WO2018001920A1 - Procede d'oligomerisation utilisant un catalyseur zeolithique et un catalyseur comprenant une silice alumine - Google Patents
Procede d'oligomerisation utilisant un catalyseur zeolithique et un catalyseur comprenant une silice alumine Download PDFInfo
- Publication number
- WO2018001920A1 WO2018001920A1 PCT/EP2017/065619 EP2017065619W WO2018001920A1 WO 2018001920 A1 WO2018001920 A1 WO 2018001920A1 EP 2017065619 W EP2017065619 W EP 2017065619W WO 2018001920 A1 WO2018001920 A1 WO 2018001920A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- zeolite
- silica
- alumina
- oligomerization
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 201
- 239000010457 zeolite Substances 0.000 title claims abstract description 83
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 78
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims abstract description 74
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 73
- 150000001336 alkenes Chemical class 0.000 claims abstract description 23
- 230000003197 catalytic effect Effects 0.000 claims abstract description 16
- 239000011148 porous material Substances 0.000 claims abstract description 16
- 125000004430 oxygen atom Chemical group O* 0.000 claims abstract description 15
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 10
- 238000006384 oligomerization reaction Methods 0.000 claims description 98
- 230000008569 process Effects 0.000 claims description 56
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 54
- 239000000377 silicon dioxide Substances 0.000 claims description 26
- 239000011230 binding agent Substances 0.000 claims description 15
- 238000011144 upstream manufacturing Methods 0.000 claims description 10
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 4
- 229910052810 boron oxide Inorganic materials 0.000 claims description 4
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910001657 ferrierite group Inorganic materials 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 150000004645 aluminates Chemical class 0.000 claims description 2
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical class O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 claims description 2
- 239000003245 coal Substances 0.000 claims description 2
- 239000000395 magnesium oxide Substances 0.000 claims description 2
- 229910052680 mordenite Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- JUWGUJSXVOBPHP-UHFFFAOYSA-B titanium(4+);tetraphosphate Chemical class [Ti+4].[Ti+4].[Ti+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O JUWGUJSXVOBPHP-UHFFFAOYSA-B 0.000 claims description 2
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical class [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 claims description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052799 carbon Inorganic materials 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 15
- 238000011069 regeneration method Methods 0.000 description 15
- 230000008929 regeneration Effects 0.000 description 14
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 12
- 239000000047 product Substances 0.000 description 11
- 230000008901 benefit Effects 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 150000001993 dienes Chemical class 0.000 description 7
- 239000002283 diesel fuel Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 238000011282 treatment Methods 0.000 description 5
- 238000009835 boiling Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010335 hydrothermal treatment Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000003502 gasoline Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000003377 acid catalyst Substances 0.000 description 2
- 239000011959 amorphous silica alumina Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- -1 clays Inorganic materials 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000004230 steam cracking Methods 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G50/00—Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/12—Silica and alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/02—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
- C07C2/04—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
- C07C2/06—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
- C07C2/08—Catalytic processes
- C07C2/10—Catalytic processes with metal oxides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/02—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
- C07C2/04—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
- C07C2/06—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
- C07C2/08—Catalytic processes
- C07C2/12—Catalytic processes with crystalline alumino-silicates or with catalysts comprising molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/42—Addition of matrix or binder particles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/12—Silica and alumina
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
Definitions
- the invention describes the implementation of an oligomerization process of olefins for the production of middle distillates, in particular of gas oil, from light olefinic feeds containing between 2 and 10 carbon atoms per molecule, said process using a catalytic system comprising at least two separate catalysts which allows the improvement of the average distillate cutting efficiency and in particular the diesel yield and its quality, especially in terms of cetane number.
- the light olefins constitutive of the filler are firstly brought into contact with a first amorphous silica-based alumina catalyst and then the product thus obtained is brought into contact with a second zeolite catalyst suitably selected in an olefin oligomerization process, said zeolite being selected from zeolites having pore openings containing 10 or 12 oxygen atoms (10MR or 12MR).
- the aim is to obtain, under milder conditions and on a catalyst which is less expensive and more resistant to contaminants, than a zeolite-based catalyst, a first effluent composed of oligomerization products which will then be oligomerized again preferably at a higher temperature in contact with another zeolite catalyst system so as to obtain chains compatible with the boiling range of the middle distillate cut and preferably diesel fuel and thanks to the shape selectivity of the zeolite and to obtain a product having a rate and limited degree of branching to obtain a good cetane number.
- the oligomerization processes of light olefins intended to produce higher molecular weight olefins are widely used in refining and petrochemicals with the aim of upgrading light olefins into bases for gasoline, kerosene or diesel fuels, or solvents. These oligomerization reactions are conducted in the presence of a catalyst, most often a solid catalyst.
- the olefins combine into dimers, trimers, tetramers, etc., the degree of oligomerization and the degree of branching of the oligomers depending on the type of catalyst used and the operating conditions of temperature, pressure and volume velocity or hourly weight.
- the advantage of the oligomerization process is that the products obtained contain no or very little sulfur and contain very few aromatic compounds.
- the solid oligomerization catalysts often cited in the literature are solid phosphoric acid type catalysts, such as, for example, in the patents US2913506 and US3661801, silica-alumina catalysts such as, for example, in the patents US4197185, US4544791 and US Pat. EP0463673, zeolitic catalysts such as for example US4642404 and US5284989, resins such as for example M. Marchionna; Catalysis Today 65, (2001) 397 or, to a lesser extent, of heteropolyanion type such as, for example, in patent IN170903.
- zeolites has an advantage for the production of gas oil with a high cetane number.
- a judicious choice of the zeolite type as oligomerization catalyst makes it possible to modulate the selectivity of the reaction and can therefore lead to oligomers having a lower branching rate than oligomers resulting from reactions catalyzed by other catalysts, such as silica alumina type catalysts imposing no form selectivity.
- This gain in selectivity is favorable in a context of producing good quality diesel, that is to say of high cetane number, but unfavorable for example the production of gasoline having a good octane number.
- the patent application FR3017621 shows that the use of a catalyst comprising at least one zeolite having pore openings containing 10 or 12 oxygen atoms (10MR or 12MR) shaped with an aluminum binder, said catalyst having undergone before its use in said oligomerization process, at least one heat treatment step, makes it possible to obtain a diesel fuel cut of very good quality, because of the shape selectivity offered by the zeolite.
- the Applicant has surprisingly discovered that a process for the oligomerization of an olefinic hydrocarbon feedstock containing olefinic molecules having from 2 to 10 carbon atoms per molecule using a catalytic system comprising at least two distinct, judiciously selected catalysts and advantageously placed in series, allowed to improve the average distillate yield obtained and in particular the diesel yield compared to the use in an oligomerization process of only one of the catalysts of said catalyst system used according to the invention, iso-volume catalyst used (the mass of catalyst used being the sum of the catalysts used according to the invention).
- the subject of the present invention is a process for the oligomerization of light olefinic feeds containing between 2 and 10 carbon atoms per molecule, using a catalytic system comprising at least one catalyst comprising at least one silica-alumina and at least one catalyst comprising at least one zeolite having pore openings containing 10 or 12 oxygen atoms (10MR or 12MR), said process being carried out at a temperature between 130 and 350 ⁇ , at a pressure of between 0.1 and 10 MPa and at a VVH between 0.1 and 5 h -1 .
- middle distillates kerosene and / or gas oil
- iso volume catalyst used the increase in the yield of middle distillates (kerosene and / or gas oil) obtained and in particular in diesel relative to the use in an oligomerization process of a single catalyst based on silica-alumina and with respect to use of a single catalyst based on zeolite, with iso volume catalyst used
- Another advantage of the process according to the invention is to provide a process which also makes it possible to obtain a good quality gas oil cut.
- Another advantage of the invention is to provide an oligomerization process for obtaining a thermal effect, by recovering the exotherm obtained on the first catalyst of the catalytic system, the exotherm obtained being used for preheating. of the charge contacted with the second catalyst of said catalyst system, which saves utilities for the preheating of said load.
- An advantage of the preferred embodiment of the invention in which the light olefin-rich feedstock of the oligomerization process is first contacted with an amorphous silica-alumina catalyst, and then the effluent produced on this first catalyst is then brought into contact with a second catalyst 10MR or 12MR zeolite, is to provide an oligomerization process for obtaining a yield of middle distillate and preferably in improved gas oil section, the diesel cut obtained is also of improved quality and having a good cetane number.
- the bringing into contact of the olefinic feedstock used in the process according to the invention with the first catalyst of the catalytic system used in the preferred embodiment, based on silica-alumina, allows the production of an effluent comprising the first oligomer chains.
- the acidic sites of this catalyst are mainly in mesopores, it does not make it possible to obtain a shape selectivity allowing the formation of oligomers having branching ratios and lengths of branching, making the cut gas oil produced a cetane of good quality.
- Another advantage of the preferred embodiment of the invention wherein the light olefin-rich feedstock of the oligomerization process is first contacted in a first oligomerization step with an amorphous silica-alumina catalyst, and then the effluent produced on this first catalyst is then brought into contact in a second oligomerization step, with a second zeolite catalyst 10MR or 12MR, is to provide an oligomerization process for converting widely and preferably to less than 80% by weight of the dienes present in said feedstock in the first oligomerization step, the dienes being cokant and deactivating acid catalysts used, and thus strongly limiting the diene content in the effluent entering the second stage of oligomerization using the zeolite catalyst. This allows to increase the cycle time of the zeolitic catalyst in the second oligomerization step.
- Another advantage of the preferred embodiment of the invention is to use a catalyst comprising a silica alumina upstream of a zeolitic catalyst, said silica-based alumina catalyst being both low cost and muiti regenerable and serving as protective guard bed of the zeolitic catalyst placed downstream.
- Another advantage of the preferred embodiment of the invention is to provide an oligomerization process for increasing the cycle time of the zeolitic catalyst used in the second oligomerization step and therefore its service life.
- Another advantage of the preferred embodiment of the invention is also to provide an oligomerization process with an overall cycle time on all of the two catalysts used, superior to systems using only one of the two catalysts. This therefore allows a decrease in the regeneration frequency of said catalysts and thus a reduction in costs associated with this step (utilities and labor).
- the process according to the invention is a process for the oligomerization of light olefinic feeds containing between 2 and 10 carbon atoms per molecule, using a catalytic system comprising at least one catalyst comprising at least one silica-alumina and at least one catalyst comprising at least one a zeolite having pore openings containing 10 or 12 oxygen atoms (10MR or 12MR), said process being carried out at a temperature between 130 and 350 ⁇ , at a pressure of between 0.1 and 10 MPa and at a VVH between 0.1 and 5 h-1.
- the olefinic feedstock treated in the oligomerization process according to the invention comprises olefins containing between 2 and 10 carbon atoms per molecule and preferably between 3 and 10 carbon atoms per molecule.
- the olefinic feedstock used in the oligomerization process according to the invention comprises at least 30% by weight of linear or branched olefins having between 3 and 10 carbon atoms per molecule, the weight percentage being expressed relative to the total mass of said charge.
- said olefinic feedstock treated in the oligomerization process according to the invention is derived from a steam cracking unit, an FCC unit, a selective diolefin hydrogenation unit (SHU), a unit Fischer Tropsch, a unit for producing olefins from methanol or a unit for dehydrating alcohols or dehydrogenating paraffins, pure or in admixture.
- Said olefinic feedstock treated in the oligomerization process according to the invention may advantageously undergo a pretreatment step before being used in the oligomerization process according to the invention. Said pretreatment step makes it possible to eliminate any compound that may cause poisoning of the oligomerization catalysts, in particular the basic nitrogen compounds.
- said oligomerization process is carried out at a temperature of between 130 and 350%, preferably between 140 and 300% and preferably between 150 and 300% at a pressure of between 0.degree. 1 and 10 MPa and preferably between 3 and 8 MPa and a VVH between 0.1 and 5 h -1 and preferably 0.2 and 1 h "1 .
- vvh the ratio of the volume flow rate of charge on the volume of each catalyst present in the process according to the invention.
- the oligomerization process according to the invention can advantageously be operated according to various modes.
- the catalysts of the catalyst system used are advantageously arranged in a fixed bed in one or more distinct reaction zones and in one or more vertical reactors, and the feedstock is advantageously injected in liquid form, the temperature and pressure being selected to allow the reaction to proceed in a single liquid or supercritical phase.
- Reactive reactors can advantageously be used in the context of the present invention.
- Catalytic system
- the oligomerization process according to the invention implements a catalytic system comprising at least one catalyst comprising at least one silica-alumina and at least one catalyst comprising at least one zeolite having pore openings containing 10 or 12 oxygen atoms (1 OMR or 12MR).
- the catalytic system comprises at least two separate catalysts.
- distinct catalysts are meant two catalysts of different nature.
- the catalytic system comprises at least two catalysts placed in series, and preferably at least one catalyst comprising at least one silica-alumina and at least one catalyst comprising at least one zeolite having pore openings containing 10 or 12 atoms of oxygen, placed in series, said catalyst or catalysts comprising at least one silica alumina being preferably placed upstream of said catalyst or catalysts comprising at least one zeolite.
- the catalytic system comprises a catalyst comprising at least one silica-alumina and a catalyst comprising at least one zeolite having pore openings containing 10 or 12 oxygen atoms, said catalyst comprising at least one silica-alumina being placed upstream said catalyst comprising at least one zeolite.
- the oligomerization process comprises a first oligomerization step using at least one catalyst comprising at least one silica-alumina, followed by a second oligomerization step using at least one at least one catalyst comprising at least one zeolite having pore openings containing 10 or 12 oxygen atoms.
- the catalyst comprising at least one silica alumina may advantageously consist of pure silica alumina or result from mixing with said silica alumina and at least one binder preferably chosen from silica (SiO 2 ), alumina (Al 2 O 3 ), clays, titanium oxide (Ti0 2 ), boron oxide (B 2 0 3 ) and zirconia (Zr0 2 ), alone or in admixture.
- the binder is preferably selected from silica and alumina and even more preferably said binder is alumina, alumina being advantageously be located in all these forms known to those skilled in the art, such as for example gamma-alumina.
- the weight content of binder in said catalyst is between 0 and 40% by weight, more particularly between 1 and 40% by weight and even more preferably between 5% and 20% by weight, the weight percentage being expressed relative to the total mass. said catalyst.
- the at least one catalyst comprising at least one silica-alumina used according to the invention does not comprise a binder and consist solely of silica-alumina.
- the catalyst comprising at least one silica-alumina may be prepared by shaping silica-alumina in the presence or absence of a binder by any technique known to those skilled in the art, such as, for example, the techniques described in the patent applications.
- the oligomerization catalyst comprising at least one silica alumina used in the process according to the invention is advantageously in the form of spheres, pellets or extrudates, and preferably extruded.
- said oligomerization catalyst comprising at least one silica-alumina is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm.
- the shapes are advantageously cylindrical (which may be hollow or not), cylindrical twisted, multilobed (2, 3, 4 or 5 lobes for example) or rings.
- the cylindrical and multilobal shapes are used in a preferred manner, but any other form may also be used.
- Post-synthesis treatments may be carried out so as to improve the properties of the catalyst comprising at least one silica-alumina.
- the post-synthesis treatment is a hydrothermal treatment.
- the hydrothermal treatment is carried out by any technique known to those skilled in the art.
- hydrothermal treatment is meant contacting at any stage of the development of said catalyst with water in the vapor phase or in the liquid phase.
- ripening or steaming according to English terminology (steam treatment), autoclaving, calcination in moist air, or rehydration.
- the feedstock treated in the oligomerization process according to the invention is advantageously put in contact with each other.
- said one or more catalysts comprising at least one alumina silica at a temperature between 130 and 230 ⁇ C preferably between 150 and 2 ⁇ ⁇ and at a total pressure between 0.1 and 10 MPa and preferably between 2 and 8 MPa.
- the effluent thus obtained after placing said olefinic feedstock in contact with the at least one catalyst comprising at least one silica-alumina during the first oligomerization step, is then advantageously brought into contact with the catalyst or catalysts comprising at least one zeolite having pore openings containing 10 or 12 oxygen atoms (10MR or 12MR), in a second oligomerization step.
- the at least one catalyst comprising at least one silica-alumina is placed upstream of said catalyst or catalysts comprising at least one zeolite
- said effluent obtained after bringing said olefinic feedstock into contact with said catalyst (s) comprising at least one at least one silica alumina during the first oligomerization stage is then advantageously brought into contact in a second oligomerization step, with the catalyst or catalysts comprising at least one zeolite at a temperature of between 150 ° and 350 °, with a reference of 200 and 330 ° and preferably between 220 and 300 ° and at a pressure between 0.1 and 10 MPa and preferably between 2 and 8 MPa.
- the feedstock treated in the oligomerization process according to the invention is advantageously used.
- the pressure and temperature torque in the reactor will be advantageously chosen so that the charge is liquid at the reactor inlet.
- the at least one catalyst comprising at least one silica-alumina is placed upstream of the at least one catalyst comprising at least one less a zeolite
- said effluent obtained after contacting said olefinic feedstock with said catalyst or catalysts comprising at least one silica alumina during the first oligomerization step is then advantageously brought into contact in a second oligomerization step, with the or said catalysts comprising at least one zeolite at a temperature of between 150 ° and 300 °, of between 200 and 330 °, and preferably of between 220 and 300 °, and at a pressure of between 4.5 and 10 MPa and preferably between and 8 MPa, more preferably between 5 and 6 MPa.
- the pressure and temperature torque in the reactor will be advantageously chosen so that the load is homogeneous at the inlet of the reactor.
- the pressure difference between the total pressure of the second reactor and the total pressure of the first reactor is greater than or equal to 1.5 MPa.
- the zeolite catalyst used in the process according to the present invention comprises at least one zeolite having pore openings containing 10 or 12 oxygen atoms (10MR or 12MR).
- the zeolite having pore openings containing 10 or 12 oxygen atoms is an aluminosilicate zeolite having an overall Si / Al ratio greater than 10, preferably greater than 20 and most preferably greater than 30.
- the zeolite having pore openings containing 10 or 12 oxygen atoms is selected from zeolites of the group formed by: ferrierite, ZSM-5, ZSM-12, NU-86, mordenite, ZSM-22, NU-10, ZBM-30, ZSM-1 1, ZSM-57, ⁇ -2, ITQ-6 and ⁇ -5, taken alone or in admixture.
- the zeolite is selected from zeolites of the group formed by ferrierite, ZSM-5 and ZSM-12, taken alone or as a mixture.
- the zeolite is ZSM-5.
- Said zeolite could advantageously undergo changes in texture before its use in the oligomerization process according to the invention, such as, for example, dealumination or desilication treatments for creating porosity or surface treatments such as, for example, surface passivation by deposition of inert species to the reaction considered, said treatment being carried out according to any method known to those skilled in the art.
- Said catalyst comprising at least one zeolite may advantageously also comprise at least one oxide type matrix also called binder.
- a matrix according to the invention is understood to mean an amorphous or poorly crystallized matrix.
- Said matrix is advantageously chosen from the elements of the group formed by clays, and preferably from natural clays such as kaolin or bentonite, magnesia, aluminas, silicas, silica-aluminas, aluminates, and the oxide titanium, boron oxide, zirconia, aluminum phosphates, titanium phosphates, zirconium phosphates, and coal, alone or in admixture.
- said matrix is chosen from the elements of the group formed by aluminas, silicas and clays alone or as a mixture.
- said catalyst comprising at least one zeolite also comprises an aluminum binder
- said catalyst is preferably the catalyst described and prepared according to the patent application FR3017621 A1.
- said catalyst comprising at least one zeolite also comprises a silicic binder
- said catalyst is preferably the catalyst described and prepared according to the patent application FR3017622 A1.
- said catalyst comprising at least one zeolite comprises and is preferably composed of 20 to 70% by weight, and more preferably between 30 and 65% by weight of zeolite as well as from 30 to 80% by weight and more preferably between 35 and 70% by weight of binder, the weight percentages being expressed relative to the total mass of said catalyst.
- the catalysts comprising at least one zeolite used according to the invention are advantageously shaped in the form of grains of different shapes and sizes. They are advantageously used in the form of extruded cylindrical or multi-lobed extrudates such as bilobed, trilobed, straight or twisted polylobed, but may optionally be manufactured and employed in the form of crushed powder, tablets, rings, beads, wheels, spheres. Preferably, said catalysts comprising at least one zeolite are in the form of extrudates or beads.
- a first oligomerization step operating in the presence of the silica-alumina-based catalyst followed by a second oligomerization step operating in the presence of a zeolite catalyst downstream allows to convert widely and preferably at least 80% by weight of the dienes present in said feedstock in the first oligomerization step, the dienes being cokant and deactivating acid catalysts used, and thus limiting strongly the diene content in the effluent entering the second oligomerization step using the zeolite catalyst. This makes it possible to increase the cycle time of the zeolite catalyst in the second oligomerization step.
- the at least one catalyst comprising at least one silica-alumina is placed upstream of said catalyst or catalysts comprising at least one zeolite
- the use of two different types of catalysts operating at different operating conditions of temperature. also allows to obtain a thermal effect. Indeed, to obtain the desired products, the silica alumina operates at lower thermal levels than the zeolite, the operating pressure levels being comparable and preferably between 0.1 and 10 MPa.
- the catalyst comprising at least a silica-alumina is used in the first oligomerization stage at a temperature between 130 and 230 ⁇ preferably between 150 and 2 ' ⁇ 0 C C, while the catalyst comprising at least one Zeolite is used in the second oligomerization stage at a temperature of between 150 and 350%, preferably between 200 and 350%, more preferably between 215% and 340%, and very preferably between 230 and 31%.
- Inter-bed quenchs or water or air cooling means can advantageously be used to control the exotherm and thus the conversion of the load.
- the exotherm released after bringing said olefin feedstock into contact with at least one catalyst comprising a silica-alumina in said first oligomerization step makes it possible to obtain an effluent that may have a higher exit temperature than at the inlet of said first oligomerization step and this rise in temperature makes it possible to limit or even overcome the heating required for the effluent from the first oligomerization step which constitutes the charge of the second oligomerization step.
- the utility consumptions (steam or fuel gas) necessary for heating the charge of the second oligomerization step are reduced.
- the volume ratio of the at least one catalyst comprising at least one silica-alumina on the at least one catalyst comprising at least one zeolite in the oligomerization process according to the invention is between 0.1 and 0.9 and preferably between 0.2 and 0.8 and preferably between 0.3 and 0.7.
- the oligomerization reaction is accompanied by the formation of a coke deposit on the surface of the catalyst (s) used in the process according to the invention and of a deactivation of the catalyst (s) which can be compensated for a period of time. by an increase in the reaction temperature.
- the catalyst cycle it is necessary to regenerate the catalyst or catalysts to restore their activity. Regeneration can be carried out by calcination in an oxidizing atmosphere, such as, for example, in the presence of oxygen in the air.
- the regeneration can advantageously be carried out according to the methods known to those skilled in the art.
- a replacement reactor in anticipation of the regeneration may advantageously be provided for each reaction zone.
- the zeolitic catalyst has a lower lifetime than that of the silica-based alumina catalyst.
- the extension of the cycle time of the zeolitic catalyst used in the present invention thus makes it possible to extend its service life, which reduces the catalyst consumption for a given production.
- the oligomerization process according to the invention allows the production of an effluent and preferably an effluent from the second oligomerization stage, which can advantageously be separated preferably by distillation into at least one light gasoline cut boiling at a temperature less than 150 ⁇ and in at least one section boiling at a temperature between 150 and 360 ⁇ , called the diesel cut which respects a flash point of 55 ⁇ C.
- the non-converted feed olefins, the light cut and / or the total effluent resulting from the oligomerization process according to the invention may advantageously be recycled at the inlet of said first or second oligomerization step in order to increase the conversion of the olefins and the proportion of cut distillate.
- the section boiling at a temperature between 150 and 360 ⁇ advantageously undergoes a step of hydrogenation of olefins or hydrotreating to improve its cetane number before being incorporated into the diesel fuel pool.
- Catalyst C1 is prepared by extrusion of a silica alumina SA1 without binder. In this example, the catalyst C1 thus merges with the silica-alumina SA1 shaped.
- An alumina hydrate is prepared according to the teachings of US Pat. No. 3,124,418. After filtration, the freshly prepared precipitate is mixed with a silicic acid solution prepared by exchange on decationizing resin (AMBERLYST).
- AMBERLYST a silicic acid solution prepared by exchange on decationizing resin
- the proportions of the two solutions are adjusted so as to reach a composition of 70% Al 2 O 3 - 30% SiO 2 on the final support.
- This mixture is rapidly homogenized in a commercial colloid mill in the presence of nitric acid so that the nitric acid content of the suspension at the mill outlet is 8% based on the mixed silica-alumina solid.
- the suspension is conventionally dried in an atomizer in a conventional manner of 300 ⁇ to 60 ⁇ .
- the powder thus prepared is shaped in a Z-arm in the presence of 3% of nitric acid relative to the anhydrous product.
- the extrusion is carried out by passing the paste through a die provided with orifices of diameter 1, 4 mm.
- the extrudates thus obtained are dried at 150 ° C., calcined at 550 ° C. and then calcinated at 750 ° C. in the presence of steam.
- the powders of boehmite and zeolite ZSM-5 (CBV8014 supplied by Zeolyst) are introduced into the kneader and the acidified water is added under kneading at 50 revolutions / min in a batch mixer equipped with Z-arms. The acid kneading is continued during 30 minutes. A neutralization step is carried out by adding an ammoniacal solution and kneading for 15 minutes. The paste obtained is extruded on a piston extruder at a speed of 10 mm / min.
- the catalyst thus obtained comprises 60% by weight of zeolite ZSM-5 and 40% by weight of aluminum binder, the weight percentages being expressed relative to the total mass of catalyst.
- Example 3 (according to the invention)
- This charge is then sent in a first oligomerization step to the silica-alumina catalyst C1 prepared in Example 1; the total effluent of this step is sent in a second oligomerization step on the zeolitic catalyst C2 prepared in Example 2.
- the inlet pressure of the oligomerization unit is set at 6 MPa
- the operating mode is the same in both cases: from an initial temperature guaranteeing the conversion of the olefins referred to, the temperature is adjusted so as to maintain this conversion of olefins constant.
- the cycle time is defined as the time during which the performances are kept constant in the considered temperature range.
- distillate 150 ⁇ + cut is separated from the ⁇ - ⁇ ⁇ cut-off section and subjected to complete hydrogenation under the conditions described in FR 2984916 B1.
- Comparative Example 4 The same purified feedstock as in Example 3 is subjected to an oligomerization reaction on a single silica-alumina catalyst C1 prepared according to Example 1. The operating conditions and the performances during the first cycle of catalyst C1 are given in Table 3
- the inlet pressure of the oligomerization unit is set at 6 MPa.
- Example 3 The same purified feed as in Example 3 is subjected to an oligomerization reaction on a single zeolitic catalyst C2 prepared according to Example 2.
- the inlet pressure of the oligomerization unit is set at 6 MPa.
- Example 3 according to the invention makes it possible to obtain:
- the catalysts based on silica-alumina and zeolite C1 + C2 and C2 alone used in Examples 3 and 5 are separately subjected to several successive cycles of regeneration-reaction according to the following protocol: regeneration of the catalyst according to the procedure described below b / oligomerization reaction according to the conditions described above (Examples 3 and 5), the steps a) and b) being repeated.
- the operating conditions are adjusted so that the performance in terms of yield and product quality are maintained at the same level as in the first cycle; under these conditions it is observed that the catalyst C1 requires only a minor adjustment and therefore does not undergo a significant loss in its cycle time after each regeneration (relative loss ⁇ 1%) while the catalyst C2 requires a more fit significant and therefore suffered a significant loss in cycle time close to 5% relative.
- catalyst life C2 is defined as the cumulative total time when the cycle time has reached 60% of the initial cycle time.
- a nitrogen flow rate is introduced into the reactor to remove the residual volatile hydrocarbons present in the reactor and on the catalyst (period 0). Then air, diluted by a nitrogen flow, is introduced into the unit to initiate the regeneration of the catalyst as shown in Table 5. During this phase (periods 1 -4), the temperature is gradually increased to to burn the coke while controlling the exotherm of the reaction. Finally, the residual coke is completely burned after a last step under pure air (period 5). At the end of the regeneration, a nitrogen flow is introduced for the inerting phase of the reactor (6).
- Example 6 Comparison of the results obtained The comparison of Example 6 according to the invention with Comparative Example 7 in which the zeolite catalyst C2 is used shows that the addition of a silica-alumina catalyst upstream for the same total catalytic volume allows the getting:
- the oligomerization process according to the invention implementing a sequence of the two catalysts C1 and C2 thus shows a real interest when the desired product is the diesel fuel, which can be obtained with the implementation of a lesser amount of catalyst .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
On décrit un procédé d'oligomérisation de charges oléfiniques légères contenant entre 2 et 10 atomes de carbone par molécule, utilisant un système catalytique comprenant au moins un catalyseur comprenant au moins une silice alumine et au moins un catalyseur comprenant au moins une zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes, ledit procédé étant mis en œuvre à une température comprise entre 130 et 350°C, à une pression comprise entre 0,1 et 10 M Pa et à une vvh comprise entre 0,1 et 5 h-1.
Description
PROCEDE D'OLIGOMERISATION UTILISANT UN CATALYSEUR ZEOLITHIQUE ET UN CATALYSEUR COMPRENANT UNE SILICE ALUMINE
Domaine de l'invention
L'invention décrit la mise en œuvre d'un procédé d'oligomérisation des oléfines permettant la production de distillais moyens, en particulier de gazole, à partir de charges oléfiniques légères contenant entre 2 et 10 atomes de carbone par molécule, ledit procédé utilisant un système catalytique comprenant au moins deux catalyseurs distincts ce qui permet l'amélioration du rendement en coupe distillais moyens et en particulier du rendement en gazole et de sa qualité, notamment en terme d'indice de cétane.
En particulier, selon le mode de réalisation préféré de l'invention, les oléfines légères constitutives de la charge sont dans un premier temps mises au contact d'un premier catalyseur à base de silice alumine amorphe puis le produit ainsi obtenu est mis au contact d'un second catalyseur à base de zéolithe judicieusement choisie dans un procédé d'oligomérisation des oléfines, ladite zéolithe étant choisie parmi les zéolithes possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes (10MR ou 12MR).
Dans le cadre du mode de réalisation référé de la présente invention, il s'agit d'obtenir dans des conditions plus douces et sur un catalyseur moins onéreux et plus résistant aux contaminants qu'un catalyseur à base de zéolite, un premier effluent composé de produits d'oligomérisation qui sera alors de nouveau oligomérisé de préférence à plus haute température au contact d'un autre système catalytique à base de zéolithe de façon à obtenir des chaînes compatibles avec l'intervalle d'ébullition de la coupe distillât moyen et de préférence gazole et grâce à la sélectivité de forme de la zéolite et à obtenir un produit ayant un taux et degré de ramification limité permettant l'obtention d'un bon indice de cétane.
Étude de l'art antérieur
Les procédés d'oligomérisation des oléfines légères destinés à produire des oléfines de plus haut poids moléculaire sont largement utilisés en raffinage et pétrochimie dans le but de valoriser les oléfines légères en bases pour carburants de type essence, kérosène ou gazole, ou bien en solvants. Ces réactions d'oligomérisation sont conduites en présence d'un catalyseur, le plus souvent un catalyseur solide. Les oléfines se combinent en dimères, trimères, tétramères, etc., le degré d'oligomérisation et le degré de ramification des
oligomères dépendant du type de catalyseur utilisé et des conditions opératoires de température, de pression et de vitesse volumique ou pondérale horaire. L'avantage du procédé d'oligomérisation, par rapport à d'autres procédés bien connus dans le domaine du raffinage et de la pétrochimie conduisant à la même gamme de produits, réside dans le fait que les produits obtenus ne contiennent pas ou très peu de soufre et contiennent très peu de composés aromatiques. Les catalyseurs d'oligomérisation solides souvent cités dans la littérature sont des catalyseurs de type acide phosphorique solide, tels que par exemple dans les brevets US2913506 et US3661801 , des catalyseurs à base de silice-alumine tels que par exemple dans les brevets US4197185, US4544791 et EP0463673, des catalyseurs zéolitiques tels que par exemple US4642404 et US5284989, des résines telles que par exemple M. Marchionna ; Catalysis Today 65, (2001 ) 397 ou bien, dans une moindre mesure, de type hétéropolyanion tels que par exemple dans le brevet IN170903.
L'utilisation de zéolithes présente un avantage pour la production de gazole à haut indice de cétane. Un choix judicieux du type de zéolithe comme catalyseur d'oligomérisation permet de moduler la sélectivité de la réaction et peut donc de conduire à des oligomères possédant un taux de branchement inférieur à celui d'oligomères issus de réactions catalysées par d'autres catalyseurs, comme des catalyseurs de type silice alumine n'imposant aucune sélectivité de forme. Ce gain de sélectivité est favorable dans un contexte de production de gazole de bonne qualité, c'est-à-dire d'indice de cétane élevé, mais peu favorable par exemple à la production d'essence ayant un bon indice d'octane. Ainsi la demande de brevet FR3017621 montre que l'utilisation d'un catalyseur comprenant au moins une zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes (10MR ou 12MR) mise en forme avec un liant aluminique, ledit catalyseur ayant subi, avant son utilisation dans ledit procédé d'oligomérisation, au moins une étape de traitement thermique, permet d'obtenir une coupe gazole de très bonne qualité, de par la sélectivité de forme offerte par la zéolithe.
Cependant l'utilisation de zéolite s'avère onéreuse comparée à l'utilisation de silice alumine.
La demanderesse a découvert, de manière surprenante, qu'un procédé d'oligomérisation d'une charge hydrocarbonée oléfinique contenant des molécules oléfiniques ayant de 2 à 10 atomes de carbone par molécule utilisant un système catalytique comprenant au moins deux catalyseurs distincts, judicieusement choisis et avantageusement placés en série, permettait d'améliorer le rendement en distillais moyens obtenu et en particulier le rendement en gazole par rapport à l'utilisation dans un procédé d'oligomérisation d'un seul des catalyseurs
dudit système catalytique utilisé selon l'invention, à iso-volume catalyseur utilisé (la masse de catalyseur utilisé étant la somme des catalyseurs utilisés selon l'invention).
Résumé de l'invention
La présente invention a pour objet un procédé d'oligomérisation de charges oléfiniques légères contenant entre 2 et 10 atomes de carbone par molécule, utilisant un système catalytique comprenant au moins un catalyseur comprenant au moins une silice alumine et au moins un catalyseur comprenant au moins une zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes (10MR ou 12MR), ledit procédé étant mis en œuvre à une température comprise entre 130 et 350Ό , à une pression comprise entre 0,1 et 10 MPa et à une VVH comprise entre 0,1 et 5 h"1.
Un avantage de la présente invention est de fournir un procédé d'oligomérisation utilisant un système catalytique comprenant au moins deux catalyseurs distincts permettant, à la fois :
- l'augmentation du rendement en distillais moyens (kérosène et/ou gazole) obtenu et en particulier en gazole par rapport à l'utilisation dans un procédé d'oligomérisation d'un unique catalyseur à base de silice alumine et par rapport à l'utilisation d'un unique catalyseur à base de zéolithe, à iso volume catalyseur utilisée,
- l'augmentation de la qualité du gazole obtenu en terme d'indice de cétane par rapport à l'utilisation dans un procédé d'oligomérisation d'un unique catalyseur à base de silice alumine,
- la diminution du volume de zéolite mis en œuvre, par rapport à l'utilisation dans un procédé d'oligomérisation d'un unique catalyseur à base de zéolithe,
- l'augmentation de la durée de cycle entre deux régénérations par rapport à l'utilisation dans un procédé d'oligomérisation d'un unique catalyseur à base de zéolithe et par rapport à l'utilisation dans un procédé d'oligomérisation d'un unique catalyseur à base de silice alumine.
Un autre avantage du procédé selon l'invention est de fournir un procédé permettant également l'obtention d'une coupe gazole de bonne qualité.
Un autre avantage de l'invention est de fournir un procédé d'oligomérisation permettant l'obtention d'un effet thermique, par la valorisation de l'exotherme obtenu sur le premier catalyseur du système catalytique, l'exotherme obtenu étant utilisé pour la préchauffe de la
charge mise en contact avec le second catalyseur dudit système catalytique, ce qui permet d'économiser des utilités pour la préchauffe de ladite charge.
Un avantage du mode de réalisation préféré de l'invention dans lequel la charge riche en oléfines légères du procédé d'oligomérisation est d'abord mis en contact avec un catalyseur amorphe de type silice-alumine, puis l'effluent produit sur ce premier catalyseur est alors ensuite mis au contact avec un second catalyseur à base de zéolithe 10MR ou 12MR, est de fournir un procédé d'oligomérisation permettant l'obtention d'un rendement en distillât moyens et de préférence en coupe gazole amélioré, la coupe gazole obtenue étant également de qualité améliorée et présentant un bon indice de cétane. Sans être lié par une quelconque théorie, la mise en contact de la charge oléfinique utilisée dans le procédé selon l'invention avec le premier catalyseur du système catalytique utilisé dans le mode de réalisation préféré, à base de silice alumine, permet la production d'un effluent comprenant les premières chaînes d'oligomères. Cependant, les sites acides de ce catalyseur se trouvant principalement dans des mésopores, elle ne permet pas d'obtenir une sélectivité de forme permettant la formation d'oligomères ayant des taux de ramifications et des longueurs de ramification proférant à la coupe gazole produite un cétane de bonne qualité. Ainsi, en envoyant l'effluent obtenu sur le premier catalyseur du système catalytique à base de silice alumine sur le second catalyseur à base de zéolite, placé en aval, les réactions d'oligomérisation entre oléfines et premiers produits d'oligomérisation vont se poursuivre avec un taux et un degré de ramification contrôlé par la zéolite. Ceci confère à la coupe gazole ainsi obtenue un indice de cétane accru que ne permet pas d'obtenir la silice alumine utilisée seule, tout en mettant en œuvre une quantité limitée de zéolite.
Un autre avantage du mode de réalisation préféré de l'invention dans lequel la charge riche en oléfines légères du procédé d'oligomérisation est d'abord mis en contact dans une première étape d'oligomérisation avec un catalyseur amorphe de type silice-alumine, puis l'effluent produit sur ce premier catalyseur est alors ensuite mis au contact dans une deuxième étape d'oligomérisation, avec un second catalyseur à base de zéolithe 10MR ou 12MR, est de fournir un procédé d'oligomérisation permettant de convertir largement et de préférence au moins 80% poids des diènes présents dans ladite charge dans la première étape d'oligomérisation, les diènes étant des éléments cokant et désactivant des catalyseurs acides utilisés, et ainsi de limiter fortement la teneur en diènes dans l'effluent entrant dans la deuxième étape d'oligomérisation utilisant le catalyseur à base de zéolithe. Ceci permet
d'augmenter la durée de cycle du catalyseur zéolitique dans la deuxième étape d'oligomérisation.
Un autre avantage du mode de réalisation préféré de l'invention est d'utiliser un catalyseur comprenant une silice alumine en amont d'un catalyseur zéolitique, ledit catalyseur à base de silice alumine étant à la fois à bas cout et muiti régénérable et servant de lit de garde protecteur du catalyseur zéolithique placé en aval.
Un autre avantage du mode de réalisation préféré de l'invention est de fournir un procédé d'oligomérisation permettant d'augmenter la durée de cycle du catalyseur zéolitique utilisé dans la deuxième étape d'oligomérisation et donc sa durée de vie. Un autre avantage du mode de réalisation préféré de l'invention est également de fournir un procédé d'oligomérisation avec une durée de cycle globale sur l'ensemble des deux catalyseurs utilisés, supérieure aux systèmes utilisant un seul des deux catalyseurs. Ceci permet donc une diminution de la fréquence de régénération desdits catalyseurs et donc d'une réduction des frais liés à cette étape (utilités et main d'œuvre). Description détaillée de l'invention
Le procédé selon l'invention est un procédé d'oligomérisation de charges oléfiniques légères contenant entre 2 et 10 atomes de carbone par molécule, utilisant un système catalytique comprenant au moins un catalyseur comprenant au moins une silice alumine et au moins un catalyseur comprenant au moins une zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes (10MR ou 12MR), ledit procédé étant mis en œuvre à une température comprise entre 130 et 350^, à un e pression comprise entre 0,1 et 10 MPa et à une VVH comprise entre 0,1 et 5 h-1 .
Charge
Conformément à l'invention, la charge oléfinique traitée dans le procédé d'oligomérisation selon l'invention comprend des oléfines contenant entre 2 et 10 atomes de carbone par molécule et de préférence entre 3 et 10 atomes de carbone par molécule.
De préférence, la charge oléfinique utilisée dans le procédé d'oligomérisation selon l'invention comprend au moins 30% poids d'oléfines linéaires ou branchées ayant entre 3
et 10 atomes de carbone par molécule, le pourcentage poids étant exprimée par rapport à la masse totale de ladite charge.
De préférence, ladite charge oléfinique traitée dans le procédé d'oligomérisation selon l'invention est issue d'une unité de vapocraquage, d'une unité FCC, d'une unité d'hydrogénation sélective des dioléfines (SHU), d'une unité de Fischer Tropsch, d'une unité de production d'oléfines à partir de méthanol ou d'une unité de déshydratation des alcools ou de déshydrogénation des paraffines, pure ou en mélange. Ladite charge oléfinique traitée dans le procédé d'oligomérisation selon l'invention peut avantageusement subir une étape de prétraitement avant d'être utilisée dans le procédé d'oligomérisation selon l'invention. Ladite étape de prétraitement permet d'éliminer tout composé pouvant occasionner un empoisonnement des catalyseurs d'oligomérisation, notamment les composés azotés basiques.
Conditions opératoires
Conformément à l'invention, ledit procédé d'oligomérisation est mis en œuvre à une température comprise entre 130 et 350^, de préfère nce comprise entre 140 et 300^ et de manière préférée entre 150 et 300^ à une pression comprise entre 0,1 et 10 MPa et de préférence comprise entre 3 et 8 MPa et à une VVH comprise entre 0,1 et 5 h"1 et de manière préférée 0,2 et 1 h"1.
On entend par vvh, le ratio du débit volumique de charge sur le volume de chaque catalyseur présent dans le procédé selon l'invention.
Le procédé d'oligomérisation selon l'invention peut avantageusement être opéré selon divers modes. Dans un mode de réalisation préféré, les catalyseurs du système catalytique utilisé sont avantageusement disposés en lit fixe dans une ou plusieurs zones réactionnelles distinctes et dans un ou plusieurs réacteurs verticaux, et la charge est avantageusement injectée sous forme liquide, les conditions de température et de pression étant choisies de manière à permettre à la réaction de se dérouler en une phase liquide ou supercritique unique.
Des réacteurs permutables peuvent avantageusement être utilisés dans le cadre de la présente invention.
Système catalytique
Conformément à l'invention, le procédé d'oligomérisation selon l'invention met en œuvre un système catalytique comprenant au moins un catalyseur comprenant au moins une silice alumine et au moins un catalyseur comprenant au moins une zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes (1 OMR ou 12MR).
De préférence, le système catalytique comprend au moins deux catalyseurs distincts. On entend par catalyseurs distincts, deux catalyseurs de nature différente.
De préférence, le système catalytique comprend au moins deux catalyseurs placés en série, et de manière préférée, au moins un catalyseur comprenant au moins une silice alumine et au moins un catalyseur comprenant au moins une zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes, placés en série, le ou lesdits catalyseurs comprenant au moins une silice alumine étant de préférence placés en amont du ou desdits catalyseurs comprenant au moins une zéolithe.
De manière préférée, le système catalytique comprend un catalyseur comprenant au moins une silice alumine et un catalyseur comprenant au moins une zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes, ledit catalyseur comprenant au moins une silice alumine étant placé en amont dudit catalyseur comprenant au moins une zéolithe.
Dans ce cas et selon le mode de réalisation préféré de l'invention, le procédé d'oligomérisation comprend une première étape d'oligomérisation utilisant au moins un catalyseur comprenant au moins une silice alumine, suivie d'une deuxième étape d'oligomérisation utilisant au moins un catalyseur comprenant au moins une zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes.
Le catalyseur comprenant au moins une silice alumine peut avantageusement être constitué de silice alumine pure ou résulte du mélange avec ladite silice alumine et d'au moins un liant choisi de préférence parmi la silice (Si02), l'alumine (Al203), les argiles, l'oxyde de titane (Ti02), l'oxyde de bore (B203) et la zircone (Zr02), seul ou en mélange.
Dans le cas où le catalyseur comprenant au moins une silice alumine comprend également au moins un liant, ledit liant est de préférence choisi parmi la silice et l'alumine et de manière encore plus préférée ledit liant est l'alumine, l'alumine pouvant avantageusement se trouver
sous toutes ces formes connues de l'Homme du métier, telle que par exemple l'alumine gamma.
La teneur pondérale en liant dans ledit catalyseur est comprise entre 0 et 40% poids, plus particulièrement entre 1 et 40% poids et de manière encore plus préférée entre 5% et 20% poids, le pourcentage poids étant exprimé par rapport à la masse totale dudit catalyseur.
Dans un mode de réalisation très préféré, le ou lesdits catalyseurs comprenant au moins une silice alumine utilisés selon l'invention ne comprennent pas de liant et sont constitués uniquement de silice alumine.
Le catalyseur comprenant au moins une silice alumine peut être préparé par mise en forme de la silice alumine en présence ou en l'absence de liant par toute technique connue de l'Homme du métier, telles que par exemples les techniques décrites dans les demandes de brevets EP2083002 A1 , EP1616846 A1 , EP2308814 A1 , EP1415712 A1 , EP1700899 A1 et EP1893724 A1 .
Le catalyseur d'oligomérisation comprenant au moins une silice alumine utilisé dans le procédé selon l'invention se présente avantageusement sous la forme de sphères, de pastilles ou d'extrudés, et préférentiellement d'extrudés. De manière très avantageuse, ledit catalyseur d'oligomérisation comprenant au moins une silice alumine se présente sous la forme d'extrudés de diamètre compris entre 0,5 et 5 mm et plus particulièrement entre 0,7 et 2,5 mm. Les formes sont avantageusement cylindriques (qui peuvent être creuses ou non), cylindriques torsadés, multilobées (2, 3, 4 ou 5 lobes par exemple) ou anneaux. Les formes cylindriques et multilobées sont utilisées de manière préférée, mais toute autre forme peut également être utilisée.
Des traitements post-synthèse peuvent être effectués, de manière à améliorer les propriétés du catalyseur comprenant au moins une silice alumine. Selon un mode de réalisation préféré, le traitement post-synthèse est un traitement hydrothermal. Le traitement hydrothermal est effectué par toute technique connue de l'Homme du métier. Par traitement hydrothermal, on entend mise en contact à n'importe quelle étape de l'élaboration dudit catalyseur avec de l'eau en phase vapeur ou en phase liquide. Par traitement hydrothermal, on peut entendre notamment le mûrissement ou steaming selon la terminologie anglo- saxonne (traitement à la vapeur), l'autoclavage, la calcination sous air humide, ou la réhydratation.
Dans le mode de réalisation préféré dans lequel le ou lesdits catalyseurs comprenant au moins une silice alumine sont placés en amont du ou desdits catalyseurs comprenant au moins une zéolithe, la charge traitée dans le procédé d'oligomérisation selon l'invention est avantageusement mise en contact dans une première étape d'oligomérisation, avec le ou lesdits catalyseurs comprenant au moins une silice alumine à une température comprise entre 130 et 230<C de façon préférée entre 150 et 2 Ι ΟΌ et à une pression totale comprise entre 0,1 et 10 MPa et de préférence entre 2 et 8 MPa.
L'effluent ainsi obtenu après mise en contact de ladite charge oléfinique avec le ou lesdits catalyseurs comprenant au moins une silice alumine lors de la première étape d'oligomérisation est alors avantageusement mis en contact avec le ou lesdits catalyseurs comprenant au moins une zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes (10MR ou 12MR), dans une deuxième étape d'oligomérisation.
Dans le mode de réalisation préféré dans lequel le ou lesdits catalyseurs comprenant au moins une silice alumine sont placés en amont du ou desdits catalyseurs comprenant au moins une zéolithe, ledit effluent obtenu après mise en contact de ladite charge oléfinique avec le ou lesdits catalyseurs comprenant au moins une silice alumine lors de la première étape d'oligomérisation est ensuite avantageusement mis en contact dans une deuxième étape d'oligomérisation, avec le ou lesdits catalyseurs comprenant au moins une zéolithe à une température comprise entre 150Ό et 350Ό, de p référence entre 200 et 330Ό et de manière préférée entre 220 et 300Ό et à une pressi on comprise entre 0,1 et 10 MPa et de préférence entre 2 et 8 MPa.
Dans un autre mode de réalisation préféré dans lequel le ou lesdits catalyseurs comprenant au moins une silice alumine sont placés en amont du ou desdits catalyseurs comprenant au moins une zéolithe, la charge traitée dans le procédé d'oligomérisation selon l'invention est avantageusement mise en contact dans une première étape d'oligomérisation, avec le ou lesdits catalyseurs comprenant au moins une silice alumine à une température comprise entre 50 et 230Ό de façon préférée entre 90 et 150 Ό et à une pression totale comprise entre 0,1 et 4 MPa et de préférence entre 3 et 4 MPa. De manière préférée, le couple pression et température dans le réacteur sera choisi avantageusement pour que la charge soit liquide à l'entrée du réacteur.
Dans un autre mode de réalisation préféré dans lequel le ou lesdits catalyseurs comprenant au moins une silice alumine sont placés en amont du ou desdits catalyseurs comprenant au
moins une zéolithe, ledit effluent obtenu après mise en contact de ladite charge oléfinique avec le ou lesdits catalyseurs comprenant au moins une silice alumine lors de la première étape d'oligomérisation est ensuite avantageusement mis en contact dans une deuxième étape d'oligomérisation, avec le ou lesdits catalyseurs comprenant au moins une zéolithe à une température comprise entre 150Ό et 300Ό, de p référence entre 200 et 330Ό et de manière préférée entre 220 et 300Ό et à une pressi on comprise entre 4,5 et 10 MPa et de préférence entre 5 et 8 MPa, de manière plus préférée entre 5 et 6 MPa. De manière préférée, le couple pression et température dans le réacteur sera choisi avantageusement pour que la charge soit homogène à l'entrée du réacteur. De manière préférée, la différence de pression entre la pression totale du second réacteur et la pression totale du premier réacteur est supérieure ou égale à 1 ,5 MPa.
Il peut être éventuellement nécessaire de chauffer ou de refroidir ledit effluent obtenu à l'issue de la première étape d'oligomérisation pour atteindre la température requise au niveau de la seconde étape d'oligomérisation. Selon l'invention, le catalyseur zéolithique utilisé dans le procédé selon la présente invention comprend au moins une zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes (10MR ou 12MR).
De préférence, la zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes est une zéolithe de type aluminosilicate ayant un rapport global Si/AI supérieur à 10, de préférence supérieur à 20 et de manière préférée, supérieur à 30.
De préférence, la zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes est choisie parmi les zéolithes du groupe formé par : la ferriérite, le ZSM-5, la ZSM-12, la NU-86, le mordénite, la ZSM-22, la NU-10, la ZBM-30, la ZSM-1 1 , la ZSM-57, ΓΙΖΜ-2, l'ITQ-6 et ΓΙΜ-5, prises seules ou en mélange. De manière préférée, la zéolithe est choisi parmi les zéolithes du groupe formé par la ferriérite, la ZSM-5 et la ZSM-12, prises seules ou en mélange. De manière très préférée, la zéolithe est la ZSM-5.
Ladite zéolithe a pu avantageusement subir des modifications de texture avant son utilisation dans le procédé d'oligomérisation selon l'invention, tels que par exemple des traitements de déalumination ou de désilication pour créer de la porosité ou des traitements de surface tels que par exemple la passivation de surface par dépôt d'espèces inertes vis-à-vis de la
réaction considérée, lesdits traitement étant réalisés selon toute méthode connue de l'homme du métier.
Ledit catalyseur comprenant au moins une zéolithe peut avantageusement également comprendre au moins une matrice de type oxyde également appelé liant. On entend par matrice selon l'invention, une matrice amorphe ou mal cristallisée.
Ladite matrice est avantageusement choisie parmi les éléments du groupe formé par les argiles, et de préférence parmi les argiles naturelles telles que le kaolin ou la bentonite, la magnésie, les alumines, les silices, les silice-alumines, les aluminates, l'oxyde de titane, l'oxyde de bore, la zircone, les phosphates d'aluminium, les phosphates de titane, les phosphates de zirconium, et le charbon, seul ou en mélange. De préférence ladite matrice est choisie parmi les éléments du groupe formé par les alumines, les silices et les argiles seul ou en mélange.
Dans le cas où ledit catalyseur comprenant au moins une zéolithe comprend également un liant aluminique, ledit catalyseur est de préférence le catalyseur décrit et préparé selon la demande de brevet FR3017621 A1 .
Dans le cas où ledit catalyseur comprenant au moins une zéolithe comprend également un liant silicique, ledit catalyseur est de préférence le catalyseur décrit et préparé selon la demande de brevet FR3017622 A1 .
De préférence, ledit catalyseur comprenant au moins un zéolithe comprend et est de préférence constitué de 20 à 70% poids, et de manière plus préférée entre 30 et 65% poids de zéolithe ainsi que de 30 à 80% poids et de plus manière préférée entre 35 et 70% poids de liant, les pourcentages poids étant exprimés par rapport à la masse totale dudit catalyseur.
Les catalyseurs comprenant au moins une zéolithe utilisés selon l'invention sont avantageusement mis en forme sous la forme de grains de différentes formes et dimensions. Ils sont avantageusement utilisés sous la forme d'extrudés cylindriques ou polylobés tels que bilobés, trilobés, polylobés de forme droite ou torsadée, mais peuvent éventuellement être fabriqués et employés sous la forme de poudre concassées, de tablettes, d'anneaux, de billes, de roues, de sphères. De préférence, lesdits catalyseurs comprenant au moins une zéolithe sont sous forme d'extrudés ou de billes.
La mise en œuvre d'une première étape d'oligomérisation opérant en présence du catalyseur à base de silice-alumine suivie d'une deuxième étape d'oligomérisation opérant en présence d'un catalyseur à base de zéolithe située en aval, dans le mode de réalisation préféré de l'invention permet de convertir largement et de préférence au moins 80% poids des diènes présents dans ladite charge dans la première étape d'oligomérisation, les diènes étant des éléments cokant et désactivant des catalyseurs acides utilisés, et ainsi de limiter fortement la teneur en diènes dans l'effluent entrant dans la deuxième étape d'oligomérisation utilisant le catalyseur à base de zéolithe. Ceci permet d'augmenter la durée de cycle du catalyseur zéolithique dans la deuxième étape d'oligomérisation. Dans le mode de réalisation préféré dans lequel le ou lesdits catalyseurs comprenant au moins une silice alumine sont de placés en amont du ou desdits catalyseurs comprenant au moins une zéolithe, l'utilisation des deux types de catalyseurs distincts opérant à des conditions opératoires différentes de température permet également d'obtenir un effet thermique. En effet, pour obtenir les produits désirés, la silice alumine opère à des niveaux thermiques plus faibles que la zéolite, les niveaux de pression opératoire étant comparables et de préférence compris entre 0,1 et 10 MPa. De préférence, le catalyseur comprenant au moins une silice alumine est utilisé dans la première étape d'oligomérisation à une température comprise entre 130 et 230^ de façon préférée entre 150 et 2'\ 0CC, tandis que le catalyseur comprenant au moins un zéolite est utilisé dans la deuxième étape d'oligomérisation à une température comprise entre 150 et 350^, de façon p référée entre, 200 et 350^, de façon plus préférée entre 215^ et 340^ et de façon très préférée entre 230 et 31 OC
Dans le cadre de la présente invention, il est envisagé d'utiliser des réacteurs adiabatiques. Des quenchs inter-lits ou des moyens de refroidissement à eau ou à air peuvent avantageusement être utilisés pour contrôler l'exotherme et ainsi la conversion de la charge.
L'oligomérisation étant exothermique, l'exotherme libéré après mise en contact de ladite charge oléfinique avec au moins un catalyseur comprenant une silice alumine dans ladite première étape d'oligomérisation permet d'obtenir un effluent qui peut avoir une température de sortie plus élevée qu'en entrée de ladite première étape d'oligomérisation et cette élévation de température permet de limiter voire de s'affranchir de la chauffe nécessaire à l'effluent issu de la première étape d'oligomérisation qui constitue la charge de la deuxième
étape d'oligomérisation. Ainsi les consommations d'utilité (vapeur ou fuel gas) nécessaires à la chauffe de la charge de la deuxième étape d'oligomérisation sont réduits.
De préférence, le ratio volumique du ou desdits catalyseurs comprenant au moins une silice alumine sur le ou lesdits catalyseurs comprenant au moins une zéolithe dans le procédé d'oligomérisation selon l'invention est compris entre 0,1 et 0,9 et de préférence entre 0,2 et 0,8 et de manière préférée entre 0,3 et 0,7.
La réaction d'oligomérisation s'accompagne par la formation d'un dépôt de coke à la surface du ou des catalyseurs utilisés dans le procédé selon l'invention et d'une désactivation du ou des catalyseurs qui peut pendant une période de temps être compensée par une augmentation de la température de réaction. A la fin de cette phase, appelé cycle du catalyseur, il est nécessaire de régénérer le ou les catalyseurs pour restaurer leur activité. La régénération peut s'effectuer par calcination sous atmosphère oxydante, telle que par exemple en présence du dioxygène de l'air.
La régénération peut avantageusement être effectuée selon les méthodes connues de l'homme de l'art. Un réacteur de remplacement en prévision de la régénération peut avantageusement être prévu pour chaque zone réactionnelle.
Des durées de cycles supérieures peuvent avantageusement s'accompagner d'une diminution de la fréquence de régénération et donc d'une réduction des frais liés à cette étape (utilités et main d'œuvre). De par sa plus faible résistance aux conditions de régénération, le catalyseur zéolitique possède une durée de vie plus faible que celui du catalyseur à base de silice alumine. L'allongement de la durée de cycle du catalyseur zéolitique utilisé dans la présente invention permet donc de rallonger sa durée de vie, ce qui diminue la consommation de catalyseur pour une production donnée. Le procédé d'oligomérisation selon l'invention permet la production d'un effluent et de préférence un effluent issu de la deuxième étape d'oligomérisation, qui peut avantageusement être séparé de préférence par distillation en au moins une coupe légère essence bouillant à une température inférieure à 150Ό et en au moins une coupe bouillant à une température comprise entre 150 et 360Ό, appelé e coupe gazole qui respecte un point flash de 55<C.
Les oléfines de la charge non converties, la coupe légère et/ou l'effluent total issu du procédé d'oligomérisation selon l'invention peuvent avantageusement être recyclés à l'entrée de ladite première ou deuxième étape d'oligomérisation pour accroître la conversion des oléfines et la proportion de coupe distillât. La coupe bouillant à une température comprise entre 150 et 360Ό subit avantageusement une étape d'hydrogénation des oléfines ou d'hydrotraitement pour améliorer son indice de cétane avant d'être incorporée au pool gazole.
Les exemples ci-après illustrent l'invention sans en limiter la portée. Exemples Exemple 1 : Préparation du catalyseur C1 à base de silice alumine
Le catalyseur C1 est préparé par extrusion d'une silice alumine SA1 sans liant. Dans cet exemple, le catalyseur C1 se confond donc avec la silice-alumine SA1 mise en forme.
On prépare un hydrate d'alumine selon les enseignements du brevet US 3 124 418. Après filtration, le précipité fraîchement préparé est mélangé avec une solution d'acide silicique préparé par échange sur résine décationisante (AMBERLYST).
Les proportions des deux solutions sont ajustées de manière à atteindre une composition de 70 % AI2O3- 30 % Si02 sur le support final. Ce mélange est rapidement homogénéisé dans un broyeur colloïdal commercial en présence d'acide nitrique de façon que la teneur en acide nitrique de la suspension en sortie de broyeur soit de 8% rapportée au solide mixte silice-alumine. Puis, la suspension est séchée classiquement dans un atomiseur de manière conventionnelle de 300Ό à 60Ό. La poudre ainsi pr éparée est mise en forme dans un bras en Z en présence de 3% d'acide nitrique par rapport au produit anhydre. L'extrusion est réalisée par passage de la pâte au travers d'une filière munie d'orifices de diamètre 1 ,4 mm. Les extrudés ainsi obtenus sont séchés à 150Ό, pui s calcinés à 550Ό, puis calcinés à 750Ό en présence de vapeur d'eau.
Exemple 2 : Préparation du catalyseur zéolithique C2 à base de zéolithe ZSM-5
Les poudres de boehmite et de zéolithe ZSM-5 (CBV8014 fournie par Zeolyst) sont introduites dans le malaxeur et l'eau acidifiée est ajoutée sous malaxage a 50 tours/min dans un malaxeur batch équipé de bras en Z. Le malaxage acide est poursuivi pendant 30
minutes. Une étape de neutralisation est réalisée par ajout d'une solution ammoniacale et un malaxage pendant 15 minutes. La pâte obtenue est extrudée sur extrudeuse piston à une vitesse de 10 mm/min.
Après extrusion, les joncs sont séchés une nuit à 80^. Le solide séché obtenu est ensuite calciné à 600 C, pendant 2h avec un débit de 1 NIJh/gcat d'air humide contenant 4% poids d' eau.
Le catalyseur ainsi obtenu comprend 60% poids de zéolithe ZSM-5 et 40% poids de liant aluminique, les pourcentages poids étant exprimés par rapport à la masse totale de catalyseur. Exemple 3 (selon l'invention)
On dispose d'une charge composée de de 50% poids de coupe C4 et de 50% de coupe C5- C6, toutes deux issues d'une unité de FCC. La composition de la charge est donnée dans le tableau 1 .
Tableau 1 : composition de la charge
Elle est tout d'abord purifiée pour atteindre une teneur en azote totale inférieure à 0,5ppm. Cette charge est ensuite envoyée dans une première étape d'oligomérisation sur le catalyseur C1 à base de silice-alumine préparé dans l'exemple 1 ; l'effluent total de cette étape est envoyé dans une seconde étape d'oligomérisation sur le catalyseur zéolithique C2 préparé dans l'exemple 2. La pression en entrée de l'unité d'oligomérisation est fixée à 6 MPa
Le mode de fonctionnement est le même dans les deux cas : à partir d'une température initiale garantissant la conversion des oléfines visée, la température est ajustée de manière à
maintenir constante cette conversion des oléfines. La durée de cycle est définie comme le temps pendant lequel les performances sont maintenues constantes dans la plage de température considérée.
La coupe distillât 150^+ est séparée de la coupe e ssence ΡΙ-Ι δΟΌ et soumise à une hydrogénation totale dans les conditions décrites dans le brevet FR2984916 B1 .
Les conditions opératoires et les performances au cours du premier cycle des deux catalyseurs C1 et C2 sont données dans le tableau 2.
Tableau 2 : conditions opératoires et performances obtenues au premier cycle
Exemple comparatif 4 La même charge purifiée comme à l'exemple 3 est soumise à une réaction d'oligomérisation sur un unique catalyseur C1 à base de silice-alumine préparé selon l'exemple 1 .
Les conditions opératoires et les performances au cours du premier cycle du catalyseur C1 sont données dans le tableau 3
La pression en entrée de l'unité d'oligomérisation est fixée à 6 MPa.
Tableau 3 : conditions opératoires et performances obtenues au premier cycle Exemple comparatif 5
La même charge purifiée comme à l'exemple 3 est soumise à une réaction d'oligomérisation sur un unique catalyseur zéolitique C2 préparé selon l'exemple 2.
Les conditions opératoires et les performances au cours du premier cycle du catalyseur C2 sont données dans le tableau 4 et la comparaison des résultats obtenus est récapitulée dans le tableau 5.
La pression en entrée de l'unité d'oligomérisation est fixée à 6 MPa.
Catalyseur Zéolithe C2
Plage de T (<C) 200-250
Rampe de T (<C/j) 0,9
vvh (h 1) 0,5
Conversion des oléfines (%) 87
Distribution des produits (%)
Coupe PI-150<C 21
Coupe 150+<C 79
Rendement en 150^+ par
rapport aux oléfines de la 68,7
charge (%pds)
Durée de cycle (j) 56
Indice de cétane CFR
Coupe 150<C+ 50
hydrogénée
Tableau 4 : conditions opératoires et performances obtenues
La comparaison de l'exemple 3 selon l'invention avec les exemples comparatifs 4 et 5 dans lesquels un seul catalyseur est mis en œuvre dans un procédé d'oligomérisation montre que pour une conversion finale de la charge proche et dans les mêmes conditions opératoires, l'exemple 3 selon l'invention permet l'obtention de :
- une durée de cycle initiale et un rendement en distillât 150+ supérieur pour l'enchaînement C1 puis C2 selon l'invention, qu'avec le catalyseur zéolitique C2 seul,
- un rendement en distillât 150+ et un indice de cétane beaucoup plus élevé qu'avec le catalyseur à base de silice alumine seul C1 . Exemples 6 et 7
Les catalyseurs à base de silice-alumine et zéolithe C1 +C2 et C2 seul mis en œuvre dans les exemples 3 et 5 sont séparément soumis à plusieurs cycles successifs de régénération- réaction selon le protocole suivant : al régénération du catalyseur selon le mode opératoire décrit ci-dessous
b/ réaction d'oligomérisation selon les conditions décrites ci-dessus (exemples 3 et 5), les étapes a) et b) étant répétées.
Lors de ces cycles, on ajuste les conditions opératoires pour que les performances en termes de rendement et qualité produits soient maintenues au même niveau qu'au premier cycle; dans ces conditions on observe que le catalyseur C1 ne nécessite qu'un ajustement mineur et ne subit donc pas de perte significative au niveau de sa durée de cycle après chaque régénération (perte relative < 1 %) alors que le catalyseur C2 nécessite un ajustement plus important et subit de ce fait une perte significative au niveau de la durée de cycle proche de 5% relatif. Les cycles sont interrompus lorsque la durée de cycle, atteinte lors de la dernière réaction d'oligomérisation, est égale à 60% de la durée de cycle du premier cycle du catalyseur C2, donnée aux exemples 3 et 5. Compte tenu de la perte relative de 5% sur la durée de cycle, cette valeur correspond à (environ) 10 régénérations (1 *0.95Λ10=0.5987).
Dans les exemples, on entend par durée de vie du catalyseur C2, le temps cumulé total lorsque la durée de cycle a atteint 60% de la durée de cycle initiale.
Mode opératoire de régénération
Après chaque test d'oligomérisation, un débit d'azote est introduit dans le réacteur pour évacuer les restes d'hydrocarbures volatils présents dans le réacteur et sur le catalyseur (période 0). Ensuite de l'air, dilué grâce à un débit d'azote, est introduit dans l'unité pour initier la régénération du catalyseur comme indiqué dans le tableau 5. Pendant cette phase (périodes 1 -4), la température est graduellement augmentée afin de brûler le coke tout en maîtrisant l'exotherme de la réaction. Enfin, le coke résiduel est complètement brûlé après une dernière étape sous air pur (période 5). A la fin de la régénération, un débit d'azote est introduit pour la phase d'inertage du réacteur (6).
Tableau 5 : conditions opératoires de l'étape de régénération des catalyseurs
A l'issue de l'arrêt des cycles, on calcule la quantité totale cumulée de diesel produite entre le premier et le dernier cycle.
Les résultats sont donnés dans le tableau 6
Tableau 6 : comparaison des résultats obtenus
La comparaison de l'exemple 6 selon l'invention avec l'exemple comparatif 7 dans lesquels le catalyseur zéolithique C2 est mis en œuvre montre que l'ajout d'un catalyseur silice- alumine en amont pour un même volume catalytique total permet l'obtention :
- d'une durée de cycle finale et de vie de la zéolithe plus élevée
- d'une production en distillât 150Ό+, cumulée sur 1 1 cycles (ou 10 régénérations), beaucoup plus élevée qu'avec le catalyseur zéolitique C2 seul, avec un cétane moteur qui reste proche de celui de la zéolithe seule.
Le procédé d'oligomérisation selon l'invention mettant en œuvre un enchaînement des deux catalyseurs C1 et C2 montre donc un intérêt réel lorsque le produit recherché est le carburant gazole, qui peut être obtenu avec la mise en œuvre d'une quantité moindre de catalyseur.
Claims
1 . Procédé d'oligomérisation d'une charge oléfinique légère contenant entre 2 et 10 atomes de carbone par molécule, utilisant un système catalytique comprenant au moins un catalyseur comprenant au moins une silice alumine et au moins un catalyseur comprenant au moins une zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes (10MR ou 12MR), ledit procédé étant mis en œuvre à une température comprise entre 130 et 350Ό, à une pres sion comprise entre 0,1 et 10 MPa et à une VVH comprise entre 0,1 et 5 h"1.
2. Procédé selon la revendication 1 dans lequel la charge oléfinique comprend au moins 30% poids d'oléfines linéaires ou branchées ayant entre 3 et 10 atomes de carbone par molécule, le pourcentage poids étant exprimée par rapport à la masse totale de ladite charge.
3. Procédé selon l'une des revendications 1 ou 2 dans lequel le catalyseur comprenant au moins une silice alumine est constitué de silice alumine pure ou comprend également au moins un liant choisi parmi la silice, l'alumine, les argiles, l'oxyde de titane, l'oxyde de bore et la zircone, seul ou en mélange.
4. Procédé selon l'une des revendications 1 à 3 dans lequel la zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes est choisie parmi les zéolithes du groupe formé par : la ferriérite, le ZSM-5, la ZSM-12, la NU-86, le mordénite, la ZSM-22, la NU-10, la ZBM-30, la ZSM-1 1 , la ZSM-57, ΓΙΖΜ-2, l'ITQ-6 et
ΓΙΜ-5, prises seules ou en mélange.
5. Procédé selon la revendication 4 dans lequel ladite zéolithe est choisi parmi les zéolithes du groupe formé par : la ferriérite, la ZSM-5 et la ZSM-12, prises seules ou en mélange.
6. Procédé selon la revendication 5 dans lequel ladite zéolithe est la ZSM-5.
7. Procédé selon l'une des revendications 1 à 6 dans lequel ledit catalyseur comprenant au moins un zéolithe comprend au moins une matrice choisie parmi les éléments du groupe formé par les argiles, la magnésie, les alumines, les silices, les silice-alumines, les aluminates, l'oxyde de titane, l'oxyde de bore, la zircone, les phosphates d'aluminium, les phosphates de titane, les phosphates de zirconium, et le charbon, seul ou en mélange.
8. Procédé selon la revendication 7 dans lequel ladite matrice est choisie parmi les éléments du groupe formé par les alumines, les silices et les argiles seul ou en mélange.
9. Procédé selon l'une des revendications 1 à 8 dans lequel le système catalytique utilisé dans le procédé comprend au moins un catalyseur comprenant au moins une silice alumine et au moins un catalyseur comprenant au moins une zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes, placés en série, le ou lesdits catalyseurs comprenant au moins une silice alumine étant placés en amont du ou desdits catalyseurs comprenant au moins une zéolithe.
10. Procédé selon la revendication 9 dans lequel ladite charge oléfinique légère est mise en contact dans une première étape d'oligomérisation, avec le ou lesdits catalyseurs comprenant au moins une silice alumine à une température comprise entre 130 et 230Ό et à une pression totale comprise entre 0, 1 et 10 MPa.
1 1 . Procédé l'une des revendications 9 ou 10 dans lequel l'effluent obtenu après mise en contact de ladite charge oléfinique avec le ou lesdits catalyseurs comprenant au moins une silice alumine lors de la première étape d'oligomérisation est ensuite mis en contact dans une deuxième étape d'oligomérisation, avec le ou lesdits catalyseurs comprenant au moins une zéolithe à une température comprise entre 150Ό et 350Ό et à une pression comprise entre 0,1 et 10 MPa.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780040628.6A CN109312240B (zh) | 2016-06-30 | 2017-06-26 | 使用沸石和包含二氧化硅-氧化铝的催化剂的低聚方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR16/56.198 | 2016-06-30 | ||
FR1656198A FR3053355B1 (fr) | 2016-06-30 | 2016-06-30 | Procede d'oligomerisation utilisant un catalyseur zeolithique et un catalyseur comprenant une silice alumine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018001920A1 true WO2018001920A1 (fr) | 2018-01-04 |
Family
ID=56855698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2017/065619 WO2018001920A1 (fr) | 2016-06-30 | 2017-06-26 | Procede d'oligomerisation utilisant un catalyseur zeolithique et un catalyseur comprenant une silice alumine |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN109312240B (fr) |
FR (1) | FR3053355B1 (fr) |
WO (1) | WO2018001920A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3089518B1 (fr) * | 2018-12-10 | 2020-11-20 | Ifp Energies Now | Procede ameliore de conversion d’une charge lourde en distillats moyens faisant appel a un enchainement d’unites d’hydrocraquage, de vapocraquage et d’oligomerisation |
TW202126383A (zh) * | 2019-11-04 | 2021-07-16 | 美商雪維隆美國有限公司 | 用於氫化處理應用之氧化矽-氧化鋁複合材料 |
FR3134110A1 (fr) | 2022-04-05 | 2023-10-06 | Axens | Procédé amélioré de production de distillats moyens par oligomérisation d’une charge oléfinique |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2913506A (en) | 1955-11-29 | 1959-11-17 | Shell Dev | Polymerization of olefins using a phos-phoric acid catalyst and manufacture of said phosphoric acid catalyst |
US3124418A (en) | 1964-03-10 | Nitric acid | ||
US3661801A (en) | 1970-02-02 | 1972-05-09 | Catalysts & Chem Inc | Solid phosphoric acid catalysts |
US4197185A (en) | 1977-08-26 | 1980-04-08 | Institut Francais Du Petrole | Process for the conversion of olefinic C4 cuts from steam cracking to high octane gasoline and butane |
US4544791A (en) | 1983-06-22 | 1985-10-01 | Institut Francais Du Petrole | Process for producing premium gasoline by polymerizing C4 cuts |
US4642404A (en) | 1984-01-23 | 1987-02-10 | Mobil Oil Corporation | Conversion of olefins and paraffins to higher hydrocarbons |
EP0463673A1 (fr) | 1990-06-22 | 1992-01-02 | ENIRICERCHE S.p.A. | Procédé pour l'oligomérisation d'oléfines inférieures |
IN170903B (fr) | 1987-12-22 | 1992-06-13 | Council Scient Ind Res | |
US5284989A (en) | 1992-11-04 | 1994-02-08 | Mobil Oil Corporation | Olefin oligomerization with surface modified zeolite catalyst |
EP1415712A1 (fr) | 2002-10-30 | 2004-05-06 | Institut Francais Du Petrole | Catalyseur et procédé d'hydrocraquage de charges hydrocarbonées |
EP1616846A1 (fr) | 2004-07-15 | 2006-01-18 | Institut Français du Pétrole | Procede d'oligomerisation des olefines utilisant un catalyseur a base de silice-alumine |
EP1700899A1 (fr) | 2005-03-09 | 2006-09-13 | Institut Français du Pétrole | Procédé d'hydrocraquage avec recyclage comprenant l'adsorption de composés polyaromatiques de la fraction recyclée sur un adsorbant à base de silice-alumine à teneur limitée en macropores |
EP1893724A1 (fr) | 2005-04-25 | 2008-03-05 | Institut Français du Pétrole | Procede de production de distillats moyens par hydro1somerisation et hydrocraquage de charges issues du procédé |
EP2083002A1 (fr) | 2008-01-28 | 2009-07-29 | Ifp | Procédé d'oligomérisation des oléfines utilisant un catalyseur à base de silice-alumine |
EP2308814A1 (fr) | 2009-10-08 | 2011-04-13 | IFP Energies nouvelles | Procede d'oligomerisation d'une charge hydrocarbonee olefinique utilisant un catalyseur a base d'une silice-alumine mésoporeuse/macroporeuse |
FR2959749A1 (fr) * | 2010-05-06 | 2011-11-11 | Inst Francais Du Petrole | Procede flexible de transformation de l'ethanol en distillats moyens. |
FR2959750A1 (fr) * | 2010-05-06 | 2011-11-11 | Inst Francais Du Petrole | Procede de production de kerosene a partir de bio-ethanol. |
FR2984916B1 (fr) | 2011-12-23 | 2014-01-17 | IFP Energies Nouvelles | Procede ameliore de conversion d'une charge lourde en distillat moyen faisant appel a un pretraitement en amont de l'unite de craquage catalytique |
FR3017622A1 (fr) | 2014-02-19 | 2015-08-21 | IFP Energies Nouvelles | Procede d'oligomerisation d'olefines utilisant un catalyseur comprenant une zeolithe et un liant silicique ayant subi une etape de traitement thermique specifique |
FR3017621A1 (fr) | 2014-02-19 | 2015-08-21 | IFP Energies Nouvelles | Procede d'oligomerisation d'olefines utilisant un catalyseur comprenant une zeolithe et un liant alumine ayant subi une etape de traitement thermique specifique |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2404980A1 (fr) * | 2010-07-08 | 2012-01-11 | Total Raffinage Marketing | Augmentation de la masse moléculaire moyenne de produits de départ d'hydrocarbure |
-
2016
- 2016-06-30 FR FR1656198A patent/FR3053355B1/fr active Active
-
2017
- 2017-06-26 CN CN201780040628.6A patent/CN109312240B/zh active Active
- 2017-06-26 WO PCT/EP2017/065619 patent/WO2018001920A1/fr active Application Filing
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3124418A (en) | 1964-03-10 | Nitric acid | ||
US2913506A (en) | 1955-11-29 | 1959-11-17 | Shell Dev | Polymerization of olefins using a phos-phoric acid catalyst and manufacture of said phosphoric acid catalyst |
US3661801A (en) | 1970-02-02 | 1972-05-09 | Catalysts & Chem Inc | Solid phosphoric acid catalysts |
US4197185A (en) | 1977-08-26 | 1980-04-08 | Institut Francais Du Petrole | Process for the conversion of olefinic C4 cuts from steam cracking to high octane gasoline and butane |
US4544791A (en) | 1983-06-22 | 1985-10-01 | Institut Francais Du Petrole | Process for producing premium gasoline by polymerizing C4 cuts |
US4642404A (en) | 1984-01-23 | 1987-02-10 | Mobil Oil Corporation | Conversion of olefins and paraffins to higher hydrocarbons |
IN170903B (fr) | 1987-12-22 | 1992-06-13 | Council Scient Ind Res | |
EP0463673A1 (fr) | 1990-06-22 | 1992-01-02 | ENIRICERCHE S.p.A. | Procédé pour l'oligomérisation d'oléfines inférieures |
US5284989A (en) | 1992-11-04 | 1994-02-08 | Mobil Oil Corporation | Olefin oligomerization with surface modified zeolite catalyst |
EP1415712A1 (fr) | 2002-10-30 | 2004-05-06 | Institut Francais Du Petrole | Catalyseur et procédé d'hydrocraquage de charges hydrocarbonées |
EP1616846A1 (fr) | 2004-07-15 | 2006-01-18 | Institut Français du Pétrole | Procede d'oligomerisation des olefines utilisant un catalyseur a base de silice-alumine |
EP1700899A1 (fr) | 2005-03-09 | 2006-09-13 | Institut Français du Pétrole | Procédé d'hydrocraquage avec recyclage comprenant l'adsorption de composés polyaromatiques de la fraction recyclée sur un adsorbant à base de silice-alumine à teneur limitée en macropores |
EP1893724A1 (fr) | 2005-04-25 | 2008-03-05 | Institut Français du Pétrole | Procede de production de distillats moyens par hydro1somerisation et hydrocraquage de charges issues du procédé |
EP2083002A1 (fr) | 2008-01-28 | 2009-07-29 | Ifp | Procédé d'oligomérisation des oléfines utilisant un catalyseur à base de silice-alumine |
EP2308814A1 (fr) | 2009-10-08 | 2011-04-13 | IFP Energies nouvelles | Procede d'oligomerisation d'une charge hydrocarbonee olefinique utilisant un catalyseur a base d'une silice-alumine mésoporeuse/macroporeuse |
FR2959749A1 (fr) * | 2010-05-06 | 2011-11-11 | Inst Francais Du Petrole | Procede flexible de transformation de l'ethanol en distillats moyens. |
FR2959750A1 (fr) * | 2010-05-06 | 2011-11-11 | Inst Francais Du Petrole | Procede de production de kerosene a partir de bio-ethanol. |
FR2984916B1 (fr) | 2011-12-23 | 2014-01-17 | IFP Energies Nouvelles | Procede ameliore de conversion d'une charge lourde en distillat moyen faisant appel a un pretraitement en amont de l'unite de craquage catalytique |
FR3017622A1 (fr) | 2014-02-19 | 2015-08-21 | IFP Energies Nouvelles | Procede d'oligomerisation d'olefines utilisant un catalyseur comprenant une zeolithe et un liant silicique ayant subi une etape de traitement thermique specifique |
FR3017621A1 (fr) | 2014-02-19 | 2015-08-21 | IFP Energies Nouvelles | Procede d'oligomerisation d'olefines utilisant un catalyseur comprenant une zeolithe et un liant alumine ayant subi une etape de traitement thermique specifique |
Non-Patent Citations (1)
Title |
---|
M. MARCHIONNA, CATALYSIS TODAY, vol. 65, 2001, pages 397 |
Also Published As
Publication number | Publication date |
---|---|
CN109312240A (zh) | 2019-02-05 |
FR3053355A1 (fr) | 2018-01-05 |
CN109312240B (zh) | 2021-12-24 |
FR3053355B1 (fr) | 2019-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1487768B1 (fr) | Procede de conversion en plusieurs etapes d'une charge comprenant des olefines a quatre, cinq atomes de carbone et plus, en vue de produire du propylene | |
EP1862528B1 (fr) | Procédé de transformation de l'éthanol en base pour carburant diesel | |
CA2762032C (fr) | Production de carburants paraffiniques a partir de matieres renouvelables par un procede d'hydrotraitement en continu | |
EP2636661B1 (fr) | Procédé de conversion d'une charge lourde, mettant en oeuvre une unité de craquage catalytique et une étape d'hydrogénation sélective de l'essence issue du craquage catalytique | |
EP1637575B1 (fr) | Procédé de production de propylène fonctionnant en lit mobile avec recyclage d'une fraction de catalyseur usé | |
FR2935377A1 (fr) | Procede de conversion d'une charge lourde en essence et en propylene presentant une structure de rendement modulable | |
EP1668094B1 (fr) | Procede de conversion directe d'une charge comprenant des olefines a quatre, et/ou cinq atomes de carbone ou plus, pour la production de propylene | |
EP1814654A1 (fr) | Dispositif reactionnel a plusieurs zones en lit mobile avec appoint dans chaque zone de catalyseur regenere ou frais | |
WO2018001920A1 (fr) | Procede d'oligomerisation utilisant un catalyseur zeolithique et un catalyseur comprenant une silice alumine | |
FR2968010A1 (fr) | Procede de conversion d'une charge lourde en distillat moyen | |
FR2984916A1 (fr) | Procede ameliore de conversion d'une charge lourde en distillat moyen faisant appel a un pretraitement en amont de l'unite de craquage catalytique | |
EP0308302B1 (fr) | Procédé de production d'oligomères d'oléfines, utilisant un catalyseur à base de mordénite modifiée | |
EP2488611A1 (fr) | Procede de production de distillat par oligomerisation catalytique d'olefines en presence de composes oxygenes | |
WO2012153011A2 (fr) | Procede de production de coupes kerosene ou gazole a partir d'une charge olefinique ayant majoritairement de 4 a 6 atomes de carbone | |
EP3440160A1 (fr) | Utilisation de zeolithe nu-86 pour le procede de craquage catalytique de naphtha | |
EP3107980B1 (fr) | Procede d'oligomerisation d'olefines utilisant un catalyseur comprenant une zeolithe et un liant alumine ayant subi une etape de traitement thermique specifique | |
EP3173460B1 (fr) | Procédé d'oligomérisation d'oléfines légères au moyen d'une section réactionnelle comprenant trois réacteurs permutables favorisant la sélectivité vers les distillats | |
FR2765207A1 (fr) | Zeolithe nu-85, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines | |
FR2989383A1 (fr) | Procede d'hydrotraitement et de deparaffinage d'une charge distillat moyen utilisant un catalyseur a base de zeolithe izm-2 | |
FR2951192A1 (fr) | Procede de production de distillat moyen a partir de cires fischer tropsch utilisant un catalyseur a base de zeolithe modifiee | |
FR3053265A1 (fr) | Procede d'oligomerisation utilisant un catalyseur composite a base de silice-alumine et de zeolithe | |
EP1568675A1 (fr) | Procédé de production de phénylalcanes utilisant une coupe hydrocarbonee issue du procédé Fischer-Tropsch | |
EP3107981A1 (fr) | Procédé d'oligomerisation d'olefines utilisant un catalyseur comprenant une zeolithe et un liant silicique ayant subi une etape de traitement thermique specifique | |
WO2012131184A1 (fr) | Procede d'oligomerisation d'une charge hydrocarbonee olefinique utilisant un catalyseur comprenant un materiau de la famille des zif de type structural sod | |
FR2738243A1 (fr) | Procede d'hydroisomerisation de paraffines longues lineaires et/ou peu ramifiees avec un catalyseur a base de zeolithe nu-10 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17731595 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17731595 Country of ref document: EP Kind code of ref document: A1 |