EP3107981A1 - Procédé d'oligomerisation d'olefines utilisant un catalyseur comprenant une zeolithe et un liant silicique ayant subi une etape de traitement thermique specifique - Google Patents

Procédé d'oligomerisation d'olefines utilisant un catalyseur comprenant une zeolithe et un liant silicique ayant subi une etape de traitement thermique specifique

Info

Publication number
EP3107981A1
EP3107981A1 EP15706390.0A EP15706390A EP3107981A1 EP 3107981 A1 EP3107981 A1 EP 3107981A1 EP 15706390 A EP15706390 A EP 15706390A EP 3107981 A1 EP3107981 A1 EP 3107981A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
zeolite
weight
treatment step
zsm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15706390.0A
Other languages
German (de)
English (en)
Inventor
Nicolas Cadran
Delphine Bazer-Bachi
Joseph Lopez
Francois Hugues
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP3107981A1 publication Critical patent/EP3107981A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1088Olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1088Olefins
    • C10G2300/1092C2-C4 olefins

Definitions

  • the invention relates to the oligomerization of an olefin feed for the production of middle distillates, and in particular the use of a catalyst comprising at least one zeolite having pore openings containing 10 or 12 oxygen atoms (10MR or 12MR) shaped with a silicic binder in an olefin oligomerization process, said catalyst having undergone a specific treatment step.
  • a catalyst comprising at least one zeolite having pore openings containing 10 or 12 oxygen atoms (10MR or 12MR) shaped with a silicic binder in an olefin oligomerization process, said catalyst having undergone a specific treatment step.
  • the oligomerization processes of light olefins intended to produce higher molecular weight olefins are widely used in refining and petrochemicals with the aim of upgrading light olefins into bases for gasoline, kerosene or diesel fuels, or solvents. These oligomerization reactions are conducted in the presence of a catalyst, most often a solid catalyst.
  • the olefins combine into dimers, trimers, tetramers, etc., the degree of oligomerization depending on the type of catalyst used and the operating conditions of temperature, pressure and charge flow.
  • the advantage of the oligomerization process is that the products obtained do not contain sulfur and contain very few aromatic compounds.
  • the solid oligomerization catalysts often cited in the literature are solid phosphoric acid type catalysts (US Pat. No. 2,913,506 and US Pat. No. 3,661,801), silica-alumina (US 4,197,185, US 4,544,791 and EP 0,463,673).
  • zeolite US 4,642,404 and US 5,284,989 or, to a lesser extent, heteropolyanion (IN 170903).
  • Zeolitic catalysts are the most used, and in particular based on ZSM-5 zeolite.
  • US2009 / 0149684 discloses a process comprising contacting olefins with a guard bed to produce a pre-treated olefin stream and contacting said preformed stream with a catalyst comprising a zeolite and in particular a mordenite in an oligomerization zone.
  • a catalyst comprising a zeolite and in particular a mordenite in an oligomerization zone.
  • the document is silent on the use of a binder in the shaping of the catalyst and on a possible treatment of said catalyst.
  • US Pat. No. 7,271,304 describes a process for producing a hydrocarbon fraction boiling at a temperature compatible with the gasoil fraction, comprising contacting an olefinic feedstock comprising 3 to 8 carbon atoms with a zeolitic acid oligomerization catalyst, particular based on ZSM-5. The document is silent
  • FIRE I LLE OF REM PLACEM ENT (RULE 26) the use of a binder in the shaping of the catalyst based on ZSM-5 and on a possible treatment of said catalyst.
  • the Applicant has developed an oligomerization process for the production of middle distillates, using a catalyst comprising at least one zeolite having pore openings containing 10 or 12 oxygen atoms (10MR or 12MR) shaped with a silicic binder, said catalyst having undergone at least one heat treatment step operated under a moist air flow containing between 0 and 10% by weight of water, under a flow rate moist air between 0.1 and 10 NL / h / g cat , at a temperature between 450 and 700 ° C and for a period of between 1 and 10h, said heat treatment step being performed after the step of shaping of the zeolite with the silicic binder.
  • a catalyst comprising at least one zeolite having pore openings containing 10 or 12 oxygen atoms (10MR or 12MR) shaped with a silicic binder, said catalyst having undergone at least one heat treatment step operated under a moist air flow containing between 0 and 10% by weight of water, under a flow rate moist
  • the use in an oligomerization process of olefins, of such a catalyst using a silicic binder makes it possible to increase the number of cycles during the lifetime of the catalyst, and / or allows the obtaining increased productivity during the life of the catalyst.
  • the present invention describes a process for oligomerization of an olefinic feedstock using a catalyst comprising at least one zeolite having pore openings containing 10 or 12 oxygen atoms (10MR or 12MR) shaped with a silicic binder, said catalyst having undergone, before its use in said oligomerization process, at least one heat treatment step operated under an air flow a moist mixture containing between 0 and 10% by weight of water, at a moist air flow rate of between 0.1 and 10 NL / h / g cat , at a temperature of between 450 and 700 ° C.
  • said heat treatment step being carried out after the step of shaping the zeolite with the silicic binder, said oligomerization process operating at a temperature between 150 and 350 ° C, at a pressure of between 0, 2 and 10 MPa and at a weight hourly weight of between 0.1 and 8h-1.
  • An advantage of the present invention using a catalyst shaped with a silicic binder and having undergone such heat treatment, is in particular to allow to improve the catalyst cycle time and to allow increased productivity during the cycle time.
  • the catalyst used in the process according to the present invention comprises at least one zeolite having pore openings containing 10 or 12 oxygen atoms (10MR or 12MR).
  • the zeolite is an aluminosilicate zeolite having an overall Si / Al ratio of greater than 10, preferably greater than 20 and preferably greater than 30.
  • the zeolite is chosen from ferrierite, ZSM- 5, ZSM-12, NU-86, mordenite, ZSM-22, NU-10, ZBM-30, ZSM-1 1, ZSM-57, ⁇ -2, ITQ-6 and ⁇ -5, taken alone or as a mixture.
  • the zeolite is chosen from ferrierite, ZSM-5 and ZSM-12, taken alone or as a mixture.
  • the zeolite is ZSM-5. According to the invention, said zeolite is shaped with a silicic binder.
  • said silicic binder is advantageously chosen from precipitated silica and silica derived from by-products such as fly ash such as for example silico-aluminous or silico-calcic particles, and silica fumes. It is advantageous to use a colloidal silica, for example in the form of a stabilized suspension, such as, for example, commercial products such as Ludox® or Klebosol®.
  • a washing step may advantageously be used to lower the sodium content in the case where it is too high.
  • the silica source is in amorphous or crystalline form.
  • the silica is used in powder form.
  • said catalyst consists of a zeolite having pore openings containing 10 or 12 oxygen atoms (10MR or 12MR) shaped with a silicic binder. Said catalyst does not comprise a metal promoter.
  • said catalyst comprises and is preferably 20 to 70% by weight, and more preferably 30 to 65% by weight of zeolite having pore openings containing 10 or 12 oxygen atoms (10MR or 12MR) and 30 to 80% by weight and preferably between 35 and 70% by weight of silicic binder, the weight percentages being expressed relative to the total mass of said catalyst.
  • zeolite having pore openings containing 10 or 12 oxygen atoms (10MR or 12MR) and 30 to 80% by weight and preferably between 35 and 70% by weight of silicic binder, the weight percentages being expressed relative to the total mass of said catalyst.
  • step c) optionally a calcination step under dry air of the dried material obtained at the end of step c),
  • said step a) consists of mixing at least one powder of at least one zeolite with at least one powder of at least one silicic binder and at least one solvent to obtain a reaction mixture which must be form.
  • At least one organic adjuvant is also mixed in step a).
  • At least said powder of at least one silicic binder and optionally at least said organic adjuvant may be mixed in powder form or in solution in said solvent.
  • Said solvent is advantageously chosen from water, ethanol, alcohols and amines, alone or as a mixture.
  • said solvent is water.
  • the mixture of said powders and of said solvent can advantageously be produced at one time.
  • said powders of at least one zeolite, at least one silicic binder and optionally at least one organic adjuvant, in the case where they are mixed in the form of powders are first premixed. , dry, before the introduction of the solvent. Said premixed powders are then advantageously brought into contact with said solvent, at least said organic adjuvant possibly being in solution or suspension in said solvent.
  • the powders are advantageously kneaded in the presence of a solvent, preferably water in which a peptizing agent can advantageously be dissolved in order to obtain a better dispersion of the binder.
  • a solvent preferably water in which a peptizing agent can advantageously be dissolved in order to obtain a better dispersion of the binder.
  • the consistency of the dough is adjusted through the amount of solvent.
  • the peptizing agent used during this stage may advantageously be an acid, an organic or inorganic base such as acetic acid, hydrochloric acid, sulfuric acid, formic acid, citric acid and acid.
  • nitric acid alone or in mixture, sodium hydroxide, potassium hydroxide, ammonia, an amine, a quaternary ammonium compound, chosen from alkyl-ethanol amines or ethoxylated alkylamines, tetraethylammonium hydroxide and tetramethylammonium.
  • said mixing step a) is carried out by mixing, batchwise or continuously.
  • step a) is advantageously carried out in a kneader preferably equipped with Z-arms, or with cams, or in any other type of mixer such as, for example, a planetary mixer.
  • Said step a) of mixing makes it possible to obtain a homogeneous mixture of powdery constituents.
  • said step a) is carried out for a period of between 5 and 60 min, and preferably between 10 and 50 min.
  • the speed of rotation of the mixer arms is advantageously between 10 and 75 rpm, preferably between 25 and 50 rpm.
  • said step b) consists of shaping the mixture obtained at the end of step a) of mixing.
