WO2018001494A1 - Drague, grue, véhicule marin ainsi que dispositif de commande et procédé de stabilisation associé - Google Patents

Drague, grue, véhicule marin ainsi que dispositif de commande et procédé de stabilisation associé Download PDF

Info

Publication number
WO2018001494A1
WO2018001494A1 PCT/EP2016/065399 EP2016065399W WO2018001494A1 WO 2018001494 A1 WO2018001494 A1 WO 2018001494A1 EP 2016065399 W EP2016065399 W EP 2016065399W WO 2018001494 A1 WO2018001494 A1 WO 2018001494A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuselage
movement
excavator
determined
control device
Prior art date
Application number
PCT/EP2016/065399
Other languages
German (de)
English (en)
Inventor
Michael Bernhard Buhl
Robert Eidenberger
Julian D. JAEGER
Daniel W. Robertson
Original Assignee
Siemens Aktiengesellschaft
Siemens Industry, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft, Siemens Industry, Inc. filed Critical Siemens Aktiengesellschaft
Priority to PCT/EP2016/065399 priority Critical patent/WO2018001494A1/fr
Publication of WO2018001494A1 publication Critical patent/WO2018001494A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/066Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads for minimising vibration of a boom
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/06Floating substructures as supports
    • E02F9/067Floating substructures as supports with arrangements for heave compensation

