる必要がある。一般的に、変調度の多値数が増大するにつれて、キャリア間干渉の影響が帯域狭窄の影響に対して顕著になる傾向がある。
 図3は、伝送レート変更と各サブキャリアの信号品質変化の関係の他の例を示す図である。図3は、伝送レートの変更時にキャリア間干渉よりも帯域狭窄の影響が大きい場合の各サブキャリアの周波数配置と光フィルタの透過帯域の関係を示している。図3に示した例では、伝送レート変更後の各サブキャリアの帯域が光フィルタの透過帯域内に収まっていない。図3に示した例の場合、図4に示すように、伝送レート変更後のSC間隔の最適点はSC間隔が減少する方向にシフトする。すなわち、伝送レートを変更する場合には、低周波側のサブキャリア(SC#1)については高周波側に、高周波側のサブキャリア(SC#2)について低周波側に、それぞれシフトさせる必要がある。
 本願発明では、伝送レートを変更する際、変更後にキャリア間干渉と帯域狭窄とのどちらの影響が大きくなるのかを算出し、算出結果に従って各サブキャリアの光周波数を調整する。
実施の形態.
 図5は、本発明の実施の形態にかかる光伝送システムの構成例を示す図である。図5に示すように、本実施の形態の光伝送システム100は、通信装置1、通信装置2および伝送路3を備える。本実施の形態では、通信装置1から送信され伝送路3を介して通信装置2で受信される光信号の光周波数を調整する例を説明する。
 光伝送システム100は、スーパーチャネル方式により光信号であるサブキャリアを伝送する通信システムであり、例えば、幹線系光通信網と呼ばれる通信網である。図5では、2つのサブキャリアが多重される例を示しているが、多重されるサブキャリアの数はこの例に限定されない。なお、図5では、各構成要素を接続する線のうち光信号の経路を示す部分を実線で示し、電気信号の経路を示す部分を点線で示している。
 第1の通信装置である通信装置1は、光周波数シフト同期装置11と、光送受信器12-1および12-2と、光結合器13とを備える。光周波数シフト同期装置11は、光送受信器12-1および12-2を制御する制御装置であり、予め決められたディザが光周波数に与えられたサブキャリアを光送受信器12-1および12-2が同期したタイミングで送信するように制御する。ディザとは揺らぎのことである。ディザが光周波数に与えられたサブキャリア、すなわち、光周波数がディザ相当分シフトされたサブキャリアは、伝送レートを変更する際に送信する光信号であり、変更後の伝送レートに合わせたサブキャリア間隔となるように各サブキャリアの光周波数を調整するための調整量の算出に用いられる。調整量の算出はディザが光周波数に与えられたサブキャリアを受信する通信装置2が行う。
 光送受信器12-1は、第1のサブキャリアであるサブキャリア#1の光信号を生成して出力する。光送受信器12-2は、第2のサブキャリアであるサブキャリア#2の光信号を生成して出力する。第1のサブキャリアと第2のサブキャリアとは、それぞれ光周波数の異なるすなわち光波長の異なる搬送波である。光送受信器12-1は、第1の光周波数の光信号を送信する第1の光送受信器、光送受信器12-2は、第2の光周波数の光信号を送信する第2の光送受信器である。
 光結合器13は、光送受信器12-1から出力される光信号と光送受信器12-2から出力される光信号とを結合して伝送路3へ出力する。また、光結合器13は、伝送路3経由で通信装置2から受信した光信号を2つに分波し、一方を光送受信器12-1へ他方を光送受信器12-2へ出力する。
 第2の通信装置である通信装置2は、光分波器21と、光送受信器22-1および22-2と、光周波数間隔演算装置23とを備える。光分波器21は、伝送路3経由で通信装置1から受信した光信号を2つに分波し、一方を光送受信器22-1へ他方を光送受信器22-2へ出力する。本実施の形態では、光分波器21は、サブキャリア#1を光送受信器22-1へ出力し、サブキャリア#2を光送受信器22-2へ出力する。また、光分波器21は、光送受信器22-1から出力される光信号と光送受信器22-2から出力される光信号とを結合して伝送路3へ出力する。光周波数間隔演算装置23は、光送受信器22-1および光送受信器22-2において算出された各サブキャリアの信号品質を用いて、伝送レート変更後に通信装置1から送信されるサブキャリア#1および#2の間隔を最適化するための各サブキャリアの光周波数のシフト量すなわち調整量を算出する。光周波数間隔演算装置23は、伝送レートの変更に伴いサブキャリア#1および#2の光周波数を調整する場合の各サブキャリアの光周波数の調整量を算出する調整量算出部である。
 図5に示した本実施の形態にかかる光伝送システムにおいて、通信装置1は、伝送レートを変更する場合、各サブキャリアの光周波数に複数種類のディザを順番に与えて送信する。通信装置2は、ディザが与えられた複数種類のサブキャリアを受信すると、ディザが与えられたサブキャリアの信号品質に基づいて、伝送レート変更後の各サブキャリアの間隔を最適化するための光周波数の調整量を算出し、通信装置1へフィードバックする。通信装置1は、光周波数の調整量のフィードバックを受けると、フィードバックされた調整量に従い、送信する各サブキャリアの光周波数を調整する。これにより、伝送レートの変更に伴う信号品質の劣化を抑制が可能となる。通信装置1は、送信する各サブキャリアの光周波数の調整が終了すると、次に伝送レートが変更されるまで、調整後の光周波数のサブキャリア、すなわち伝送レートに合わせて最適化された光周波数のサブキャリアを生成して送信する。
 ここで、本実施の形態にかかる光伝送システムにおけるサブキャリアの間隔を最適化する動作で利用する技術事項について簡単に説明する。光伝送システムにおいて、サブキャリアの間隔と光通信で用いられる信号品質値であるQ値との関係は、横軸がサブキャリアの間隔を示し、縦軸がQ値を示す場合、Q値が最大となる最適サブキャリア間隔を中心として、およそ二次関数で近似できる。これは、Q値が6dBから10dBの範囲ではOSNR(Optical Signal-to-Noise Ratio、光信号対雑音比)の線形劣化に対するQ値変化が二次近似できる特性のためである。また、サブキャリア間隔の変化が小さい領域、例えば変化が2GHz未満といった領域では、サブキャリア間隔対Q値の関係は一次関数として近似できる。本実施の形態にかかる光伝送システムにおいては、この関係を利用し、狭間隔側および広間隔側のそれぞれに対して2点ずつQ値を用いて線形近似することで、伝送レート変更後の主要因が狭間隔側で生じる干渉の影響および広間隔側で生じる帯域狭窄の影響のいずれが支配的であるかを推定する。そして、最適な光周波数間隔に近づけるための各サブキャリアの周波数シフト量を算出する。
 なお、伝送レート変更量がサブキャリア当たり1GBaud程度よりも大きくなると一次関数として近似することができない。そのため、システムに要求される信号品質に対してマージンが十分あり伝送レートを大きく増大できる場合には、複数回に分割して伝送レートの増大および光周波数間隔の調整を行うことにより、この問題を回避することができる。