  • the mixture obtained at the end of step a) of mixing is advantageously shaped by extrusion, or by pelletization.
  • step b) is advantageously carried out in a piston, single screw or twin screw extruder.
  • an organic adjuvant may optionally be added in the mixing step a).
  • the presence of said organic adjuvant facilitates extrusion shaping.
  • Said organic adjuvant is advantageously chosen from polyethylene glycols, aliphatic mono-carboxylic acids, alkylated aromatic compounds, sulphonic acid salts, fatty acids, polyvinylpyrrolidone, polyvinyl alcohol, methylcellulose, cellulose, hydroxyethylcellulose derivatives, carboxymethylcellulose, polyacrylates, polymethacrylates, polyisobutene, polytetrahydrofuran, starch, polysaccharide-type polymers (such as xanthan gum), scleroglucan, lignosulfonates and galactomannan, alone or as a mixture.
  • the proportion of said organic adjuvant is advantageously between 0 and 20% by weight, preferably between 0 and 10% by weight and preferably between 0 and 7% by weight, relative to the total mass of said material.
  • said mixing step a) can be coupled with the extrusion shaping step b) in the same equipment.
  • the extrusion of the "homogeneous formulation” also known as “kneaded paste” may be carried out either by extruding directly at the end of a twin-screw continuous kneader, for example, or by connecting one or more batch kneaders to an extruder.
  • the geometry of the die, which confers their shape to the extrudates, can be chosen from the well-known dies of the skilled person.
  • They can thus be, for example, of cylindrical, multi-lobed (such as bilobed, trilobed, quadrilobed, fluted ...) or slotted, they can optionally be such that the catalyst is in the form of crushed powders, tablets, rings, balls, wheels.
  • step c) consists in drying said shaped material obtained at the end of step b) at a temperature of between 50 and 200 ° C. and preferably between 80 and 150 ° C. for a period of time. between 1 and 24 hours.
  • said drying step is carried out under air.
  • the dried material resulting from stage c) then optionally undergoes a calcination stage at a temperature of between 450 and 700 ° C., preferably between 540 and 700 ° C. for a duration of between 1 and 6 hours and preferably between 2 and 4h.
  • Said calcination step is carried out under a gaseous flow comprising oxygen.
  • the dried and possibly calcined material is then optionally subjected to said heat treatment step e) according to the invention.
  • said step e) is carried out under a moist air stream containing between 0 and 10% by weight of water, preferably between 0.1 and 10% and preferably between 0.1 and 5%, at a moist air flow rate between 0.1 and 10 NL / h / g cat , preferably between 0.5 and 2NL / h / g cat , at a temperature between 450 and 700 ° C, preferably between 500 and 650 ° C, preferably between 550 and 650 ° C and for a period of between 1 and 10h, and preferably between 2 and 6h, said heat treatment step being performed after the zeolite shaping step and silicic binder.
  • said heat treatment step e) is a hydrothermal treatment step.
  • said specific operating conditions of said heat treatment step according to the invention make it possible to limit the deactivation rate of the catalyst and to improve the catalyst cycle time.
  • said heat treatment step e) according to the invention can advantageously be carried out directly after the c) drying step. In this case, the calcination takes place in the heat treatment step according to the invention.
  • said heat treatment step according to the invention may advantageously be carried out after step d) of calcination.
  • said heat treatment step e) is performed after the step of shaping the mixture obtained at the end of step a).
  • the material obtained is in the form of extrudates.
  • said materials obtained are then, for example introduced into a device for rounding their surface, such as a bezel or other equipment allowing their spheronization (this step can be positioned just after the step b) formatting or later).
  • a device for rounding their surface such as a bezel or other equipment allowing their spheronization (this step can be positioned just after the step b) formatting or later).
  • it is advantageously used in the form of cylindrical or multi-lobed extrusions such as bilobed, trilobed, straight-lobed or twisted, but can optionally be manufactured and used in the form of crushed powders, tablets, rings, balls, wheels, spheres.
  • said catalyst is in the form of extrudates of size between 1 and 10 mm.
  • the olefinic feedstock treated in the oligomerization process according to the invention comprises olefins comprising at least 3 carbon atoms and preferably olefinic C3-C10 cuts containing at least 30% by weight of linear or branched olefins.
  • said olefinic feedstock treated in the oligomerization process according to the invention comes from a steam cracking unit, an FCC unit, a Fischer Tropsch unit, an olefin production unit with from methanol or a dehydration unit of alcohols.
  • Said olefinic feedstock treated in the oligomerization process according to the invention may advantageously undergo a pretreatment step before being used in the oligomerization process according to the invention. Said pretreatment step makes it possible to eliminate any compound that may cause poisoning of the oligomerization catalyst.
  • the oligomerization process according to the invention advantageously operates at a temperature of between 150 and 350.degree. C., preferably between 200 and 320.degree. C., and preferably between 230 and 310.degree. pressure between 0.2 and 10 MPa and preferably between 0.4 and 7 MPa and at a weight hourly weight of between 0.1 and 8h-1, preferably between 0.1 and 5h-1 and preferably between 0.5 and 1.5 h-1.
  • the oligomerization process according to the invention can advantageously be operated according to various modes.
  • the catalyst is advantageously arranged in a fixed bed in a vertical reactor, in one of the forms described above, and the charge is injected in liquid form, the temperature and pressure conditions being chosen so as to allow the reaction to proceed in a single liquid phase.
  • the oligomerization process according to the invention allows the production of an effluent which can advantageously be separated into at least one light cut boiling at a temperature below 150 ° C and in at least one section boiling at a temperature between 150 and 360 ° C, called distillate cut, preferably by distillation.
  • the light cut may advantageously be recycled to the inlet of the oligomerization reactor to increase the conversion of olefins and the proportion of distillate cut.
  • the section boiling at a temperature between 150 and 360 ° C advantageously undergoes a hydrogenation step before being incorporated in the middle distillate pool.
  • a catalyst C1 not in accordance with the invention in that it contains an aluminum and non-silicic binder is prepared.
  • the powders of boehmite and zeolite ZSM-5 (zeolite Z1) are introduced into the kneader and the acidified water is added under kneading at 50 revolutions / min in a batch kneader equipped with Z-arms. The acid kneading is continued for 30 minutes. minutes. A neutralization step is carried out by adding an ammoniacal solution and kneading for 15 minutes. The paste obtained is extruded on a piston extruder at a speed of 10 mm / min.
  • the dried solid obtained is then calcined at 600 ° C. for 2 hours under a stream of air containing 4% by weight of water.
  • the catalyst C1 obtained is therefore comparative in that the binder used is an aluminum binder different from the silicic binder according to the invention.
  • the catalyst C1 obtained comprises 60% by weight of zeolite ZSM-5 and 40% by weight of aluminum binder, the weight percentages being expressed relative to the total mass of catalyst.
  • Example 2 Preparation of Catalysts C2, C3, C4, C5 Conforming and C6 Non-Conforming
  • the powders of silica and zeolite ZSM-5 (zeolite Z1) are introduced into the kneader and an ammonia solution is added under kneading at 50 revolutions / min in a batch kneader equipped with Z-arms. The basic kneading is continued during 30 minutes. The paste obtained is extruded on a piston extruder at a speed of 10 mm / min.
  • the solid obtained comprises 60% by weight of zeolite ZSM-5 and 40% by weight of silicic binder, the weight percentages being expressed relative to the total mass of catalyst.
  • the dried solid obtained then undergoes a heat treatment step under different conditions to obtain the catalysts C2, C3, C4, C5 and C6 non-compliant for 2 hours under air flow (Table 1).
  • Table 1 Calcination conditions of zeolite extrusions based on silicic binder
  • the catalyst C6 obtained is therefore comparative in that the amount of water present in the air stream Outside the heat treatment stage is greater than 10% by weight.
  • Example 3 Catalytic tests
  • the various oligomerization tests of the olefinic feedstock were carried out with an ex-FCC industrial feedstock predominantly composed of C5 olefins and paraffins, the composition of which is given in Table 2.
  • the feedstock was pretreated beforehand to eliminate any compound that may cause poisoning of the catalyst.
  • Table 2 Composition of the olefinic charge.
  • the temperature of the test is adjusted to obtain a 90% conversion at the C5 olefins.
  • the initial activity of the catalyst is determined from the start temperature of the test while the deactivation rate (expressed in ° C / d) is calculated from the rise in temperature necessary to keep the conversion constant.
  • the cycle time (expressed in j) is measured by taking the time necessary to reach a temperature of 300 ° C considered as the end of test temperature.
  • the results obtained show that the catalysts having undergone the hydrothermal treatment according to the invention, namely the catalysts C2, C3, C4 and C5, make it possible to obtain a better cycle time than that obtained for the catalyst C6 which has undergone a hydrothermal treatment different from the invention.
  • This improvement in the cycle time is accompanied by an improvement in the productivity of the catalyst according to the invention on the cycle.
  • the results obtained show that the catalysts prepared from a silicic binder and having undergone the hydrothermal treatment according to the invention, namely the catalysts C2, C3, C4 and C5 make it possible to obtain a better cycle time than that obtained for the catalyst C1 which has been prepared with another type of binder but has undergone a hydrothermal treatment according to the invention.
  • This improvement in the cycle time is accompanied by an improvement in the productivity of the catalyst according to the invention on the cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