Definitions

  • an excavator or crane with a hull and a boom attached to it, a drive system for Exerting a user-controlled torque and a superimposed torque from the fuselage to the boom on.
  • the excavator or crane further has a motion sensor for measuring movement of the fuselage and a control device.
  • the latter is inventively set up ⁇ to detect a sensor signal ofnamssen ⁇ sor to determine a movement of the fuselage based on the sensor signal and for controlling the drive system depending on the determined movement such that the superimposed torque counteracts the determined movement of the fuselage.
  • the invention is based on the observation that the boom of an excavator or crane forms a sufficient balancing mass in many cases. If this is moved, arises in the
  • the invention can be advantageously applied to Wasserfahrzeu ⁇ ge, especially ships or submarines.
  • takes effect in the context of the invention, a pro- peller a stabilizing function of the boom.
  • control device and a method according to the invention for stabilizing an excavator, crane or watercraft are provided.
  • a computer program product and a computer-readable storage medium are provided for carrying out the method according to the invention.
  • a significant advantage of the invention is the fact that often an existing drive system of the excavator, crane or watercraft can be used for efficient hull stabilization and / or vibration damping. This can cause torso vibrations that are often considered by the user uncomfortable and which may affect the accuracy of control movements, and wear and fatigue are effectively reduced in many cases.
  • Advantageous embodiments and further developments of the invention are specified in the dependent claims.
  • control device may be configured to determine a speed of the fuselage by means of the motion sensor and to control the drive system as a function of the determined speed in such a way that the superimposed torque counteracts the ascertained speed of the fuselage.
  • control means may theretotientrich- tet be to control the drive system in such a way that the superimposed torque is proportional to the determined Geschwin ⁇ speed.
  • an active dissipative damping of torso vibrations can be implemented in a simple manner.
  • the motion sensor may include an acceleration sensor.
  • the control device can then be set up to determine a time profile of an acceleration of the fuselage on the basis of the sensor signal and, depending on the determined time profile, the speed of the fuselage
  • the speed can in this case in particular ⁇ sondere be calculated by integrating the acceleration over time.
  • the controller may be adapted to control the drive system depending on a measured acceleration of the hull such that a caused by the Kochla ⁇ siege torque acceleration of the trunk of the overall counteracts measured acceleration. In this way, accelerations and vibration forces on the hull can be at least partially compensated. In addition, can cause a sol ⁇ che acceleration-dependent counteracting a Verrin- delay of vibration frequencies.
  • the motion sensor may comprise a speed sensor for measuring a speed of the fuselage and / or a position sensor for measuring a position or an orientation of the fuselage.
  • the control device can then be set up to determine the movement of the hull as a function of the measured speed, position and / or orientation of the hull.
  • a speed sensor allows a direct measurement of fuselage speed without prior time integration.
  • a position orbutsmes ⁇ solution additionally allows a spatially absolute stabilization of the excavator, crane or watercraft.
  • the motion sensor may be disposed on the fuselage and configured to measure rotational movement about an axis of rotation of the superimposed torque.
  • the control device may comprise a frequency filter for extracting predetermined frequency components of the sensor signal.
  • the control device can then be set up to determine the movement in a frequency-specific manner on the basis of the filtered sensor signal.
  • specific predetermined frequency components of the fuselage movement can be determined and the torso vibrations can be attenuated in a frequency-specific manner.
  • vibra ⁇ tion frequencies leading to the user particularly unpleasant or leading to increased wear can be actively damped in this way.
  • FIG. 1 shows an excavator with a control device according to the invention for stabilizing the excavator
  • FIG 2 shows the control device according to the invention in more detail.
  • FIG. 1 shows a schematic representation of an excavator B with a control device according to the invention CTL for stabilizing the excavator B.
  • a hull R of the excavator B is rotatably mounted on a chassis FW of the excavator B.
  • the excavator B further has a about a axis A rotatably mounted boom AL, on which an excavator bucket S is arranged.
  • the arm AL can be pivoted by exerting a torque DM about the mechanically coupled to the hull R axis A, ie rotated.
  • the hull R comprises a driver's cab (not shown) with a control console SK for manually controlling the excavator B by an excavator operator or other user.
  • control console SK is for inputting a user input UC for moving the boom AL.
  • the user input UC can be entered, for example, by moving a joystick, pressing a pedal or using other input means of the control console SK.
  • the control console SK is for inputting a user input UC for moving the boom AL.
  • the user input UC can be entered, for example, by moving a joystick, pressing a pedal or using other input means of the control console SK.
  • ⁇ sondere the exerted on the boom AL torque DM be true ⁇ .
  • a motor M in particular an electric motor as a drive system of the excavator B is further arranged.
  • the motor M exerts the torque DM on the boom AL for moving the boom AL about the axis A.
  • the torque DM can directly or indirectly, for example, be exercised by means of a hydraulic on the boom AL.
  • the drive system M is controlled by the control device CTL connected to the drive system M.
  • the control device CTL is coupled to the control console SK as well as to one or more motion sensors SE.
  • the motion sensor SE is for measuring a movement of the trunk R and may be e.g. as an acceleration sensor for
  • the motion sensor SE is preferably mounted on the fuselage R to such an distance from the axis A, that in particular ⁇ sondere a rotational movement of the hull about the axis A can be measured accordingly obtain reasonable accuracy.
  • a second motion sensor in a predetermined distance to the axis A and to the motion sensor SE can be attached to the hull, to the basis of the signals of the two motion sensors to be able to out-count translational Be ⁇ movements of the fuselage R and as specific fish to detect a rotary movement about the axis A.
  • a speed sensor and / or a position sensor can also be provided as motion sensor.
  • One or more of the motion sensors SE can also be arranged outside or separate from the trunk R.
  • the motion sensor SE transmits a sensor signal SES to the control device CTL.
  • the sensor signal SES is a gemes ⁇ sene from the motion sensor SE acceleration of the motion sensor SE, ie, at an acceleration of the trunk R.
  • a motor control command MC in particular a torque command , is transmitted from the control device CTL to the motor M, which causes the motor M to exert the torque DM on the arm AL.
  • the engine control command MC is executed by the controller CTL depending on the user input UC and the sensor signal SES generated.
  • the above-described components CTL, SK, SE, M, A and AL of the excavator B can also in a crane or a
  • FIG. 2 shows a more detailed schematic representation of the control device CTL according to the invention. Unless otherwise indicated, in FIG. 1 and in FIG. 2 like reference numerals designate like entities.
  • the control device CTL one hand serves to konvent ionel ⁇ len control of the driving system M, and the other hand on it ⁇ invention modern way for damping vibrations of the fuselage, as well as for stabilization of the excavator B, a crane or water ser familias.
  • the control device CTL has one or more processors PROC for executing all method steps of the control device CTL as well as one or more memories MEM for the memory of all data to be processed by the control device CTL.
  • control device CTL has a user interface IN for reading in user inputs UC and a sensor interface INS for detecting sensor signals SES.
  • control device CTL has a motor control MS particular for generating motor control commands MC, in particular torque commands, and outputting the motor control commands MC at a drive ⁇ system M of the excavator B, a crane or a water ride ⁇ zeugs.
  • control device CTL has a damping module DMP coupled to the user interface IN and the motor control MS for stabilizing the excavator, crane or craft, and for damping the RumpfVibrati ⁇ ones.
  • control device CTL has a with the sensor interface INS and the damping module DMP gekop ⁇ peltes evaluation module AM for evaluating the sensor signals SES and for determining trunk movements on the basis of sensor signals SES, which are transmitted for this purpose by the sensor interface INS to the evaluation module AM.
  • a rotational or angular velocity V is determined to a rotation of the hull about the axis R A based on the transmitted Sen ⁇ sorsignale SES.
  • the analysis module AM includes a frequency filter FF with a predetermined passband of, for example 1 to 10 Hz.
  • the frequency filter FF are the sensor signals SES gefil ⁇ tert so that preferably the in the passband befindli ⁇ chen frequency ranges as filtered sensor signal FSEs wei ⁇ possible to pass.
  • By filtering the sensor signals SES those frequency ranges of the Rumpfbe ⁇ accelerations can be extracted for subsequent vibration damping preferably, which are perceived by a user as special troublefree ⁇ rend or uncomfortable or cause increased wear.
  • the evaluation module AM also has a coupled with the frequency filter FF ⁇ integration module INT for integration of the filtered sensor signal FSEs over time.
  • the filtered sensor signal FSEs is transmitted to the integration module INT that performs the time integration of the filtered sensor signal FSEs.
  • the integration module INT can be implemented in particular by means of a so-called I-element with integrative transfer behavior. Insofar as the sensor signals SES and FSES represent accelerations, a speed results as a result of the integration over time. In the present example this is the execution ⁇ rotational or angular velocity V, which then exceeds the integration module INT to damping module DMP is averaged. Alternatively, the integration of the sensor signals SES can also take place before their filtering.
  • a torque DM to be exerted on the Ausle ⁇ ger AL by the motor M is determined on the axis A.
  • the torque DM comprises two Drehmomentkom- components, namely, a signal derived from the user input UC user controlled torque DMU and a signal derived from the rotational or angular velocity V ⁇ , the benutzerge ⁇ controlled torque DMU to be superimposed torque DMS.
  • the user-controlled torque DMU is the torque given by the user input UC on the boom AL.
  • the superimposed torque DMS is determined in such a way depending on the rotational or angular velocity V that the superimposed ⁇ te torque DMS of the rotational or angular velocity V dev ⁇ counteracts.
  • the user-controlled torque DMU is thus modified by superimposing the torque DMS on the final torque DM to be exerted.
  • the application of the additional torque DMS on the arm AL causes a counter force or a counter torque from the arm AL on the hull R back.
  • This counter-torque counteracts positive k of the hull rotation determined by means of the sensor SE.
  • the additional counter-torque is mecanicsabphasen ⁇ gig, the effect of the dissipative attenuation, which leads to a rapid decay of hull vibration arises.
  • the damping can be specified within wide limits.
  • the acceleration-dependent member vibrations of the trunk can be reduced in their amplitude and / or frequency.
  • the position-dependent member also allows a position stabilization of the trunk.
  • the sum to be exerted on the boom AL torque DM is transmitted from the damping module DMP to Mo ⁇ gate control MS and there converted into a torque DM adjusting motor control command MC (DM), which is output to the motor M.
  • DM motor control command
  • the motor M is caused to apply the modified torque DM to the boom AL.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