 図6は、送信側の通信装置1が備える光送受信器の構成例を示す図である。通信装置1を構成している光送受信器12-1および12-2の構成は同一である。ここでは光送受信器12-1について説明する。
 図6に示すように、光送受信器12-1は、光信号生成部121、送信デジタル信号処理部122および光復調部123を備える。
 光信号生成部121は、光源124および光変調器125を備える。光源124は連続光を送出する。光変調器125は、光源124から送出された連続光を送信デジタル信号処理部122から入力される電気信号であるデータ信号に応じて変調して光信号を生成し、生成した光信号を光結合器13へ出力する。
 送信デジタル信号処理部122は、光周波数シフト器126およびデータ生成器127を備える。データ生成器127は、データ信号を生成する。具体的には、データ生成器127は、例えば、送信する情報を誤り訂正符号化する処理、2値位相変調(BPSK:Binary Phase Shift Keying)、4値位相変調(QPSK:Quadrature Phase Shift Keying)または16値振幅位相変調(16QAM(Quadrature Amplitude Modulation))等の変調方式に応じてシンボルマッピングする処理、信号のスペクトルを整形する処理等を行ってデータ信号を生成する。データ生成器127の具体的な処理内容およびデータ生成器の構成については特に制約はない。伝送レートを変更する場合、データ生成器127には、伝送レートの変更に伴う信号帯域の変化量の情報が入力される。この情報は、変更後の伝送レートに合わせたサブキャリア間隔となるように各サブキャリアの光周波数を調整するための調整量を通信装置2が算出する際に用いられる。信号帯域の変化量の情報は、例えば、図示を省略した入力部を介して、ネットワークの管理者または光伝送システム全体を管理する管理装置などからデータ生成器127へ入力される。信号帯域の変化量は伝送レート変更前後のスーパーチャネル信号内に含まれる信号帯域の変化量とする。例えば、2サブキャリアから構成されるスーパーチャネル信号において、1サブキャリア当たりの伝送レートが33GBaudから34GBaudに変化した場合、1サブキャリアあたりの信号帯域変化量は1GHzとなり、スーパーチャネル信号全体で変化した信号帯域である2GHzが信号帯域の変化量となる。データ生成器127は、伝送レートの変更に伴う信号帯域の変化量が入力された場合、入力された変化量に基づいてデータ信号を生成する。なお、伝送レートの変更に伴う信号帯域の変化量は、光送受信器12-1および12-2のいずれか一方が送信すればよい。本実施の形態では、光送受信器12-1に対して伝送レートの変更に伴う信号帯域の変化量が入力され、光送受信器12-1が伝送レートの変更に伴う信号帯域の変化量を送信するものとして説明を行う。
 光周波数シフト器126は、データ生成器127で生成されたデータ信号に対し、通信装置2の光周波数間隔演算装置23で算出された、光送受信器12-1が送信するサブキャリアの周波数シフト量の周波数シフトを電気的に付加する。また、光周波数シフト器126は、光周波数シフト同期装置11から指示を受けた場合、光信号生成部121が生成する光信号であるサブキャリアに対して周波数ディザを与える。なお、周波数ディザは、周波数の揺らぎのことであるため、サブキャリアの光周波数を増加させる場合もあるし、光周波数を減少させる場合もある。すなわち、周波数ディザの周波数の極性は+の場合もあれば-の場合もある。以下、周波数ディザの極性を、単に「ディザの極性」と呼ぶ。また、周波数ディザの振幅は複数の値をとる。以下、周波数ディザの各振幅を、単に「ディザの振幅レベル」と呼ぶ。ディザの極性は、光周波数をシフトさせる方向を示す。極性が+の周波数ディザが付加されると、サブキャリアの光周波数は高周波側にシフトされ、極性が-の周波数ディザが付加されると、ブキャリアの光周波数は低周波側にシフトされることになる。光周波数シフト器126がサブキャリアに与える周波数ディザは、一定時間ある極性の振幅レベルを持つ。周波数ディザは、光周波数シフト器126が電気クロック信号を用いて一定時間間隔ごとに極性および振幅レベルを変更して周波数シフト量を変化させることにより、サブキャリアに与えられる。
 図7は、通信装置1において各サブキャリアに与える周波数ディザの一例を示す図である。図7の上段は、光送受信器12-1の光周波数シフト器126がサブキャリア#1に与える周波数ディザを示し、図7の下段は、光送受信器12-2の光周波数シフト器126がサブキャリア#2に与える周波数ディザを示す。図7に示したように、通信装置1は、各サブキャリアに対して予め定めた周波数の振幅が4種類の周波数ディザを順番に与える。すなわち、通信装置1において、光送受信器12-1および12-2の光周波数シフト器126は、それぞれ、最適光周波数間隔となる各サブキャリアの光周波数fmに対して極性が逆の4種類のディザを順番に与えることにより、4種類の異なる光周波数間隔ディザを生成する。最適光周波数間隔とは、サブキャリア間干渉による信号品質への影響と信号帯域狭窄による信号品質への影響とが均衡し、信号品質が最大となる光周波数の間隔である。4種類の光周波数間隔ディザは、最適光周波数間隔に対して狭間隔側すなわち周波数間隔が狭くなる側に2種類、広間隔側すなわち周波数間隔が広くなる側に2種類で構成される。図7に示した例の場合、光送受信器12-1および12-2は、まず、サブキャリア#1と#2との光周波数間隔を最も狭くする第1の周波数ディザ(δf1A,δf2D)をサブキャリア#1および#2にそれぞれ与え、一定時間が経過すると、第2の周波数ディザ(δf1B,δf2C)をサブキャリア#1および#2にそれぞれ与え、以下、第3の周波数ディザ(δf1C,δf2B)、第4の周波数ディザ(δf1D,δf2A)をサブキャリア#1および#2に順番に与える。このように、光送受信器12-1は、サブキャリア#1の光信号の光周波数f1を低周波側および高周波側のそれぞれに2段階ずつ順番にシフトさせて光周波数が異なる4種類の光信号を送信し、光送受信器12-2は、サブキャリア#2の光信号の光周波数f2を低周波側および高周波側のそれぞれに2段階ずつ順番にシフトさせて光周波数が異なる4種類の光信号を送信する。また、光送受信器12-1がサブキャリア#1の光周波数f1をシフトさせる時、光送受信器12-2は、光送受信器12-1が光周波数f1をシフトさせる方向の逆方向へ、光送受信器12-1と同じシフト量だけサブキャリア#2の光周波数f2をシフトさせる。
 なお、光送受信器12-1および12-2が各サブキャリアに4種類の周波数ディザを与える順番は図7に示したものである必要はなく、4種類の周波数ディザが与えられた4種類のサブキャリアが送信されるのであればどのような順番であってもよい。ただし、ある時刻において光送受信器12-1がサブキャリア#1に与える周波数ディザと光送受信器12-2がサブキャリア#2に与える周波数ディザの関係は、振幅レベルが同じで極性が逆であるものとする。
 光復調部123は、受信デジタル信号処理器128およびコヒーレントレシーバ129を備える。コヒーレントレシーバ129には光信号生成部121の光源124で生成された連続光が入力される。入力される連続光の光周波数は光送受信器12-1が対向する通信装置2から受信する光信号の光周波数と同じである。
 コヒーレントレシーバ129は、通信装置2から伝送路3および光結合器13を介して受信した光信号を電気信号に変換して出力する。具体的には、光結合器13から入力された光信号と光源124から送出された連続光とを干渉させることにより所望の波長の光を電気信号に変換する。受信デジタル信号処理器128は、コヒーレントレシーバ129から出力された電気信号を復調する。また、受信デジタル信号処理器128は、復調して得られたデータのうち通信装置2から通知された周波数シフト量を光周波数シフト器126へ出力する。なお、周波数シフト量は通信装置2の光周波数間隔演算装置23で算出される。
 図8は、受信側の通信装置2が備える光送受信器の構成例を示す図である。通信装置2を構成している光送受信器22-1および22-2の構成は同一である。ここでは光送受信器22-1について説明する。
 図8に示すように、光送受信器22-1は、光復調部221および光信号生成部222を備える。光復調部221は、コヒーレントレシーバ223、受信デジタル信号処理器224、信号品質モニタ225および周波数オフセット器226を備える。光信号生成部222は、光源227および光変調器228を備える。光源227が生成する光は光変調器228およびコヒーレントレシーバ223に入力される。
 光復調部221において、コヒーレントレシーバ223は、光分波器21から入力される光信号をコヒーレント検波して電気信号に変換する。すなわち、コヒーレントレシーバ223は、光分波器21から入力された光信号と光源227から送出された光とを干渉させることにより所望の波長の光を電気信号に変換する。光源227からコヒーレントレシーバ223に送出される光は、光分波器21からコヒーレントレシーバ223に入力される光信号と同じ光周波数の連続光である。
 受信デジタル信号処理器224は、送信側である通信装置1から送信された情報を復元する。例えば、送信側である通信装置1のデータ生成器127において、変調が施されている場合には変調に対応した復調を実施し、データ生成器127において誤り訂正符号化がなされている場合には誤り訂正復号を行う。また、受信デジタル信号処理器224は、伝送レート変更に伴う信号帯域の変化量が通信装置1から送信されてきた場合には信号帯域の変化量を光周波数間隔演算装置23へ出力する。
 信号品質モニタ225は、受信デジタル信号処理器224から出力される情報を用いて通信装置1から受信した信号の品質を算出し、算出した信号品質を光周波数間隔演算装置23へ出力する。信号品質モニタ225における信号品質の算出手法としては、例えば、複素平面上における受信信号点配置の雑音分布を用いて光信号の品質を示すQ値を算出する手法がある。この場合、受信デジタル信号処理器224から出力される情報は、複素平面上における受信信号点配置の雑音分布である。また、信号品質モニタ225における信号品質の他の算出手法としては、誤り訂正復号において誤り訂正されたビット数を用いてBER(Bit Error Rate:ビットエラーレート)を算出する手法がある。この場合、受信デジタル信号処理器224から出力される情報は、誤り訂正復号において誤り訂正されたビット数である。信号品質モニタ225における信号品質の算出手法は、上述した方法に限らずどのような方法を用いてもよい。
 周波数オフセット器226は、通信装置1において付加された周波数ディザすなわち周波数シフトの極性および振幅レベルを算出し、算出したディザの極性および振幅レベルを光周波数間隔演算装置23へ出力する。周波数オフセット器226は、例えば、周波数ディザが付加されていない状態で受信した信号すなわち受信デジタル信号処理器224から受け取ったデータ信号の周波数を算出して基準周波数として保持しておく。周波数オフセット器226は、周波数ディザが付加された状態で受信したデータ信号を受信デジタル信号処理器224から受け取ると、受け取ったデータ信号の周波数を算出し、算出した周波数と基準周波数とを用いてディザの極性および振幅レベルを算出する。光周波数間隔演算装置23が後述する方法で周波数シフト量を算出し、算出した周波数シフト量を通信装置1へフィードバックした場合、周波数オフセット器226は、保持している基準周波数を更新する。具体的には、周波数オフセット器226は、光周波数間隔演算装置23からフィードバックされた周波数シフト量に基づくサブキャリアの光周波数の調整が通信装置1の光送受信器12-1および12-2において行われた後、保持している基準周波数を更新する。周波数オフセット器226は、周波数シフト量がフィードバックされてから予め決められた時間が経過した場合に基準周波数を更新するようにしてもよいし、調整が完了した旨の通知を通信装置1から受けた場合に基準周波数を更新するようにしてもよい。
 光信号生成部222は、光源227および光変調器228を備える。光源227は、連続光を送出する。光変調器228には光周波数間隔演算装置23で算出された周波数シフト量を示す情報が電気信号として入力され、光源227で生成された連続光が入力される。光変調器228は、光源227から送出された連続光を周波数シフト量の情報に応じて変調して光信号を生成し、生成した光信号を光分波器21へ出力する。連続光を周波数シフト量の情報に応じて変調することにより生成される光信号は、通信装置1の光送受信器12-1へフィードバックする周波数シフト量を示す光信号である。
 光送受信器22-1の動作について説明したが、光送受信器22-2も同様の動作を行う。光送受信器22-2で算出された信号品質、ディザの極性および振幅レベルは光周波数間隔演算装置23へ出力される。また、光送受信器22-2は、光周波数間隔演算装置23で算出された周波数シフト量の情報を受け取り、周波数シフト量を示す光信号を生成して通信装置1へ送信する。
 光周波数間隔演算装置23は、光送受信器22-1および22-2からそれぞれ入力された信号品質と、ディザの極性および振幅レベルとに基づいて、通信装置1へフィードバックする周波数シフト量を算出する。算出する周波数シフト量は、通信装置1が伝送レートを変更する場合の各サブキャリアの光周波数の調整量である。光周波数間隔演算装置23が周波数シフト量を算出する方法については後述する。
 なお、本実施の形態では、簡単化のため、通信装置1が光周波数シフト同期装置を備え、通信装置2が光周波数間隔演算装置を備えるものとしたが、通信装置1および2の双方が光周波数シフト同期装置および光周波数間隔演算装置を備え、通信装置2が通信装置1へ送信するサブキャリアの光周波数間隔を調整できるようにしてもよい。
 つづいて、本実施の形態にかかる光伝送システムにおいて、送信側の通信装置である通信装置1がサブキャリアの光周波数を調整する動作について説明する。通信装置1がサブキャリアの光周波数を調整する動作は、通信装置1が伝送レートの変更実施を決定した場合に実行する。図9は、サブキャリアの光周波数を調整する通信装置1の動作の一例を示すフローチャートである。図10は、サブキャリアの光周波数を調整する通信装置1と対向している通信装置2の動作の一例を示すフローチャートである。