La présente invention décrit un procédé d'oligomérisation d'une charge oléfinique mettant en œuvre un catalyseur comprenant au moins une zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes (10MR ou 12MR) mise en forme avec un liant silicique, ledit catalyseur ayant subi au moins une étape de traitement thermique opérée sous un flux d'air humide contenant entre 0 et 10% poids d'eau, sous un débit d'air humide compris entre 0,1 et 10 NL/h/gcat, à une température comprise entre 450 et 700°C et pendant une durée comprise entre 1 et 10h, ladite étape de traitement thermique étant opérée après l'étape de mise en forme de la zéolithe avec le liant silicique.

Description

PROCÉDÉ D'OLIGOMERISATION D'OLEFINES UTILISANT UN CATALYSEUR COMPRENANT UNE ZEOLITHE ET UN LIANT SILICIQUE AYANT SUBI UNE ETAPE DE
TRAITEMENT THERMIQUE SPECIFIQUE
Domaine de l'invention
L'invention concerne l'oligomérisation d'une charge oléfinique pour la production de distillais moyens, et en particulier, l'utilisation d'un catalyseur comprenant au moins une zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes (10MR ou 12MR) mise en forme avec un liant silicique dans un procédé d'oligomérisation des oléfines, ledit catalyseur ayant subi une étape de traitement spécifique.
Étude de l'art antérieur
Les procédés d'oligomérisation des oléfines légères destinés à produire des oléfines de plus haut poids moléculaire sont largement utilisés en raffinage et pétrochimie dans le but de valoriser les oléfines légères en bases pour carburants de type essence, kérosène ou gazole, ou bien en solvants. Ces réactions d'oligomérisation sont conduites en présence d'un catalyseur, le plus souvent un catalyseur solide. Les oléfines se combinent en dimères, trimères, tétramères, etc., le degré d'oligomérisation dépendant du type de catalyseur utilisé et des conditions opératoires de température, de pression et de débit de charge. L'avantage du procédé d'oligomérisation, par rapport à d'autres procédés bien connus dans le domaine du raffinage et de la pétrochimie conduisant à la même gamme de produits, réside dans le fait que les produits obtenus ne contiennent pas de soufre et contiennent très peu de composés aromatiques. Les catalyseurs d'oligomérisation solides souvent cités dans la littérature sont des catalyseurs de type acide phosphorique solide (US 2.913.506 et US 3.661 .801 ), silice-alumine (US 4.197.185, US 4.544.791 et EP 0.463.673), zéolithe (US 4.642.404 et US 5.284.989) ou bien, dans une moindre mesure, de type hétéropolyanion (IN 170903).
Les catalyseurs zéolithiques sont les plus utilisés, et en particulier à base de zéolithe ZSM-5.
La demande de brevet US2009/0149684 décrit un procédé comprenant la mise en contact d'oléfines avec un lit de garde pour produire un flux d'oléfines prétraité et la mise en contact dudit flux prétaité avec un catalyseur comprenant une zéolithe et en particulier une mordénite dans une zone d'oligomérisation. Le document est muet sur l'utilisation d'un liant dans la mise en forme du catalyseur et sur un éventuel traitement dudit catalyseur.
Le brevet US 7 271 304 décrit un procédé de production de coupe hydrocarbonée bouillant à une température compatible avec la coupe gazole comprenant la mise en contact d'une charge oléfinique comprenant 3 à 8 atomes de carbones avec un catalyseur d'oligomérisation acide zéolithique, en particulier à base de ZSM-5. Le document est muet
FEU I LLE DE REM PLACEM ENT (RÈG LE 26) sur l'utilisation d'un liant dans la mise en forme du catalyseur à base de ZSM-5 et sur un éventuel traitement dudit catalyseur.
Une des difficultés rencontrées est la faible productivité des catalyseurs utilisés dans l'art antérieur et leur faible stabilité temporelle. La durée de cycle desdits catalyseurs étant limitée à quelques jours, une régénération fréquente est nécessaire pour maintenir l'activité. Il est donc important que le système conserve l'essentiel de ses performances au cours de ces cycles qui constituent sa durée de vie.
Diverses méthodes ont été employées pour augmenter la stabilité du catalyseur mis en œuvre dans les procédés d'oligomérisation de coupes oléfiniques. Le brevet US 5 672 800 décrit en particulier le traitement d'une charge oléfinique contenant une quantité d'eau comprise entre 0,05 et 0,25 % molaire par rapport à la quantité d'hydrocarbure dans la charge. La conversion des oléfines et la durée de vie du catalyseur utilisé sont améliorée par rapport à un procédé n'utilisant pas une charge hydratée présentant une telle quantité d'eau.
En cherchant à améliorer les performances de la réaction d'oligomérisation, la demanderesse a mis au point un procédé d'oligomérisation pour la production de distillais moyens, mettant en œuvre un catalyseur comprenant au moins une zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes (10MR ou 12MR) mise en forme avec un liant silicique, ledit catalyseur ayant subi au moins une étape de traitement thermique opérée sous un flux d'air humide contenant entre 0 et 10% poids d'eau, sous un débit d'air humide compris entre 0,1 et 10 NL/h/gcat, à une température comprise entre 450 et 700°C et pendant une durée comprise entre 1 et 10h, ladite étape de traitement thermique étant opérée après l'étape de mise en forme de la zéolithe avec le liant silicique.
De manière surprenante, l'utilisation dans un procédé d'oligomérisation des oléfines, d'un tel catalyseur mettant en œuvre un liant silicique, permet d'augmenter le nombre de cycles pendant la durée de vie du catalyseur, et/ou permet l'obtention d'une productivité accrue pendant la durée de vie du catalyseur.
Résumé de l'invention :
La présente invention décrit un procédé d'oligomérisation d'une charge oléfinique mettant en œuvre un catalyseur comprenant au moins une zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes (10MR ou 12MR) mise en forme avec un liant silicique, ledit catalyseur ayant subi, avant son utilisation dans ledit procédé d'oligomérisation, au moins une étape de traitement thermique opérée sous un flux d'air humide contenant entre 0 et 10% poids d'eau, sous un débit d'air humide compris entre 0,1 et 10 NL/h/gcat, à une température comprise entre 450 et 700°C et pendant une durée comprise entre 1 et 10h, ladite étape de traitement thermique étant opéré après l'étape de mise en forme de la zéolithe avec le liant silicique, ledit procédé d'oligomérisation opérant à une température comprise entre 150 et 350°C, à une pression comprise entre 0,2 et 10 MPa et à une vitesse pondérale horaire comprise entre 0,1 et 8h-1 .
Un avantage de la présente invention utilisant un catalyseur mis en forme avec un liant silicique et ayant subi un tel traitement thermique, est notamment de permettre d'améliorer la durée de cycle du catalyseur et de permettre une productivité accrue pendant la durée de cycle.
Description détaillée de l'invention.
Selon l'invention, le catalyseur utilisé dans le procédé selon la présente invention comprend au moins une zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes (10MR ou 12MR).
De préférence, la zéolithe est une zéolithe de type aluminosilicate ayant un rapport global Si/AI supérieur à 10, de préférence supérieur à 20 et de manière préférée, supérieur à 30. De préférence, la zéolithe est choisie parmi la ferriérite, le ZSM-5, la ZSM-12, la NU-86, le mordénite, la ZSM-22, la NU-10, la ZBM-30, la ZSM-1 1 , la ZSM-57, ΙΊΖΜ-2, l'ITQ-6 et ΙΊΜ-5, prises seules ou en mélange. De manière préférée, la zéolithe est choisi parmi la ferriérite, la ZSM-5 et la ZSM-12, prises seules ou en mélange. De manière très préférée, la zéolithe est la ZSM-5. Selon l'invention, ladite zéolithe est mise en forme avec un liant silicique. De préférence, ledit liant silicique est avantageusement choisi parmi la silice de précipitation et la silice issue de sous-produits comme les cendres volantes telle que par exemple les particules silico- alumineuses ou silico-calciques, et les fumées de silice. On pourra avantageusement utiliser une silice colloïdale, se présentant par exemple sous la forme d'une suspension stabilisée, telles que par exemple les produits commerciaux tels que le Ludox® ou les Klebosol®.
Dans le cas où la silice utilisée est une silice de précipitation, une étape de lavage peut avantageusmeent être mise en œuvre pour abaisser la teneur en sodium dans le cas où elle serait trop élevée.
De manière préférée, la source de silice est sous forme amorphe ou cristalline. De manière très préférée, la silice est utilisée sous forme de poudre. De préférence, ledit catalyseur est constitué d'une zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes (10MR ou 12MR) mise en forme avec un liant silicique. Ledit catalyseur ne comprend pas de promoteur métallique.
De préférence, ledit catalyseur comprend et est de préférence constitué de 20 à 70% poids, et de manière préférée entre 30 et 65% poids de zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygène (10MR ou 12MR) et de 30 à 80% poids et de manière préférée entre 35 et 70% poids de liant silicique, les pourcentages poids étant exprimés par rapport à la masse totale dudit catalyseur.
Le catalyseur utilisé dans le procédé selon l'invention peut avantageusement être préparé selon un procédé de préparation comprenant au moins les étapes suivantes :
a) une étape de mélange d'au moins une poudre de zéolithe avec au moins une poudre d'au moins un liant silicique et au moins un solvant,
b) une étape de mise en forme du mélange obtenu à l'issue de l'étape a),
c) une étape de séchage du matériau mis en forme obtenu à l'issue de l'étape b),
d) éventuellement une étape de calcination sous air sec du matériau séché obtenu à l'issue de l'étape c),
e) une étape de traitement thermique selon l'invention, dudit matériau séché et éventuellement calciné.
De préférence, ladite étape a) consiste en le mélange d'au moins une poudre d'au moins une zéolithe avec au moins une poudre d'au moins un liant silicique et au moins un solvant pour obtenir un mélange réactionnel qui doit être mis en forme.
Éventuellement, au moins un adjuvant organique est également mélangé au cours de l'étape a).
De manière préférée, au moins ladite poudre d'au moins un liant silicique et éventuellement au moins ledit adjuvant organique peuvent être mélangés sous forme de poudre ou en solution dans ledit solvant.
Ledit solvant est avantageusement choisi parmi l'eau, l'éthanol, les alcools et les aminés, seuls ou en mélange. De préférence, ledit solvant est l'eau.
Il est tout à fait envisageable de procéder à des mélanges de plusieurs poudres de zéolithe et/ou de poudre de sources de silices différentes. L'ordre dans lequel le mélange des poudres d'au moins une zéolithe, d'au moins un liant silicique et éventuellement d'au moins un adjuvant organique dans le cas où ceux-ci sont mélangés sous forme de poudres, avec au moins un solvant est réalisé est indifférent.
Le mélange desdites poudres et dudit solvant peut avantageusement être réalisé en une seule fois.
Les ajouts de poudres et de solvant peuvent également avantageusement être alternés.
De préférence, lesdites poudres d'au moins une zéolithe, d'au moins un liant silicique et éventuellement d'au moins un adjuvant organique, dans le cas ou ceux-ci sont mélangés sous forme de poudres, sont d'abord pré-mélangées, à sec, avant l'introduction du solvant. Lesdites poudres pré-mélangées sont ensuite avantageusement mises en contact avec ledit solvant, au moins ledit adjuvant organique pouvant éventuellement être en solution ou suspension dans ledit solvant.
La mise en contact avec ledit solvant conduit à l'obtention d'un mélange réactionnel qui est ensuite avantageusement malaxé.
Les poudres sont avantageusement malaxées en présence d'un solvant, de préférence de l'eau dans lequel un agent peptisant peut avantageusement être dissout afin d'obtenir une meilleure dispersion du liant. La consistance de la pâte est ajustée par le biais de la quantité de solvant.
L'agent peptisant utilisé lors de cette étape peut avantageusement être un acide, une base organique ou inorganique tel que l'acide acétique, l'acide chlorhydrique, l'acide sulfurique, l'acide formique, l'acide citrique et l'acide nitrique, seul ou en mélange, la soude, la potasse, l'ammoniaque, une aminé, un composé à ammonium quaternaire, choisi parmi les alkyl- éthanol aminés ou les alkyl- aminés éthoxylées, l'hydroxyde de tétraéthylammonium et le tétraméthylammonium.
De préférence, ladite étape a) de mélange est réalisée par malaxage, en batch ou en continu.
Dans le cas où ladite étape a) est réalisée en batch, ladite étape a) est avantageusement réalisée dans un malaxeur de préférence équipé de bras en Z, ou à cames, ou dans tout autre type de mélangeur tel que par exemple un mélangeur planétaire. Ladite étape a) de mélange permet d'obtenir un mélange homogène des constituants pulvérulents.
De préférence, ladite étape a) est mise en œuvre pendant une durée comprise entre 5 et 60 min, et de préférence entre 10 et 50 min. La vitesse de rotation des bras du malaxeur est avantageusement comprise entre 10 et 75 tours/minute, de façon préférée entre 25 et 50 tours/minute.
De préférence, ladite étape b) consiste en la mise en forme du mélange obtenu à l'issue de l'étape a) de mélange.
De préférence, le mélange obtenu à l'issue de l'étape a) de mélange est avantageusement mis en forme par extrusion, ou par pastillage.
Dans le cas où la mise en forme dudit mélange issu de l'étape a) est réalisée par extrusion, ladite étape b) est avantageusement réalisée dans une extrudeuse piston, mono-vis ou bi- vis.
Dans ce cas, un adjuvant organique peut éventuellement être ajouté dans l'étape a) de mélange. La présence dudit adjuvant organique facilite la mise en forme par extrusion. .Ledit adjuvant organique est avantageusement choisi parmi les polyéthylène glycols, les acides aliphatiques mono-carboxyliques, les composés aromatiques alkylés, les sels d'acide sulphonique, les acides gras, la polyvinyl pyrrolidone, l'alcool polyvinylique, la méthylcellulose, les dérivés de cellulose, les dérivés de type cellulose hydroxyéthylée, la carboxyméthylcellulose, les polyacrylates, les polymétacrylates, le polyisobutène, le polytétrahydrofurane, l'amidon, les polymères de type polysaccharide (comme la gomme de xanthane), le scléroglucane, les lignosulfonates et les dérivés de galactomannane, pris seul ou en mélange. La proportion dudit adjuvant organique est avantageusement comprise entre 0 et 20% en poids, de préférence entre 0 et 10% en poids et de manière préférée entre 0 et 7% en poids, par rapport à la masse totale dudit matériau.
Dans le cas où ledit procédé de préparation est mis en œuvre en continu, ladite étape a) de mélange peut être couplée avec l'étape b) de mise en forme par extrusion dans un même équipement. Selon cette mise en œuvre, l'extrusion de la "formulation homogène" nommée aussi "pâte malaxée" peut être réalisée soit en extrudant directement en bout de malaxeur continu de type bi-vis par exemple, soit en reliant un ou plusieurs malaxeurs batch à une extrudeuse. La géométrie de la filière, qui confère leur forme aux extrudés, peut être choisie parmi les filières bien connues de l'Homme du métier. Elles peuvent ainsi être par exemple, de forme cylindrique, multilobée (tels que bilobés, trilobés, quadrilobés, cannelés...) ou à fentes, elles peuvent éventuellement être telles que le catalyseur se présente sous la forme de poudres concassées, de tablettes, d'anneaux, de billes, de roues.
Dans le cas où la mise en forme du mélange réactionnel issu de l'étape a) est réalisée par extrusion, la quantité de solvant mise en œuvre dans l'étape a) de mélange est ajustée de façon à obtenir, à l'issue de cette étape et quelle que soit la variante mise en œuvre, une pâte qui ne coule pas mais qui n'est pas non plus trop sèche afin de permettre son extrusion dans des conditions convenables de pression bien connues de l'homme du métier et dépendantes de l'équipement d'extrusion utilisé. De préférence, ladite étape c) consiste en un séchage dudit matériau mis en forme obtenu à l'issue de l'étape b) à une température comprise entre 50 et 200°C et de préférence entre 80 et 150°C, pendant une durée comprise entre 1 et 24 heures.
De préférence, ladite étape de séchage est effectuée sous air. Le matériau séché issu de l'étape c) subit ensuite éventuellement une étape de calcination à une température comprise entre 450 et 700°C, de préférence entre 540 et 700°C pendant une durée comprise entre 1 et 6 h et de préférence comprise entre 2 et 4h.
Ladite étape de calcination est mise en œuvre sous un flux gazeux comprenant de l'oxygène.
Le matériau séché et éventuellement calciné subit ensuite éventuellement ladite étape e) de traitement thermique selon l'invention. Selon l'invention, ladite étape e) est opérée sous un flux d'air humide contenant entre 0 et 10% poids d'eau, de préférence entre 0,1 et 10% et de façon préférée entre 0,1 et 5%, à un débit d'air humide compris entre 0,1 et 10 NL/h/gcat, de préférence entre 0,5 et 2NL/h/gcat, à une température comprise entre 450 et 700°C, de préférence entre 500 et 650°C, de manière préférée entre 550 et 650°C et pendant une durée comprise entre 1 et 10h, et de préférence entre 2 et 6h, ladite étape de traitement thermique étant opérée après l'étape de mise en forme de la zéolithe et du liant silicique. Dans le cas où le flux d'air humide utilisé dans ladite étape e) comprend une teneur en eau supérieure à 0% poids, ladite étape e) de traitement thermique est une étape de traitement hydrothermal.
Les conditions opératoires spécifiques de ladite étape de traitement thermique selon l'invention permettent de limiter la vitesse de désactivation du catalyseur et l'amélioration de la durée de cycle du catalyseur. Selon une variante, ladite étape de traitement thermique e) selon l'invention peut avantageusement être réalisée directement après l'étape c) de séchage. Dans ce cas, la calcination a lieu dans l'étape de traitement thermique selon l'invention.
Selon une autre variante, ladite étape de traitement thermique selon l'invention peut avantageusement être réalisée après l'étape d) de calcination. Dans tous les cas, ladite étape e) de traitement thermique est réalisée après l'étape de mise en forme du mélange obtenu à l'issue de l'étape a).
A l'issue du procédé de préparation du catalyseur utilisé dans le procédé selon l'invention, le matériau obtenu se présente sous forme d'extrudés. Cependant, il n'est pas exclu que lesdits matériaux obtenus soient ensuite, par exemple introduits dans un équipement permettant d'arrondir leur surface, tel qu'un drageoir ou tout autre équipement permettant leur sphéronisation (cette étape pouvant se positionner juste après l'étape b) de mise en forme ou ultérieurement). Ainsi, il est avantageusement utilisé sous la forme d'extrudés cylindriques ou polylobés tels que bilobés, trilobés, polylobés de forme droite ou torsadée, mais peut éventuellement être fabriqué et employé sous la forme de poudres concassées, de tablettes, d'anneaux, de billes, de roues, de sphères. De préférence, ledit catalyseur est sous forme d'extrudés de taille comprise entre 1 et 10 mm. La charge oléfinique traitée dans le procédé d'oligomérisation selon l'invention comprend des oléfines comprenant au moins 3 atomes de carbone et de préférence les coupes oléfiniques en C3-C10 contenant au moins 30% en poids d'oléfines linéaires ou branchées. De préférence, ladite charge oléfinique traitée dans le procédé d'oligomérisation selon l'invention est issue d'une unité de vapocraquage, d'une unité FCC, d'une unité de Fischer Tropsch, d'une unité de production d'oléfines à partir de méthanol ou d'une unité de déshydratation des alcools. Ladite charge oléfinique traitée dans le procédé d'oligomérisation selon l'invention peut avantageusement subir une étape de prétraitement avant d'être utilisée dans le procédé d'oligomérisation selon l'invention. Ladite étape de prétraitement permet d'éliminer tout composé pouvant occasionner un empoisonnement du catalyseur d'oligomérisation.
Conformément à l'invention, le procédé d'oligomérisation selon l'invention opère avantageusement à une température comprise entre 150 et 350°C, de préférence entre 200 et 320°C, et de manière préférée entre 230 et 310°C, à une pression comprise entre 0,2 et 10 MPa et de préférence entre 0,4 et 7 MPa et à une vitesse pondérale horaire comprise entre 0,1 et 8h-1 , de préférence entre 0,1 et 5h-1 et de manière préférée entre 0,5 et 1 ,5 h-1 .
Le procédé d'oligomérisation selon l'invention peut avantageusement être opéré selon divers modes. Dans un mode de réalisation préféré, le catalyseur est avantageusement disposé en lit fixe dans un réacteur vertical, sous une des formes décrites ci-dessus, et la charge est injectée sous forme liquide, les conditions de température et de pression étant choisies de manière à permettre à la réaction de se dérouler en une phase liquide unique.
Le procédé d'oligomérisation selon l'invention permet la production d'un effluent qui peut avantageusement être séparé en au moins une coupe légère bouillant à une température inférieure à 150°C et en au moins une coupe bouillant à une température comprise entre 150 et 360°C, appelée coupe distillât, de préférence par distillation. La coupe légère peut avantageusement être recyclée à l'entrée du réacteur d'oligomérisation pour accroître la conversion des oléfines et la proportion de coupe distillât. La coupe bouillant à une température comprise entre 150 et 360°C subit avantageusement une étape d'hydrogénation avant d'être incorporée au pool distillât moyen.
Les exemples ci-après illustrent l'invention sans en limiter la portée. Exemples
Exemple 1 : Préparation du catalyseur C1 non-conforme à l'invention
Un catalyseur C1 non-conforme à l'invention en ce qu'il contient un liant aluminique et non silicique est préparé.
Les poudres de boehmite et de zéolithe ZSM-5 (zéolithe Z1 ) sont introduites dans le malaxeur et l'eau acidifiée est ajoutée sous malaxage à 50 tours/min dans un malaxeur batch équipé de bras en Z. Le malaxage acide est poursuivi pendant 30 minutes. Une étape de neutralisation est réalisée par ajout d'une solution ammoniacale et un malaxage pendant 15 minutes. La pâte obtenue est extrudée sur extrudeuse piston à une vitesse de 10mm/min.
Après extrusion, les joncs sont séchés une nuit à 80°C.
Le solide séché obtenu est ensuite calciné à 600°C pendant 2h sous un flux d'air contenant 4% poids d'eau.
Le catalyseur C1 obtenu est donc comparatif en ce que la liant utilisé est un liant aluminique différent du liant silicique selon l'invention.
Le catalyseur C1 obtenu comprend 60% poids de zéolithe ZSM-5 et 40% poids de liant aluminique, les pourcentages poids étant exprimés par rapport à la masse totale de catalyseur. Exemple 2 : Préparation des catalyseurs C2, C3, C4, C5 conformes et C6 non conforme
Les poudres de silice et de zéolithe ZSM-5 (zéolithe Z1 ) sont introduites dans le malaxeur et une solution d'ammoniaque est ajoutée sous malaxage à 50 tours/min dans un malaxeur batch équipé de bras en Z. Le malaxage basique est poursuivi pendant 30 minutes. La pâte obtenue est extrudée sur extrudeuse piston à une vitesse de 10mm/min.
Après extrusion, les joncs sont séchés une nuit à 140°C. Le solide obtenu comprend 60 % poids de zéolithe ZSM-5 et 40 % poids de liant silicique, les pourcentages poids étant exprimés par rapport à la masse totale de catalyseur.
Le solide séché obtenu subit ensuite une étape de traitement thermique sous différentes conditions pour obtenir les catalyseurs C2, C3, C4, C5 conformes et C6 non-conforme pendant 2h sous flux d'air (tableau 1 ) .
Tableau 1 : conditions de calcination des extrudés zéolithiques à base de liant silicique
Le catalyseur C6 obtenu est donc comparatif en ce que la quantité d'eau présente dans le flux d'air Hors de l'étape de traitement thermique est supérieure à 10% poids. Exemple 3 : tests catalvtiques
Les différents tests d'oligomérisation de la charge oléfinique ont été réalisés avec une charge industrielle ex-FCC majoritairement composée d'oléfines et paraffines en C5 dont la composition est donnée dans le tableau 2. La charge a au préalable été prétraitée de façon à éliminer tout composé pouvant occasionner un empoisonnement du catalyseur.
Tableau 2 : Composition de la charge oléfinique.
Le test s'opère dans un réacteur lit fixe à une pression P de 5 MPa et à une whsv (vitesse pondérale horaire) de 1 h~1 (whsv=débit massique de charge / masse de catalyseur). La température du test est ajustée pour obtenir une conversion de 90% au niveau des oléfines C5. L'activité initiale du catalyseur est déterminée à partir de la température de démarrage du test tandis que la vitesse de désactivation (exprimée en °C/j) est calculée à partir de la montée en température nécessaire pour maintenir la conversion constante. La durée de cycle (exprimée en j) est mesurée en prenant le temps nécessaire pour atteindre une température de 300°C considérée comme la température de fin de test.
omparat
Tableau 3 : Résultats des tests catalytiques
Les résultats obtenus montrent que les catalyseurs ayant subi le traitement hydrothermal selon l'invention, à savoir les catalyseurs C2, C3, C4 et C5 permettent l'obtention d'une meilleure durée de cycle que celle obtenue pour le catalyseur C6 qui a subi un traitement hydrothermal différent de l'invention. Cette amélioration de la durée de cycle s'accompagne d'une amélioration de la productivité du catalyseur selon l'invention sur le cycle. Les résultats obtenus montrent que les catalyseurs préparés à partir d'un liant silicique et ayant subi le traitement hydrothermal selon l'invention, à savoir les catalyseurs C2, C3, C4 et C5 permettent l'obtention d'une meilleure durée de cycle que celle obtenue pour le catalyseur C1 qui a été préparé avec un autre type de liant mais a subi un traitement hydrothermal selon l'invention. Cette amélioration de la durée de cycle s'accompagne d'une amélioration de la productivité du catalyseur selon l'invention sur le cycle.

Claims

REVENDICATIONS
1 . Procédé d'oligomérisation d'une charge oléfinique mettant en œuvre un catalyseur comprenant au moins une zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes (10MR ou 12MR) mise en forme avec un liant silicique, ledit catalyseur ayant subi, avant son utilisation dans ledit procédé d'oligomérisation, au moins une étape de traitement thermique opérée sous un flux d'air humide contenant entre 0 et 10% poids d'eau, sous un débit d'air humide compris entre 0,1 et 10 NL/h/gcat, à une température comprise entre 450 et 700°C et pendant une durée comprise entre 1 et 10h, ladite étape de traitement thermique étant opéré après l'étape de mise en forme de la zéolithe avec le liant silicique, ledit procédé d'oligomérisation opérant à une température comprise entre 150 et 350°C, à une pression comprise entre 0,2 et 10 MPa et à une vitesse pondérale horaire comprise entre 0,1 et 8h-1 .
2. Procédé selon la revendication 1 dans lequel la charge oléfinique comprend des oléfines comprenant au moins 3 atomes de carbone.
3. Procédé selon la revendication 2 dans lequel la charge oléfinique comprend les coupes oléfiniques en C3-C10 contenant au moins 30% en poids d'oléfines linéaires ou branchées.
4. Procédé selon l'une des revendications 1 à 3 dans lequel la zéolithe est choisie parmi la ferriérite, le ZSM-5, la ZSM-12, la NU-86, la mordénite, la ZSM-22, la NU-10, la ZBM-30, la ZSM-1 1 , la ZSM-57, ΙΊΖΜ-2, l'ITQ-6 et ΙΊΜ-5, prises seules ou en mélange.
5. Procédé selon la revendication 4 dans lequel la zéolithe est choisi parmi la ferriérite, la ZSM-5 et la ZSM-12, prises seules ou en mélange.
6. Procédé selon la revendication 5 dans lequel la zéolithe est la ZSM-5.
7. Procédé selon la revendication 6 dans lequel ledit liant silicique est choisi parmi la silice de précipitation, la silice issue de sous-produits la silice colloïdale, la silice amorphe et la silice cristalline.
8. Procédé selon l'une des revendications 1 à 7 dans lequel ledit catalyseur comprend de 20 à 70% poids, de zéolithe possédant des ouvertures de pores contenant 10 ou 12 atomes d'oxygènes (10MR ou 12MR) et de 30 à 80% poids de liant silicique, les pourcentages poids étant exprimés par rapport à la masse totale dudit catalyseur.
9. Procédé selon l'une des revendications 1 à 7 dans lequel ladite étape de traitement thermique opère sous un flux d'air humide contenant entre 0,1 et 10% poids d'eau.
10. Procédé selon la revendication 9 dans lequel ladite étape de traitement thermique opère sous un flux d'air humide contenant entre 0,1 et 5% poids d'eau.
1 1 . Procédé selon l'une des revendications 1 à 10 dans lequel ladite étape de traitement thermique opère à un débit d'air humide compris entre 0,5 et 2NL/h/gcat.
12. Procédé selon l'une des revendications 1 à 1 1 dans lequel ladite étape de traitement thermique opère à une température comprise entre 500 et 650°C.
13. Procédé selon la revendication 12 dans lequel ladite étape de traitement thermique opère à une température comprise entre 550 et 650°C.
14. Procédé selon l'une des revendications 1 à 13 dans lequel ladite étape de traitement thermique opère pendant une durée comprise entre 2 et 6h.
EP15706390.0A 2014-02-19 2015-02-12 Procédé d'oligomerisation d'olefines utilisant un catalyseur comprenant une zeolithe et un liant silicique ayant subi une etape de traitement thermique specifique Withdrawn EP3107981A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1451311A FR3017622B1 (fr) 2014-02-19 2014-02-19 Procede d'oligomerisation d'olefines utilisant un catalyseur comprenant une zeolithe et un liant silicique ayant subi une etape de traitement thermique specifique
PCT/EP2015/052957 WO2015124491A1 (fr) 2014-02-19 2015-02-12 Procédé d'oligomerisation d'olefines utilisant un catalyseur comprenant une zeolithe et un liant silicique ayant subi une etape de traitement thermique specifique

Publications (1)

Publication Number Publication Date
EP3107981A1 true EP3107981A1 (fr) 2016-12-28

Family

ID=50624790

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15706390.0A Withdrawn EP3107981A1 (fr) 2014-02-19 2015-02-12 Procédé d'oligomerisation d'olefines utilisant un catalyseur comprenant une zeolithe et un liant silicique ayant subi une etape de traitement thermique specifique

Country Status (3)

Country Link
EP (1) EP3107981A1 (fr)
FR (1) FR3017622B1 (fr)
WO (1) WO2015124491A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3053355B1 (fr) 2016-06-30 2019-07-26 IFP Energies Nouvelles Procede d'oligomerisation utilisant un catalyseur zeolithique et un catalyseur comprenant une silice alumine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL87999C (fr) 1955-11-29
US3661801A (en) 1970-02-02 1972-05-09 Catalysts & Chem Inc Solid phosphoric acid catalysts
FR2401122A1 (fr) 1977-08-26 1979-03-23 Inst Francais Du Petrole Procede pour la conversion des coupes c4 olefiniques de vapocraquage en isooctane et en butane
US4326994A (en) * 1980-02-14 1982-04-27 Mobil Oil Corporation Enhancement of zeolite catalytic activity
FR2547830B1 (fr) 1983-06-22 1988-04-08 Inst Francais Du Petrole Procede de production de supercarburant par polymerisation des coupes c4
US4642404A (en) * 1984-01-23 1987-02-10 Mobil Oil Corporation Conversion of olefins and paraffins to higher hydrocarbons
IT1248985B (it) 1990-06-22 1995-02-11 Eniricerche Spa Procedimento per oligomerizzare olefine leggere
ZA93594B (en) 1992-01-30 1993-08-31 Exxon Chemical Patents Inc Alkene oligomerisation.
US5284989A (en) * 1992-11-04 1994-02-08 Mobil Oil Corporation Olefin oligomerization with surface modified zeolite catalyst
AU8141301A (en) 2000-07-10 2002-01-21 Sasol Tech Pty Ltd Process and apparatus for the production of diesel fuels by oligomerisation of olefinic feed streams
US7956227B2 (en) 2007-12-06 2011-06-07 Conocophillips Company Oligomerization of hydrocarbons
US8343335B2 (en) * 2008-02-21 2013-01-01 Exxonmobil Research And Engineering Company Production of shaped silica bodies

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015124491A1 *

Also Published As

Publication number Publication date
FR3017622B1 (fr) 2017-05-26
FR3017622A1 (fr) 2015-08-21
WO2015124491A1 (fr) 2015-08-27

Similar Documents

Publication Publication Date Title
CA2688819C (fr) Methode de transformation d'effluents d'origine renouvelable en carburant d'excellente qualite mettant en oeuvre un catalyseur a base de molybdene
EP2607457B1 (fr) Procédé de conversion de charges paraffiniques issues de la biomasse en bases distillats moyens mettant en oeuvre au moins un catalyseur a base de zeolithe izm-2
EP2580178B1 (fr) Procédé de déshydratation et d'isomérisation d'alcools en c4 utilisant un solide amorphe à porosité adaptée
EP0308302B1 (fr) Procédé de production d'oligomères d'oléfines, utilisant un catalyseur à base de mordénite modifiée
FR3053355B1 (fr) Procede d'oligomerisation utilisant un catalyseur zeolithique et un catalyseur comprenant une silice alumine
EP3498371A1 (fr) Procede de preparation d'un catalyseur a base d'izm-2 a partir d'une solution comprenant des precurseurs specifiques et utilisation pour l'isomerisation de charges paraffiniques
EP3107981A1 (fr) Procédé d'oligomerisation d'olefines utilisant un catalyseur comprenant une zeolithe et un liant silicique ayant subi une etape de traitement thermique specifique
EP3107980B1 (fr) Procede d'oligomerisation d'olefines utilisant un catalyseur comprenant une zeolithe et un liant alumine ayant subi une etape de traitement thermique specifique
EP2055382B1 (fr) Utilisation d'un catalyseur à base d'IM-5 pour la transformation d'alcools ayant au moins deux atomes de carbone en base carburants diesel
FR3042189A1 (fr) Procede pour produire un hydrocarbure aromatique, du p-xylene et de l'acide terephtalique
FR3058414B1 (fr) Procede de deshydratation isomerisante d'un alcool primaire non lineaire sur un catalyseur comprenant une zeolithe de type fer et un liant aluminique
WO2011045482A1 (fr) Procede d'hydrotraitement et d'hydroisomerisation des huiles issues de source renouvelable mettant en oeuvre une zeolithe modifiee
WO2018087033A1 (fr) Procede de deshydratation isomerisante d'une charge alcool primaire non lineaire en presence d'injection d'eau et d'un catalyseur comprenant une zeolithe de type fer ou mfs
EP2707461A2 (fr) Procede de production de coupes kerosene ou gazole a partir d'une charge olefinique ayant majoritairement de 4 a 6 atomes de carbone
EP0350367A1 (fr) Procédé de transformation du durène dans un mélange d'hydrocarbures de point d'ébullition compris entre 30 et 300 degrés C
CA3124867A1 (fr) Procede de deparaffinage d'une charge distillat moyen utilisant un catalyseur a base de zeolithe izm-2 et d'une zeolithe de type mfi
FR3049954A1 (fr) Utilisation de zeolithe nu-86 pour le procede de craquage catalytique de naphtha
FR2989383A1 (fr) Procede d'hydrotraitement et de deparaffinage d'une charge distillat moyen utilisant un catalyseur a base de zeolithe izm-2
WO2018087032A1 (fr) Procédé de déshydratation isomérisante de monoalcools primaires non linéaires sur catalyseur zéolithique dopé d'alcalin
FR3053265A1 (fr) Procede d'oligomerisation utilisant un catalyseur composite a base de silice-alumine et de zeolithe
FR2989382A1 (fr) Procede de deparaffinage de charges hydrocarbonees utilisant un catalyseur a base de zeolithe izm-2
FR2973394A1 (fr) Procede d'oligomerisation d'une charge hydrocarbonee olefinique utilisant un catalyseur comprenant un materiau de la famille des zif de type structural sod
EP1568675A1 (fr) Procédé de production de phénylalcanes utilisant une coupe hydrocarbonee issue du procédé Fischer-Tropsch
FR2714051A1 (fr) Procédé d'isomérisation squelettale des oléfines utilisant une matière à base d'alumine.
EP2781583A1 (fr) Procédé de conversion de charges issues de sources renouvelables mettant en oeuvre un catalyseur comprenant une zeolithe nu-10 et une silice alumine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IFP ENERGIES NOUVELLES

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190718

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B01J 29/40 20060101ALI20200629BHEP

Ipc: B01J 20/10 20060101ALI20200629BHEP

Ipc: B01J 37/04 20060101AFI20200629BHEP

Ipc: C10G 50/00 20060101ALI20200629BHEP

Ipc: B01J 29/18 20060101ALI20200629BHEP

Ipc: C07C 2/12 20060101ALI20200629BHEP

Ipc: B01J 21/08 20060101ALI20200629BHEP

Ipc: B01J 37/00 20060101ALI20200629BHEP

Ipc: B01J 20/18 20060101ALI20200629BHEP

Ipc: B01J 37/10 20060101ALI20200629BHEP

Ipc: B01J 20/08 20060101ALI20200629BHEP

Ipc: B01J 29/65 20060101ALI20200629BHEP

INTG Intention to grant announced

Effective date: 20200716

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20201127