L'invention concerne une drague (B) ou une grue comprenant une coque (R) et une élindre (AL) montée sur celle-ci, un système d'entraînement (M) servant à exercer un couple (DMU) commandé par l'utilisateur ainsi qu'un couple (DMS), superposé à celui-ci, de la coque (R) de la drague (B) ou de la grue sur l'élinde (AL). La drague (B) ou la grue comporte en outre un capteur de déplacement (SE) servant à mesurer un déplacement (V) de la coque (R) de la drague (B) ou de la grue et un dispositif de commande (CTL) selon l'invention. Ledit dispositif de commande (CTL) est conçu pour détecter un signal (SES) du capteur de déplacement (SE), pour déterminer un déplacement (V) de la coque (R) de la drague (B) ou de la grue à l'aide du signal de capteur (SES) ainsi que pour commander le système d'entraînement (M) en fonction du déplacement (V) déterminé, de telle sorte que le couple (DMS) superposé s'oppose au déplacement (V) déterminé de la coque (R) de la drague (B) ou de la grue. Dans un véhicule marin selon l'invention, une hélice du véhicule marin assume la fonction de stabilisation de l'élinde.
PCT/EP2016/065399 2016-06-30 2016-06-30 Drague, grue, véhicule marin ainsi que dispositif de commande et procédé de stabilisation associé WO2018001494A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2016/065399 WO2018001494A1 (fr) 2016-06-30 2016-06-30 Drague, grue, véhicule marin ainsi que dispositif de commande et procédé de stabilisation associé

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2016/065399 WO2018001494A1 (fr) 2016-06-30 2016-06-30 Drague, grue, véhicule marin ainsi que dispositif de commande et procédé de stabilisation associé

Publications (1)

Publication Number Publication Date
WO2018001494A1 true WO2018001494A1 (fr) 2018-01-04

Family

ID=56321944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/065399 WO2018001494A1 (fr) 2016-06-30 2016-06-30 Drague, grue, véhicule marin ainsi que dispositif de commande et procédé de stabilisation associé

Country Status (1)

Country Link
WO (1) WO2018001494A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233854A (ja) * 1994-02-23 1995-09-05 Toshiba Corp 構造物の制振装置
JPH0840362A (ja) * 1994-08-01 1996-02-13 Ishikawajima Harima Heavy Ind Co Ltd ウォータージェット推進船の動揺低減装置
JPH10324492A (ja) * 1997-05-22 1998-12-08 Mitsubishi Heavy Ind Ltd 吊荷振止め装置および同吊荷振止め装置をそなえたクレーン設備
EP2806085A1 (fr) * 2012-08-17 2014-11-26 Zoomlion Heavy Industry Science and Technology Co., Ltd. Équipement de fourniture de béton, et procédé de suppression de vibration, dispositif de commande et dispositif pour sa flèche

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233854A (ja) * 1994-02-23 1995-09-05 Toshiba Corp 構造物の制振装置
JPH0840362A (ja) * 1994-08-01 1996-02-13 Ishikawajima Harima Heavy Ind Co Ltd ウォータージェット推進船の動揺低減装置
JPH10324492A (ja) * 1997-05-22 1998-12-08 Mitsubishi Heavy Ind Ltd 吊荷振止め装置および同吊荷振止め装置をそなえたクレーン設備
EP2806085A1 (fr) * 2012-08-17 2014-11-26 Zoomlion Heavy Industry Science and Technology Co., Ltd. Équipement de fourniture de béton, et procédé de suppression de vibration, dispositif de commande et dispositif pour sa flèche

Similar Documents

Publication Publication Date Title
DE102017122558B4 (de) Lenkungskompensation mit grifferfassung
WO2010136490A1 (fr) Procédé de commande d'un bateau assisté par ordinateur
EP2524892B1 (fr) Commande de grue
EP1880971B1 (fr) Procédé de commande de l'orientation d'une charge de grue
DE102017003000A1 (de) Mit Menschen kooperierendes Robotersystem
DE102019101595B3 (de) Verfahren zum Ermitteln einer Gewichtskraft und eines Schwerpunktes einer Robotermanipulatorlast
DE102016012065A1 (de) Robotersystem mit Funktion zum Berechnen von Position und Ausrichtung eines Sensors
DE102018103359A1 (de) Verfahren und vorrichtungen zum bestimmen kinetischer reibung in elektromechanischen lenkaktoren
EP2616785B1 (fr) Navire équipé d'un rotor à effet magnus et dispositif de mesure de force
DE2227703A1 (de) Ruderbetätigungs-Steuereinrichtung für Seefahrzeuge
DE102018113656A1 (de) Lernvorrichtung, steuerung und steuersystem
EP2947035B1 (fr) Procédé de détermination de la charge d'une machine de travail et machine de travail, en particulier une grue
CH707573A1 (de) Verfahren und System zur Bestimmung der Verlagerung eines Ankers.
DE102010052430B4 (de) Interaktives Mensch-Roboter-System mit einem Steueralgorithmus zur Schätzung der menschlichen Steifigkeit
DE10201488A1 (de) Verfahren zur Steuerung eines Roboters und Steuereinheit für einen Roboter
DE102016114366B4 (de) Ausfallsicheres inertiales messeinheitssystem reduzierter ordnung
WO2018001494A1 (fr) Drague, grue, véhicule marin ainsi que dispositif de commande et procédé de stabilisation associé
Parker et al. Command shaping boom crane control system with nonlinear inputs
EP4381361A1 (fr) Procédé, dispositif et programme informatique pour la détection d'une erreur dans la position réelle d'un essieu d'une machine
EP2377756B1 (fr) Evaluation de la dynamique d'un bateau
DE10008235A1 (de) Einrichtung und Verfahren zur Bestimmung des Auslenkwinkels von Pendelschwingungen einer Last
DE102017007978A1 (de) Numerische Steuervorrichtung
DE3783054T2 (de) Kabelinstallierungsverfahren.
EP2275342B1 (fr) Procédé de réduction d'un mouvement vertical d'un bateau
DE102018004947B3 (de) Verfahren zur Steuerung von Antrieben eines Roboters und Robotersystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16734356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16734356

Country of ref document: EP

Kind code of ref document: A1