 通信装置1は、伝送レートの変更を決定すると、まず、振幅が同一かつ逆極性の第1の周波数ディザをサブキャリア#1および#2に与えて、通信装置2へ一定時間送信する(ステップS11)。すなわち、通信装置1において、光周波数シフト同期装置11が、光送受信器12-1および12-2に対して第1の周波数ディザを有するサブキャリアの送信開始を指示し、光送受信器12-1が第1の周波数ディザを有するSC#1の送信を開始し、光送受信器12-2が第1の周波数ディザを有するSC#2の送信を開始する。例えば、光送受信器12-1がSC#1に与える第1の周波数ディザは図7に示したδf1A、光送受信器12-2がSC#2に与える第1の周波数ディザは図7に示したδf2Dとする。
 通信装置2は、通信装置1から送信された第1の周波数ディザを有するSC#1およびSC#2を受信し、受信した各サブキャリアの信号品質を算出するとともに、各サブキャリアが有している周波数ディザを算出する(ステップS21)。すなわち、通信装置2の光送受信器22-1がSC#1の信号品質Q1Aを算出するとともにSC#1が有している周波数ディザδf1Aを算出して光周波数間隔演算装置23へ出力し、光送受信器22-2がSC#2の信号品質Q2Dを算出するとともにSC#2が有している周波数ディザδf2Dを算出して光周波数間隔演算装置23へ出力する。信号品質Q1Aの算出は光送受信器22-1の信号品質モニタ225が行い、信号品質Q2Dの算出は光送受信器22-2の信号品質モニタ225が行い、周波数ディザδf1Aの算出は光送受信器22-1の周波数オフセット器226が行い、周波数ディザδf2Dの算出は光送受信器22-2の周波数オフセット器226が行う。
 次に、通信装置1が、振幅が同一かつ逆極性の第2の周波数ディザをサブキャリア#1および#2に与えて、通信装置2へ一定時間送信する(ステップS12)。すなわち、通信装置1において、光周波数シフト同期装置11が、上記ステップS11を実行してから一定時間が経過後に、光送受信器12-1および12-2に対して第2の周波数ディザを有するサブキャリアの送信開始を指示する。そして、光送受信器12-1が第2の周波数ディザを有するSC#1の送信を開始し、光送受信器12-2が第2の周波数ディザを有するSC#2の送信を開始する。例えば、光送受信器12-1がSC#1に与える第2の周波数ディザは図7に示したδf1B、光送受信器12-2がSC#2に与える第2の周波数ディザは図7に示したδf2Cとする。
 通信装置2は、通信装置1から送信された第2の周波数ディザを有するSC#1およびSC#2を受信し、受信した各サブキャリアの信号品質を算出するとともに、各サブキャリアが有している周波数ディザを算出する(ステップS22)。すなわち、通信装置2の光送受信器22-1がSC#1の信号品質Q1Bを算出するとともにSC#1が有している周波数ディザδf1Bを算出して光周波数間隔演算装置23へ出力し、光送受信器22-2がSC#2の信号品質Q2Cを算出するとともにSC#2が有している周波数ディザδf2Cを算出して光周波数間隔演算装置23へ出力する。信号品質Q1Bの算出は光送受信器22-1の信号品質モニタ225が行い、信号品質Q2Cの算出は光送受信器22-2の信号品質モニタ225が行い、周波数ディザδf1Bの算出は光送受信器22-1の周波数オフセット器226が行い、周波数ディザδf2Cの算出は光送受信器22-2の周波数オフセット器226が行う。
 次に、通信装置1が、振幅が同一かつ逆極性の第3の周波数ディザをサブキャリア#1および#2に与えて、通信装置2へ一定時間送信する(ステップS13)。すなわち、通信装置1において、光周波数シフト同期装置11が、上記ステップS12を実行してから一定時間が経過後に、光送受信器12-1および12-2に対して第3の周波数ディザを有するサブキャリアの送信開始を指示する。そして、光送受信器12-1が第3の周波数ディザを有するSC#1の送信を開始し、光送受信器12-2が第3の周波数ディザを有するSC#2の送信を開始する。例えば、光送受信器12-1がSC#1に与える第3の周波数ディザは図7に示したδf1C、光送受信器12-2がSC#2に与える第3の周波数ディザは図7に示したδf2Bとする。
 通信装置2は、通信装置1から送信された第3の周波数ディザを有するSC#1およびSC#2を受信し、受信した各サブキャリアの信号品質を算出するとともに、各サブキャリアが有している周波数ディザを算出する(ステップS23)。すなわち、通信装置2の光送受信器22-1がSC#1の信号品質Q1Cを算出するとともにSC#1が有している周波数ディザδf1Cを算出して光周波数間隔演算装置23へ出力し、光送受信器22-2がSC#2の信号品質Q2Bを算出するとともにSC#2が有している周波数ディザδf2Bを算出して光周波数間隔演算装置23へ出力する。信号品質Q1Cの算出は光送受信器22-1の信号品質モニタ225が行い、信号品質Q2Bの算出は光送受信器22-2の信号品質モニタ225が行い、周波数ディザδf1Cの算出は光送受信器22-1の周波数オフセット器226が行い、周波数ディザδf2Bの算出は光送受信器22-2の周波数オフセット器226が行う。
 次に、通信装置1が、振幅が同一かつ逆極性の第4の周波数ディザをサブキャリア#1および#2に与えて、通信装置2へ一定時間送信する(ステップS14)。すなわち、通信装置1において、光周波数シフト同期装置11が、上記ステップS13を実行してから一定時間が経過後に、光送受信器12-1および12-2に対して第4の周波数ディザを有するサブキャリアの送信開始を指示する。そして、光送受信器12-1が第4の周波数ディザを有するSC#1の送信を開始し、光送受信器12-2が第4の周波数ディザを有するSC#2の送信を開始する。例えば、光送受信器12-1がSC#1に与える第4の周波数ディザは図7に示したδf1D、光送受信器12-2がSC#2に与える第4の周波数ディザは図7に示したδf2Aとする。なお、光送受信器12-1は、第4の周波数ディザを有するSC#1の送信を開始してから一定時間が経過すると第4の周波数ディザを有するSC#1の送信を終了し、光送受信器12-2は、第4の周波数ディザを有するSC#2の送信を開始してから一定時間が経過すると第4の周波数ディザを有するSC#2の送信を終了する。
 通信装置2は、通信装置1から送信された第4の周波数ディザを有するSC#1およびSC#2を受信し、受信した各サブキャリアの信号品質を算出するとともに、各サブキャリアが有している周波数ディザを算出する(ステップS24)。すなわち、通信装置2の光送受信器22-1がSC#1の信号品質Q1Dを算出するとともにSC#1が有している周波数ディザδf1Dを算出して光周波数間隔演算装置23へ出力し、光送受信器22-2がSC#2の信号品質Q2Aを算出するとともにSC#2が有している周波数ディザδf2Aを算出して光周波数間隔演算装置23へ出力する。信号品質Q1Dの算出は光送受信器22-1の信号品質モニタ225が行い、信号品質Q2Aの算出は光送受信器22-2の信号品質モニタ225が行い、周波数ディザδf1Dの算出は光送受信器22-1の周波数オフセット器226が行い、周波数ディザδf2Aの算出は光送受信器22-2の周波数オフセット器226が行う。
 次に、通信装置1が、伝送レート変更に伴う信号帯域の変化量を送信する(ステップS15)。すなわち、通信装置1の光送受信器12-1において、データ生成部127が、伝送レート変更に伴う信号帯域の変化量の情報を含んだデータ信号を生成し、このデータ信号を使用して光変調器125がSC#1の光信号を生成して送信する。なお、光送受信器12-1が伝送レートの変更に伴う信号帯域の変化量を送信するものとしたが、光送受信器12-2が送信する構成としてもよい。
 通信装置2は、伝送レート変更に伴う信号帯域の変化量を受信すると、受信した情報と、各周波数ディザが与えられた各サブキャリアの信号品質と、各サブキャリアが有している各周波数ディザとに基づいて、各サブキャリアの光周波数調整量を算出する(ステップS25)。すなわち、通信装置2の光周波数間隔演算装置23が、伝送レート変更に伴う信号帯域の変化量と、上記のステップS21~S24で算出された、4種類のSC#1の信号品質Q1A,Q1B,Q1C,Q1Dと、4種類のSC#2の信号品質Q2A,Q2B,Q2C,Q2Dと、4種類のSC#1がそれぞれ有している周波数ディザδf1A,δf1B,δf1C,δf1Dと、4種類のSC#2がそれぞれ有している周波数ディザδf2A,δf2B,δf2C,δf2Dと、を用いて、SC#1の光周波数調整量およびSC#2の光周波数調整量を算出する。
 ここで、光周波数間隔演算装置23による光周波数調整量の算出方法について、図11および図12を参照しながら説明する。図11は、光周波数間隔演算装置23の構成例および動作例を示す図である。図12は、伝送レート変更時に生じる最適サブキャリア間隔のずれの一例を示す図である。
 図11に示したように、光周波数間隔演算装置23は、演算部231~236を備え、これらの演算部231~236が以下に示す演算を実行することにより、各サブキャリアの光周波数調整量を求める。図12では、伝送レート変更前の最適サブキャリア間隔に対するずれと信号品質の関係、および、各演算部による算出内容を示している。
 演算部231には、光送受信器22-1の信号品質モニタ225からSC#1の信号品質Q1A,Q1B,Q1C,Q1Dが入力されるとともに、光送受信器22-2の信号品質モニタ225からSC#2の信号品質Q2A,Q2B,Q2C,Q2Dが入力される。演算部232には、光送受信器22-1の周波数オフセット器226からSC#1が有している周波数ディザδf1A,δf1B,δf1C,δf1Dが入力され、光送受信器22-2の周波数オフセット器226からSC#2が有している周波数ディザδf2A,δf2B,δf2C,δf2Dが入力される。
 光周波数間隔演算装置23では、まず、演算部231が、4種類の光周波数間隔の状態のそれぞれにおける最小の信号品質、すなわちmin{Q1A,Q2A},min{Q1B,Q2B},min{Q1C,Q2C},min{Q1D,Q2D}を算出する。また、演算部232が、2つのサブキャリア有している周波数ディザから、周波数間隔変化前に対する4種類の周波数間隔変化量δf2A-δf1A,δf2B-δf1B,δf2C-δf1C,δf2D-δf1Dを算出する。
 次に、演算部233が、演算部231で算出された4種類の光周波数間隔の状態における最小Q値であるmin{Q1A,Q2A},min{Q1B,Q2B},min{Q1C,Q2C},min{Q1D,Q2D}、および、演算部232で算出された4種類の周波数間隔変化量δf2A-δf1A,δf2B-δf1B,δf2C-δf1C,δf2D-δf1Dから、最適光周波数間隔を中心に狭間隔側と広間隔側とに対してサブキャリア間隔と信号品質の関係をそれぞれ一次近似し、2種類の一次近似直線の傾きa1,a2と切片b1,b2とを算出する。この演算部233の処理は次式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 光周波数間隔演算装置23は、演算部233で算出した2つの直線の傾きの絶対値|a1|と|a2|とを比較することで伝送レート変更後に支配的となる信号品質劣化要因を推定できる。例えば、|a1|が大きい場合、干渉の影響が大きいと判断し、|a2|が大きい場合、帯域狭窄の影響が大きいと判断する。
 次に、演算部234が、伝送レート変更に伴う信号帯域の変化量kと演算部233で算出されたa1,a2,b1,b2とを用いて、推定最適サブキャリア間隔を中心として、帯域狭窄で劣化したQ値と干渉で劣化したQ値が等しくなるQ値を算出する。算出するQ値をQeとする。演算部234の処理は次式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 次に、演算部235が、演算部233で算出されたa1,a2,b1,b2と、演算部234で算出されたQeとを用いて、伝送レート変更前後の最適サブキャリア間隔ずれ量feを次式(3)に従って算出する。
Figure JPOXMLDOC01-appb-M000003
 次に、演算部236が、演算部235で算出されたfeを用いて、推定最適サブキャリア間隔とするために必要な、サブキャリア#1の光周波数シフト量Δf1およびサブキャリア#2の光周波数シフト量Δf2を算出する。演算部236の処理は次式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
 演算部236で算出した光周波数シフト量Δf1およびΔf2が各サブキャリアの光周波数調整量となる。
 図10の説明に戻り、通信装置2は、各サブキャリアの光周波数調整量を算出するステップS25の処理が終了すると、次に、算出した各サブキャリアの光周波数調整量を通信装置1へ送信する(ステップS26)。このステップS26では、光送受信器22-1が、SC#1の光周波数調整量、すなわち光周波数間隔演算装置23で算出された光周波数シフト量Δf1の情報を光信号に載せて通信装置1の光送受信器12-1へ送信し、光送受信器22-2が、SC#2の光周波数調整量、すなわち光周波数間隔演算装置23で算出された光周波数シフト量Δf2の情報を光信号に載せて通信装置1の光送受信器12-2へ送信する。この結果、各サブキャリアの光周波数調整量が通信装置1へフィードバックされる。
 通信装置1は、通信装置2からフィードバックされた、各サブキャリアの光周波数調整量の情報を取得すると(ステップS16)、取得した光周波数調整量に基づいて、各サブキャリアの光周波数を調整する(ステップS17)。すなわち、光送受信器12-1が、通信装置2から取得した光周波数シフト量Δf1に従いSC#1の光周波数を調整し、光送受信器12-2が、通信装置2から取得した光周波数シフト量Δf2に従いSC#2の光周波数を調整する。この結果、通信装置1が送信する2つのサブキャリアの光周波数間隔、すなわちSC#1の光周波数とSC#2の光周波数の間隔が、伝送レート変更後に対応した最適値に調整される。
 図9に示したフローチャートではステップS11~S14を実行した後に伝送レート変更に伴う信号帯域の変化量を送信するステップS15を実行することとしたが、この処理をステップS11~S14よりも前に実行してもよい。
 なお、通信装置2の光送受信器22-1および22-2は、各サブキャリアの光周波数調整量を、通信装置1へ送信するデータ信号とは別に送信してもよいし、データ信号と一緒に送信してもよい。通信装置2は、各サブキャリアの光周波数調整量をデータ信号と一緒に送信する場合、データ信号とともに光変調器228に入力するようにして、光信号の変調に用いられてもよい。また、通信装置2は、各サブキャリアの光周波数調整量をデータ信号と一緒に送信する場合、データ信号を送信するためのフレームであるデータフレーム内の利用可能な領域を用いて送信してもよい。例えば、データ信号が、ITU-T(International Telecommunication Union Telecommunication standardization sector) G.709で定められているOTN(Optical-channel Transport Unit)フレームのデータフレームとして送信される場合、データフレーム内のコミュニケーションチャネルを用いることができる。この場合、通信装置2の光送受信器22-1および22-2の構成は、図13に示したものとなる。すなわち、光送受信器22-1および22-2は、図8に示した光送受信器の構成に加えてOTNフレーマ229が追加された構成となる。OTNフレーマ229にはデータ信号および各サブキャリアの光周波数調整量が入力されるように構成され、OTNフレーマ229は、データ信号および各サブキャリアの光周波数調整量が格納されたOTNフレームを生成して光変調器228へ出力する。
 また、ダークファイバと呼ばれる空き光ファイバすなわち空き伝送路がある場合、ダークファイバを用いて各サブキャリアの光周波数調整量を伝送してもよい。この場合、通信装置2の光分波器21から出力された信号をダークファイバに出力可能であり、通信装置1の光結合器13にはダークファイバを経由した信号が入力可能であるとする。また、各サブキャリアの光周波数調整量は、データ伝送に使用していない空き光周波数すなわち空き波長を用いて伝送されもよい。
 つづいて、上述した通信装置1および2を実現するハードウェアの構成について説明する。通信装置1および2の構成要素のうち、光源124,227は、例えば半導体レーザで実現される。光変調器125,228は、LN(ニオブ酸リチウム)変調器、InP(インジウムリン)変調器などの光変調器で実現される。光周波数シフト器126は、電気信号であるデータ信号が入力されるとデータ信号の周波数をシフトさせて出力する電子回路で実現される。データ生成器127は、エンコーダー、モジュレータ、モデムなどを含み、送信する情報に対して符号化、変調などを実施する電子回路で実現される。受信デジタル信号処理器128,224は、デコーダ、デモジュレータ、モデムなどを含み、受信した信号に含まれている情報を復元する電子回路で実現される。コヒーレントレシーバ129,223は、ビームコンバイナ、フォトダイオード、アナログデジタル変換器などを含み、光信号を電気信号に変換する光受信回路で実現される。
 光周波数シフト器126、信号品質モニタ225、周波数オフセット器226およびOTNフレーマ229の各構成要素は、これらの構成要素のそれぞれの機能を実現する専用の処理回路、または、プロセッサとメモリとを含んで構成された制御回路で実現される。これらの各構成要素が専用の処理回路で実現される場合のハードウェア構成は図14に示したものとなる。図14に示した処理回路101は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものである。上記の各構成要素のうち、信号品質モニタ225、周波数オフセット器226およびOTNフレーマ229についてはこれらを1つの処理回路101でまとめて実現してもよいし構成要素ごとに個別の処理回路101で実現してもよい。
 また、上記の各構成要素がプロセッサとメモリとを含んで構成された制御回路で実現される場合のハードウェア構成は図15に示したものとなる。図15に示したプロセッサ102は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSPともいう)、システムLSI(Large Scale Integration)などである。メモリ103としては、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)等の、不揮発性または揮発性の半導体メモリが一般的に使用される。光周波数シフト器126、信号品質モニタ225、周波数オフセット器226およびOTNフレーマ229は、それぞれに対応するプログラムをプロセッサ102がメモリ103から読み出して実行することにより実現される。
 光周波数シフト器126、信号品質モニタ225、周波数オフセット器226およびOTNフレーマ229は、これらの一部が図14に示した処理回路101で実現され、残りが図15に示したプロセッサ102およびメモリ103で実現される構成であってもよい。
 光周波数シフト同期装置11および光周波数間隔演算装置23は、光周波数シフト器126、信号品質モニタ225、周波数オフセット器226およびOTNフレーマ229と同様に、図14に示した処理回路101または図15示したプロセッサ102およびメモリ103により実現される。
 なお、本実施の形態では、各サブキャリアの受信側の通信装置が光周波数間隔演算装置を備え、伝送レート変更に伴い必要とされる各サブキャリアの光周波数の調整量を算出することとしたが、送信側すなわち伝送レートを変更する側の通信装置が光周波数間隔演算装置を備え、光周波数の調整量を送信側の通信装置が自ら算出するようにしてもよい。この場合、受信側の通信装置は、周波数ディザが与えられた各サブキャリアの信号品質を算出して送信側の通信装置へフィードバックする。各サブキャリアに与えられた周波数ディザは送信側の通信装置が分かっているため、フィードバックしなくてもよい。すなわち、受信側の通信装置は、周波数オフセット器を備えていなくてもよい。この場合の光伝送システムおよび光送受信器の構成は図16~図18に示したものとなる。図16は光伝送システムの構成例を示し、図17は送信側の通信装置が備えている光送受信器の構成例を示し、図18が受信側の通信装置が備えている光送受信器の構成例を示している。
 図16に示した光伝送システム100aでは、送信側の通信装置1aが、図5などに示した光周波数間隔演算装置23と同様の処理を実行する光周波数間隔演算装置14を備える。光周波数間隔演算装置14は、光周波数シフト同期装置11から、光送受信器12a-1が送信するサブキャリア#1に付加された第1の周波数ディザの情報、光送受信器12a-2が送信するサブキャリア#2に付加された第2の周波数ディザの情報を受け取る。また、光周波数間隔演算装置14は、受信側の通信装置2aで測定されたサブキャリア#1の信号品質を光送受信器12a-1から受け取り、サブキャリア#2の信号品質を光送受信器12a-2から受け取る。また、光周波数間隔演算装置14は、上述した光周波数間隔演算装置23と同様の手順でサブキャリア#1および#2の光周波数調整量を算出し、算出したサブキャリア#1の光周波数調整量を光送受信器12a-1へ通知し、算出したサブキャリア#2の光周波数調整量を光送受信器12a-2へ通知する。
 図17に示した光送受信器12a-1において、受信デジタル信号処理器128は、コヒーレントレシーバ129から出力された電気信号を復調し、通信装置2aからフィードバックされたサブキャリア#1の信号品質の情報が得られた場合にはそれを光周波数間隔演算装置14へ出力する。光周波数シフト器126は、光周波数間隔演算装置14からサブキャリア#1の光周波数調整量が通知されると、通知内容に従い、データ生成器127で生成されたデータ信号に対して周波数シフトを電気的に付加する。これ以外の動作は上述した光送受信器12-1と同様である。光送受信器12a-2の構成および動作は光送受信器12a-1と同様である。
 図18に示した光送受信器22a-1は、信号品質モニタ225で算出したサブキャリア#1の信号品質の情報を光変調器228に入力させる構成とし、サブキャリア#1の信号品質の情報を通信装置1aにフィードバックする。光復調部221aは図8に示した光送受信器22-1の光復調部221から周波数オフセット器226を削除した構成である。光送受信器22a-2の構成および動作は光送受信器22a-1と同様である。
 以上のように、本実施の形態にかかる光伝送システムにおいて、送信側の通信装置は、伝送レートを変更する場合、変更前の伝送レートに合わせて光周波数が最適化された状態の各光信号に対して振幅が同一かつ逆極性の4種類の周波数ディザを順番に与え、光周波数のシフト状態が4種類の各光信号を生成して送信し、送信した各光信号の信号品質に基づいて受信側の通信装置で算出された調整量を取得して、取得した調整量で各光信号の光周波数を調整する。これにより、伝送レートの変更に伴い信号品質が過剰に劣化してしまうのを防止できる。すなわち、伝送レートを変更した後のサブキャリア間干渉による信号品質劣化と帯域狭窄による信号品質劣化とを均衡させて信号品質を最大化できる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1,2,1a,2a 通信装置、3 伝送路、11 光周波数シフト同期装置、12-1,12-2,22-1,22-2,12a-1,12a-2,22a-1,22a-2 光送受信器、13 光結合器、14,23 光周波数間隔演算装置、21 光分波器、100,100a 光伝送システム、121,222 光信号生成部、122 送信デジタル信号処理部、123,221,221a 光復調部、124,227 光源、125,228 光変調器、126 周波数シフト器、127 データ生成器、128,224 受信デジタル信号処理器、129,223 コヒーレントレシーバ、225 信号品質モニタ、226 周波数オフセット器、229 OTNフレーマ、231~236 演算部。

Claims (5)

  1.  第1の光周波数の光信号を送信する第1の光送受信器と、
     第2の光周波数の光信号を送信する第2の光送受信器と、
     を備え、
     伝送レートを変更する場合、
     前記第1の光送受信器は、前記第1の光周波数を低周波側および高周波側のそれぞれに2段階ずつ順番にシフトさせて4種類の第1の光信号を送信し、
     前記第2の光送受信器は、前記第2の光周波数を低周波側および高周波側のそれぞれに2段階ずつ順番にシフトさせて4種類の第2の光信号を送信し、
     前記第1の光送受信器が前記第1の光周波数をシフトさせる時には、前記第2の光送受信器が、前記第1の光送受信器が前記第1の光周波数をシフトさせる方向の逆方向へ前記第1の光周波数のシフト量と同じシフト量だけ前記第2の光周波数をシフトさせ、
     前記第1の光送受信器および前記第2の光送受信器は、前記4種類の第1の光信号の信号品質および前記4種類の第2の光信号の信号品質と、伝送レートの変更に伴う信号帯域の変化量とに基づいて決まる調整量で前記第1の光周波数および前記第2の光周波数を調整する、
     ことを特徴とする通信装置。
  2.  前記変化量を受信側の通信装置へ通知し、通知した変化量と前記4種類の第1の光信号の信号品質および前記4種類の第2の光信号の信号品質とに基づいて算出された前記調整量を前記受信側の通信装置から取得する、
     ことを特徴とする請求項1に記載の通信装置。
  3.  前記4種類の第1の光信号の信号品質および前記4種類の第2の光信号の信号品質を受信側の通信装置から取得し、取得した各信号品質および前記変化量に基づいて前記調整量を算出する調整量算出部、
     を備えることを特徴とする請求項1に記載の通信装置。
  4.  第1の通信装置および第2の通信装置を備えた光伝送システムであって、
     前記第1の通信装置は、
     第1の光周波数の光信号を送信する第1の光送受信器と、
     第2の光周波数の光信号を送信する第2の光送受信器と、
     を備え、
     伝送レートを変更する場合、
     前記第1の光送受信器は、前記第1の光周波数を低周波側および高周波側のそれぞれに2段階ずつ順番にシフトさせて4種類の第1の光信号を送信し、
     前記第2の光送受信器は、前記第2の光周波数を低周波側および高周波側のそれぞれに2段階ずつ順番にシフトさせて4種類の第2の光信号を送信し、
     前記第1の光送受信器が前記第1の光周波数をシフトさせる時には、前記第2の光送受信器が、前記第1の光送受信器が前記第1の光周波数をシフトさせる方向の逆方向へ前記第1の光周波数のシフト量と同じシフト量だけ前記第2の光周波数をシフトさせ、
     前記第2の通信装置は、
     前記4種類の第1の光信号の信号品質および前記4種類の第2の光信号の信号品質と、伝送レートの変更に伴う信号帯域の変化量とに基づいて、前記第1の光周波数の調整量および前記第2の光周波数の調整量を算出する調整量算出部、
     を備え、
     前記第1の光送受信器および前記第2の光送受信器は、前記調整量算出部で算出された前記調整量で前記第1の光周波数および前記第2の光周波数を調整する、
     ことを特徴とする光伝送システム。
  5.  第1の光周波数の光信号および第2の光周波数の光信号を送信する第1の通信装置と、前記光信号および前記光信号を受信する第2の通信装置とを備えた光伝送システムにおいて、伝送レートを変更する場合の周波数調整方法であって、
     前記第1の通信装置が、前記第1の光周波数を低周波側および高周波側のそれぞれに2段階ずつ順番にシフトさせて4種類の第1の光信号を送信する第1の送信ステップと、
     前記第1の通信装置が、前記第2の光周波数を低周波側および高周波側のそれぞれに2段階ずつ順番にシフトさせて4種類の第2の光信号を送信する第2の送信ステップと、
     前記第1の送信ステップで前記第1の光周波数をシフトさせる時には、前記第2の送信ステップで前記第1の光周波数をシフトさせる方向の逆方向へ前記第1の光周波数のシフト量と同じシフト量だけ前記第2の光周波数をシフトさせ、
     前記第2の通信装置が、前記4種類の第1の光信号の信号品質および前記4種類の第2の光信号の信号品質と、伝送レートの変更に伴う信号帯域の変化量とに基づいて、前記第1の光周波数の調整量および前記第2の光周波数の調整量を算出する調整量算出ステップと、
     前記第1の通信装置が、前記調整量算出ステップで算出された前記調整量で前記第1の光周波数および前記第2の光周波数を調整する調整ステップと、
     を含むことを特徴とする周波数調整方法。
PCT/JP2016/069508 2016-06-30 2016-06-30 通信装置、光伝送システムおよび周波数調整方法 WO2018003083A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069508 WO2018003083A1 (ja) 2016-06-30 2016-06-30 通信装置、光伝送システムおよび周波数調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069508 WO2018003083A1 (ja) 2016-06-30 2016-06-30 通信装置、光伝送システムおよび周波数調整方法

Publications (1)

Publication Number Publication Date
WO2018003083A1 true WO2018003083A1 (ja) 2018-01-04

Family

ID=60785192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069508 WO2018003083A1 (ja) 2016-06-30 2016-06-30 通信装置、光伝送システムおよび周波数調整方法

Country Status (1)

Country Link
WO (1) WO2018003083A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007104008A (ja) * 2005-09-30 2007-04-19 Fujitsu Ltd 光波長制御方法及びそのシステム
JP2016051988A (ja) * 2014-08-29 2016-04-11 富士通株式会社 光伝送システムおよび光伝送装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007104008A (ja) * 2005-09-30 2007-04-19 Fujitsu Ltd 光波長制御方法及びそのシステム
JP2016051988A (ja) * 2014-08-29 2016-04-11 富士通株式会社 光伝送システムおよび光伝送装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KODAMA, TAKAHIRO ET AL.: "A Study on Sub-carrier Collaborative Frequency Controlled Operation", PROCEEDINGS OF THE SOCIETY CONFERENCE OF IEICE, 25 August 2015 (2015-08-25), pages 211 *

Similar Documents

Publication Publication Date Title
JP6419395B2 (ja) 光通信装置および周波数制御方法
EP3202057B1 (en) Hitless, multi-rate optical transmission and reception
CN107113059B (zh) 利用多调制的离散多音调传输方法和系统
US20160197679A1 (en) Device and method for transmitting multicarrier signals
US9876603B2 (en) Parameter control for optical multicarrier signal
US9584256B2 (en) Adaptive error correction code for optical super-channels
US10601517B1 (en) Probabilistic shaping on eight-dimensional super-symbols
US11165502B2 (en) Optical transmission device and optical transmission system
US10700807B1 (en) Fiber input power selection for probabilistically shaped signals in optical networks
JP6214847B1 (ja) 通信装置およびサブキャリア信号配置方法
US8849128B2 (en) Multi-wavelength light source
JPWO2019004040A1 (ja) 光送信機、光受信機及び光伝送システム
US20210194596A1 (en) Low rate loss bit-level distribution matcher for constellation shaping
US20170264371A1 (en) Transmission apparatus and wavelength setting method
JP6407443B2 (ja) 通信装置、光伝送システムおよび光周波数制御方法
US20170134115A1 (en) Transmission apparatus, reception apparatus and modulation method
US10390116B1 (en) Optical modem line timing
JP7140106B2 (ja) 光通信システム及び光周波数制御方法
WO2018003083A1 (ja) 通信装置、光伝送システムおよび周波数調整方法
WO2018134889A1 (ja) 通信装置、光伝送システムおよび通信方法
US20240259716A1 (en) Systems and methods for optimization of transmission signal quality in point-to-multipoint networks
WO2015120894A1 (en) A method and apparatus for upgrading an optical node in an installed wdm network
Li et al. Flex-PAM modulation formats for future optical transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP