WO2018003014A1 - Elevator system - Google Patents

Elevator system Download PDF

Info

Publication number
WO2018003014A1
WO2018003014A1 PCT/JP2016/069128 JP2016069128W WO2018003014A1 WO 2018003014 A1 WO2018003014 A1 WO 2018003014A1 JP 2016069128 W JP2016069128 W JP 2016069128W WO 2018003014 A1 WO2018003014 A1 WO 2018003014A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
life
car
group management
approaching
Prior art date
Application number
PCT/JP2016/069128
Other languages
French (fr)
Japanese (ja)
Inventor
一文 平林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/069128 priority Critical patent/WO2018003014A1/en
Publication of WO2018003014A1 publication Critical patent/WO2018003014A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/02Control systems without regulation, i.e. without retroactive action
    • B66B1/06Control systems without regulation, i.e. without retroactive action electric
    • B66B1/14Control systems without regulation, i.e. without retroactive action electric with devices, e.g. push-buttons, for indirect control of movements
    • B66B1/18Control systems without regulation, i.e. without retroactive action electric with devices, e.g. push-buttons, for indirect control of movements with means for storing pulses controlling the movements of several cars or cages
    • B66B1/20Control systems without regulation, i.e. without retroactive action electric with devices, e.g. push-buttons, for indirect control of movements with means for storing pulses controlling the movements of several cars or cages and for varying the manner of operation to suit particular traffic conditions, e.g. "one-way rush-hour traffic"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions

Definitions

  • This invention relates to an elevator system in which the operation of a plurality of elevator cars is managed by a group management device.
  • the estimated value of the heat generation temperature change width of the power module for each car traveling pattern is registered in advance in association with the car traveling pattern.
  • the life judgment unit Based on the driving command from the main control unit, the life judgment unit accumulates the number of heat generations within the heat generation temperature change range corresponding to the car traveling pattern, and whether the power module has reached the life based on the accumulated number of heat generations Determine.
  • the heat generation temperature change width includes an element temperature change width ( ⁇ Tj) that is a temperature change width of a semiconductor element of the power module and a case temperature change width ( ⁇ Tc) that is a temperature change width of the case of the power module. .
  • the life determination unit determines whether the power module has reached the life using both the estimated value of the element temperature change width and the estimated value of the case temperature change width.
  • the life determination unit calculates a thermal fatigue degree that is a ratio of the accumulated number of heat generations to the allowable number of heat generations, calculates an elapsed period from a preset determination start reference time to a thermal fatigue level calculation time, Based on the rate of increase in the degree of thermal fatigue during the elapsed period, the life reaching time of the power module is predicted.
  • the main control unit When it is determined by the life determination unit that the power module has reached the life, the main control unit lowers the acceleration and deceleration of the car from the acceleration and deceleration of the car during normal operation, respectively (for example, Patent Document 1). reference).
  • the present invention has been made to solve the above-described problems, and provides an elevator system that can prevent deterioration of serviceability when the remaining life of the inverter is shortened while preventing failure of the inverter.
  • the purpose is to obtain.
  • the elevator system includes a car, a counterweight, a hoist that raises and lowers the car and the counterweight, an inverter that supplies electric power to the hoist, and controls the inverter to operate a corresponding car.
  • Estimated and estimated temperature changes of the monitored inverter that is at least one of a plurality of elevators each having an operation control unit that controls the elevator, a group management device that assigns elevators to calls, and inverters
  • a life estimation unit that estimates the remaining life of the monitored inverter based on the temperature change is provided, and the group management device compares the remaining life estimation value obtained from the life estimation unit with the remaining life threshold value, and the remaining life estimation value is When a life approaching inverter that is an inverter that has fallen below the life threshold is detected, the allocation of the restrained car that is the car corresponding to the life approaching inverter is determined as approaching the life.
  • the elevator system includes a car, a counterweight, a hoisting machine that raises and lowers the car and the counterweight, an inverter that supplies power to the hoisting machine, and an inverter that controls the corresponding car.
  • a plurality of elevators each having an operation control unit that controls the operation of the group, a group management device that assigns elevators to calls, and a temperature change of a monitored inverter that is at least two of the inverters,
  • a life estimation unit that estimates the remaining life of the inverter to be monitored based on the estimated temperature change is provided, and the group management device compares the remaining life estimation values obtained from the life estimation unit and compares the remaining life estimation values relative to each other.
  • the inverter with the smaller estimated remaining life is made the life approaching inverter, and the restraint pair that is a car corresponding to the life approaching inverter is used.
  • the allocation of the car corresponding to the life approaching inverter is suppressed by the group management device more than before the detection of the life approaching inverter, so that the remaining life of some inverters can be prevented while preventing the failure of the inverter. Even when the system becomes shorter, it is possible to suppress a decrease in serviceability of the entire system.
  • FIG. 1 is a block diagram mainly showing blocks of an elevator system according to Embodiment 1 of the present invention.
  • the elevator system according to the first embodiment includes first to third elevators 100, 200, and 300, and a group management device 400 that manages these elevators 100, 200, and 300 as a group.
  • the configurations of the second and third elevators 200 and 300 are omitted in FIG. 1, they are the same as the configuration of the first elevator 100.
  • the group management device 400 selects and assigns one of the elevators 100, 200, and 300 to the call.
  • the car 1 and the counterweight 2 are suspended in the hoistway by the suspension body 3 and are raised and lowered by the driving force of the hoisting machine 4.
  • the suspension body 3 a plurality of ropes or a plurality of belts are used.
  • the hoisting machine 4 includes a drive sheave 5, a hoisting machine motor 6 that rotates the driving sheave 5, a hoisting machine brake (not shown) that brakes the rotation of the driving sheave 5, and the rotational speed of the hoisting machine motor 6. It has a speed detector 7 for detecting the magnetic pole position.
  • the suspension body 3 is wound around the drive sheave 5. For example, an encoder or a resolver is used as the speed detector 7.
  • the hoisting motor 6 is supplied with power from the power source 10 via the converter 8 and the inverter 9.
  • Converter 8 converts an alternating voltage from power supply 10 into a direct voltage.
  • the inverter 9 generates an alternating current having an arbitrary voltage and frequency from the direct-current voltage generated by the converter 8. Moreover, the inverter 9 produces an alternating current by switching a direct current voltage.
  • a main contactor (main power supply contactor) 11 for cutting off the power supply from the power supply 10 is provided between the power supply 10 and the converter 8.
  • a smoothing capacitor 12 that smoothes the DC output from the converter 8 is connected between the converter 8 and the inverter 9. The value of the current supplied from the inverter 9 to the hoisting machine motor 6 is detected by the current detector 13.
  • the rotation angle information from the speed detector 7 and the motor current information from the current detector 13 are input to the elevator control device 20.
  • the elevator control device 20 also receives a main contactor state signal indicating the open / closed state of the main contactor 11.
  • the elevator control device 20 has an operation control unit 21 and a life estimation unit 22.
  • the operation control unit 21 controls the operation of the car 1 by controlling the inverter 9.
  • Information on the target travel floor is sent from the group management device 400 to the elevator control device 20 of the elevator 100, 200 or 300 assigned by the group management device 400.
  • the operation control unit 21 generates a speed command for the car 1, that is, a speed command for the hoisting machine 4 in response to the call registration. Further, the operation control unit 21 calculates a torque value based on the generated speed command and information from the speed detector 7 so as to make the rotational speed of the hoisting machine motor 6 coincide with the value of the speed command. Generate directives.
  • the operation control unit 21 controls the inverter 9 based on the generated torque command and the motor current information from the current detector 13. Specifically, the operation control unit 21 converts the torque command into a current command value, and outputs a signal for driving the inverter 9 so that the current value detected by the current detector 13 matches the current command value. .
  • Vector control is used for current control of the inverter 9 by the operation control unit 21. That is, the operation control unit 21 detects the current command value converted from the torque command, the current value of the hoisting motor 6 detected by the current detector 13 and the magnetic pole position (rotational position) detected by the speed detector 7. Accordingly, the voltage value to be output by the inverter 9 is calculated, and an ON / OFF switching pattern is output to the transistor incorporated in the inverter 9.
  • the life estimation unit 22 estimates the temperature change of the inverter 9 (for example, estimates the square of the motor current through a first-order lag filter), and estimates the remaining life of the inverter 9 based on the estimated temperature change. In addition, the life estimation unit 22 sends information on the estimated remaining life value to the group management apparatus 400.
  • the life estimation unit 22 is provided in each of the first to third elevators 100, 200, and 300.
  • the remaining life of the inverter 9 is monitored. That is, in the first embodiment, the inverters 9 of all the elevators 100, 200, 300 are monitoring target inverters.
  • a remaining life threshold is set in advance.
  • the group management apparatus 400 compares the remaining life estimated value obtained from the life estimating unit 22 with the remaining life threshold. When the life approaching inverter that is the inverter 9 whose remaining life estimated value is lower than the remaining life threshold value is detected, the group management apparatus 400 assigns the suppression target car that is the car 1 corresponding to the life approaching inverter to the lifespan. Suppress than before detection of approaching inverter (restriction of vehicle allocation).
  • the group management device 400 mainly assigns at least one of short run traveling and balance road traveling to the car to be suppressed.
  • Short run travel is travel where the travel distance per travel is less than or equal to the travel distance threshold (for example, the first floor or the second floor).
  • the balance road traveling is traveling on a balance road in which the load on the car 1 side is equal (or substantially equal) to that of the counterweight 2 side. It is preferable that at least one of short-run traveling and balance road traveling is assigned to the car to be restrained, and other traveling is assigned to other cars.
  • These short-run traveling and balance road traveling are traveling in which the motor current does not flow as much as possible.
  • the occurrence of short run and balance road travel is performed by the group management device 400 by using a system (destination forecast system) that registers the destination floor at the landing or the entrance of the building before the user gets on the car 1. It can be grasped in advance.
  • a system destination forecast system
  • the group management device 400 assigns a priority from the non-suppressed units if there is a unit that is not a suppression target in the standby state. Furthermore, the group management device 400 assigns the suppression target unit with priority on the operating efficiency of the elevator system when a call other than the short run traveling and the balance load traveling occurs when only the suppression target unit is in the standby state. However, it is preferable to assign another unit.
  • the group management device 400 informs maintenance personnel which inverter 9 is nearing the end of its life.
  • a notification method a method of displaying or making an announcement on a maintenance tool (maintenance computer) can be mentioned.
  • the CPU board may recognize that the life of the inverter 9 is approaching. That is, it may be forcibly displayed that the life of the inverter 9 is approaching, using a display unit such as a 7-segment LED mounted on a processor board that performs various processes.
  • the remaining life threshold is set so that the life approaching inverter can be extended until the next periodic inspection time of the inverter 9 (for example, once a month) by suppressing the allocation of the cars to be suppressed.
  • the remaining life estimation value is returned to the initial value by the life estimation unit 22 corresponding to the inverter 9.
  • the operation control unit 21 and the life estimation unit 22 can be configured by a common computer or separate computers. Further, the group management device 400 can also be configured by a computer independent from the elevator control device 20.
  • FIG. 2 is a block diagram showing functions of the life estimation unit 22 of FIG.
  • the life estimation unit 22 includes a coordinate conversion unit 23, a temperature estimation unit 24, a temperature determination unit 25, and a remaining life calculation unit 26.
  • the rotation angle information from the speed detector 7 and the motor current information from the current detector 13 are input to the coordinate conversion unit 23.
  • the coordinate conversion unit 23 performs dq conversion on the input current value and outputs it to the temperature estimation unit 24.
  • the temperature estimation unit 24 estimates the temperature of the inverter 9 based on the information input from the coordinate conversion unit 23 and outputs the temperature estimation value to the temperature determination unit 25.
  • the temperature determination unit 25 stores the following three temperature estimated values. a: Estimated temperature value at the start of the N-th run b: Maximum temperature estimate value at the N-th run c: Estimated temperature value at the start of the N + 1th run
  • the temperature determination unit 25 stores bc as a temperature difference when a> c. If a ⁇ c, ba is stored as a temperature difference. The stored temperature difference is defined as ⁇ Tc (N). Note that temperature fluctuation occurs during one run, but the fluctuation is approximately ignored.
  • a main contactor state signal is input to the temperature determination unit 25, and the temperature determination unit 25 detects activation / deactivation based on ON / OFF of the main contactor 11.
  • FIG. 3 is a flowchart showing the operation of the temperature determination unit 25 of FIG.
  • the temperature determination unit 25 first checks whether or not the state of the main contactor 11 is ON (step S1). If the state of the main contactor 11 is ON, that is, if the hoisting motor 6 is activated, it is confirmed whether or not the activation flag is already ON (step S2).
  • step S3 If the start flag is not ON, it is determined that the hoisting motor 6 is immediately after starting, and the temperature estimated value (Tcf) immediately after starting is stored (step S3). Thereafter, the temperature estimated value (Tcf) immediately after the current start-up is compared with the temperature estimated value (Tcfb) immediately after the start-up previously stored (during operation), and whether Tcf ⁇ Tcfb is satisfied. Is determined (step S4).
  • Tcf ⁇ Tcfb holds (when the above a ⁇ c)
  • a value obtained by subtracting Tcfb from the maximum temperature estimated value Tcmax during the previous run (above) is set to ⁇ Tc (step S5).
  • Tcf ⁇ Tcfb (when a> c described above)
  • a value obtained by subtracting Tcf from Tcmax (above bc) is set to ⁇ Tc (step S6).
  • Tcmax is cleared (step S7), the activation flag is turned on (step S8), and the processing of that time is finished.
  • step S2 If the activation flag is ON in step S2, the temperature estimated value while the main contactor 11 is ON is constantly monitored, the maximum value (Tcmax) is stored (step S9), and the process is terminated. .
  • step S10 the temperature estimated value immediately after the start before one run is updated. Then, Tcmax is latched (step S11), the activation flag is cleared (step S12), and the process for that time is finished.
  • the temperature determination unit 25 executes the operation of FIG. 3 at a predetermined cycle.
  • a power module has a linear characteristic ( ⁇ Tc ⁇ power cycle life characteristic) where ⁇ Tc (logarithm) is on the horizontal axis and life cycle (logarithm) is on the vertical axis. Therefore, it can be estimated from the ⁇ Tc-power cycle life characteristic how many times the power module of the inverter 9 reaches the life (running).
  • FIG. 4 is a flowchart showing the operation of the remaining life calculation unit 26 of FIG.
  • the remaining life calculation unit 26 first confirms whether or not a reset operation after replacement has been performed by a reset operation by a maintenance worker (step S21). If the reset operation is being performed, the remaining life estimated value Kz is returned to the initial value Kz0 (step S22), and the process for that time is terminated.
  • step S23 If the reset operation is not performed, ⁇ Tc output from the temperature determination unit 25 is input (step S23). Then, the life cycle number LS is calculated from the table of ⁇ Tc-power cycle life characteristics (step S24). Thereafter, the remaining life estimated value Kz (N) is obtained by the above formula (step S25), and the process is terminated.
  • the group management device 400 suppresses the allocation of the car 1 corresponding to the life approaching inverter more than before the detection of the life approaching inverter, so that some inverters can be prevented while preventing the inverter 9 from malfunctioning. Even when the remaining life of 9 is shortened, it is possible to suppress a decrease in serviceability of the entire system.
  • the capacity of the inverter 9 can be reduced and the cost can be reduced.
  • the remaining life threshold is set so that the life approaching inverter can be extended until the period of periodic inspection of the inverter 9 by suppressing the allocation of the cars to be suppressed, so that the power module can be more reliably damaged before being replaced. Can be prevented.
  • the group management device 400 mainly assigns short run and balance load travel to the car to be restrained, the burden on the life approaching inverter is more reliably reduced while continuing to use the car to be restrained, and the life approaching. An inverter failure can be prevented.
  • the group management device 400 informs the maintenance staff that there is a life approaching inverter, it is possible to more reliably prevent the life approaching inverter from failing.
  • all inverters 9 are monitored inverters. However, it is not always necessary to monitor the remaining lifetime of all inverters 9. For example, if only the elevator inverter that is preferentially used in group management is set as the monitoring target inverter, and the remaining life of the monitoring target inverter is shortened due to preferential use, it is possible to preferentially use another elevator. In the first embodiment, only one remaining life threshold value is set. However, two or more remaining life threshold values may be set, and different vehicle allocation suppression may be performed according to the remaining life threshold level.
  • Embodiment 2 an elevator system according to Embodiment 2 of the present invention will be described.
  • the configuration of the elevator system according to the second embodiment and how to obtain the estimated remaining life are the same as those in the first embodiment.
  • a relative life difference threshold value is set.
  • the group management device 400 compares the remaining life estimation values obtained from the life estimation unit 22. And when the difference more than a relative life difference threshold value generate
  • Other configurations and control methods are the same as those in the first embodiment.
  • the remaining life of the inverters 9 of the elevators 100, 200, and 300 in the same bank may be grasped, and vehicle allocation may be suppressed for the car 1 corresponding to the inverter 9 having a relatively short remaining life.
  • vehicle allocation may be suppressed for the car 1 corresponding to the inverter 9 having a relatively short remaining life.
  • the remaining life estimated values are compared, at least two inverters 9 need to be monitored inverters.
  • only one relative life difference threshold value is set.
  • two or more relative life difference threshold values may be set, and different vehicle placement restraints may be implemented according to the level of the relative life difference threshold value. .
  • both controls of the first and second embodiments may be performed simultaneously. In other words, while monitoring the relative difference in the estimated remaining life value, a comparison with the absolute remaining life threshold value is performed. If it falls below, you may suppress vehicle allocation.
  • short run traveling and balance road traveling are shown as methods of restraining vehicle allocation, but the present invention is not limited to these, and for example, a method of simply reducing (thinning out) the allocation frequency.
  • the group management device 400 notifies that there is a life approaching inverter, but notifies the life estimation unit 22 or notifies both the group management device 400 and the life estimation unit 22. May be.
  • the life estimation unit 22 may be configured with an analog circuit.
  • the life estimation unit 22 is provided in the elevator control device 20, but may be provided separately from the elevator control device 20 or provided in the group management device 400.
  • the number of elevators managed by the group management apparatus 400 may be any number as long as it is two or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Elevator Control (AREA)

Abstract

This elevator system has a plurality of elevators, a group management device that allots elevators for calls, and a service life estimation unit. The service life estimation unit estimates changes in the temperature of at least one inverter being monitored from among inverters, and estimates the remaining service life of the inverter being monitored on the basis of the estimated changes in temperature. The group management device compares a remaining service life estimated value obtained from the service life estimation unit with a remaining service life threshold value. If there is detected a service-life-approaching inverter that is an inverter for which the remaining service life estimated value is less than the remaining service life threshold value, the group management device suppresses the allotment of designated elevator cars, which are elevator cars corresponding to the service-life-approaching inverter, said allotment being suppressed to a greater extent than before the detection of the service-life-approaching inverter.

Description

エレベータシステムElevator system
 この発明は、複数のエレベータのかごの運行が群管理装置により管理されるエレベータシステムに関するものである。 This invention relates to an elevator system in which the operation of a plurality of elevator cars is managed by a group management device.
 従来のエレベータの制御装置では、かご走行パターン毎のパワーモジュールの発熱温度変化幅の推定値が、かご走行パターンに対応付けて予め登録されている。寿命判定部は、主制御部からの走行指令に基づいてかご走行パターンに対応する発熱温度変化幅での発熱回数を積算し、その積算した発熱回数に基づいてパワーモジュールが寿命に到達したかどうかを判定する。 In the conventional elevator control device, the estimated value of the heat generation temperature change width of the power module for each car traveling pattern is registered in advance in association with the car traveling pattern. Based on the driving command from the main control unit, the life judgment unit accumulates the number of heat generations within the heat generation temperature change range corresponding to the car traveling pattern, and whether the power module has reached the life based on the accumulated number of heat generations Determine.
 また、発熱温度変化幅は、パワーモジュールの半導体素子の温度変化幅である素子温度変化幅(ΔTj)と、パワーモジュールのケースの温度変化幅であるケース温度変化幅(ΔTc)とを含んでいる。そして、寿命判定部は、素子温度変化幅の推定値及びケース温度変化幅の推定値の両方を用いてパワーモジュールが寿命に到達したかどうかを判定する。 The heat generation temperature change width includes an element temperature change width (ΔTj) that is a temperature change width of a semiconductor element of the power module and a case temperature change width (ΔTc) that is a temperature change width of the case of the power module. . The life determination unit determines whether the power module has reached the life using both the estimated value of the element temperature change width and the estimated value of the case temperature change width.
 さらに、寿命判定部には、パワーモジュールの寿命特性に基づいた発熱温度変化幅毎の発熱許容回数が発熱温度変化幅に対応付けて予め登録されている。そして、寿命判定部は、積算した発熱回数の発熱許容回数に対する割合である熱疲労度を算出して、予め設定された判定開始基準時から熱疲労度算出時までの経過期間を算出し、その経過期間での熱疲労度の増加率に基づいて、パワーモジュールの寿命到達時期を予測する。 Furthermore, in the life determination unit, the allowable number of heat generations for each heat generation temperature change width based on the life characteristics of the power module is registered in advance in association with the heat generation temperature change width. Then, the life determination unit calculates a thermal fatigue degree that is a ratio of the accumulated number of heat generations to the allowable number of heat generations, calculates an elapsed period from a preset determination start reference time to a thermal fatigue level calculation time, Based on the rate of increase in the degree of thermal fatigue during the elapsed period, the life reaching time of the power module is predicted.
 主制御部は、寿命判定部によってパワーモジュールが寿命に到達したと判定されると、かごの加速度及び減速度を、それぞれ通常運転時のかごの加速度及び減速度よりも下げる(例えば、特許文献1参照)。 When it is determined by the life determination unit that the power module has reached the life, the main control unit lowers the acceleration and deceleration of the car from the acceleration and deceleration of the car during normal operation, respectively (for example, Patent Document 1). reference).
国際公開第2008/078377号International Publication No. 2008/078377
 上記のような従来のエレベータの制御装置では、パワーモジュールが寿命に到達したと判定されると、単にかごの加速度及び減速度を低下させるので、利用者へのサービス性が低下してしまう。また、かごの加速度及び減速度を低下させるだけでは、寿命に到達したパワーモジュールが故障に至り、サービス性がさらに低下する恐れもある。 In the conventional elevator control apparatus as described above, if it is determined that the power module has reached the end of its service life, the acceleration and deceleration of the car are simply reduced, so the serviceability to the user is reduced. Further, simply reducing the acceleration and deceleration of the car may cause a failure of the power module that has reached the end of its life, further reducing serviceability.
 この発明は、上記のような課題を解決するためになされたものであり、インバータの故障を防止しつつ、インバータの残寿命が短くなった場合のサービス性の低下を抑えることができるエレベータシステムを得ることを目的とする。 The present invention has been made to solve the above-described problems, and provides an elevator system that can prevent deterioration of serviceability when the remaining life of the inverter is shortened while preventing failure of the inverter. The purpose is to obtain.
 この発明に係るエレベータシステムは、かごと、釣合おもりと、かご及び釣合おもりを昇降させる巻上機と、巻上機に電力を供給するインバータと、インバータを制御し、対応するかごの運転を制御する運転制御部とをそれぞれ有している複数のエレベータ、呼びに対するエレベータの割り当てを行う群管理装置、及びインバータのうちの少なくとも1つである監視対象インバータの温度変化を推定し、推定した温度変化に基づいて、監視対象インバータの残寿命を推定する寿命推定部を備え、群管理装置は、寿命推定部から得た残寿命推定値を残寿命閾値と比較し、残寿命推定値が残寿命閾値を下回ったインバータである寿命接近インバータが検出されると、寿命接近インバータに対応するかごである抑制対象かごの割り当てを、寿命接近インバータの検出前よりも抑制する。
 また、この発明に係るエレベータシステムは、かごと、釣合おもりと、かご及び釣合おもりを昇降させる巻上機と、巻上機に電力を供給するインバータと、インバータを制御し、対応するかごの運転を制御する運転制御部とをそれぞれ有している複数のエレベータ、呼びに対するエレベータの割り当てを行う群管理装置、及びインバータのうちの少なくとも2つである監視対象インバータの温度変化を推定し、推定した温度変化に基づいて、監視対象インバータの残寿命を推定する寿命推定部を備え、群管理装置は、寿命推定部から得た残寿命推定値同士を比較し、残寿命推定値間に相対寿命差閾値以上の差分が発生すると、残寿命推定値が小さい方のインバータを寿命接近インバータとし、寿命接近インバータに対応するかごである抑制対象かごの割り当てを、寿命接近インバータの検出前よりも抑制する。
The elevator system according to the present invention includes a car, a counterweight, a hoist that raises and lowers the car and the counterweight, an inverter that supplies electric power to the hoist, and controls the inverter to operate a corresponding car. Estimated and estimated temperature changes of the monitored inverter that is at least one of a plurality of elevators each having an operation control unit that controls the elevator, a group management device that assigns elevators to calls, and inverters A life estimation unit that estimates the remaining life of the monitored inverter based on the temperature change is provided, and the group management device compares the remaining life estimation value obtained from the life estimation unit with the remaining life threshold value, and the remaining life estimation value is When a life approaching inverter that is an inverter that has fallen below the life threshold is detected, the allocation of the restrained car that is the car corresponding to the life approaching inverter is determined as approaching the life. Converter of the pre-detection suppress than.
The elevator system according to the present invention includes a car, a counterweight, a hoisting machine that raises and lowers the car and the counterweight, an inverter that supplies power to the hoisting machine, and an inverter that controls the corresponding car. A plurality of elevators each having an operation control unit that controls the operation of the group, a group management device that assigns elevators to calls, and a temperature change of a monitored inverter that is at least two of the inverters, A life estimation unit that estimates the remaining life of the inverter to be monitored based on the estimated temperature change is provided, and the group management device compares the remaining life estimation values obtained from the life estimation unit and compares the remaining life estimation values relative to each other. If a difference greater than the life difference threshold occurs, the inverter with the smaller estimated remaining life is made the life approaching inverter, and the restraint pair that is a car corresponding to the life approaching inverter is used. The assignment of the car, the service life approaching inverter detected prior to suppress than.
 この発明のエレベータシステムは、群管理装置により、寿命接近インバータに対応するかごの割り当てを、寿命接近インバータの検出前よりも抑制するので、インバータの故障を防止しつつ、一部のインバータの残寿命が短くなった場合にもシステム全体としてのサービス性の低下を抑えることができる。 In the elevator system according to the present invention, the allocation of the car corresponding to the life approaching inverter is suppressed by the group management device more than before the detection of the life approaching inverter, so that the remaining life of some inverters can be prevented while preventing the failure of the inverter. Even when the system becomes shorter, it is possible to suppress a decrease in serviceability of the entire system.
この発明の実施の形態1によるエレベータシステムを主としてブロックで示す構成図である。It is a block diagram which mainly shows the elevator system by Embodiment 1 of this invention with a block. 図1の寿命推定部の機能を示すブロック図である。It is a block diagram which shows the function of the lifetime estimation part of FIG. 図2の温度判定部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the temperature determination part of FIG. 図2の残寿命計算部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the remaining life calculation part of FIG.
