WO2015033386A1 - Elevator control device - Google Patents

Elevator control device Download PDF

Info

Publication number
WO2015033386A1
WO2015033386A1 PCT/JP2013/073655 JP2013073655W WO2015033386A1 WO 2015033386 A1 WO2015033386 A1 WO 2015033386A1 JP 2013073655 W JP2013073655 W JP 2013073655W WO 2015033386 A1 WO2015033386 A1 WO 2015033386A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature rise
value
car
switching element
elevator control
Prior art date
Application number
PCT/JP2013/073655
Other languages
French (fr)
Japanese (ja)
Inventor
馬場 俊行
直彦 三富
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201380079286.0A priority Critical patent/CN105531216B/en
Priority to PCT/JP2013/073655 priority patent/WO2015033386A1/en
Priority to JP2015535186A priority patent/JP6115644B2/en
Publication of WO2015033386A1 publication Critical patent/WO2015033386A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor

Definitions

  • the present invention relates to an elevator control device.
  • Patent Document 1 describes an elevator control device. This elevator control device lowers the carrier frequency when the output current of the inverter that supplies power to the electric motor that moves up and down the car exceeds the maximum allowable current.
  • the elevator control device described in Patent Document 1 changes the carrier frequency while the car is running. For this reason, the temperature rise of the switching element cannot be prevented before the car starts running.
  • An object of the present invention is to provide an elevator control device that can prevent a temperature rise of a switching element before a car starts to travel.
  • An elevator control device includes a travel distance calculation unit that calculates a travel distance of a car from a current floor to a travel destination floor, and an electric motor that causes the car to travel based on the travel distance calculated by the travel distance calculation unit.
  • Temperature rise estimation means for calculating an estimated temperature rise value of the switching element of the power converter to be driven, and controlling the power converter based on the estimated temperature rise value calculated by the temperature rise estimation means before the car starts running
  • Setting changing means for determining a carrier frequency to be used.
  • the temperature rise of the switching element can be prevented before the car starts to travel.
  • FIG. 1 is a configuration diagram of an elevator system including the elevator control device according to the first embodiment.
  • the elevator system has a hoistway (not shown).
  • a hoisting machine 1 is provided at the upper part of the hoistway.
  • the hoist 1 includes a synchronous motor 2, a sheave 3, a brake 4, and an encoder 5.
  • a suspension rope 6 is wound around the sheave 3.
  • a basket 7 is connected to one end of the hanging rope 6.
  • the basket 7 includes a scale device 8.
  • a counterweight 9 is connected to the other end of the suspension rope 6.
  • the elevator control device includes a converter and a power conversion device (not shown).
  • inverter 10 is provided as a power converter.
  • Inverter 10 is connected to the converter via a DC bus (not shown).
  • the DC bus includes a capacitor (not shown).
  • the inverter 10 is connected to the synchronous motor 2.
  • the inverter 10 includes a fan (not shown).
  • the elevator control device includes a fan power supply 11. The fan is connected to the fan power supply 11.
  • the converter rectifies AC power and converts it into DC power. At this time, the influence of the pulsating current or the like is removed by the capacitor.
  • the inverter 10 converts the DC power from the converter into AC power having an appropriate variable voltage and variable frequency.
  • the inverter 10 supplies AC power to the synchronous motor 2.
  • the fan cools the inverter 10.
  • the synchronous motor 2 is driven by AC power supplied from the inverter 10.
  • the sheave 3 rotates coaxially with the synchronous motor 2.
  • the brake 4 applies braking to the rotational drive of the sheave 3.
  • the scale device 8 measures the load capacity of the basket 7.
  • the basket 7 and the counterweight 9 are raised and lowered in the hoistway by the driving force of the hoist 1.
  • the encoder 5 detects the rotational speed of the hoisting machine 1.
  • the elevator system includes a current floor recognition means 12 and a destination floor recognition means 13.
  • the elevator control device includes a control block 14.
  • the control block 14 includes travel distance calculation means 15, basket load detection means 16, speed pattern generation means 17, speed controller 18, current controller 19, PWM generator 20, PWM comparison circuit 21, and base drive circuit 22. Yes.
  • a PWM comparison circuit 21 is connected to the PWM generator 20.
  • a base drive circuit 22 is connected to the PWM comparison circuit 21.
  • the inverter 10 is connected to the base drive circuit 22.
  • the current floor recognition means 12 detects the current floor of the basket 7.
  • the destination floor recognition means 13 detects the destination floor of the basket 7.
  • the travel distance calculation means 15 calculates the travel distance of the car 7 based on the floor data indicating the current floor and the floor data indicating the travel destination floor.
  • the car load detecting means 16 detects the load amount of the car 7 as a car load.
  • the speed pattern generation means 17 generates a speed pattern of the basket 7 based on the travel distance.
  • the speed pattern is, for example, the speed pattern of the cage 7 when the synchronous motor 2 is controlled in the order of the starting zero speed control, acceleration, constant speed, deceleration, and landing zero speed control.
  • the speed pattern generation means 17 outputs a speed command based on the generated speed pattern.
  • the speed controller 18 outputs a current command based on the speed command and the speed detection value from the encoder 5.
  • the current controller 19 detects the actual current supplied from the inverter 10 to the synchronous motor 2. Hereinafter, this current value is referred to as “actual current detection value”. The current controller 19 outputs a voltage command based on the current command and the actual current detection value.
  • the PWM generator 20 outputs a PWM carrier wave.
  • the PWM comparison circuit 21 compares the value of the voltage command with the PWM carrier wave.
  • the PWM comparison circuit 21 outputs an H / L signal based on the comparison result.
  • the base drive circuit 22 outputs a switching command based on the H / L signal.
  • the inverter 10 performs switching based on the switching command.
  • the inverter 10 converts the DC power from the converter into AC power by switching.
  • the control block 14 includes effective current calculation means 23, current effective value integration means 24, temperature rise estimation means 25, and setting change means 26.
  • the effective current calculation means 23 calculates the effective current supplied from the inverter 10 to the synchronous motor 2 during one traveling period based on the speed command and the load capacity of the car 7.
  • working is a driving
  • the effective current calculation means 23 calculates an effective current for each traveling.
  • Current effective value integration means 24 integrates the effective current in each run. Thereby, the integrated value of the effective current is calculated.
  • the temperature rise estimation means 25 estimates the temperature rise of the switching element of the inverter 10 from the integrated value of the effective current through the primary filter. Thereby, the estimated temperature rise value of the switching element is calculated.
  • the speed change command, the load capacity of the basket 7, and the estimated temperature rise value are input to the setting change means 26.
  • the setting changing means 26 determines the carrier frequency of the PWM carrier wave based on the speed command, the load capacity of the car 7 and the estimated temperature rise value.
  • the PWM generator 20 outputs a PWM carrier wave at the carrier frequency determined by the setting change means 26. In this way, the carrier frequency of the PWM carrier is changed.
  • FIG. 2 is a schematic diagram of a current waveform of the synchronous motor 2 according to the first embodiment of the present invention.
  • FIG. 2 shows a current waveform while the car 7 is traveling up.
  • FIG. 2 shows a current waveform during one traveling period.
  • the horizontal axis represents time
  • the vertical axis represents the current of the synchronous motor 2.
  • the time indicated by the horizontal axis is divided into time intervals T0 to T10.
  • T0 is the start-up zero speed control torque section.
  • T1 is a zero speed control section at the time of start-up.
  • T2 is the acceleration zone.
  • T3 is a constant acceleration interval.
  • T4 is an accelerated rounding section.
  • T5 is a constant speed section.
  • T6 is a deceleration rounding section.
  • T7 is a constant deceleration zone.
  • T8 is a stop rounding section.
  • T9 is a zero speed control section at the time of landing.
  • T10 is a zero-speed control torque falling section during landing.
  • the current value at T1 is I1.
  • the current value at T3 is I3.
  • the current value at T5 is I5.
  • the current value at T7 is I7.
  • the current value at T9 is I9.
  • I1, I5, and I9 are currents corresponding to the load torque corresponding to the load amount of the car 7.
  • I3 is a current corresponding to the acceleration torque.
  • I7 is
  • Irms1 (I1 * T1 + I3 * T3 + I5 * T5 + I7 * T7 + I9 * T9) / SUM (T0, T10)) ... ... (1)
  • the effective current calculating unit 23 When a plurality of times of traveling are performed, the effective current calculating unit 23 performs the same calculation as Equation (1) for each traveling. At this time, the effective current during the n-th traveling period is represented as Irmsn. Note that n is a positive integer. For example, when the vehicle travels three times, the effective current calculation unit 23 calculates Irms1, Irms2, and Irms3. In this way, the effective current during each traveling period is calculated.
  • the current effective value integration means 24 calculates the square sum ⁇ (Irmsn 2 ) of the effective current during each traveling period. Thereby, the integrated value of the effective current is calculated. This integrated value is input to the temperature rise estimating means 25.
  • the temperature rise estimating means 25 calculates the temperature rise estimated value TIrmsn of the switching element of the inverter 10 from the integrated value of the effective current through the primary filter.
  • FIG. 3 is an internal configuration diagram of the setting change means 26 in the first embodiment.
  • the setting change unit 26 includes a first determination unit 27.
  • the first determination means 27 receives the temperature rise estimated value TIrmsn.
  • the setting change means 26 determines a carrier frequency.
  • FIG. 4 is a relationship diagram between the temperature rise estimated value and the temperature rise threshold in the first embodiment.
  • TLIMIT1 is set in advance as the temperature rise threshold.
  • TLIMIT 1 is set based on the allowable temperature rise of the switching element.
  • Fc1 the carrier frequency during normal operation
  • the first determination means 27 compares the estimated temperature rise value with the temperature rise threshold value. The first determination means 27 determines whether or not the temperature increase estimated value TIrmsn is equal to or higher than the temperature increase threshold value TLIMIT1. When TIrmsn is equal to or greater than TLIMIT1, the setting changing unit 26 determines the carrier frequency as Fc2 (Fc1> Fc2). On the other hand, when TIrmsn is less than TLIMIT1, the setting changing unit 26 determines the carrier frequency to be Fc1. For example, when TIrmsn becomes equal to or higher than TLIMIT1 at normal time, the setting changing unit 26 decreases the carrier frequency from Fc1 to Fc2. On the other hand, when TIrmsn is no longer equal to or higher than TLIMIT1, the setting changing unit 26 keeps the carrier frequency as Fc1.
  • FIG. 5 is a flowchart showing the operation of the elevator control apparatus in the first embodiment. Hereinafter, the operation of the elevator control apparatus will be described with reference to FIG.
  • the carrier frequency is determined in the control block 14 before the travel is started.
  • the carrier frequency is Fc1.
  • the travel distance calculation means 15 calculates the travel distance of the car 7 based on the floor data indicating the current floor and the floor data indicating the travel destination floor (step S101).
  • the speed pattern generation means 17 outputs a speed command based on the travel distance calculated in step S101 (step S102).
  • the car load detecting means 16 detects the load amount of the car 7 while the door is closed before the start of traveling. Thereby, the basket load before the start of traveling is determined (step S103).
  • the effective current calculation means 23 calculates the effective current during the travel period based on the speed command output in step S102 and the loading amount detected in step S103 (step S104).
  • the current effective value integration means 24 calculates the integrated value ⁇ (Irmsn 2 ) of the effective current calculated in step S104 (step S105).
  • the temperature rise estimation means 25 calculates the temperature rise estimated value TIrmsn based on the integrated value calculated in step S105 (step S106).
  • the first determination means 27 determines whether or not TIrmsn calculated in step S106 is equal to or greater than TLIMIT1 (step S107).
  • step S107 if TIrmsn is equal to or greater than TLIMIT1, the setting changing unit 26 changes the carrier frequency from Fc1 to Fc2 (Fc1> Fc2) (step S109). On the other hand, if TIrmsn is less than TLIMIT1 in step S107, the setting changing unit 26 keeps the carrier frequency as Fc1.
  • the PWM generator 20 outputs a PWM carrier wave at the carrier frequency determined by the setting change means 26.
  • the PWM comparison circuit 21 outputs an H / L signal based on the comparison between the PWM carrier wave and the voltage command value.
  • the base drive circuit 22 outputs a switching command based on the H / L signal.
  • the inverter 10 applies a voltage to the synchronous motor 2 based on the switching command. As a result, the synchronous motor 2 starts running of the basket 7 (step S111).
  • the travel distance calculation means 15 calculates the travel distance of the basket 7 from the current floor to the travel destination floor.
  • the speed pattern generation means 17 outputs a speed command based on the travel distance.
  • the effective current calculation means 23 calculates the effective current supplied from the inverter 10 to the synchronous motor 2 based on the speed command and the load amount detected as the basket load.
  • the temperature rise estimating means 25 calculates a temperature rise estimated value of the switching element of the inverter 10 based on the integrated value of the effective current.
  • the setting changing means 26 determines the carrier frequency before the car 7 starts traveling based on the estimated temperature rise of the switching element. In other words, the change of the carrier frequency, which has been conventionally performed while the car is running, is performed before the car starts running. Thereby, the temperature rise of the switching element can be prevented before the car starts to travel. For this reason, it is possible to prevent the estimated temperature rise value of the switching element from exceeding the allowable temperature rise value. As a result, the life of the switching element can be extended.
  • Embodiment 2 FIG. The configuration diagram of the elevator system in the present embodiment is the same as FIG. Hereinafter, the present embodiment will be described focusing on differences from the first embodiment.
  • FIG. 6 is an internal block diagram of the setting changing means 26 in the second embodiment.
  • the setting change unit 26 includes a first determination unit 27 and a second determination unit 28.
  • a speed command is input from the speed pattern generation means 17 to the second determination means 28.
  • the load amount is input to the second determination unit 28 as the basket load from the basket load detection unit 16.
  • the setting change means 26 determines a carrier frequency.
  • FIG. 7 is a relationship diagram between the temperature rise estimated value and the temperature rise threshold in the second embodiment.
  • TLIMIT 1 and TLIMIT 2 are set in advance as the temperature increase threshold.
  • TLIMIT2 is a larger value than TLIMIT1.
  • TLIMIT 1 and TLIMIT 2 are set based on the allowable temperature rise of the switching element.
  • a method for determining a carrier frequency in the present embodiment will be described with reference to FIG. Note that the carrier frequency during normal operation is Fc1.
  • the first determination means 27 compares the temperature increase estimated value TIrmsn with the temperature increase threshold values TLIMIT1 and TLIMIT2.
  • the second determination means 28 determines whether or not the basket 7 is in a no-load lowering operation based on the speed command and the load amount.
  • the no-load descending operation means that the car 7 travels down with no load.
  • the state where the basket 7 is not loaded is a state where the number of passengers is zero.
  • the setting changing unit 26 determines the carrier frequency to be Fc2 (Fc1> Fc2).
  • the setting changing unit 26 determines the carrier frequency to be Fc1.
  • the setting changing unit 26 determines the carrier frequency as Fc2 only during the no-load descending operation. On the other hand, the setting change means 26 keeps the carrier frequency as Fc1 except during the no-load descending operation. Thus, when TIrmsn is equal to or greater than TLIMIT1 and less than TLIMIT2, the setting changing unit 26 selects the carrier frequency from Fc1 and Fc2 according to the operation mode of the elevator.
  • FIG. 8 is a flowchart showing the operation of the elevator control apparatus according to the second embodiment.
  • the operation of the elevator control apparatus in the present embodiment will be described with reference to FIG.
  • steps S201 to S206 and S211 in the present embodiment are the same as the operations in steps S101 to S106 and S111 in the first embodiment.
  • the first determination means 27 determines whether or not TIrmsn calculated in step S206 is equal to or greater than TLIMIT1 (step S207).
  • step S207 If it is determined in step S207 that TIrmsn is greater than or equal to TLIMIT1, the first determination unit 27 determines whether or not TIrmsn is greater than or equal to TLIMIT2 (step S208). On the other hand, if TIrmsn is less than TLIMIT1 in step S207, the setting changing unit 26 keeps the carrier frequency as Fc1.
  • step S208 if TIrmsn is equal to or greater than TLIMIT2, the setting changing unit 26 changes the carrier frequency from Fc1 to Fc2 (Fc1> Fc2) regardless of the operation mode (step S209). On the other hand, if TIrmsn is greater than or equal to TLIMIT1 and less than TLIMIT2 in step S208, the setting changing unit 26 changes the carrier frequency from Fc1 to Fc2 only during the no-load lowering operation (step S210).
  • the setting changing means 26 reduces the carrier frequency only during the no-load lowering operation when the estimated temperature rise value is TLIMIT1 or more and less than TLIMIT2. Thereby, the period when a carrier frequency falls is limited when the user has not boarded the basket 7. FIG. For this reason, for example, the influence of deterioration of control performance such as an increase in motor torque ripple is not given to the user. As a result, an elevator control device that achieves the same effects as in the first embodiment and does not impair the comfort of the elevator user can be realized.
  • Embodiment 3 The configuration diagram of the elevator system in the present embodiment is the same as FIG. Hereinafter, the present embodiment will be described focusing on differences from the first and second embodiments.
  • the setting change means 26 determines the acceleration of the car 7, the speed of the car 7, and the fan air volume during the running of the car 7, based on the speed command, the load amount and the estimated temperature rise value.
  • the setting changing means 26 determines the carrier frequency of the PWM carrier wave so that the car 7 is driven at the determined acceleration and speed.
  • the PWM generator 20 outputs a PWM carrier wave at the carrier frequency determined by the setting change means 26.
  • the fan power supply 11 drives the fan based on the determined air volume. In this way, the acceleration of the car 7, the speed of the car 7 and the fan air volume are changed.
  • the temperature rise of the switching element is the largest.
  • the acceleration of the cage 7 decreases, the current flowing through the switching element during acceleration decreases.
  • the speed of the cage 7 decreases, the acceleration time decreases, and the time during which a large current flows through the switching element is shortened.
  • the acceleration or speed of the cage 7 decreases, the temperature rise of the switching element is suppressed.
  • the fan air volume increases, the temperature of the switching element decreases.
  • the life of the switching element is extended.
  • FIG. 9 is a relationship diagram between the temperature rise estimated value and the temperature rise threshold in the third embodiment.
  • TLIMIT 1 and TLIMIT 2 are set in advance as the temperature increase threshold.
  • TLIMIT2 is a larger value than TLIMIT1.
  • TLIMIT 1 and TLIMIT 2 are set based on the allowable temperature rise of the switching element.
  • a method for determining the acceleration of the car 7, the speed of the car 7, and the fan air volume will be described with reference to FIG. It is assumed that the acceleration of the car 7 at normal time is a0, the speed of the car 7 is v0, and the fan air volume is f0.
  • the setting changing unit 26 changes the acceleration of the car 7, the speed of the car 7, and the fan air volume.
  • the setting change means 26 determines the acceleration as a1 (a0> a1).
  • the setting change means 26 determines the speed as v1 (v0> v1).
  • the setting change means 26 determines the fan air volume as f1 (f1> f0).
  • the setting changing means 26 changes either the acceleration of the cage 7 or the speed of the cage 7 and the fan air volume.
  • the setting changing unit 26 determines the acceleration as a1.
  • the setting change unit 26 determines the speed as v1. Regardless of whether the acceleration or the speed is changed, the setting changing unit 26 determines the fan air volume to be f1.
  • the setting changing unit 26 When TIrmsn is less than TLIMIT1, the setting changing unit 26 does not change the acceleration of the car 7, the speed of the car 7, and the fan air volume. In this case, the setting changing means 26 determines the acceleration as a0, the speed as v0, and the fan air volume as f0.
  • FIG. 10 is a flowchart showing the operation of the elevator control apparatus according to the third embodiment.
  • the operation of the elevator control apparatus in the present embodiment will be described with reference to FIG.
  • steps S301 to S306 and S311 in the present embodiment are the same as the operations in steps S101 to S106 and S111 in the first embodiment.
  • the setting changing unit 26 determines whether the TIrmsn calculated in step S306 is equal to or greater than TLIMIT1 (step S307).
  • step S307 If it is determined in step S307 that TIrmsn is equal to or greater than TLIMIT1, the setting changing unit 26 determines whether TIrmsn is equal to or greater than TLIMIT2 (step S308). On the other hand, if TIrmsn is less than TLIMIT1 in step S307, the setting changing means 26 keeps the acceleration of the car 7 as a0, the speed of the car 7 as v0, and the fan air volume as f0.
  • step S308 when TIrmsn is equal to or greater than TLIMIT2, the setting changing unit 26 changes the acceleration of the car 7, the speed of the car 7, and the fan air volume (step S309).
  • step S309 the setting changing unit 26 changes the acceleration from a0 to a1 (a0> a1).
  • the setting changing unit 26 changes the speed from v0 to v1 (v0> v1).
  • the setting change means 26 changes the fan air volume from f0 to f1 (f1> f0).
  • the setting changing unit 26 changes either the acceleration of the basket 7 or the speed of the basket 7 and the fan air volume (step S310).
  • the acceleration is changed in step S310, the setting changing unit 26 changes the acceleration from a0 to a1 (a0> a1).
  • the setting changing unit 26 changes the speed from v0 to v1 (v0> v1).
  • the setting changing unit 26 changes the fan air volume from f0 to f1 (f1> f0).
  • the setting change means 26 determines the acceleration, speed and fan air volume. Further, the setting change means 26 determines the carrier frequency of the PWM carrier so that the car 7 travels at the determined acceleration and speed.
  • the setting change unit 26 determines the acceleration of the car 7 and the speed of the car 7 before the car 7 starts traveling based on the estimated temperature rise value.
  • the setting changing means 26 determines the carrier frequency of the PWM carrier wave so that the car 7 is driven at the determined acceleration and speed. In other words, the change of the carrier frequency, which has been conventionally performed while the car is running, is performed before the car starts running. Further, the setting change means 26 changes the fan air volume before the car 7 starts to travel based on the estimated temperature rise value. Thereby, the temperature rise of the switching element can be prevented before the car starts to travel. For this reason, it is possible to prevent the estimated temperature rise value of the switching element from exceeding the allowable temperature rise value. As a result, the life of the switching element can be extended.
  • the setting changing unit 26 reduces either the acceleration or the speed of the cage 7.
  • the setting change unit 26 decreases both the acceleration and the speed of the cage 7. For this reason, it is possible to suppress a decrease in the elevator carrying capacity while minimizing the temperature rise of the switching element.
  • the temperature of the switching element is lowered by increasing the fan air volume.
  • the fan air volume may be reduced while the car 7 is decelerating. Since the value of the current flowing through the switching element is small during the deceleration of the car 7, the temperature of the switching element decreases. For this reason, excessive cooling of the switching element can be prevented by reducing the fan air volume while the car 7 is decelerating. Thereby, the temperature change amount of the switching element can be reduced.
  • the estimated temperature rise value is calculated based on the calculated integrated value of the effective current during each traveling period.
  • the carrier frequency is determined based on the estimated temperature rise value before the car 7 starts to travel.
  • the effective current integrated value and the temperature rise estimated value may be recalculated based on the actual detected current value. Specifically, for example, when traveling a plurality of times, the value calculated as the effective current during the traveling period is replaced with the actual detected current value every time travel is completed.
  • the effective current value integrating means 24 recalculates the integrated effective current value using the actual detected current value.
  • the temperature rise estimation means 25 recalculates the temperature rise estimated value based on the recalculated new integrated value.
  • the setting changing means 26 re-determines the carrier frequency based on the recalculated new temperature rise estimated value. According to this configuration, the accuracy of the temperature rise estimated value is improved every time one run is completed. For this reason, a temperature estimation error can be suppressed and the temperature rise of a switching element can be prevented more reliably. As a result, the life of the switching element can be extended.
  • the effective current Irms1 during one traveling period shown in FIG. 2 is calculated using Equation (1). However, it may be calculated in consideration of T0, T2, T4, T6, T8, and T10. In this case, the accuracy of the value of Irms1 can be improved. Thereby, the temperature estimation error can be suppressed and the temperature rise of the switching element can be prevented more reliably. As a result, the life of the switching element can be extended.
  • FIG. 11 is a configuration diagram of an elevator system including the elevator control device according to the fourth embodiment.
  • the present embodiment will be described with a focus on differences from the second embodiment.
  • control block 14 includes a storage unit 29 instead of the effective current calculation unit 23.
  • the control block 14 includes a temperature rise integrating unit 30 instead of the current effective value integrating unit 24.
  • the storage means 29 stores a temperature rise table.
  • the temperature rise table includes a temperature rise value of the switching element.
  • the temperature increase value is set in advance as a value corresponding to the travel distance and load capacity of the car 7.
  • the storage unit 29 selects a temperature increase value from the temperature increase table based on the travel distance and the load capacity. When traveling a plurality of times, the storage means 29 selects a temperature increase value for each traveling.
  • the temperature increase integration means 30 integrates the temperature increase value in each run selected from the temperature increase table. Thereby, the integrated value of the temperature rise value is calculated.
  • the temperature rise estimation means 25 estimates the temperature rise of the switching element from the integrated value of the temperature rise values via the primary filter. Thereby, the temperature rise estimated value Tn of the switching element is calculated.
  • FIG. 12 is a flowchart showing the operation of the elevator control apparatus according to the fourth embodiment.
  • the operation of the elevator control device of the present embodiment will be described with reference to FIG.
  • step S401 is the same as the operation in step S201 in the second embodiment.
  • the operation in step S403 is similar to the operation in step S203 in the second embodiment.
  • the storage unit 29 refers to the temperature rise table and selects a temperature rise value based on the travel distance of the cage 7 calculated in step S401 and the loading amount detected in step S403. (Step S404).
  • the temperature increase integration means 30 calculates the integrated value of the temperature increase value selected in step S404 (step S405).
  • the temperature rise estimation means 25 calculates a temperature rise estimated value Tn based on the integrated value calculated in step S405 (step S406).
  • steps S407 to S411 in the present embodiment are the same as the operations in steps S207 to S211 in the second embodiment.
  • “TIrmsn” in the second embodiment is replaced with “Tn”.
  • the storage unit 29 selects the temperature increase value of the switching element from the temperature increase table based on the travel distance of the car 7 and the load amount detected as the car load.
  • the temperature rise estimating means 25 calculates a temperature rise estimated value of the switching element based on the integrated value of the temperature rise values.
  • the setting change means 26 determines the carrier frequency before the car 7 starts to travel based on the estimated temperature rise value. In other words, the change of the carrier frequency, which has been conventionally performed while the car is running, is performed before the car starts running. Thereby, the temperature rise of the switching element can be prevented before the car starts to travel. For this reason, it is possible to prevent the estimated temperature rise value of the switching element from exceeding the allowable temperature rise value. As a result, the life of the switching element can be extended.
  • the setting changing unit 26 reduces the carrier frequency only during the no-load lowering operation when the estimated temperature rise value is equal to or greater than TLIMIT1 and less than TLIMIT2.
  • the period when a carrier frequency falls is limited when the user has not boarded the basket 7.
  • FIG. For this reason, for example, the influence of deterioration of control performance such as an increase in motor torque ripple is not given to the user.
  • an elevator control device that does not impair the comfort of the elevator user can be realized.
  • Embodiment 5 FIG.
  • the configuration diagram of the elevator system in the present embodiment is the same as FIG.
  • the present embodiment will be described focusing on differences from the third embodiment.
  • control block 14 includes a storage unit 29 instead of the effective current calculation unit 23.
  • the control block 14 includes a temperature rise integrating unit 30 instead of the current effective value integrating unit 24.
  • the storage means 29 stores a temperature rise table.
  • the temperature rise table includes a temperature rise value of the switching element.
  • the temperature increase value is set in advance as a value corresponding to the travel distance and load capacity of the car 7.
  • the storage unit 29 selects a temperature increase value from the temperature increase table based on the travel distance and the load capacity. When traveling a plurality of times, the storage means 29 selects a temperature increase value for each traveling.
  • the temperature increase integration means 30 integrates the temperature increase value in each run selected from the temperature increase table. Thereby, the integrated value of the temperature rise value is calculated.
  • the temperature rise estimation means 25 estimates the temperature rise of the switching element from the integrated value of the temperature rise values via the primary filter. Thereby, the temperature rise estimated value Tn of the switching element is calculated.
  • FIG. 13 is a flowchart showing the operation of the elevator control apparatus according to the fifth embodiment.
  • the operation of the elevator control apparatus in the present embodiment will be described with reference to FIG.
  • step S501 is the same as the operation in step S301 in the third embodiment.
  • step S503 is the same as the operation in step S303 in the third embodiment.
  • the storage means 29 refers to the temperature rise table and selects a temperature rise value based on the travel distance of the cage 7 calculated in step S501 and the loading amount detected in step S503. (Step S504).
  • the temperature increase integration means 30 calculates the integrated value of the temperature increase value selected in step S504 (step S505).
  • the temperature rise estimation means 25 calculates a temperature rise estimated value Tn based on the integrated value calculated in step S505 (step S506).
  • steps S507 to S511 in the present embodiment are the same as the operations in steps S307 to S311 in the third embodiment.
  • “TIrmsn” in the third embodiment is replaced with “Tn”.
  • the storage unit 29 selects the temperature increase value of the switching element from the temperature increase table based on the travel distance of the car 7 and the load amount detected as the car load.
  • the temperature rise estimating means 25 calculates a temperature rise estimated value of the switching element based on the integrated value of the temperature rise values.
  • the setting changing means 26 determines the acceleration of the car 7 and the speed of the car 7 before the car 7 starts traveling based on the estimated temperature rise value.
  • the setting changing means 26 determines the carrier frequency of the PWM carrier wave so that the car 7 is driven at the determined acceleration and speed. In other words, the change of the carrier frequency, which has been conventionally performed while the car is running, is performed before the car starts running.
  • the setting change means 26 changes the fan air volume before the car 7 starts to travel based on the estimated temperature rise value. Thereby, the temperature rise of the switching element can be prevented before the car starts to travel. For this reason, it is possible to prevent the estimated temperature rise value of the switching element from exceeding the allowable temperature rise value. As a result, the life of the switching element can be extended.
  • the setting changing unit 26 reduces either the acceleration or the speed of the cage 7.
  • the setting change unit 26 decreases both the acceleration and the speed of the cage 7. For this reason, it is possible to suppress a decrease in the elevator carrying capacity while minimizing the temperature rise of the switching element.
  • the temperature of the switching element is lowered by increasing the fan air volume.
  • the fan air volume may be reduced while the car 7 is decelerating. Since the value of the current flowing through the switching element is small during the deceleration of the basket 7, the temperature of the switching element is lowered. For this reason, excessive cooling of the switching element can be prevented by reducing the fan air volume while the car 7 is decelerating. Thereby, the temperature change amount of the switching element can be reduced.
  • the change of the carrier frequency which has been conventionally performed while the car is running, is performed before the car starts running.
  • working is not made an elevator user feel.
  • the temperature rise of the switching element since the temperature rise of the switching element is estimated, long-time protection can be considered. For this reason, according to this invention, the lifetime of a switching element can be lengthened compared with the past.
  • the present invention is also effective for the temperature rise of the switching element in the continuous operation of the elevator that exceeds the assumed range. According to the present invention, it is possible to estimate the temperature rise with high accuracy by considering the zero speed control with the speed pattern.
  • the switching element is formed by a MOSFET (field effect transistor) made of a wide band gap semiconductor.
  • MOSFET field effect transistor
  • the module heat generated by the loss can be reduced.
  • the carrier frequency can be controlled to be lowered to the extent that the same performance as the conventional one can be realized.
  • the wide band gap semiconductor is, for example, SiC (silicon carbide), gallium nitride-based material, diamond, or the like.
  • Embodiments 1 to 5 describe an elevator control device that controls a traction type elevator as shown in FIGS. 1 and 11.
  • the traction elevator roping is optional, such as 1: 1 roping or 2: 1 roping.
  • a baffle (not shown) is disposed on the hoistway as required.
  • the suspension rope 6 is wound around the sheave 3 and the deflector.
  • or 5 demonstrates the case where an inverter is used as a power converter device which supplies electric power to an electric motor.
  • the present invention can also be applied to a switching element of a converter when the converter is used as a power conversion device provided on the power supply side for supplying electric power to the electric motor.
  • the elevator control apparatus can be used for an elevator that drives a motor by driving an electric motor using a power converter.

Abstract

Provided is an elevator control device which is capable of preventing an increase in the temperature of a switching element prior to starting to move the compartment. The elevator control device is provided with: a movement-distance calculation means (15) for calculating the movement distance of a compartment (7) from the current floor to the destination floor; a temperature-increase estimation means (25) for calculating, on the basis of the movement distance calculated by the movement-distance calculation means (15), an estimated temperature-increase value for the switching element in an inverter (10) for powering a synchronous motor (2) which moves the compartment (7); and a setting-changing means (26) for determining, prior to starting to move the compartment (7), the carrier frequency for controlling the inverter (10), on the basis of the estimated temperature-increase value calculated by the temperature-increase estimation means (25).

Description

エレベータ制御装置Elevator control device
 本発明は、エレベータ制御装置に関するものである。 The present invention relates to an elevator control device.
 下記特許文献1には、エレベータ制御装置が記載されている。このエレベータ制御装置は、カゴを昇降する電動機に電力を供給するインバータの出力電流が最大許容電流を超過した場合にキャリア周波数を低下させる。 The following Patent Document 1 describes an elevator control device. This elevator control device lowers the carrier frequency when the output current of the inverter that supplies power to the electric motor that moves up and down the car exceeds the maximum allowable current.
日本特開平10-164884号公報Japanese Unexamined Patent Publication No. 10-164484 日本特開2011-57329号公報Japanese Unexamined Patent Publication No. 2011-57329 日本特許第4721713号公報Japanese Patent No. 4721713
 特許文献1に記載のエレベータ制御装置は、カゴの走行中にキャリア周波数を変更する。このため、カゴの走行開始前にスイッチング素子の温度上昇を予防することができない。 The elevator control device described in Patent Document 1 changes the carrier frequency while the car is running. For this reason, the temperature rise of the switching element cannot be prevented before the car starts running.
 本発明は、上記の課題を解決するためになされた。その目的は、カゴの走行開始前にスイッチング素子の温度上昇を予防することができるエレベータ制御装置を提供することである。 The present invention has been made to solve the above problems. An object of the present invention is to provide an elevator control device that can prevent a temperature rise of a switching element before a car starts to travel.
 本発明に係るエレベータ制御装置は、現在階から走行先階までのカゴの走行距離を算出する走行距離算出手段と、走行距離算出手段により算出された走行距離に基づいて、カゴを走行させる電動機を駆動する電力変換装置のスイッチング素子の温度上昇推定値を算出する温度上昇推定手段と、カゴの走行開始前に、温度上昇推定手段により算出された温度上昇推定値に基づいて、電力変換装置を制御するためのキャリア周波数を決定する設定変更手段と、を備えたものである。 An elevator control device according to the present invention includes a travel distance calculation unit that calculates a travel distance of a car from a current floor to a travel destination floor, and an electric motor that causes the car to travel based on the travel distance calculated by the travel distance calculation unit. Temperature rise estimation means for calculating an estimated temperature rise value of the switching element of the power converter to be driven, and controlling the power converter based on the estimated temperature rise value calculated by the temperature rise estimation means before the car starts running Setting changing means for determining a carrier frequency to be used.
 本発明によれば、エレベータ制御装置において、カゴの走行開始前にスイッチング素子の温度上昇を予防することができる。 According to the present invention, in the elevator control device, the temperature rise of the switching element can be prevented before the car starts to travel.
本発明の実施の形態1におけるエレベータ制御装置を備えたエレベータシステムの構成図である。It is a block diagram of the elevator system provided with the elevator control apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における同期電動機の電流波形の模式図である。It is a schematic diagram of the current waveform of the synchronous motor in the first embodiment of the present invention. 本発明の実施の形態1における設定変更手段の内部構成図である。It is an internal block diagram of the setting change means in Embodiment 1 of this invention. 本発明の実施の形態1における温度上昇推定値と温度上昇閾値の関係図である。It is a related figure of the temperature rise estimated value and temperature rise threshold value in Embodiment 1 of this invention. 本発明の実施の形態1におけるエレベータ制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the elevator control apparatus in Embodiment 1 of this invention. 本発明の実施の形態2における設定変更手段の内部構成図である。It is an internal block diagram of the setting change means in Embodiment 2 of this invention. 本発明の実施の形態2における温度上昇推定値と温度上昇閾値の関係図である。It is a related figure of the temperature rise estimated value and temperature rise threshold value in Embodiment 2 of this invention. 本発明の実施の形態2におけるエレベータ制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the elevator control apparatus in Embodiment 2 of this invention. 本発明の実施の形態3における温度上昇推定値と温度上昇閾値の関係図である。It is a related figure of the temperature rise estimated value and temperature rise threshold value in Embodiment 3 of this invention. 本発明の実施の形態3におけるエレベータ制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the elevator control apparatus in Embodiment 3 of this invention. 本発明の実施の形態4におけるエレベータ制御装置を備えたエレベータシステムの構成図である。It is a block diagram of the elevator system provided with the elevator control apparatus in Embodiment 4 of this invention. 本発明の実施の形態4におけるエレベータ制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the elevator control apparatus in Embodiment 4 of this invention. 本発明の実施の形態5におけるエレベータ制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the elevator control apparatus in Embodiment 5 of this invention.
 添付の図面を参照して、本発明を詳細に説明する。各図では、同一又は相当する部分に同一の符号を付している。重複する説明は、適宜簡略化あるいは省略する。 The present invention will be described in detail with reference to the accompanying drawings. In each figure, the same or corresponding parts are denoted by the same reference numerals. The overlapping description will be simplified or omitted as appropriate.
実施の形態1.
 図1は、実施の形態1におけるエレベータ制御装置を備えたエレベータシステムの構成図である。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of an elevator system including the elevator control device according to the first embodiment.
 エレベータシステムは、図示しない昇降路を備えている。昇降路の上部には、巻上機1が設けられている。巻上機1は、同期電動機2、綱車3、ブレーキ4及びエンコーダ5を備えている。綱車3には、吊りロープ6が巻き回されている。吊りロープ6の一端には、カゴ7が接続されている。カゴ7は、秤装置8を備えている。吊りロープ6の他端には、釣合い錘9が接続されている。 The elevator system has a hoistway (not shown). A hoisting machine 1 is provided at the upper part of the hoistway. The hoist 1 includes a synchronous motor 2, a sheave 3, a brake 4, and an encoder 5. A suspension rope 6 is wound around the sheave 3. A basket 7 is connected to one end of the hanging rope 6. The basket 7 includes a scale device 8. A counterweight 9 is connected to the other end of the suspension rope 6.
 エレベータ制御装置は、図示しないコンバータ及び電力変換装置を備えている。本実施の形態では、電力変換装置としてインバータ10が設けられている。インバータ10は、図示しない直流母線を介してコンバータと接続されている。直流母線には、図示しないコンデンサが含まれている。インバータ10は、同期電動機2と接続されている。 The elevator control device includes a converter and a power conversion device (not shown). In the present embodiment, inverter 10 is provided as a power converter. Inverter 10 is connected to the converter via a DC bus (not shown). The DC bus includes a capacitor (not shown). The inverter 10 is connected to the synchronous motor 2.
 インバータ10は、図示しないファンを備えている。エレベータ制御装置は、ファン電源11を備えている。ファンは、ファン電源11に接続されている。 The inverter 10 includes a fan (not shown). The elevator control device includes a fan power supply 11. The fan is connected to the fan power supply 11.
 コンバータは、交流電力を整流して直流電力に変換する。この際、脈動電流等の影響はコンデンサにより除去される。インバータ10は、コンバータからの直流電力を適切な可変電圧可変周波数の交流電力に変換する。インバータ10は、交流電力を同期電動機2に供給する。ファンは、インバータ10を冷却する。 The converter rectifies AC power and converts it into DC power. At this time, the influence of the pulsating current or the like is removed by the capacitor. The inverter 10 converts the DC power from the converter into AC power having an appropriate variable voltage and variable frequency. The inverter 10 supplies AC power to the synchronous motor 2. The fan cools the inverter 10.
 同期電動機2は、インバータ10から供給される交流電力により駆動される。綱車3は、同期電動機2と同軸で回転する。ブレーキ4は、綱車3の回転駆動に対して制動を加える。秤装置8は、カゴ7の積載量を測定する。カゴ7及び釣合い錘9は、巻上機1の駆動力により昇降路内を昇降される。エンコーダ5は、巻上機1の回転速度を検出する。 The synchronous motor 2 is driven by AC power supplied from the inverter 10. The sheave 3 rotates coaxially with the synchronous motor 2. The brake 4 applies braking to the rotational drive of the sheave 3. The scale device 8 measures the load capacity of the basket 7. The basket 7 and the counterweight 9 are raised and lowered in the hoistway by the driving force of the hoist 1. The encoder 5 detects the rotational speed of the hoisting machine 1.
 エレベータシステムは、現在階床認識手段12及び走行先階床認識手段13を備えている。エレベータ制御装置は、制御ブロック14を備えている。制御ブロック14は、走行距離算出手段15、カゴ負荷検出手段16、速度パターン生成手段17、速度制御器18、電流制御器19、PWM発生器20、PWM比較回路21及びベースドライブ回路22を備えている。 The elevator system includes a current floor recognition means 12 and a destination floor recognition means 13. The elevator control device includes a control block 14. The control block 14 includes travel distance calculation means 15, basket load detection means 16, speed pattern generation means 17, speed controller 18, current controller 19, PWM generator 20, PWM comparison circuit 21, and base drive circuit 22. Yes.
 PWM発生器20には、PWM比較回路21が接続されている。PWM比較回路21には、ベースドライブ回路22が接続されている。ベースドライブ回路22には、インバータ10が接続されている。 A PWM comparison circuit 21 is connected to the PWM generator 20. A base drive circuit 22 is connected to the PWM comparison circuit 21. The inverter 10 is connected to the base drive circuit 22.
 現在階床認識手段12は、カゴ7の現在階を検出する。走行先階床認識手段13は、カゴ7の走行先階を検出する。走行距離算出手段15は、現在階を示す階床データ及び走行先階を示す階床データに基づいて、カゴ7の走行距離を算出する。カゴ負荷検出手段16は、カゴ7の積載量をカゴ負荷として検出する。 The current floor recognition means 12 detects the current floor of the basket 7. The destination floor recognition means 13 detects the destination floor of the basket 7. The travel distance calculation means 15 calculates the travel distance of the car 7 based on the floor data indicating the current floor and the floor data indicating the travel destination floor. The car load detecting means 16 detects the load amount of the car 7 as a car load.
 速度パターン生成手段17は、走行距離に基づいてカゴ7の速度パターンを生成する。速度パターンは、例えば、起動時零速制御、加速、一定速、減速、着床時零速制御の順番で同期電動機2が制御された場合におけるカゴ7の速度のパターンである。速度パターン生成手段17は、生成された速度パターンに基づいて速度指令を出力する。 The speed pattern generation means 17 generates a speed pattern of the basket 7 based on the travel distance. The speed pattern is, for example, the speed pattern of the cage 7 when the synchronous motor 2 is controlled in the order of the starting zero speed control, acceleration, constant speed, deceleration, and landing zero speed control. The speed pattern generation means 17 outputs a speed command based on the generated speed pattern.
 速度制御器18は、速度指令及びエンコーダ5からの速度検出値に基づいて電流指令を出力する。 The speed controller 18 outputs a current command based on the speed command and the speed detection value from the encoder 5.
 電流制御器19は、インバータ10から同期電動機2に供給されている実際の電流を検出する。以下、この電流の値を「実際の電流検出値」という。電流制御器19は、電流指令及び実際の電流検出値に基づいて電圧指令を出力する。 The current controller 19 detects the actual current supplied from the inverter 10 to the synchronous motor 2. Hereinafter, this current value is referred to as “actual current detection value”. The current controller 19 outputs a voltage command based on the current command and the actual current detection value.
 PWM発生器20は、PWM搬送波を出力する。PWM比較回路21は、電圧指令の値とPWM搬送波とを比較する。PWM比較回路21は、この比較結果に基づいてH/L信号を出力する。ベースドライブ回路22は、H/L信号に基づいてスイッチング指令を出力する。インバータ10は、スイッチング指令に基づいてスイッチングを行う。インバータ10は、スイッチングにより、コンバータからの直流電力を交流電力に変換する。 PWM generator 20 outputs a PWM carrier wave. The PWM comparison circuit 21 compares the value of the voltage command with the PWM carrier wave. The PWM comparison circuit 21 outputs an H / L signal based on the comparison result. The base drive circuit 22 outputs a switching command based on the H / L signal. The inverter 10 performs switching based on the switching command. The inverter 10 converts the DC power from the converter into AC power by switching.
 制御ブロック14は、実効電流算出手段23、電流実効値積算手段24、温度上昇推定手段25及び設定変更手段26を備えている。 The control block 14 includes effective current calculation means 23, current effective value integration means 24, temperature rise estimation means 25, and setting change means 26.
 実効電流算出手段23は、速度指令及びカゴ7の積載量に基づいて、1走行期間中にインバータ10から同期電動機2に供給される実効電流を算出する。なお、1走行とは、停止しているカゴ7が走行開始してから次に停止するまでの走行である。複数回の走行が行われる場合、実効電流算出手段23は、各走行について実効電流を算出する。 The effective current calculation means 23 calculates the effective current supplied from the inverter 10 to the synchronous motor 2 during one traveling period based on the speed command and the load capacity of the car 7. In addition, 1 driving | running | working is a driving | running | working after the stopped cage | basket | car 7 starts driving | running | working until it stops next. When traveling a plurality of times, the effective current calculation means 23 calculates an effective current for each traveling.
 電流実効値積算手段24は、各走行における実効電流を積算する。これにより、実効電流の積算値が算出される。 Current effective value integration means 24 integrates the effective current in each run. Thereby, the integrated value of the effective current is calculated.
 温度上昇推定手段25は、一次フィルタを介して、実効電流の積算値からインバータ10のスイッチング素子の温度上昇を推定する。これにより、スイッチング素子の温度上昇推定値が算出される。 The temperature rise estimation means 25 estimates the temperature rise of the switching element of the inverter 10 from the integrated value of the effective current through the primary filter. Thereby, the estimated temperature rise value of the switching element is calculated.
 設定変更手段26には、速度指令、カゴ7の積載量及び温度上昇推定値が入力される。設定変更手段26は、速度指令、カゴ7の積載量及び温度上昇推定値に基づいて、PWM搬送波のキャリア周波数を決定する。PWM発生器20は、設定変更手段26により決定されたキャリア周波数でPWM搬送波を出力する。このようにして、PWM搬送波のキャリア周波数が変更される。 The speed change command, the load capacity of the basket 7, and the estimated temperature rise value are input to the setting change means 26. The setting changing means 26 determines the carrier frequency of the PWM carrier wave based on the speed command, the load capacity of the car 7 and the estimated temperature rise value. The PWM generator 20 outputs a PWM carrier wave at the carrier frequency determined by the setting change means 26. In this way, the carrier frequency of the PWM carrier is changed.
 キャリア周波数が低下すると、スイッチング素子に流れる電流が減少する。流れる電流が減少すると、スイッチング素子の温度上昇が低減する。温度変化が抑制されると、スイッチング素子の寿命が延びる。 When the carrier frequency decreases, the current flowing through the switching element decreases. When the flowing current decreases, the temperature rise of the switching element is reduced. When the temperature change is suppressed, the life of the switching element is extended.
 図2は、本発明の実施の形態1における同期電動機2の電流波形の模式図である。図2は、カゴ7の上昇走行中における電流波形を示している。図2は、1走行期間中の電流波形を示している。図2は、横軸が時間を、縦軸が同期電動機2の電流を示している。横軸が示す時間は、時間区間T0~T10に区分されている。以下、図2を参照して、実効電流、実効電流の積算値及び温度上昇推定値の算出方法を説明する。 FIG. 2 is a schematic diagram of a current waveform of the synchronous motor 2 according to the first embodiment of the present invention. FIG. 2 shows a current waveform while the car 7 is traveling up. FIG. 2 shows a current waveform during one traveling period. In FIG. 2, the horizontal axis represents time, and the vertical axis represents the current of the synchronous motor 2. The time indicated by the horizontal axis is divided into time intervals T0 to T10. Hereinafter, the calculation method of the effective current, the integrated value of the effective current, and the estimated temperature rise value will be described with reference to FIG.
 T0は起動時零速制御トルク立ち上げ区間である。T1は起動時零速制御区間である。T2は加加速区間である。T3は一定加速区間である。T4は加速丸め区間である。T5は一定速区間である。T6は減速丸め区間である。T7は一定減速区間である。T8は停止丸め区間である。T9は着床時零速制御区間である。T10は着床時零速制御トルク立ち下げ区間である。T1における電流値をI1とする。T3における電流値をI3とする。T5における電流値をI5とする。T7における電流値をI7とする。T9における電流値をI9とする。I1、I5及びI9は、カゴ7の積載量に応じた負荷トルクに対応する電流である。I3は加速トルクに対応する電流である。I7は減速トルクに対応する電流である。 T0 is the start-up zero speed control torque section. T1 is a zero speed control section at the time of start-up. T2 is the acceleration zone. T3 is a constant acceleration interval. T4 is an accelerated rounding section. T5 is a constant speed section. T6 is a deceleration rounding section. T7 is a constant deceleration zone. T8 is a stop rounding section. T9 is a zero speed control section at the time of landing. T10 is a zero-speed control torque falling section during landing. The current value at T1 is I1. The current value at T3 is I3. The current value at T5 is I5. The current value at T7 is I7. The current value at T9 is I9. I1, I5, and I9 are currents corresponding to the load torque corresponding to the load amount of the car 7. I3 is a current corresponding to the acceleration torque. I7 is a current corresponding to the deceleration torque.
 図2に示す1走行期間中における実効電流をIrms1とすると、Irms1は下記の式(1)で算出される。
 Irms1=(I1×T1+I3×T3+I5×T5+I7×T7+I9×T9)/SUM(T0,T10))・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(1)
If the effective current during one driving period shown in FIG. 2 is Irms1, Irms1 is calculated by the following equation (1).
Irms1 = (I1 * T1 + I3 * T3 + I5 * T5 + I7 * T7 + I9 * T9) / SUM (T0, T10)) ... ... (1)
 複数回の走行が行われる場合、実効電流算出手段23は、各走行について式(1)と同様の計算を行う。このとき、n回目の走行期間中における実効電流をIrmsnと表す。なお、nは正の整数である。例えば、3回の走行が行われる場合、実効電流算出手段23はIrms1、Irms2及びIrms3を算出する。このようにして、各走行期間中における実効電流が算出される。 When a plurality of times of traveling are performed, the effective current calculating unit 23 performs the same calculation as Equation (1) for each traveling. At this time, the effective current during the n-th traveling period is represented as Irmsn. Note that n is a positive integer. For example, when the vehicle travels three times, the effective current calculation unit 23 calculates Irms1, Irms2, and Irms3. In this way, the effective current during each traveling period is calculated.
 電流実効値積算手段24は、各走行期間中における実効電流の2乗和Σ(Irmsn)を算出する。これにより、実効電流の積算値が算出される。この積算値は、温度上昇推定手段25に入力される。温度上昇推定手段25は、一次フィルタを介して、実効電流の積算値からインバータ10のスイッチング素子の温度上昇推定値TIrmsnを算出する。 The current effective value integration means 24 calculates the square sum Σ (Irmsn 2 ) of the effective current during each traveling period. Thereby, the integrated value of the effective current is calculated. This integrated value is input to the temperature rise estimating means 25. The temperature rise estimating means 25 calculates the temperature rise estimated value TIrmsn of the switching element of the inverter 10 from the integrated value of the effective current through the primary filter.
 図3は、実施の形態1における設定変更手段26の内部構成図である。設定変更手段26は、第1の判定手段27を備えている。第1の判定手段27には、温度上昇推定値TIrmsnが入力される。設定変更手段26は、キャリア周波数を決定する。 FIG. 3 is an internal configuration diagram of the setting change means 26 in the first embodiment. The setting change unit 26 includes a first determination unit 27. The first determination means 27 receives the temperature rise estimated value TIrmsn. The setting change means 26 determines a carrier frequency.
 図4は、実施の形態1における温度上昇推定値と温度上昇閾値の関係図である。温度上昇閾値として、予めTLIMIT1が設定されている。TLIMIT1は、スイッチング素子の温度上昇許容値に基づいて設定されている。以下、図4を参照して、設定変更手段26によるキャリア周波数の決定方法を説明する。なお、通常時におけるキャリア周波数をFc1とする。 FIG. 4 is a relationship diagram between the temperature rise estimated value and the temperature rise threshold in the first embodiment. TLIMIT1 is set in advance as the temperature rise threshold. TLIMIT 1 is set based on the allowable temperature rise of the switching element. Hereinafter, a method of determining the carrier frequency by the setting changing unit 26 will be described with reference to FIG. Note that the carrier frequency during normal operation is Fc1.
 第1の判定手段27は、温度上昇推定値を温度上昇閾値と比較する。第1の判定手段27は、温度上昇推定値TIrmsnが温度上昇閾値TLIMIT1以上であるか否かを判定する。TIrmsnがTLIMIT1以上である場合、設定変更手段26は、キャリア周波数をFc2(Fc1>Fc2)に決定する。一方、TIrmsnがTLIMIT1未満である場合、設定変更手段26は、キャリア周波数をFc1に決定する。例えば、通常時に、TIrmsnがTLIMIT1以上となった場合、設定変更手段26は、キャリア周波数をFc1からFc2に減少させる。一方、TIrmsnがTLIMIT1以上でなくなった場合、設定変更手段26は、キャリア周波数をFc1のままとする。 The first determination means 27 compares the estimated temperature rise value with the temperature rise threshold value. The first determination means 27 determines whether or not the temperature increase estimated value TIrmsn is equal to or higher than the temperature increase threshold value TLIMIT1. When TIrmsn is equal to or greater than TLIMIT1, the setting changing unit 26 determines the carrier frequency as Fc2 (Fc1> Fc2). On the other hand, when TIrmsn is less than TLIMIT1, the setting changing unit 26 determines the carrier frequency to be Fc1. For example, when TIrmsn becomes equal to or higher than TLIMIT1 at normal time, the setting changing unit 26 decreases the carrier frequency from Fc1 to Fc2. On the other hand, when TIrmsn is no longer equal to or higher than TLIMIT1, the setting changing unit 26 keeps the carrier frequency as Fc1.
 図5は、実施の形態1におけるエレベータ制御装置の動作を示すフローチャートである。以下、図5を参照して、エレベータ制御装置の動作を説明する。 FIG. 5 is a flowchart showing the operation of the elevator control apparatus in the first embodiment. Hereinafter, the operation of the elevator control apparatus will be described with reference to FIG.
 カゴ7が走行されることが決定されると、制御ブロック14において、走行開始前にキャリア周波数が決定される。ここでは、キャリア周波数はFc1とする。 When it is determined that the car 7 is to be traveled, the carrier frequency is determined in the control block 14 before the travel is started. Here, the carrier frequency is Fc1.
 走行距離算出手段15は、現在階を示す階床データ及び走行先階を示す階床データに基づいてカゴ7の走行距離を算出する(ステップS101)。 The travel distance calculation means 15 calculates the travel distance of the car 7 based on the floor data indicating the current floor and the floor data indicating the travel destination floor (step S101).
 速度パターン生成手段17は、ステップS101で算出された走行距離に基づいて速度指令を出力する(ステップS102)。 The speed pattern generation means 17 outputs a speed command based on the travel distance calculated in step S101 (step S102).
 カゴ負荷検出手段16は、走行開始前の戸閉中にカゴ7の積載量を検出する。これにより、走行開始前のカゴ負荷が確定する(ステップS103)。 The car load detecting means 16 detects the load amount of the car 7 while the door is closed before the start of traveling. Thereby, the basket load before the start of traveling is determined (step S103).
 実効電流算出手段23は、ステップS102で出力された速度指令及びステップS103で検出された積載量に基づいて、走行期間中の実効電流を算出する(ステップS104)。 The effective current calculation means 23 calculates the effective current during the travel period based on the speed command output in step S102 and the loading amount detected in step S103 (step S104).
 電流実効値積算手段24は、ステップS104で算出された実効電流の積算値Σ(Irmsn)を算出する(ステップS105)。 The current effective value integration means 24 calculates the integrated value Σ (Irmsn 2 ) of the effective current calculated in step S104 (step S105).
 温度上昇推定手段25は、ステップS105で算出された積算値に基づいて温度上昇推定値TIrmsnを算出する(ステップS106)。 The temperature rise estimation means 25 calculates the temperature rise estimated value TIrmsn based on the integrated value calculated in step S105 (step S106).
 第1の判定手段27は、ステップS106で算出されたTIrmsnがTLIMIT1以上であるか否かを判定する(ステップS107)。 The first determination means 27 determines whether or not TIrmsn calculated in step S106 is equal to or greater than TLIMIT1 (step S107).
 ステップS107で、TIrmsnがTLIMIT1以上である場合、設定変更手段26は、キャリア周波数をFc1からFc2(Fc1>Fc2)に変更する(ステップS109)。一方、ステップS107で、TIrmsnがTLIMIT1未満である場合、設定変更手段26は、キャリア周波数をFc1のままとする。 In step S107, if TIrmsn is equal to or greater than TLIMIT1, the setting changing unit 26 changes the carrier frequency from Fc1 to Fc2 (Fc1> Fc2) (step S109). On the other hand, if TIrmsn is less than TLIMIT1 in step S107, the setting changing unit 26 keeps the carrier frequency as Fc1.
 PWM発生器20は、設定変更手段26により決定されたキャリア周波数でPWM搬送波を出力する。PWM比較回路21は、PWM搬送波と電圧指令の値との比較に基づいて、H/L信号を出力する。ベースドライブ回路22は、H/L信号に基づいてスイッチング指令を出力する。インバータ10は、スイッチング指令に基づいて同期電動機2に電圧を印加する。その結果、同期電動機2はカゴ7の走行を開始させる(ステップS111)。 The PWM generator 20 outputs a PWM carrier wave at the carrier frequency determined by the setting change means 26. The PWM comparison circuit 21 outputs an H / L signal based on the comparison between the PWM carrier wave and the voltage command value. The base drive circuit 22 outputs a switching command based on the H / L signal. The inverter 10 applies a voltage to the synchronous motor 2 based on the switching command. As a result, the synchronous motor 2 starts running of the basket 7 (step S111).
 上述したとおり、本実施の形態において、走行距離算出手段15は、現在階から走行先階までのカゴ7の走行距離を算出する。速度パターン生成手段17は、走行距離に基づいて速度指令を出力する。実効電流算出手段23は、速度指令及びカゴ負荷として検出された積載量に基づいて、インバータ10から同期電動機2に供給される実効電流を算出する。温度上昇推定手段25は、実効電流の積算値に基づいて、インバータ10のスイッチング素子の温度上昇推定値を算出する。設定変更手段26は、スイッチング素子の温度上昇推定値に基づいて、カゴ7の走行開始前にキャリア周波数を決定する。つまり、従来カゴの走行中に行われていたキャリア周波数の変更を、カゴの走行開始前に行う。これにより、カゴの走行開始前に、スイッチング素子の温度上昇を予防することができる。このため、スイッチング素子の温度上昇推定値が温度上昇許容値を超過することを未然に防止できる。その結果、スイッチング素子の寿命を延ばすことができる。 As described above, in the present embodiment, the travel distance calculation means 15 calculates the travel distance of the basket 7 from the current floor to the travel destination floor. The speed pattern generation means 17 outputs a speed command based on the travel distance. The effective current calculation means 23 calculates the effective current supplied from the inverter 10 to the synchronous motor 2 based on the speed command and the load amount detected as the basket load. The temperature rise estimating means 25 calculates a temperature rise estimated value of the switching element of the inverter 10 based on the integrated value of the effective current. The setting changing means 26 determines the carrier frequency before the car 7 starts traveling based on the estimated temperature rise of the switching element. In other words, the change of the carrier frequency, which has been conventionally performed while the car is running, is performed before the car starts running. Thereby, the temperature rise of the switching element can be prevented before the car starts to travel. For this reason, it is possible to prevent the estimated temperature rise value of the switching element from exceeding the allowable temperature rise value. As a result, the life of the switching element can be extended.
実施の形態2.
 本実施の形態におけるエレベータシステムの構成図は、図1と同様である。以下、実施の形態1との相違点を中心に本実施の形態について説明する。
Embodiment 2. FIG.
The configuration diagram of the elevator system in the present embodiment is the same as FIG. Hereinafter, the present embodiment will be described focusing on differences from the first embodiment.
 図6は、実施の形態2における設定変更手段26の内部構成図である。本実施の形態では、設定変更手段26は、第1の判定手段27及び第2の判定手段28を備えている。第2の判定手段28には、速度パターン生成手段17から速度指令が入力される。また、第2の判定手段28には、カゴ負荷検出手段16からカゴ負荷として積載量が入力される。設定変更手段26は、キャリア周波数を決定する。 FIG. 6 is an internal block diagram of the setting changing means 26 in the second embodiment. In the present embodiment, the setting change unit 26 includes a first determination unit 27 and a second determination unit 28. A speed command is input from the speed pattern generation means 17 to the second determination means 28. Further, the load amount is input to the second determination unit 28 as the basket load from the basket load detection unit 16. The setting change means 26 determines a carrier frequency.
 図7は、実施の形態2における温度上昇推定値と温度上昇閾値の関係図である。本実施の形態では、温度上昇閾値として、予めTLIMIT1及びTLIMIT2が設定されている。TLIMIT2は、TLIMIT1よりも大きい値である。TLIMIT1及びTLIMIT2は、スイッチング素子の温度上昇許容値に基づいて設定されている。以下、図7を参照して、本実施の形態におけるキャリア周波数の決定方法を説明する。なお、通常時におけるキャリア周波数をFc1とする。 FIG. 7 is a relationship diagram between the temperature rise estimated value and the temperature rise threshold in the second embodiment. In the present embodiment, TLIMIT 1 and TLIMIT 2 are set in advance as the temperature increase threshold. TLIMIT2 is a larger value than TLIMIT1. TLIMIT 1 and TLIMIT 2 are set based on the allowable temperature rise of the switching element. Hereinafter, a method for determining a carrier frequency in the present embodiment will be described with reference to FIG. Note that the carrier frequency during normal operation is Fc1.
 第1の判定手段27は、温度上昇推定値TIrmsnを温度上昇閾値TLIMIT1及びTLIMIT2と比較する。第2の判定手段28は、速度指令及び積載量に基づいて、カゴ7が無負荷下降運転されているか否かを判定する。なお、無負荷下降運転とは、カゴ7が無負荷の状態で下降走行されることである。カゴ7が無負荷の状態とは、乗車人数が0人の状態である。 The first determination means 27 compares the temperature increase estimated value TIrmsn with the temperature increase threshold values TLIMIT1 and TLIMIT2. The second determination means 28 determines whether or not the basket 7 is in a no-load lowering operation based on the speed command and the load amount. The no-load descending operation means that the car 7 travels down with no load. The state where the basket 7 is not loaded is a state where the number of passengers is zero.
 TIrmsnがTLIMIT2以上である場合、設定変更手段26は、キャリア周波数をFc2(Fc1>Fc2)に決定する。TIrmsnがTLIMIT1未満である場合、設定変更手段26は、キャリア周波数をFc1に決定する。 When TIrmsn is equal to or greater than TLIMIT2, the setting changing unit 26 determines the carrier frequency to be Fc2 (Fc1> Fc2). When TIrmsn is less than TLIMIT1, the setting changing unit 26 determines the carrier frequency to be Fc1.
 TIrmsnがTLIMIT1以上かつTLIMIT2未満である場合、設定変更手段26は、無負荷下降運転時のみキャリア周波数をFc2に決定する。一方、無負荷下降運転時以外は、設定変更手段26は、キャリア周波数をFc1のままとする。このように、TIrmsnがTLIMIT1以上かつTLIMIT2未満である場合、設定変更手段26は、エレベータの運転モードに応じてキャリア周波数をFc1とFc2から選択する。 When TIrmsn is greater than or equal to TLIMIT1 and less than TLIMIT2, the setting changing unit 26 determines the carrier frequency as Fc2 only during the no-load descending operation. On the other hand, the setting change means 26 keeps the carrier frequency as Fc1 except during the no-load descending operation. Thus, when TIrmsn is equal to or greater than TLIMIT1 and less than TLIMIT2, the setting changing unit 26 selects the carrier frequency from Fc1 and Fc2 according to the operation mode of the elevator.
 図8は、実施の形態2におけるエレベータ制御装置の動作を示すフローチャートである。以下、図8を参照して、本実施の形態におけるエレベータ制御装置の動作を説明する。 FIG. 8 is a flowchart showing the operation of the elevator control apparatus according to the second embodiment. Hereinafter, the operation of the elevator control apparatus in the present embodiment will be described with reference to FIG.
 本実施の形態におけるステップS201~S206及びS211の動作は、実施の形態1におけるステップS101~S106及びS111の動作と同様である。 The operations in steps S201 to S206 and S211 in the present embodiment are the same as the operations in steps S101 to S106 and S111 in the first embodiment.
 第1の判定手段27は、ステップS206で算出されたTIrmsnがTLIMIT1以上であるか否かを判定する(ステップS207)。 The first determination means 27 determines whether or not TIrmsn calculated in step S206 is equal to or greater than TLIMIT1 (step S207).
 ステップS207で、TIrmsnがTLIMIT1以上である場合、第1の判定手段27は、TIrmsnがTLIMIT2以上であるか否かを判定する(ステップS208)。一方、ステップS207で、TIrmsnがTLIMIT1未満である場合、設定変更手段26は、キャリア周波数をFc1のままとする。 If it is determined in step S207 that TIrmsn is greater than or equal to TLIMIT1, the first determination unit 27 determines whether or not TIrmsn is greater than or equal to TLIMIT2 (step S208). On the other hand, if TIrmsn is less than TLIMIT1 in step S207, the setting changing unit 26 keeps the carrier frequency as Fc1.
 ステップS208で、TIrmsnがTLIMIT2以上である場合、設定変更手段26は、運転モードに関わらずキャリア周波数をFc1からFc2(Fc1>Fc2)に変更する(ステップS209)。一方、ステップS208で、TIrmsnがTLIMIT1以上かつTLIMIT2未満である場合、設定変更手段26は、無負荷下降運転時のみキャリア周波数をFc1からFc2に変更する(ステップS210)。 In step S208, if TIrmsn is equal to or greater than TLIMIT2, the setting changing unit 26 changes the carrier frequency from Fc1 to Fc2 (Fc1> Fc2) regardless of the operation mode (step S209). On the other hand, if TIrmsn is greater than or equal to TLIMIT1 and less than TLIMIT2 in step S208, the setting changing unit 26 changes the carrier frequency from Fc1 to Fc2 only during the no-load lowering operation (step S210).
 上述したとおり、本実施の形態において、設定変更手段26は、温度上昇推定値がTLIMIT1以上かつTLIMIT2未満である場合、無負荷下降運転時にのみキャリア周波数を低下させる。これにより、キャリア周波数が低下する期間を、カゴ7に利用者が乗車していない時に限定している。このため、例えば、モータトルクリップルの増加のような制御性能の悪化の影響を利用者に与えることがない。その結果、実施の形態1と同様の効果を奏するとともに、エレベータ利用者の快適性を損なわないエレベータ制御装置を実現できる。 As described above, in the present embodiment, the setting changing means 26 reduces the carrier frequency only during the no-load lowering operation when the estimated temperature rise value is TLIMIT1 or more and less than TLIMIT2. Thereby, the period when a carrier frequency falls is limited when the user has not boarded the basket 7. FIG. For this reason, for example, the influence of deterioration of control performance such as an increase in motor torque ripple is not given to the user. As a result, an elevator control device that achieves the same effects as in the first embodiment and does not impair the comfort of the elevator user can be realized.
実施の形態3.
 本実施の形態におけるエレベータシステムの構成図は、図1と同様である。以下、実施の形態1及び2との相違点を中心に本実施の形態について説明する。
Embodiment 3 FIG.
The configuration diagram of the elevator system in the present embodiment is the same as FIG. Hereinafter, the present embodiment will be described focusing on differences from the first and second embodiments.
 本実施の形態において、設定変更手段26は、速度指令、積載量及び温度上昇推定値に基づいて、カゴ7の走行中におけるカゴ7の加速度、カゴ7の速度及びファン風量を決定する。設定変更手段26は、決定された加速度及び速度でカゴ7が走行されるようにPWM搬送波のキャリア周波数を決定する。PWM発生器20は、設定変更手段26により決定されたキャリア周波数でPWM搬送波を出力する。ファン電源11は、決定された風量に基づいてファンを駆動する。このようにして、カゴ7の加速度、カゴ7の速度及びファン風量が変更される。 In the present embodiment, the setting change means 26 determines the acceleration of the car 7, the speed of the car 7, and the fan air volume during the running of the car 7, based on the speed command, the load amount and the estimated temperature rise value. The setting changing means 26 determines the carrier frequency of the PWM carrier wave so that the car 7 is driven at the determined acceleration and speed. The PWM generator 20 outputs a PWM carrier wave at the carrier frequency determined by the setting change means 26. The fan power supply 11 drives the fan based on the determined air volume. In this way, the acceleration of the car 7, the speed of the car 7 and the fan air volume are changed.
 エレベータの動作において、カゴ7の加速中は最も電流が必要とされる。このため、カゴ7の加速中は、スイッチング素子の温度上昇が最も大きい。カゴ7の加速度が低下すると、加速中にスイッチング素子に流れる電流が減少する。カゴ7の速度が低下すると加速時間が減少し、スイッチング素子に大きな電流が流れる時間が短くなる。カゴ7の加速度又は速度が低下すると、スイッチング素子の温度上昇が抑制される。ファン風量が増加すると、スイッチング素子の温度が低下する。温度変化が抑制されると、スイッチング素子の寿命が延びる。 In the operation of the elevator, the most current is required while the car 7 is accelerating. For this reason, during the acceleration of the basket 7, the temperature rise of the switching element is the largest. When the acceleration of the cage 7 decreases, the current flowing through the switching element during acceleration decreases. When the speed of the cage 7 decreases, the acceleration time decreases, and the time during which a large current flows through the switching element is shortened. When the acceleration or speed of the cage 7 decreases, the temperature rise of the switching element is suppressed. When the fan air volume increases, the temperature of the switching element decreases. When the temperature change is suppressed, the life of the switching element is extended.
 図9は、実施の形態3における温度上昇推定値と温度上昇閾値の関係図である。本実施の形態では、温度上昇閾値として、予めTLIMIT1及びTLIMIT2が設定されている。TLIMIT2は、TLIMIT1よりも大きい値である。TLIMIT1及びTLIMIT2は、スイッチング素子の温度上昇許容値に基づいて設定されている。以下、図9を参照して、カゴ7の加速度、カゴ7の速度及びファン風量の決定方法について説明する。なお、通常時におけるカゴ7の加速度はa0、カゴ7の速度はv0、ファン風量はf0とする。 FIG. 9 is a relationship diagram between the temperature rise estimated value and the temperature rise threshold in the third embodiment. In the present embodiment, TLIMIT 1 and TLIMIT 2 are set in advance as the temperature increase threshold. TLIMIT2 is a larger value than TLIMIT1. TLIMIT 1 and TLIMIT 2 are set based on the allowable temperature rise of the switching element. Hereinafter, a method for determining the acceleration of the car 7, the speed of the car 7, and the fan air volume will be described with reference to FIG. It is assumed that the acceleration of the car 7 at normal time is a0, the speed of the car 7 is v0, and the fan air volume is f0.
 TIrmsnがTLIMIT2以上である場合、設定変更手段26は、カゴ7の加速度、カゴ7の速度及びファン風量を変更する。設定変更手段26は、加速度をa1(a0>a1)に決定する。設定変更手段26は、速度をv1(v0>v1)に決定する。設定変更手段26は、ファン風量をf1(f1>f0)に決定する。 When TIrmsn is equal to or greater than TLIMIT2, the setting changing unit 26 changes the acceleration of the car 7, the speed of the car 7, and the fan air volume. The setting change means 26 determines the acceleration as a1 (a0> a1). The setting change means 26 determines the speed as v1 (v0> v1). The setting change means 26 determines the fan air volume as f1 (f1> f0).
 TIrmsnがTLIMIT1以上かつTLIMIT2未満である場合、設定変更手段26は、カゴ7の加速度又はカゴ7の速度のいずれか及びファン風量を変更する。加速度が変更される場合、設定変更手段26は、加速度をa1に決定する。速度が変更される場合、設定変更手段26は、速度をv1に決定する。加速度又は速度のどちらが変更される場合であっても、設定変更手段26は、ファン風量をf1に決定する。 When TIrmsn is greater than or equal to TLIMIT1 and less than TLIMIT2, the setting changing means 26 changes either the acceleration of the cage 7 or the speed of the cage 7 and the fan air volume. When the acceleration is changed, the setting changing unit 26 determines the acceleration as a1. When the speed is changed, the setting change unit 26 determines the speed as v1. Regardless of whether the acceleration or the speed is changed, the setting changing unit 26 determines the fan air volume to be f1.
 なお、TIrmsnがTLIMIT1未満である場合、設定変更手段26は、カゴ7の加速度、カゴ7の速度及びファン風量を変更しない。この場合、設定変更手段26は、加速度をa0、速度をv0、ファン風量をf0に決定する。 When TIrmsn is less than TLIMIT1, the setting changing unit 26 does not change the acceleration of the car 7, the speed of the car 7, and the fan air volume. In this case, the setting changing means 26 determines the acceleration as a0, the speed as v0, and the fan air volume as f0.
 図10は、実施の形態3におけるエレベータ制御装置の動作を示すフローチャートである。以下、図10を参照して、本実施の形態におけるエレベータ制御装置の動作を説明する。 FIG. 10 is a flowchart showing the operation of the elevator control apparatus according to the third embodiment. Hereinafter, the operation of the elevator control apparatus in the present embodiment will be described with reference to FIG.
 本実施の形態におけるステップS301~S306及びS311の動作は、実施の形態1におけるステップS101~S106及びS111の動作と同様である。 The operations in steps S301 to S306 and S311 in the present embodiment are the same as the operations in steps S101 to S106 and S111 in the first embodiment.
 設定変更手段26は、ステップS306で算出されたTIrmsnがTLIMIT1以上であるか否かを判定する(ステップS307)。 The setting changing unit 26 determines whether the TIrmsn calculated in step S306 is equal to or greater than TLIMIT1 (step S307).
 ステップS307で、TIrmsnがTLIMIT1以上である場合、設定変更手段26は、TIrmsnがTLIMIT2以上であるか否かを判定する(ステップS308)。一方、ステップS307で、TIrmsnがTLIMIT1未満である場合、設定変更手段26は、カゴ7の加速度をa0、カゴ7の速度をv0、ファン風量をf0のままとする。 If it is determined in step S307 that TIrmsn is equal to or greater than TLIMIT1, the setting changing unit 26 determines whether TIrmsn is equal to or greater than TLIMIT2 (step S308). On the other hand, if TIrmsn is less than TLIMIT1 in step S307, the setting changing means 26 keeps the acceleration of the car 7 as a0, the speed of the car 7 as v0, and the fan air volume as f0.
 ステップS308で、TIrmsnがTLIMIT2以上である場合、設定変更手段26は、カゴ7の加速度、カゴ7の速度及びファン風量を変更する(ステップS309)。ステップS309において、設定変更手段26は、加速度をa0からa1(a0>a1)に変更する。設定変更手段26は、速度をv0からv1(v0>v1)に変更する。設定変更手段26は、ファン風量をf0からf1(f1>f0)に変更する。 In step S308, when TIrmsn is equal to or greater than TLIMIT2, the setting changing unit 26 changes the acceleration of the car 7, the speed of the car 7, and the fan air volume (step S309). In step S309, the setting changing unit 26 changes the acceleration from a0 to a1 (a0> a1). The setting changing unit 26 changes the speed from v0 to v1 (v0> v1). The setting change means 26 changes the fan air volume from f0 to f1 (f1> f0).
 一方、TIrmsnがTLIMIT1以上かつTLIMIT2未満である場合、設定変更手段26は、カゴ7の加速度又はカゴ7の速度のいずれか及びファン風量を変更する(ステップS310)。ステップS310において、加速度が変更される場合、設定変更手段26は、加速度をa0からa1(a0>a1)に変更する。速度が変更される場合、設定変更手段26は、速度をv0からv1(v0>v1)に変更する。また、設定変更手段26は、ファン風量をf0からf1(f1>f0)に変更する。 On the other hand, when TIrmsn is equal to or greater than TLIMIT1 and less than TLIMIT2, the setting changing unit 26 changes either the acceleration of the basket 7 or the speed of the basket 7 and the fan air volume (step S310). When the acceleration is changed in step S310, the setting changing unit 26 changes the acceleration from a0 to a1 (a0> a1). When the speed is changed, the setting changing unit 26 changes the speed from v0 to v1 (v0> v1). Further, the setting changing unit 26 changes the fan air volume from f0 to f1 (f1> f0).
 このようにして、設定変更手段26は、加速度、速度及びファン風量を決定する。さらに、設定変更手段26は、決定された加速度及び速度でカゴ7が走行されるようにPWM搬送波のキャリア周波数を決定する。 In this way, the setting change means 26 determines the acceleration, speed and fan air volume. Further, the setting change means 26 determines the carrier frequency of the PWM carrier so that the car 7 travels at the determined acceleration and speed.
 上述したとおり、本実施の形態において、設定変更手段26は、温度上昇推定値に基づいて、カゴ7の走行開始前にカゴ7の加速度及びカゴ7の速度を決定する。設定変更手段26は、決定された加速度及び速度でカゴ7が走行されるようにPWM搬送波のキャリア周波数を決定する。つまり、従来カゴの走行中に行われていたキャリア周波数の変更を、カゴの走行開始前に行う。また、設定変更手段26は、温度上昇推定値に基づいて、カゴ7の走行開始前にファン風量を変更する。これにより、カゴの走行開始前に、スイッチング素子の温度上昇を予防することができる。このため、スイッチング素子の温度上昇推定値が温度上昇許容値を超過することを未然に防止できる。その結果、スイッチング素子の寿命を延ばすことができる。 As described above, in the present embodiment, the setting change unit 26 determines the acceleration of the car 7 and the speed of the car 7 before the car 7 starts traveling based on the estimated temperature rise value. The setting changing means 26 determines the carrier frequency of the PWM carrier wave so that the car 7 is driven at the determined acceleration and speed. In other words, the change of the carrier frequency, which has been conventionally performed while the car is running, is performed before the car starts running. Further, the setting change means 26 changes the fan air volume before the car 7 starts to travel based on the estimated temperature rise value. Thereby, the temperature rise of the switching element can be prevented before the car starts to travel. For this reason, it is possible to prevent the estimated temperature rise value of the switching element from exceeding the allowable temperature rise value. As a result, the life of the switching element can be extended.
 上述したとおり、本実施の形態では、温度上昇推定値がTLIMIT1以上かつTLIMIT2未満である場合、設定変更手段26は、カゴ7の加速度又は速度のいずれかを低下させる。温度上昇推定値がTLIMIT2以上である場合、設定変更手段26は、カゴ7の加速度及び速度の双方を低下させる。このため、スイッチング素子の温度上昇を低減させつつ、エレベータの運搬能力の低下を最小限に抑制することができる。 As described above, in the present embodiment, when the estimated temperature rise value is not less than TLIMIT 1 and less than TLIMIT 2, the setting changing unit 26 reduces either the acceleration or the speed of the cage 7. When the estimated temperature rise value is TLIMIT 2 or more, the setting change unit 26 decreases both the acceleration and the speed of the cage 7. For this reason, it is possible to suppress a decrease in the elevator carrying capacity while minimizing the temperature rise of the switching element.
 上述したとおり、本実施の形態では、ファン風量を増加させることでスイッチング素子の温度を低下させている。しかし、カゴ7の減速中はファン風量を減少させることとしてもよい。カゴ7の減速中はスイッチング素子に流れる電流値が小さいので、スイッチング素子の温度が低下する。このため、カゴ7の減速中にファン風量を減少させることでスイッチング素子の過剰な冷却を防ぐことができる。これにより、スイッチング素子の温度変化量を小さくすることができる。 As described above, in the present embodiment, the temperature of the switching element is lowered by increasing the fan air volume. However, the fan air volume may be reduced while the car 7 is decelerating. Since the value of the current flowing through the switching element is small during the deceleration of the car 7, the temperature of the switching element decreases. For this reason, excessive cooling of the switching element can be prevented by reducing the fan air volume while the car 7 is decelerating. Thereby, the temperature change amount of the switching element can be reduced.
 実施の形態1乃至3では、算出された各走行期間中における実効電流の積算値に基づいて、温度上昇推定値を算出している。そして、カゴ7の走行開始前に、温度上昇推定値に基づいてキャリア周波数を決定している。しかし、実際の電流検出値に基づいて、実効電流の積算値及び温度上昇推定値を再計算することとしてもよい。具体的には、例えば、複数回の走行が行われる場合、1走行完了毎に、その走行期間中における実効電流として算出された値が実際の電流検出値で置き換えられる。電流実効値積算手段24は、実際の電流検出値を使用して実効電流の積算値を再計算する。温度上昇推定手段25は、再計算された新しい積算値に基づいて、温度上昇推定値を再計算する。設定変更手段26は、再計算された新しい温度上昇推定値に基づいてキャリア周波数を再決定する。本構成によれば、1走行完了毎に温度上昇推定値の精度が向上する。このため、温度推定誤差を抑制し、より確実にスイッチング素子の温度上昇を予防することができる。その結果、スイッチング素子の寿命を延ばすことができる。 In Embodiments 1 to 3, the estimated temperature rise value is calculated based on the calculated integrated value of the effective current during each traveling period. The carrier frequency is determined based on the estimated temperature rise value before the car 7 starts to travel. However, the effective current integrated value and the temperature rise estimated value may be recalculated based on the actual detected current value. Specifically, for example, when traveling a plurality of times, the value calculated as the effective current during the traveling period is replaced with the actual detected current value every time travel is completed. The effective current value integrating means 24 recalculates the integrated effective current value using the actual detected current value. The temperature rise estimation means 25 recalculates the temperature rise estimated value based on the recalculated new integrated value. The setting changing means 26 re-determines the carrier frequency based on the recalculated new temperature rise estimated value. According to this configuration, the accuracy of the temperature rise estimated value is improved every time one run is completed. For this reason, a temperature estimation error can be suppressed and the temperature rise of a switching element can be prevented more reliably. As a result, the life of the switching element can be extended.
 実施の形態1乃至3では、式(1)を用いて図2に示す1走行期間中における実効電流Irms1を算出している。しかし、T0、T2、T4、T6、T8及びT10を考慮して算出することとしてもよい。この場合、Irms1の値の精度を向上させることができる。これにより、温度推定誤差を抑制し、より確実にスイッチング素子の温度上昇を予防することができる。その結果、スイッチング素子の寿命を延ばすことができる。 In Embodiments 1 to 3, the effective current Irms1 during one traveling period shown in FIG. 2 is calculated using Equation (1). However, it may be calculated in consideration of T0, T2, T4, T6, T8, and T10. In this case, the accuracy of the value of Irms1 can be improved. Thereby, the temperature estimation error can be suppressed and the temperature rise of the switching element can be prevented more reliably. As a result, the life of the switching element can be extended.
実施の形態4.
 図11は、実施の形態4におけるエレベータ制御装置を備えたエレベータシステムの構成図である。以下、実施の形態2との相違点を中心に本実施の形態について説明する。
Embodiment 4 FIG.
FIG. 11 is a configuration diagram of an elevator system including the elevator control device according to the fourth embodiment. Hereinafter, the present embodiment will be described with a focus on differences from the second embodiment.
 本実施の形態において、制御ブロック14は、実効電流算出手段23の代わりに記憶手段29を備えている。制御ブロック14は、電流実効値積算手段24の代わりに温度上昇積算手段30を備えている。 In the present embodiment, the control block 14 includes a storage unit 29 instead of the effective current calculation unit 23. The control block 14 includes a temperature rise integrating unit 30 instead of the current effective value integrating unit 24.
 記憶手段29は、温度上昇テーブルを記憶している。温度上昇テーブルには、スイッチング素子の温度上昇値が含まれている。温度上昇値とは、カゴ7の走行距離及び積載量に対応した値として予め設定されたものである。記憶手段29は、走行距離及び積載量に基づいて、温度上昇テーブルから温度上昇値を選択する。複数回の走行が行われる場合、記憶手段29は、各走行について温度上昇値を選択する。 The storage means 29 stores a temperature rise table. The temperature rise table includes a temperature rise value of the switching element. The temperature increase value is set in advance as a value corresponding to the travel distance and load capacity of the car 7. The storage unit 29 selects a temperature increase value from the temperature increase table based on the travel distance and the load capacity. When traveling a plurality of times, the storage means 29 selects a temperature increase value for each traveling.
 温度上昇積算手段30は、温度上昇テーブルから選択された各走行における温度上昇値を積算する。これにより、温度上昇値の積算値が算出される。 The temperature increase integration means 30 integrates the temperature increase value in each run selected from the temperature increase table. Thereby, the integrated value of the temperature rise value is calculated.
 本実施の形態において、温度上昇推定手段25は、一次フィルタを介して、温度上昇値の積算値からスイッチング素子の温度上昇を推定する。これにより、スイッチング素子の温度上昇推定値Tnが算出される。 In the present embodiment, the temperature rise estimation means 25 estimates the temperature rise of the switching element from the integrated value of the temperature rise values via the primary filter. Thereby, the temperature rise estimated value Tn of the switching element is calculated.
 図12は、実施の形態4におけるエレベータ制御装置の動作を示すフローチャートである。以下、図12を参照して、本実施の形態のエレベータ制御装置の動作を説明する。 FIG. 12 is a flowchart showing the operation of the elevator control apparatus according to the fourth embodiment. Hereinafter, the operation of the elevator control device of the present embodiment will be described with reference to FIG.
 ステップS401の動作は、実施の形態2におけるステップS201の動作と同様である。ステップS403の動作は、実施の形態2におけるステップS203の動作と同様である。 The operation in step S401 is the same as the operation in step S201 in the second embodiment. The operation in step S403 is similar to the operation in step S203 in the second embodiment.
 記憶手段29は、温度上昇テーブルを参照し、ステップS401で算出されたカゴ7の走行距離及びステップS403で検出された積載量に基づいて温度上昇値を選択する。(ステップS404)。 The storage unit 29 refers to the temperature rise table and selects a temperature rise value based on the travel distance of the cage 7 calculated in step S401 and the loading amount detected in step S403. (Step S404).
 温度上昇積算手段30は、ステップS404で選択された温度上昇値の積算値を算出する(ステップS405)。 The temperature increase integration means 30 calculates the integrated value of the temperature increase value selected in step S404 (step S405).
 温度上昇推定手段25は、ステップS405で算出された積算値に基づいて温度上昇推定値Tnを算出する(ステップS406)。 The temperature rise estimation means 25 calculates a temperature rise estimated value Tn based on the integrated value calculated in step S405 (step S406).
 本実施の形態におけるステップS407~S411の動作は、実施の形態2におけるステップS207~S211の動作と同様である。ただし、実施の形態2における「TIrmsn」は、「Tn」に読み替える。 The operations in steps S407 to S411 in the present embodiment are the same as the operations in steps S207 to S211 in the second embodiment. However, “TIrmsn” in the second embodiment is replaced with “Tn”.
 上述したとおり、本実施の形態では、記憶手段29が、カゴ7の走行距離及びカゴ負荷として検出された積載量に基づいて、スイッチング素子の温度上昇値を温度上昇テーブルから選択する。温度上昇推定手段25は、温度上昇値の積算値に基づいて、スイッチング素子の温度上昇推定値を算出する。設定変更手段26は、温度上昇推定値に基づいて、カゴ7の走行開始前にキャリア周波数を決定する。つまり、従来カゴの走行中に行われていたキャリア周波数の変更を、カゴの走行開始前に行う。これにより、カゴの走行開始前に、スイッチング素子の温度上昇を予防することができる。このため、スイッチング素子の温度上昇推定値が温度上昇許容値を超過することを未然に防止できる。その結果、スイッチング素子の寿命を延ばすことができる。 As described above, in the present embodiment, the storage unit 29 selects the temperature increase value of the switching element from the temperature increase table based on the travel distance of the car 7 and the load amount detected as the car load. The temperature rise estimating means 25 calculates a temperature rise estimated value of the switching element based on the integrated value of the temperature rise values. The setting change means 26 determines the carrier frequency before the car 7 starts to travel based on the estimated temperature rise value. In other words, the change of the carrier frequency, which has been conventionally performed while the car is running, is performed before the car starts running. Thereby, the temperature rise of the switching element can be prevented before the car starts to travel. For this reason, it is possible to prevent the estimated temperature rise value of the switching element from exceeding the allowable temperature rise value. As a result, the life of the switching element can be extended.
 上述したとおり、本実施の形態では、設定変更手段26は、温度上昇推定値がTLIMIT1以上かつTLIMIT2未満である場合、無負荷下降運転時にのみキャリア周波数を低下させる。これにより、本実施の形態では、キャリア周波数が低下する期間を、カゴ7に利用者が乗車していない時に限定している。このため、例えば、モータトルクリップルの増加のような制御性能の悪化の影響を利用者に与えることがない。その結果、エレベータ利用者の快適性を損なわないエレベータ制御装置を実現できる。 As described above, in the present embodiment, the setting changing unit 26 reduces the carrier frequency only during the no-load lowering operation when the estimated temperature rise value is equal to or greater than TLIMIT1 and less than TLIMIT2. Thereby, in this Embodiment, the period when a carrier frequency falls is limited when the user has not boarded the basket 7. FIG. For this reason, for example, the influence of deterioration of control performance such as an increase in motor torque ripple is not given to the user. As a result, an elevator control device that does not impair the comfort of the elevator user can be realized.
実施の形態5.
 本実施の形態におけるエレベータシステムの構成図は、図11と同様である。以下、実施の形態3との相違点を中心に本実施の形態について説明する。
Embodiment 5 FIG.
The configuration diagram of the elevator system in the present embodiment is the same as FIG. Hereinafter, the present embodiment will be described focusing on differences from the third embodiment.
 本実施の形態において、制御ブロック14は、実効電流算出手段23の代わりに記憶手段29を備えている。制御ブロック14は、電流実効値積算手段24の代わりに温度上昇積算手段30を備えている。 In the present embodiment, the control block 14 includes a storage unit 29 instead of the effective current calculation unit 23. The control block 14 includes a temperature rise integrating unit 30 instead of the current effective value integrating unit 24.
 記憶手段29は、温度上昇テーブルを記憶している。温度上昇テーブルには、スイッチング素子の温度上昇値が含まれている。温度上昇値とは、カゴ7の走行距離及び積載量に対応した値として予め設定されたものである。記憶手段29は、走行距離及び積載量に基づいて、温度上昇テーブルから温度上昇値を選択する。複数回の走行が行われる場合、記憶手段29は、各走行について温度上昇値を選択する。 The storage means 29 stores a temperature rise table. The temperature rise table includes a temperature rise value of the switching element. The temperature increase value is set in advance as a value corresponding to the travel distance and load capacity of the car 7. The storage unit 29 selects a temperature increase value from the temperature increase table based on the travel distance and the load capacity. When traveling a plurality of times, the storage means 29 selects a temperature increase value for each traveling.
 温度上昇積算手段30は、温度上昇テーブルから選択された各走行における温度上昇値を積算する。これにより、温度上昇値の積算値が算出される。 The temperature increase integration means 30 integrates the temperature increase value in each run selected from the temperature increase table. Thereby, the integrated value of the temperature rise value is calculated.
 本実施の形態において、温度上昇推定手段25は、一次フィルタを介して、温度上昇値の積算値からスイッチング素子の温度上昇を推定する。これにより、スイッチング素子の温度上昇推定値Tnが算出される。 In the present embodiment, the temperature rise estimation means 25 estimates the temperature rise of the switching element from the integrated value of the temperature rise values via the primary filter. Thereby, the temperature rise estimated value Tn of the switching element is calculated.
 図13は、実施の形態5におけるエレベータ制御装置の動作を示すフローチャートである。以下、図13を参照して、本実施の形態におけるエレベータ制御装置の動作を説明する。 FIG. 13 is a flowchart showing the operation of the elevator control apparatus according to the fifth embodiment. Hereinafter, the operation of the elevator control apparatus in the present embodiment will be described with reference to FIG.
 ステップS501の動作は、実施の形態3におけるステップS301の動作と同様である。ステップS503の動作は、実施の形態3におけるステップS303の動作と同様である。 The operation in step S501 is the same as the operation in step S301 in the third embodiment. The operation in step S503 is the same as the operation in step S303 in the third embodiment.
 記憶手段29は、温度上昇テーブルを参照し、ステップS501で算出されたカゴ7の走行距離及びステップS503で検出された積載量に基づいて温度上昇値を選択する。(ステップS504)。 The storage means 29 refers to the temperature rise table and selects a temperature rise value based on the travel distance of the cage 7 calculated in step S501 and the loading amount detected in step S503. (Step S504).
 温度上昇積算手段30は、ステップS504で選択された温度上昇値の積算値を算出する(ステップS505)。 The temperature increase integration means 30 calculates the integrated value of the temperature increase value selected in step S504 (step S505).
 温度上昇推定手段25は、ステップS505で算出された積算値に基づいて温度上昇推定値Tnを算出する(ステップS506)。 The temperature rise estimation means 25 calculates a temperature rise estimated value Tn based on the integrated value calculated in step S505 (step S506).
 本実施の形態におけるステップS507~S511の動作は、実施の形態3におけるステップS307~S311の動作と同様である。ただし、実施の形態3における「TIrmsn」は、「Tn」に読み替える。 The operations in steps S507 to S511 in the present embodiment are the same as the operations in steps S307 to S311 in the third embodiment. However, “TIrmsn” in the third embodiment is replaced with “Tn”.
 上述したとおり、本実施の形態では、記憶手段29が、カゴ7の走行距離及びカゴ負荷として検出された積載量に基づいて、スイッチング素子の温度上昇値を温度上昇テーブルから選択する。温度上昇推定手段25は、温度上昇値の積算値に基づいて、スイッチング素子の温度上昇推定値を算出する。設定変更手段26は、温度上昇推定値に基づいて、カゴ7の走行開始前にカゴ7の加速度及びカゴ7の速度を決定する。設定変更手段26は、決定された加速度及び速度でカゴ7が走行されるようにPWM搬送波のキャリア周波数を決定する。つまり、従来カゴの走行中に行われていたキャリア周波数の変更を、カゴの走行開始前に行う。また、設定変更手段26は、温度上昇推定値に基づいて、カゴ7の走行開始前にファン風量を変更する。これにより、カゴの走行開始前に、スイッチング素子の温度上昇を予防することができる。このため、スイッチング素子の温度上昇推定値が温度上昇許容値を超過することを未然に防止できる。その結果、スイッチング素子の寿命を延ばすことができる。 As described above, in the present embodiment, the storage unit 29 selects the temperature increase value of the switching element from the temperature increase table based on the travel distance of the car 7 and the load amount detected as the car load. The temperature rise estimating means 25 calculates a temperature rise estimated value of the switching element based on the integrated value of the temperature rise values. The setting changing means 26 determines the acceleration of the car 7 and the speed of the car 7 before the car 7 starts traveling based on the estimated temperature rise value. The setting changing means 26 determines the carrier frequency of the PWM carrier wave so that the car 7 is driven at the determined acceleration and speed. In other words, the change of the carrier frequency, which has been conventionally performed while the car is running, is performed before the car starts running. Further, the setting change means 26 changes the fan air volume before the car 7 starts to travel based on the estimated temperature rise value. Thereby, the temperature rise of the switching element can be prevented before the car starts to travel. For this reason, it is possible to prevent the estimated temperature rise value of the switching element from exceeding the allowable temperature rise value. As a result, the life of the switching element can be extended.
 上述したとおり、本実施の形態では、温度上昇推定値がTLIMIT1以上かつTLIMIT2未満である場合、設定変更手段26は、カゴ7の加速度又は速度のいずれかを低下させる。温度上昇推定値がTLIMIT2以上である場合、設定変更手段26は、カゴ7の加速度及び速度の双方を低下させる。このため、スイッチング素子の温度上昇を低減させつつ、エレベータの運搬能力の低下を最小限に抑制することができる。 As described above, in the present embodiment, when the estimated temperature rise value is not less than TLIMIT 1 and less than TLIMIT 2, the setting changing unit 26 reduces either the acceleration or the speed of the cage 7. When the estimated temperature rise value is TLIMIT 2 or more, the setting change unit 26 decreases both the acceleration and the speed of the cage 7. For this reason, it is possible to suppress a decrease in the elevator carrying capacity while minimizing the temperature rise of the switching element.
 上述したとおり、本実施の形態では、ファン風量を増加させることでスイッチング素子の温度を低下させている。しかし、カゴ7の減速中はファン風量を減少させることとしてもよい。カゴ7の減速中はスイッチング素子に流れる電流値が小さいので、スイッチング素子の温度が低下する。このため、カゴ7の減速中にファン風量を減少させることでスイッチング素子の過剰な冷却を防ぐことができる。これにより、スイッチング素子の温度変化量を小さくすることができる。 As described above, in the present embodiment, the temperature of the switching element is lowered by increasing the fan air volume. However, the fan air volume may be reduced while the car 7 is decelerating. Since the value of the current flowing through the switching element is small during the deceleration of the basket 7, the temperature of the switching element is lowered. For this reason, excessive cooling of the switching element can be prevented by reducing the fan air volume while the car 7 is decelerating. Thereby, the temperature change amount of the switching element can be reduced.
 本発明では、従来カゴの走行中に行われていたキャリア周波数の変更が、カゴの走行開始前に行われる。このため、本発明によれば、走行中のキャリア周波数の変更に起因するカゴ内振動の悪化をエレベータ利用者に感じさせることがない。本発明では、スイッチング素子の温度上昇が推定されるため、長時間保護について考慮することができる。このため、本発明によれば、スイッチング素子の寿命を従来と比較して長くすることができる。本発明は、想定範囲を超えるようなエレベータの連続運転におけるスイッチング素子の温度上昇に対しても有効である。本発明によれば、速度パターンで零速制御を考慮することによって、精度の高い温度上昇の推定が可能となる。 In the present invention, the change of the carrier frequency, which has been conventionally performed while the car is running, is performed before the car starts running. For this reason, according to this invention, the deterioration of the vibration in a cage | basket | cause resulting from the change of the carrier frequency in driving | running | working is not made an elevator user feel. In the present invention, since the temperature rise of the switching element is estimated, long-time protection can be considered. For this reason, according to this invention, the lifetime of a switching element can be lengthened compared with the past. The present invention is also effective for the temperature rise of the switching element in the continuous operation of the elevator that exceeds the assumed range. According to the present invention, it is possible to estimate the temperature rise with high accuracy by considering the zero speed control with the speed pattern.
 ここで、スイッチング素子が、ワイドバンドギャップ半導体からなるMOSFET(電界効果トランジスタ)により形成されている場合について述べる。この場合、スイッチング損失及び定常損失等が低損失であるという特徴を活かして、損失によって発生していたモジュールの発熱を軽減できる。このため、従来のSiモジュールと同等に損失を抑えたまま、キャリア周波数を上げて制御性能を向上することが可能となる。本発明によれば、スイッチング素子の温度上昇推定値が温度上昇許容値を超過すると推定された場合は、従来と同等性能を実現できる程度までキャリア周波数を下げるように制御することができる。その結果、スイッチング素子を温度変化から保護しつつ、制御性能の劣化を防止することができる。なお、ワイドバンドギャップ半導体とは、例えば、SiC(炭化ケイ素)、窒化ガリウム系材料又はダイヤモンド等である。 Here, a case where the switching element is formed by a MOSFET (field effect transistor) made of a wide band gap semiconductor will be described. In this case, taking advantage of the low switching loss and steady loss, etc., the module heat generated by the loss can be reduced. For this reason, it is possible to increase the carrier frequency and improve the control performance while suppressing the loss as much as the conventional Si module. According to the present invention, when it is estimated that the estimated temperature rise value of the switching element exceeds the allowable temperature rise value, the carrier frequency can be controlled to be lowered to the extent that the same performance as the conventional one can be realized. As a result, it is possible to prevent deterioration of control performance while protecting the switching element from temperature changes. The wide band gap semiconductor is, for example, SiC (silicon carbide), gallium nitride-based material, diamond, or the like.
 実施の形態1乃至5では、図1及び図11に示すように、トラクション式エレベータを制御するエレベータ制御装置について説明している。トラクション式エレベータのローピングは、例えば、1:1ローピング又は2:1ローピング等、任意である。昇降路の上部には、図示しないそらせ車が必要に応じて配置される。この場合、吊りロープ6は、綱車3及びそらせ車に巻き回される。なお、本発明は、巻胴式等のエレベータを制御するエレベータ制御装置に適用してもよい。 Embodiments 1 to 5 describe an elevator control device that controls a traction type elevator as shown in FIGS. 1 and 11. The traction elevator roping is optional, such as 1: 1 roping or 2: 1 roping. A baffle (not shown) is disposed on the hoistway as required. In this case, the suspension rope 6 is wound around the sheave 3 and the deflector. In addition, you may apply this invention to the elevator control apparatus which controls elevators, such as a winding drum type.
 実施の形態1乃至5では、電動機に電力を供給する電力変換装置としてインバータを用いる場合について説明している。しかし、本発明は、電動機に電力を供給するための電源側に設けられる電力変換装置としてコンバータを用いる場合に、コンバータのスイッチング素子に対して適用することもできる。 Embodiment 1 thru | or 5 demonstrates the case where an inverter is used as a power converter device which supplies electric power to an electric motor. However, the present invention can also be applied to a switching element of a converter when the converter is used as a power conversion device provided on the power supply side for supplying electric power to the electric motor.
 以上のように、本発明に係るエレベータ制御装置は、電力変換装置により電動機を駆動してカゴを走行させるエレベータに利用できる。 As described above, the elevator control apparatus according to the present invention can be used for an elevator that drives a motor by driving an electric motor using a power converter.
 1 巻上機、2 同期電動機、3 綱車、4 ブレーキ、5 エンコーダ、6 吊りロープ、7 カゴ、8 秤装置、9 釣合い錘、10 インバータ、11 ファン電源、12 現在階床認識手段、13 走行先階床認識手段、14 制御ブロック、15 走行距離算出手段、16 カゴ負荷検出手段、17 速度パターン生成手段、18 速度制御器、19 電流制御器、20 PWM発生器、21 PWM比較回路、22 ベースドライブ回路、23 実効電流算出手段、24 電流実効値積算手段、25 温度上昇推定手段、26 設定変更手段、27 第1の判定手段、28 第2の判定手段、29 記憶手段、30 温度上昇積算手段 1 hoisting machine, 2 synchronous motor, 3 sheaves, 4 brakes, 5 encoders, 6 hanging ropes, 7 baskets, 8 weighing devices, 9 counterweights, 10 inverters, 11 fan power supply, 12 current floor recognition means, 13 running Previous floor recognition means, 14 control block, 15 mileage calculation means, 16 basket load detection means, 17 speed pattern generation means, 18 speed controller, 19 current controller, 20 PWM generator, 21 PWM comparison circuit, 22 base Drive circuit, 23 effective current calculation means, 24 current effective value integration means, 25 temperature rise estimation means, 26 setting change means, 27 first determination means, 28 second determination means, 29 storage means, 30 temperature rise integration means

Claims (10)

  1.  現在階から走行先階までのカゴの走行距離を算出する走行距離算出手段と、
     前記走行距離算出手段により算出された走行距離に基づいて、前記カゴを走行させる電動機を駆動する電力変換装置のスイッチング素子の温度上昇推定値を算出する温度上昇推定手段と、
     前記カゴの走行開始前に、前記温度上昇推定手段により算出された温度上昇推定値に基づいて、前記電力変換装置を制御するためのキャリア周波数を決定する設定変更手段と、
    を備えたエレベータ制御装置。
    Mileage calculation means for calculating the mileage of the basket from the current floor to the destination floor;
    A temperature rise estimating means for calculating a temperature rise estimated value of a switching element of a power converter that drives an electric motor that drives the car based on the travel distance calculated by the travel distance calculating means;
    Setting change means for determining a carrier frequency for controlling the power converter based on the temperature rise estimated value calculated by the temperature rise estimating means before the car starts running;
    Elevator control device.
  2.  前記設定変更手段は、前記カゴの走行開始前に、前記温度上昇推定手段により算出された温度上昇推定値に基づいて、前記カゴの走行中における前記カゴの加速度、前記カゴの速度及び前記電力変換装置を冷却するファンの風量を決定する請求項1に記載のエレベータ制御装置。 The setting change means is configured to determine the acceleration of the car, the speed of the car and the power conversion during the running of the car based on the estimated temperature rise calculated by the temperature rise estimating means before the car starts running. The elevator control device according to claim 1, wherein an air flow rate of a fan for cooling the device is determined.
  3.  前記走行距離算出手段により算出された走行距離に基づいて速度指令を出力する速度パターン生成手段と、
     前記カゴの積載量を検出するカゴ負荷検出手段と、
    を備え、
     前記温度上昇推定手段は、前記速度指令及び前記カゴ負荷検出手段により検出された積載量に基づいて前記スイッチング素子の温度上昇推定値を算出する請求項1又は2に記載のエレベータ制御装置。
    Speed pattern generation means for outputting a speed command based on the travel distance calculated by the travel distance calculation means;
    A car load detecting means for detecting a load amount of the car;
    With
    3. The elevator control device according to claim 1, wherein the temperature increase estimation unit calculates a temperature increase estimated value of the switching element based on the speed command and a load amount detected by the basket load detection unit.
  4.  前記速度指令及び前記カゴ負荷検出手段により検出された積載量に基づいて、前記カゴの走行期間中に前記電力変換装置から前記電動機に供給される実効電流の値を算出する実効電流算出手段と、
     前記実効電流算出手段により算出された各走行期間中における実効電流の値を積算して実効電流の積算値を算出する電流実効値積算手段と、
    を備え、
     前記温度上昇推定手段は、前記電流実効値積算手段により算出された積算値に基づいて前記スイッチング素子の温度上昇推定値を算出する請求項3に記載のエレベータ制御装置。
    Effective current calculation means for calculating the value of the effective current supplied from the power converter to the electric motor during the traveling period of the car based on the speed command and the loading amount detected by the basket load detection means;
    Current effective value integration means for calculating the integrated value of effective current by integrating the value of effective current during each travel period calculated by the effective current calculation means;
    With
    The elevator control apparatus according to claim 3, wherein the temperature increase estimation unit calculates an estimated temperature increase value of the switching element based on the integrated value calculated by the current effective value integration unit.
  5.  前記電流実効値積算手段は、前記電力変換装置から前記電動機に供給されている実際の電流検出値に基づいて実効電流の積算値を再計算し、
     前記温度上昇推定手段は、再計算された実効電流の積算値に基づいて前記スイッチング素子の温度上昇推定値を再計算する請求項4に記載のエレベータ制御装置。
    The current effective value integration means recalculates the integrated value of effective current based on the actual detected current value supplied to the electric motor from the power converter,
    The elevator control device according to claim 4, wherein the temperature rise estimation means recalculates the temperature rise estimated value of the switching element based on the recalculated effective current integrated value.
  6.  前記走行距離算出手段により算出された走行距離に基づいて速度指令を出力する速度パターン生成手段と、
     前記カゴの積載量を検出するカゴ負荷検出手段と、
     前記カゴの走行距離及び前記カゴの積載量に対応したスイッチング素子の温度上昇値の温度上昇テーブルを記憶している記憶手段と、
    を備え、
     前記温度上昇推定手段は、前記温度上昇テーブルから前記走行距離算出手段により算出された走行距離及び前記カゴ負荷検出手段により検出された積載量に応じて選択された温度上昇値に基づいて、前記スイッチング素子の温度上昇推定値を算出する請求項1又は2に記載のエレベータ制御装置。
    Speed pattern generation means for outputting a speed command based on the travel distance calculated by the travel distance calculation means;
    A car load detecting means for detecting a load amount of the car;
    Storage means for storing a temperature rise table of temperature rise values of the switching elements corresponding to the travel distance of the basket and the load amount of the basket;
    With
    The temperature rise estimation means is configured to switch the switching based on the temperature rise value selected according to the travel distance calculated by the travel distance calculation means from the temperature rise table and the load amount detected by the basket load detection means. The elevator control device according to claim 1 or 2, wherein an estimated temperature rise value of the element is calculated.
  7.  前記設定変更手段は、前記速度指令及び前記カゴ負荷検出手段により検出された積載量から前記カゴが無負荷下降運転されていると判定された場合にキャリア周波数を低下させ、前記カゴが無負荷下降運転されていると判定されなかった場合にはキャリア周波数を低下させない請求項3乃至6のいずれか1項に記載のエレベータ制御装置。 The setting change means lowers the carrier frequency when it is determined from the speed command and the loading amount detected by the car load detection means that the car is in a no-load lowering operation, and the car lowers the no-load. The elevator control device according to any one of claims 3 to 6, wherein when it is not determined that the vehicle is in operation, the carrier frequency is not lowered.
  8.  前記設定変更手段は、前記温度上昇推定手段により算出された温度上昇推定値が前記スイッチング素子の温度上昇許容値を超過しないようにキャリア周波数を決定する請求項1乃至7のいずれか1項に記載のエレベータ制御装置。 The said setting change means determines the carrier frequency so that the temperature rise estimated value calculated by the said temperature rise estimation means may not exceed the temperature rise allowable value of the said switching element. Elevator control device.
  9.  前記スイッチング素子は、ワイドバンドギャップ半導体によって形成された請求項1乃至8のいずれか1項に記載のエレベータ制御装置。 The elevator control device according to any one of claims 1 to 8, wherein the switching element is formed of a wide band gap semiconductor.
  10.  前記ワイドバンドギャップ半導体はSiCである請求項9に記載のエレベータ制御装置。 The elevator control device according to claim 9, wherein the wide band gap semiconductor is SiC.
PCT/JP2013/073655 2013-09-03 2013-09-03 Elevator control device WO2015033386A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380079286.0A CN105531216B (en) 2013-09-03 2013-09-03 Elevator control gear
PCT/JP2013/073655 WO2015033386A1 (en) 2013-09-03 2013-09-03 Elevator control device
JP2015535186A JP6115644B2 (en) 2013-09-03 2013-09-03 Elevator control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/073655 WO2015033386A1 (en) 2013-09-03 2013-09-03 Elevator control device

Publications (1)

Publication Number Publication Date
WO2015033386A1 true WO2015033386A1 (en) 2015-03-12

Family

ID=52627896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073655 WO2015033386A1 (en) 2013-09-03 2013-09-03 Elevator control device

Country Status (3)

Country Link
JP (1) JP6115644B2 (en)
CN (1) CN105531216B (en)
WO (1) WO2015033386A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019053825A1 (en) * 2017-09-13 2019-03-21 三菱電機株式会社 Control device and control method for elevators

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102266228B1 (en) * 2018-06-19 2021-06-18 미쓰비시 덴키 빌딩 테크노 서비스 가부시키 가이샤 Temperature trend specific device, maintenance planning system and elevator system
CN110963380A (en) * 2019-12-27 2020-04-07 重庆威斯特电梯有限公司 Elevator controller, elevator and elevator control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213447A (en) * 2005-02-02 2006-08-17 Hitachi Ltd Elevator device
WO2008078377A1 (en) * 2006-12-25 2008-07-03 Mitsubishi Electric Corporation Controller of elevator
JP2011063432A (en) * 2009-09-18 2011-03-31 Toshiba Elevator Co Ltd Elevator control device
JP2012111611A (en) * 2010-11-26 2012-06-14 Toshiba Elevator Co Ltd Elevator
WO2013065150A1 (en) * 2011-11-02 2013-05-10 三菱電機株式会社 Drive device for a power conversion device, and drive method for a power conversion device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10164884A (en) * 1996-12-02 1998-06-19 Fuji Electric Co Ltd Inverter control apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213447A (en) * 2005-02-02 2006-08-17 Hitachi Ltd Elevator device
WO2008078377A1 (en) * 2006-12-25 2008-07-03 Mitsubishi Electric Corporation Controller of elevator
JP2011063432A (en) * 2009-09-18 2011-03-31 Toshiba Elevator Co Ltd Elevator control device
JP2012111611A (en) * 2010-11-26 2012-06-14 Toshiba Elevator Co Ltd Elevator
WO2013065150A1 (en) * 2011-11-02 2013-05-10 三菱電機株式会社 Drive device for a power conversion device, and drive method for a power conversion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019053825A1 (en) * 2017-09-13 2019-03-21 三菱電機株式会社 Control device and control method for elevators

Also Published As

Publication number Publication date
JPWO2015033386A1 (en) 2017-03-02
CN105531216B (en) 2017-08-08
JP6115644B2 (en) 2017-04-19
CN105531216A (en) 2016-04-27

Similar Documents

Publication Publication Date Title
KR100947695B1 (en) Elevator device
JP5307394B2 (en) Elevator control device
JP4964903B2 (en) Elevator equipment
JP5361180B2 (en) Elevator control device
JPWO2007055023A1 (en) Elevator control device
JP6115644B2 (en) Elevator control device
JP4584019B2 (en) Elevator control device
EP2558394B1 (en) Elevator system
WO2005092764A1 (en) Elevator control device
JP5812106B2 (en) Elevator group management control device
JPH05306074A (en) Controller for elevator
JP2010168139A (en) Elevator control device
WO2019073527A1 (en) Elevator control device and control method
JP7204700B2 (en) Controller for winding drum type elevator
JP2014009041A (en) Elevator control device
JPS6146391B2 (en)
JPH0664853A (en) Level control device for elevator
CN109104893B (en) Elevator control device and elevator control method
JP5095223B2 (en) Elevator equipment
JP2001240335A (en) Operation device of elevator in service interruption
JP2022128144A (en) Device for controlling winding drum type elevator
JP2021059443A (en) Control device for winding drum type elevator
JP2004282925A (en) Elevator controller
JP2007230679A (en) Inverter device for elevator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380079286.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535186

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893062

Country of ref document: EP

Kind code of ref document: A1