 以下、この発明を実施するための形態について、図面を参照して説明する。
 実施の形態1.
 図1はこの発明の実施の形態1によるエレベータシステムを主としてブロックで示す構成図である。実施の形態1のエレベータシステムは、第1ないし第3のエレベータ100,200,300と、これらのエレベータ100,200,300を群として管理する群管理装置400とを有している。第2及び第3のエレベータ200,300の構成は、図1では省略したが、第1のエレベータ100の構成と同様である。群管理装置400は、呼びに対して、エレベータ100,200,300のいずれかを選択して割り当てる。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a block diagram mainly showing blocks of an elevator system according to Embodiment 1 of the present invention. The elevator system according to the first embodiment includes first to third elevators 100, 200, and 300, and a group management device 400 that manages these elevators 100, 200, and 300 as a group. Although the configurations of the second and third elevators 200 and 300 are omitted in FIG. 1, they are the same as the configuration of the first elevator 100. The group management device 400 selects and assigns one of the elevators 100, 200, and 300 to the call.
 各エレベータ100,200,300において、かご1及び釣合おもり2は、懸架体3により昇降路内に吊り下げられており、巻上機4の駆動力により昇降する。懸架体3としては、複数本のロープ又は複数本のベルトが用いられている。 In each of the elevators 100, 200, and 300, the car 1 and the counterweight 2 are suspended in the hoistway by the suspension body 3 and are raised and lowered by the driving force of the hoisting machine 4. As the suspension body 3, a plurality of ropes or a plurality of belts are used.
 巻上機4は、駆動シーブ5、駆動シーブ5を回転させる巻上機モータ6、駆動シーブ5の回転を制動する巻上機ブレーキ(図示せず)、及び巻上機モータ6の回転速度と磁極位置とを検出するための速度検出器7を有している。懸架体3は、駆動シーブ5に巻き掛けられている。速度検出器7としては、例えばエンコーダ又はレゾルバ等が用いられている。 The hoisting machine 4 includes a drive sheave 5, a hoisting machine motor 6 that rotates the driving sheave 5, a hoisting machine brake (not shown) that brakes the rotation of the driving sheave 5, and the rotational speed of the hoisting machine motor 6. It has a speed detector 7 for detecting the magnetic pole position. The suspension body 3 is wound around the drive sheave 5. For example, an encoder or a resolver is used as the speed detector 7.
 巻上機モータ6には、コンバータ8及びインバータ9を介して電源10からの電力が供給される。コンバータ8は、電源10からの交流電圧を直流電圧に変換する。インバータ9は、コンバータ8で生成される直流電圧から任意の電圧、周波数の交流電流を作り出す。また、インバータ9は、直流電圧をスイッチングすることにより交流電流を作り出す。 The hoisting motor 6 is supplied with power from the power source 10 via the converter 8 and the inverter 9. Converter 8 converts an alternating voltage from power supply 10 into a direct voltage. The inverter 9 generates an alternating current having an arbitrary voltage and frequency from the direct-current voltage generated by the converter 8. Moreover, the inverter 9 produces an alternating current by switching a direct current voltage.
 電源10とコンバータ8との間には、電源10からの電力供給を遮断するための主コンタクタ(主電源遮断用コンタクタ)11が設けられている。コンバータ8とインバータ9との間には、コンバータ8からの直流出力を平滑にする平滑コンデンサ12が接続されている。インバータ9から巻上機モータ6に供給される電流の値は、電流検出器13により検出される。 Between the power supply 10 and the converter 8, a main contactor (main power supply contactor) 11 for cutting off the power supply from the power supply 10 is provided. A smoothing capacitor 12 that smoothes the DC output from the converter 8 is connected between the converter 8 and the inverter 9. The value of the current supplied from the inverter 9 to the hoisting machine motor 6 is detected by the current detector 13.
 速度検出器7からの回転角情報、及び電流検出器13からのモータ電流情報は、エレベータ制御装置20に入力される。また、エレベータ制御装置20には、主コンタクタ11の開閉状態を示す主コンタクタ状態信号も入力される。 The rotation angle information from the speed detector 7 and the motor current information from the current detector 13 are input to the elevator control device 20. The elevator control device 20 also receives a main contactor state signal indicating the open / closed state of the main contactor 11.
 エレベータ制御装置20は、運転制御部21及び寿命推定部22を有している。運転制御部21は、インバータ9を制御して、かご1の運転を制御する。群管理装置400により割り当てられたエレベータ100,200又は300のエレベータ制御装置20には、群管理装置400から目的走行階の情報が送られる。 The elevator control device 20 has an operation control unit 21 and a life estimation unit 22. The operation control unit 21 controls the operation of the car 1 by controlling the inverter 9. Information on the target travel floor is sent from the group management device 400 to the elevator control device 20 of the elevator 100, 200 or 300 assigned by the group management device 400.
 運転制御部21は、呼び登録に応じて、かご1の速度指令、即ち巻上機4に対する速度指令を生成する。また、運転制御部21は、生成した速度指令と、速度検出器7からの情報とに基づいて、巻上機モータ6の回転速度を速度指令の値に一致させるようにトルク値を演算しトルク指令を生成する。 The operation control unit 21 generates a speed command for the car 1, that is, a speed command for the hoisting machine 4 in response to the call registration. Further, the operation control unit 21 calculates a torque value based on the generated speed command and information from the speed detector 7 so as to make the rotational speed of the hoisting machine motor 6 coincide with the value of the speed command. Generate directives.
 さらに、運転制御部21は、生成したトルク指令と、電流検出器13からのモータ電流情報とに基づいて、インバータ9を制御する。具体的には、運転制御部21は、トルク指令を電流指令値に換算し、電流検出器13により検出される電流値が電流指令値に一致するように、インバータ9を駆動する信号を出力する。 Further, the operation control unit 21 controls the inverter 9 based on the generated torque command and the motor current information from the current detector 13. Specifically, the operation control unit 21 converts the torque command into a current command value, and outputs a signal for driving the inverter 9 so that the current value detected by the current detector 13 matches the current command value. .
 運転制御部21によるインバータ9の電流制御には、ベクトル制御が用いられる。即ち、運転制御部21は、トルク指令から換算された電流指令値と、電流検出器13により検出された巻上機モータ6の電流値及び速度検出器7により検出された磁極位置(回転位置)とに応じて、インバータ9が出力すべき電圧値を演算し、インバータ9に内蔵されたトランジスタに対してON/OFFのスイッチングパターンを出力する。 Vector control is used for current control of the inverter 9 by the operation control unit 21. That is, the operation control unit 21 detects the current command value converted from the torque command, the current value of the hoisting motor 6 detected by the current detector 13 and the magnetic pole position (rotational position) detected by the speed detector 7. Accordingly, the voltage value to be output by the inverter 9 is calculated, and an ON / OFF switching pattern is output to the transistor incorporated in the inverter 9.
 寿命推定部22は、インバータ9の温度変化を推定(例えば、モータ電流の2乗を1次遅れフィルタを通して温度推定)し、推定した温度変化に基づいて、インバータ9の残寿命を推定する。また、寿命推定部22は、残寿命推定値の情報を群管理装置400に送る。 The life estimation unit 22 estimates the temperature change of the inverter 9 (for example, estimates the square of the motor current through a first-order lag filter), and estimates the remaining life of the inverter 9 based on the estimated temperature change. In addition, the life estimation unit 22 sends information on the estimated remaining life value to the group management apparatus 400.
 なお、実施の形態1では、第1ないし第3のエレベータ100,200,300のそれぞれに寿命推定部22が設けられている。そして、第1ないし第3のエレベータ100,200,300において、インバータ9の残寿命が監視されている。即ち、実施の形態1では、全てのエレベータ100,200,300のインバータ9が監視対象インバータである。 In the first embodiment, the life estimation unit 22 is provided in each of the first to third elevators 100, 200, and 300. In the first to third elevators 100, 200, and 300, the remaining life of the inverter 9 is monitored. That is, in the first embodiment, the inverters 9 of all the elevators 100, 200, 300 are monitoring target inverters.
 群管理装置400には、残寿命閾値が予め設定されている。群管理装置400は、寿命推定部22から得た残寿命推定値を残寿命閾値と比較する。そして、群管理装置400は、残寿命推定値が残寿命閾値を下回ったインバータ9である寿命接近インバータが検出されると、寿命接近インバータに対応するかご1である抑制対象かごの割り当てを、寿命接近インバータの検出前よりも抑制する(配車抑制)。 In the group management device 400, a remaining life threshold is set in advance. The group management apparatus 400 compares the remaining life estimated value obtained from the life estimating unit 22 with the remaining life threshold. When the life approaching inverter that is the inverter 9 whose remaining life estimated value is lower than the remaining life threshold value is detected, the group management apparatus 400 assigns the suppression target car that is the car 1 corresponding to the life approaching inverter to the lifespan. Suppress than before detection of approaching inverter (restriction of vehicle allocation).
 具体的には、群管理装置400は、抑制対象かごに対して、ショートラン走行及びバランスロード走行の少なくとも一方を主として割り当てる。ショートラン走行は、1走行当たりの走行距離が走行距離閾値(例えば、1階床又は2階床)以下の走行である。また、バランスロード走行は、かご1側の負荷が釣合おもり2側と等しい(又はほぼ等しい)バランスロードでの走行である。抑制対象かごに対しては、ショートラン走行及びバランスロード走行の少なくともいずれか一方のみを割り当て、その他の走行は他の号機に割り当てるのが好ましい。 Specifically, the group management device 400 mainly assigns at least one of short run traveling and balance road traveling to the car to be suppressed. Short run travel is travel where the travel distance per travel is less than or equal to the travel distance threshold (for example, the first floor or the second floor). Further, the balance road traveling is traveling on a balance road in which the load on the car 1 side is equal (or substantially equal) to that of the counterweight 2 side. It is preferable that at least one of short-run traveling and balance road traveling is assigned to the car to be restrained, and other traveling is assigned to other cars.
 これらのショートラン走行及びバランスロード走行は、モータ電流を極力流さない走行である。また、ショートラン走行及びバランスロード走行の発生は、利用者がかご1に乗る前に乗場又は建物のエントランス等で行き先階を登録するシステム(行き先予報システム)を用いることにより、群管理装置400で予め把握することができる。 These short-run traveling and balance road traveling are traveling in which the motor current does not flow as much as possible. In addition, the occurrence of short run and balance road travel is performed by the group management device 400 by using a system (destination forecast system) that registers the destination floor at the landing or the entrance of the building before the user gets on the car 1. It can be grasped in advance.
 また、群管理装置400は、新たな呼びが発生した場合、待機状態の号機で抑制対象でない号機があれば、抑制対象でない号機から優先して割り当てる。さらに、群管理装置400は、抑制対象の号機のみが待機状態のときに、ショートラン走行及びバランスロード走行以外の呼びが発生した場合、エレベータシステムの稼働効率を優先して抑制対象の号機を割り当ててもよいが、他の号機を割り当てるのが好ましい。 In addition, when a new call occurs, the group management device 400 assigns a priority from the non-suppressed units if there is a unit that is not a suppression target in the standby state. Furthermore, the group management device 400 assigns the suppression target unit with priority on the operating efficiency of the elevator system when a call other than the short run traveling and the balance load traveling occurs when only the suppression target unit is in the standby state. However, it is preferable to assign another unit.
 また、群管理装置400は、寿命接近インバータがある場合、どのインバータ9の寿命が近づいているかを保守員に報知する。報知の方法としては、メンテナンスツール(メンテナンス用コンピュータ)に表示したりアナウンスしたりする方法が挙げられる。また、インバータ9の寿命が近づいていることをCPU基板でわかるようにしてもよい。即ち、各種処理を行うプロセッサ基板に搭載されている7セグメントLED等の表示部を用いて、インバータ9の寿命が近づいていることを強制的に表示してもよい。 Also, when there is an inverter that is near the end of life, the group management device 400 informs maintenance personnel which inverter 9 is nearing the end of its life. As a notification method, a method of displaying or making an announcement on a maintenance tool (maintenance computer) can be mentioned. Further, the CPU board may recognize that the life of the inverter 9 is approaching. That is, it may be forcibly displayed that the life of the inverter 9 is approaching, using a display unit such as a 7-segment LED mounted on a processor board that performs various processes.
 残寿命閾値は、抑制対象かごの割り当てを抑制することにより、インバータ9の次の定期点検時期(例えば1か月に1回)まで寿命接近インバータを延命できるように設定されている。寿命接近インバータのパワーモジュールを交換した後、保守員によるリセット操作を受けると、そのインバータ9に対応する寿命推定部22で残寿命推定値が初期値に戻される。 The remaining life threshold is set so that the life approaching inverter can be extended until the next periodic inspection time of the inverter 9 (for example, once a month) by suppressing the allocation of the cars to be suppressed. After the power module of the life approaching inverter is replaced, when a reset operation is performed by maintenance personnel, the remaining life estimation value is returned to the initial value by the life estimation unit 22 corresponding to the inverter 9.
 運転制御部21及び寿命推定部22は、共通のコンピュータ、又は別々のコンピュータにより構成することができる。また、群管理装置400も、エレベータ制御装置20から独立したコンピュータにより構成することができる。 The operation control unit 21 and the life estimation unit 22 can be configured by a common computer or separate computers. Further, the group management device 400 can also be configured by a computer independent from the elevator control device 20.
 図2は図1の寿命推定部22の機能を示すブロック図である。寿命推定部22は、座標変換部23、温度推定部24、温度判定部25及び残寿命計算部26を有している。座標変換部23には、速度検出器7からの回転角情報、及び電流検出器13からのモータ電流情報が入力される。座標変換部23は、入力された電流値をdq変換して温度推定部24に出力する。 FIG. 2 is a block diagram showing functions of the life estimation unit 22 of FIG. The life estimation unit 22 includes a coordinate conversion unit 23, a temperature estimation unit 24, a temperature determination unit 25, and a remaining life calculation unit 26. The rotation angle information from the speed detector 7 and the motor current information from the current detector 13 are input to the coordinate conversion unit 23. The coordinate conversion unit 23 performs dq conversion on the input current value and outputs it to the temperature estimation unit 24.
 温度推定部24は、座標変換部23から入力された情報に基づいてインバータ9の温度を推定し、温度推定値を温度判定部25に出力する。温度判定部25は、以下の3点の温度推定値を記憶する。
a:N回目の走行時の起動時の温度推定値
b:N回目の走行時の最高温度推定値
c:N+1回目の走行時の起動時の温度推定値
The temperature estimation unit 24 estimates the temperature of the inverter 9 based on the information input from the coordinate conversion unit 23 and outputs the temperature estimation value to the temperature determination unit 25. The temperature determination unit 25 stores the following three temperature estimated values.
a: Estimated temperature value at the start of the N-th run b: Maximum temperature estimate value at the N-th run c: Estimated temperature value at the start of the N + 1th run
 また、温度判定部25は、a>cの場合、b-cを温度差分として記憶する。また、a≦cの場合は、b-aを温度差分として記憶する。そして、記憶した温度差分をΔTc(N)と定義する。なお、1走行の間には温度変動が生じるが、その変動は近似的に無視する。 Also, the temperature determination unit 25 stores bc as a temperature difference when a> c. If a ≦ c, ba is stored as a temperature difference. The stored temperature difference is defined as ΔTc (N). Note that temperature fluctuation occurs during one run, but the fluctuation is approximately ignored.
 さらに、温度判定部25には、主コンタクタ状態信号が入力されており、温度判定部25は、主コンタクタ11のON/OFFに基づいて起動/停止を検出する。 Furthermore, a main contactor state signal is input to the temperature determination unit 25, and the temperature determination unit 25 detects activation / deactivation based on ON / OFF of the main contactor 11.
 図3は図2の温度判定部25の動作を示すフローチャートである。温度判定部25は、まず主コンタクタ11の状態がONであるかどうかを確認する(ステップS1)。主コンタクタ11の状態がON、即ち巻上機モータ6が起動していれば、起動フラグが既にONであるかどうかを確認する(ステップS2)。 FIG. 3 is a flowchart showing the operation of the temperature determination unit 25 of FIG. The temperature determination unit 25 first checks whether or not the state of the main contactor 11 is ON (step S1). If the state of the main contactor 11 is ON, that is, if the hoisting motor 6 is activated, it is confirmed whether or not the activation flag is already ON (step S2).
 起動フラグがONでなければ、巻上機モータ6が起動直後であると判断し、起動直後の温度推定値(Tcf)を記憶する(ステップS3)。この後、今回の起動直後の温度推定値(Tcf)を、既に記憶している前回の走行時(運転時)の起動直後の温度推定値(Tcfb)と比較し、Tcf≧Tcfbであるかどうかを判定する(ステップS4)。 If the start flag is not ON, it is determined that the hoisting motor 6 is immediately after starting, and the temperature estimated value (Tcf) immediately after starting is stored (step S3). Thereafter, the temperature estimated value (Tcf) immediately after the current start-up is compared with the temperature estimated value (Tcfb) immediately after the start-up previously stored (during operation), and whether Tcf ≧ Tcfb is satisfied. Is determined (step S4).
 Tcf≧Tcfbが成り立つ場合(上記のa≦cの場合)、前回走行時の最高温度推定値TcmaxからTcfbを引いた値(上記のb-a)をΔTcとする(ステップS5)。また、Tcf<Tcfbの場合(上記のa>cの場合)、TcmaxからTcfを引いた値(上記のb-c)をΔTcとする(ステップS6)。 When Tcf ≧ Tcfb holds (when the above a ≦ c), a value obtained by subtracting Tcfb from the maximum temperature estimated value Tcmax during the previous run (above) is set to ΔTc (step S5). When Tcf <Tcfb (when a> c described above), a value obtained by subtracting Tcf from Tcmax (above bc) is set to ΔTc (step S6).
 前回運転時のΔTcが確定してから、Tcmaxをクリアし(ステップS7)、起動フラグをONにして(ステップS8)、その回の処理を終了する。 Δ After ΔTc at the time of the previous operation is determined, Tcmax is cleared (step S7), the activation flag is turned on (step S8), and the processing of that time is finished.
 ステップS2で起動フラグがONであった場合は、主コンタクタ11がONである間の温度推定値を常時監視し、最大値(Tcmax)を記憶し(ステップS9)、その回の処理を終了する。 If the activation flag is ON in step S2, the temperature estimated value while the main contactor 11 is ON is constantly monitored, the maximum value (Tcmax) is stored (step S9), and the process is terminated. .
 また、ステップS1で、主コンタクタ11の状態がOFFであった場合、1走行前の起動直後の温度推定値を更新する(ステップS10)。そして、Tcmaxをラッチし(ステップS11)、起動フラグをクリアして(ステップS12)、その回の処理を終了する。温度判定部25は、図3の動作を所定の周期で実行する。 Further, if the state of the main contactor 11 is OFF in step S1, the temperature estimated value immediately after the start before one run is updated (step S10). Then, Tcmax is latched (step S11), the activation flag is cleared (step S12), and the process for that time is finished. The temperature determination unit 25 executes the operation of FIG. 3 at a predetermined cycle.
 次に、残寿命計算部26による残寿命の計算方法について説明する。一般に、パワーモジュールにおいて、横軸をΔTc(対数)、縦軸をライフサイクル(対数)としたとき、直線的な特性(ΔTc-パワーサイクル寿命特性)があることが知られている。このため、インバータ9のパワーモジュールが何回の運転(走行)で寿命に至るかは、ΔTc-パワーサイクル寿命特性から推定できる。 Next, a method for calculating the remaining life by the remaining life calculation unit 26 will be described. In general, it is known that a power module has a linear characteristic (ΔTc−power cycle life characteristic) where ΔTc (logarithm) is on the horizontal axis and life cycle (logarithm) is on the vertical axis. Therefore, it can be estimated from the ΔTc-power cycle life characteristic how many times the power module of the inverter 9 reaches the life (running).
 寿命推定部22は、上記の寿命特性をテーブルとして保有している。そして、残寿命計算部26は、寿命に至る回数の逆数を取り、寿命設定値K(各製品毎に設定)から減算していく。例えば、ΔTc=50[deg]のときのパワーサイクル寿命LS(N)が8・105の場合、残寿命推定値Kz(N)=Kz(N-1)-1/LS(N)で計算し、計算結果を逐次格納する。また、寿命設定値Kは、想定起動頻度、想定寿命、及び開発時に採取した温度データ等を用いて設定する。 The life estimation unit 22 holds the above life characteristics as a table. Then, the remaining life calculation unit 26 takes the reciprocal of the number of times until the service life is reached and subtracts it from the service life set value K (set for each product). For example, when the power cycle life LS (N) when ΔTc = 50 [deg] is 8 · 10 5 , the remaining life estimated value Kz (N) = Kz (N−1) −1 / LS (N) is calculated. The calculation results are stored sequentially. In addition, the life set value K is set using an assumed start-up frequency, an assumed life, temperature data collected during development, and the like.
 図4は図2の残寿命計算部26の動作を示すフローチャートである。残寿命計算部26は、まず、保守員によるリセット操作により、交換後のリセット動作をしたかどうかを確認する(ステップS21)。リセット動作をしていれば、残寿命推定値Kzを初期値Kz0に戻し(ステップS22)、その回の処理を終了する。 FIG. 4 is a flowchart showing the operation of the remaining life calculation unit 26 of FIG. The remaining life calculation unit 26 first confirms whether or not a reset operation after replacement has been performed by a reset operation by a maintenance worker (step S21). If the reset operation is being performed, the remaining life estimated value Kz is returned to the initial value Kz0 (step S22), and the process for that time is terminated.
 リセット動作をしていなければ、温度判定部25から出力されたΔTcを入力する(ステップS23)。そして、ΔTc-パワーサイクル寿命特性のテーブルから、ライフサイクル回数LSを算出する(ステップS24)。この後、上記の式により残寿命推定値Kz(N)し(ステップS25)、その回の処理を終了する。 If the reset operation is not performed, ΔTc output from the temperature determination unit 25 is input (step S23). Then, the life cycle number LS is calculated from the table of ΔTc-power cycle life characteristics (step S24). Thereafter, the remaining life estimated value Kz (N) is obtained by the above formula (step S25), and the process is terminated.
 このようなエレベータシステムでは、群管理装置400により、寿命接近インバータに対応するかご1の割り当てを、寿命接近インバータの検出前よりも抑制するので、インバータ9の故障を防止しつつ、一部のインバータ9の残寿命が短くなった場合にもシステム全体としてのサービス性の低下を抑えることができる。 In such an elevator system, the group management device 400 suppresses the allocation of the car 1 corresponding to the life approaching inverter more than before the detection of the life approaching inverter, so that some inverters can be prevented while preventing the inverter 9 from malfunctioning. Even when the remaining life of 9 is shortened, it is possible to suppress a decrease in serviceability of the entire system.
 このとき、抑制対象かごに対する割り当てが減った分、他の号機に対する割り当てが増えることになる。しかし、通常の群管理において、全ての号機のインバータ9の残寿命がほぼ均等に短くなることは考えにくい。このため、一部のインバータ9が寿命接近インバータと判定されても、残りのインバータ9には十分な残寿命がある可能性が高く、次回の交換タイミングまで、寿命接近インバータを生かしつつ、配車抑制されていない号機を中心として稼働させることは可能である。 At this time, the allocation to other cars will increase as the allocation to the car to be suppressed decreases. However, in normal group management, it is unlikely that the remaining lives of the inverters 9 of all the units will be shortened almost evenly. For this reason, even if some inverters 9 are determined to be near-life inverters, there is a high possibility that the remaining inverters 9 have a sufficient remaining life, and vehicle allocation is suppressed while utilizing the near-life inverters until the next replacement timing. It is possible to operate around the units that are not.
 このように、サービス性の低下をバンク全体で抑制することにより、インバータ9の容量を小型化し、コストダウンを図ることもできる。 Thus, by suppressing the deterioration of serviceability in the entire bank, the capacity of the inverter 9 can be reduced and the cost can be reduced.
 また、残寿命閾値を、抑制対象かごの割り当てを抑制することにより、インバータ9の定期点検時期まで寿命接近インバータを延命できるように設定したので、パワーモジュールが交換前に故障するのをより確実に防止することができる。 In addition, the remaining life threshold is set so that the life approaching inverter can be extended until the period of periodic inspection of the inverter 9 by suppressing the allocation of the cars to be suppressed, so that the power module can be more reliably damaged before being replaced. Can be prevented.
 さらに、群管理装置400は、抑制対象かごに対してショートラン走行及びバランスロード走行を主として割り当てるので、抑制対象かごの使用を継続しつつ、寿命接近インバータの負担をより確実に軽減し、寿命接近インバータの故障を防止することができる。 Furthermore, since the group management device 400 mainly assigns short run and balance load travel to the car to be restrained, the burden on the life approaching inverter is more reliably reduced while continuing to use the car to be restrained, and the life approaching. An inverter failure can be prevented.
 さらにまた、群管理装置400は、寿命接近インバータがあることを保守員に報知するので、寿命接近インバータが故障に至るのをより確実に防止することができる。 Furthermore, since the group management device 400 informs the maintenance staff that there is a life approaching inverter, it is possible to more reliably prevent the life approaching inverter from failing.
 なお、実施の形態1では、全てのインバータ9を監視対象インバータとしたが、必ずしも全てのインバータ9の残寿命を監視しなくてもよい。例えば、群管理において優先使用されるエレベータのインバータのみを監視対象インバータとし、優先使用により監視対象インバータの残寿命が短くなったら、他のエレベータを優先使用することも可能である。
 また、実施の形態1では、残寿命閾値を1つのみ設定したが、2つ以上の残寿命閾値を設定し、残寿命閾値のレベルに応じて異なる配車抑制を実施してもよい。
In the first embodiment, all inverters 9 are monitored inverters. However, it is not always necessary to monitor the remaining lifetime of all inverters 9. For example, if only the elevator inverter that is preferentially used in group management is set as the monitoring target inverter, and the remaining life of the monitoring target inverter is shortened due to preferential use, it is possible to preferentially use another elevator.
In the first embodiment, only one remaining life threshold value is set. However, two or more remaining life threshold values may be set, and different vehicle allocation suppression may be performed according to the remaining life threshold level.
 実施の形態2.
 次に、この発明の実施の形態2によるエレベータシステムついて説明する。実施の形態2のエレベータシステムの構成及び残寿命推定値の求め方は、実施の形態1と同様である。実施の形態2の群管理装置400には、相対寿命差閾値が設定されている。群管理装置400は、寿命推定部22から得た残寿命推定値同士を比較する。そして、群管理装置400は、残寿命推定値間に相対寿命差閾値以上の差分が発生すると、残寿命推定値が小さい方のインバータを寿命接近インバータとする。他の構成及び制御方法は実施の形態1と同様である。
Embodiment 2. FIG.
Next, an elevator system according to Embodiment 2 of the present invention will be described. The configuration of the elevator system according to the second embodiment and how to obtain the estimated remaining life are the same as those in the first embodiment. In the group management apparatus 400 of the second embodiment, a relative life difference threshold value is set. The group management device 400 compares the remaining life estimation values obtained from the life estimation unit 22. And when the difference more than a relative life difference threshold value generate | occur | produces between remaining life estimated values, the group management apparatus 400 makes an inverter with a smaller remaining life estimated value a life approaching inverter. Other configurations and control methods are the same as those in the first embodiment.
 このように、同一バンク内のエレベータ100,200,300のインバータ9の残寿命を把握し、相対的に残寿命が短いインバータ9に対応するかご1に対して配車抑制を行うようにしてもよく、実施の形態1と同様の効果が得られる。 As described above, the remaining life of the inverters 9 of the elevators 100, 200, and 300 in the same bank may be grasped, and vehicle allocation may be suppressed for the car 1 corresponding to the inverter 9 having a relatively short remaining life. The same effects as those of the first embodiment can be obtained.
 なお、実施の形態2のシステムについても、必ずしも全てのインバータ9の残寿命を監視しなくてもよい。但し、残寿命推定値同士を比較するので、少なくとも2つのインバータ9を監視対象インバータとする必要がある。
 また、実施の形態2では、相対寿命差閾値を1つのみ設定したが、2つ以上の相対寿命差閾値を設定し、相対寿命差閾値のレベルに応じて異なる配車抑制を実施してもよい。
In the system according to the second embodiment, it is not always necessary to monitor the remaining lifetime of all inverters 9. However, since the remaining life estimated values are compared, at least two inverters 9 need to be monitored inverters.
In the second embodiment, only one relative life difference threshold value is set. However, two or more relative life difference threshold values may be set, and different vehicle placement restraints may be implemented according to the level of the relative life difference threshold value. .
 さらに、実施の形態1、2の両方の制御を同時に行ってもよい。即ち、残寿命推定値の相対的な差分を監視しつつ、絶対的な残寿命閾値との比較を行い、相対寿命差閾値以上の差分が発生した場合、及び残寿命推定値が残寿命閾値を下回った場合に配車抑制を行ってもよい。 Furthermore, both controls of the first and second embodiments may be performed simultaneously. In other words, while monitoring the relative difference in the estimated remaining life value, a comparison with the absolute remaining life threshold value is performed. If it falls below, you may suppress vehicle allocation.
 さらにまた、実施の形態1、2では、配車抑制の方法としてショートラン走行及びバランスロード走行を示したが、これらに限定されるものではなく、例えば単に割り当て頻度を低下させる(間引く)方法などであってもよい。
 また、実施の形態1、2では、寿命接近インバータがあることを群管理装置400により報知したが、寿命推定部22により報知したり、群管理装置400及び寿命推定部22の両方により報知したりしてもよい。
 さらに、寿命推定部22は、アナログ回路で構成してもよい。
 さらにまた、実施の形態1、2では、寿命推定部22をエレベータ制御装置20に設けたが、エレベータ制御装置20から切り離して設けたり、群管理装置400内に設けたりしてもよい。
 また、群管理装置400により管理されるエレベータの数は、2機以上であれば何機でもよい。
Furthermore, in the first and second embodiments, short run traveling and balance road traveling are shown as methods of restraining vehicle allocation, but the present invention is not limited to these, and for example, a method of simply reducing (thinning out) the allocation frequency. There may be.
In the first and second embodiments, the group management device 400 notifies that there is a life approaching inverter, but notifies the life estimation unit 22 or notifies both the group management device 400 and the life estimation unit 22. May be.
Further, the life estimation unit 22 may be configured with an analog circuit.
Furthermore, in the first and second embodiments, the life estimation unit 22 is provided in the elevator control device 20, but may be provided separately from the elevator control device 20 or provided in the group management device 400.
The number of elevators managed by the group management apparatus 400 may be any number as long as it is two or more.

Claims (6)

  1.  かごと、釣合おもりと、前記かご及び前記釣合おもりを昇降させる巻上機と、前記巻上機に電力を供給するインバータと、前記インバータを制御し、対応する前記かごの運転を制御する運転制御部とをそれぞれ有している複数のエレベータ、
     呼びに対する前記エレベータの割り当てを行う群管理装置、及び
     前記インバータのうちの少なくとも1つである監視対象インバータの温度変化を推定し、推定した温度変化に基づいて、前記監視対象インバータの残寿命を推定する寿命推定部
     を備え、
     前記群管理装置は、前記寿命推定部から得た残寿命推定値を残寿命閾値と比較し、前記残寿命推定値が前記残寿命閾値を下回ったインバータである寿命接近インバータが検出されると、前記寿命接近インバータに対応するかごである抑制対象かごの割り当てを、前記寿命接近インバータの検出前よりも抑制するエレベータシステム。
    A car, a counterweight, a hoist that raises and lowers the car and the counterweight, an inverter that supplies power to the hoist, and controls the inverter to control the operation of the corresponding car A plurality of elevators each having an operation control unit;
    A group management device that assigns the elevator to a call, and estimates a temperature change of a monitored inverter that is at least one of the inverters, and estimates a remaining life of the monitored inverter based on the estimated temperature change With a life estimation unit
    The group management device compares the remaining life estimated value obtained from the life estimation unit with a remaining life threshold, and when a life approaching inverter that is an inverter in which the remaining life estimated value falls below the remaining life threshold is detected. The elevator system which suppresses allocation of the control object car which is a car corresponding to the said life approaching inverter rather than the detection before the said life approaching inverter.
  2.  前記残寿命閾値は、前記抑制対象かごの割り当てを抑制することにより、前記インバータの定期点検時期まで前記寿命接近インバータを延命できるように設定されている請求項1記載のエレベータシステム。 2. The elevator system according to claim 1, wherein the remaining life threshold is set so that the life approaching inverter can be extended until a periodic inspection time of the inverter by suppressing allocation of the car to be suppressed.
  3.  かごと、釣合おもりと、前記かご及び前記釣合おもりを昇降させる巻上機と、前記巻上機に電力を供給するインバータと、前記インバータを制御し、対応する前記かごの運転を制御する運転制御部とをそれぞれ有している複数のエレベータ、
     呼びに対する前記エレベータの割り当てを行う群管理装置、及び
     前記インバータのうちの少なくとも2つである監視対象インバータの温度変化を推定し、推定した温度変化に基づいて、前記監視対象インバータの残寿命を推定する寿命推定部
     を備え、
     前記群管理装置は、前記寿命推定部から得た残寿命推定値同士を比較し、前記残寿命推定値間に相対寿命差閾値以上の差分が発生すると、前記残寿命推定値が小さい方のインバータを寿命接近インバータとし、前記寿命接近インバータに対応するかごである抑制対象かごの割り当てを、前記寿命接近インバータの検出前よりも抑制するエレベータシステム。
    A car, a counterweight, a hoist that raises and lowers the car and the counterweight, an inverter that supplies power to the hoist, and controls the inverter to control the operation of the corresponding car A plurality of elevators each having an operation control unit;
    A group management device that assigns the elevator to a call, and estimates a temperature change of a monitored inverter that is at least two of the inverters, and estimates a remaining life of the monitored inverter based on the estimated temperature change With a life estimation unit
    The group management device compares the remaining lifetime estimated values obtained from the lifetime estimating unit, and if a difference equal to or greater than a relative lifetime difference threshold occurs between the remaining lifetime estimated values, the inverter having the smaller remaining lifetime estimated value Is a life approaching inverter, and an elevator system that restrains assignment of a car to be restrained corresponding to the life approaching inverter more than before detection of the life approaching inverter.
  4.  前記群管理装置は、前記抑制対象かごに対して、1走行当たりの走行距離が走行距離閾値以下であるショートラン走行を主として割り当てる請求項1から請求項3までのいずれか1項に記載のエレベータシステム。 The elevator according to any one of claims 1 to 3, wherein the group management device mainly assigns a short-run traveling whose traveling distance per traveling is equal to or less than a traveling distance threshold to the car to be suppressed. system.
  5.  前記群管理装置は、前記抑制対象かごに対して、バランスロードでの走行を主として割り当てる請求項1から請求項4までのいずれか1項に記載のエレベータシステム。 The elevator system according to any one of claims 1 to 4, wherein the group management device assigns mainly traveling on a balance road to the car to be suppressed.
  6.  前記群管理装置及び前記寿命推定部の少なくともいずれか一方は、前記寿命接近インバータがある場合、そのことを保守員に報知する請求項1から請求項5までのいずれか1項に記載のエレベータシステム。 The elevator system according to any one of claims 1 to 5, wherein at least one of the group management device and the life estimation unit notifies the maintenance staff of the presence of the life approaching inverter. .
PCT/JP2016/069128 2016-06-28 2016-06-28 Elevator system WO2018003014A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069128 WO2018003014A1 (en) 2016-06-28 2016-06-28 Elevator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069128 WO2018003014A1 (en) 2016-06-28 2016-06-28 Elevator system

Publications (1)

Publication Number Publication Date
WO2018003014A1 true WO2018003014A1 (en) 2018-01-04

Family

ID=60786133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069128 WO2018003014A1 (en) 2016-06-28 2016-06-28 Elevator system

Country Status (1)

Country Link
WO (1) WO2018003014A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110550510A (en) * 2018-05-30 2019-12-10 株式会社日立大厦系统 Drive control system for elevator
JP2020093889A (en) * 2018-12-12 2020-06-18 株式会社日立製作所 Group management system and elevator
WO2020250408A1 (en) * 2019-06-14 2020-12-17 三菱電機株式会社 Apparatus for predicting remaining service life of elevator
WO2024013882A1 (en) * 2022-07-13 2024-01-18 三菱電機ビルソリューションズ株式会社 Elevator control device and control method
JP7456541B1 (en) 2023-07-11 2024-03-27 三菱電機ビルソリューションズ株式会社 Elevator car control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114458A (en) * 2000-10-03 2002-04-16 Hitachi Building Systems Co Ltd Elevator group supervisory operation and control device
JP2010143692A (en) * 2008-12-17 2010-07-01 Mitsubishi Electric Corp Elevator device
JP2012131623A (en) * 2010-12-22 2012-07-12 Hitachi Ltd Elevator control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114458A (en) * 2000-10-03 2002-04-16 Hitachi Building Systems Co Ltd Elevator group supervisory operation and control device
JP2010143692A (en) * 2008-12-17 2010-07-01 Mitsubishi Electric Corp Elevator device
JP2012131623A (en) * 2010-12-22 2012-07-12 Hitachi Ltd Elevator control system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110550510A (en) * 2018-05-30 2019-12-10 株式会社日立大厦系统 Drive control system for elevator
JP2020093889A (en) * 2018-12-12 2020-06-18 株式会社日立製作所 Group management system and elevator
JP7068997B2 (en) 2018-12-12 2022-05-17 株式会社日立製作所 Group management system and elevator
WO2020250408A1 (en) * 2019-06-14 2020-12-17 三菱電機株式会社 Apparatus for predicting remaining service life of elevator
JPWO2020250408A1 (en) * 2019-06-14 2021-11-25 三菱電機株式会社 Elevator remaining life predictor
JP7096964B2 (en) 2019-06-14 2022-07-07 三菱電機株式会社 Elevator remaining life predictor
WO2024013882A1 (en) * 2022-07-13 2024-01-18 三菱電機ビルソリューションズ株式会社 Elevator control device and control method
JP7456541B1 (en) 2023-07-11 2024-03-27 三菱電機ビルソリューションズ株式会社 Elevator car control device

Similar Documents

Publication Publication Date Title
WO2018003014A1 (en) Elevator system
JP5580823B2 (en) Elevator and building power system with secondary power management
US7882937B2 (en) Elevating machine control apparatus
JP5437989B2 (en) Elevator control system
JP6157924B2 (en) Elevator with safety device
JP5361180B2 (en) Elevator control device
JP2009154988A (en) System for preventing traveling of elevator with door opened
JP6533548B2 (en) Passenger conveyor
JP5241367B2 (en) Electric hoist
JP2014051379A (en) Elevator group management system
JP2018030701A (en) Elevator system and power supply method during elevator power failure
JP6978839B2 (en) Elevator system operation method and elevator system operation device
JP2011143982A (en) Device and method for controlling brake of elevator
JP6297942B2 (en) Elevator control device
JP2013147328A (en) Elevator operated by emergency power supply
JP5812106B2 (en) Elevator group management control device
JP2010143692A (en) Elevator device
JP2014172668A (en) Elevator system
WO2015033386A1 (en) Elevator control device
JP2016104664A (en) Elevator emergency rescue operation device during power outage
JP5535352B1 (en) elevator
JP2019031382A (en) Group management elevator device
JP6812506B2 (en) Elevator monitoring method and elevator monitoring device
JP6278859B2 (en) Elevator maintenance method and elevator system
JP6990148B2 (en) Elevator drive control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP