WO2018001265A1 - 一种熔态碳热法制镁工艺及炼镁系统 - Google Patents

一种熔态碳热法制镁工艺及炼镁系统 Download PDF

Info

Publication number
WO2018001265A1
WO2018001265A1 PCT/CN2017/090506 CN2017090506W WO2018001265A1 WO 2018001265 A1 WO2018001265 A1 WO 2018001265A1 CN 2017090506 W CN2017090506 W CN 2017090506W WO 2018001265 A1 WO2018001265 A1 WO 2018001265A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
vacuum
gas
carbon
molten
Prior art date
Application number
PCT/CN2017/090506
Other languages
English (en)
French (fr)
Inventor
狄保法
樊道卿
狄凌飞
Original Assignee
狄保法
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 狄保法 filed Critical 狄保法
Publication of WO2018001265A1 publication Critical patent/WO2018001265A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • C22B26/22Obtaining magnesium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of non-ferrous metal metallurgy, and particularly relates to a molten carbon thermal magnesium making process and a magnesium smelting system.
  • Magnesium is a metal element with abundant reserves in the earth, accounting for 2.1%-2.7% of the total mass of the earth. China's reserves are the largest in the world. At present, tens of billions of tons have been proven. Magnesium and magnesium alloys have small specific gravity, high strength, good shock absorption, good impact resistance, good machinability, good thermal conductivity, recyclability, low environmental pollution, excellent environmental and performance advantages, and wide application range. It is a rare metal that can be recycled. Vigorously developing the magnesium industry has obvious resource advantages and market advantages in China and the world.
  • the thermal reduction method uses calcined dolomite as a raw material, Al, C or silicon as a reducing agent, and iron as a thermal conductive agent to reduce magnesium oxide to obtain metallic magnesium under high temperature vacuum conditions. Since the invention of the "Pijiang Law" by Professor Pi Jiang of Canada, most of the magnesium workers have been researching on how to improve and improve the reduction cycle and improve the magnesium rate.
  • CN103882246B discloses a vacuum magnesium smelting apparatus and a method thereof for reducing magnesium by melting ferrosilicon and blowing magnesium oxide into the ferrosilicon melt.
  • the above two methods have the following disadvantages: (1) After a certain period of reaction, the Si-Fe-SiO 2 melt needs to be taken out from the reduction furnace after being cooled for a long time, and the raw materials are refilled; (2) The method uses silicon as a reducing agent, iron as a heat conductive agent, silicon and iron in the process of reaction, silicon is gradually oxidized to form solid silica, the melting point of silica is about 1650 ° C, and the boiling point of silica is 2230 ° C. Under the reaction conditions, silica is mixed with iron. As the reaction progresses, the silicon gradually decreases, the production of silica increases, and the thermal conductivity of the molten iron gradually decreases.
  • the invention solves the defects of long reduction cycle, high energy consumption and high cost in the conventional silicon thermal magnesium smelting, and the invention provides a low cost and energy consumption. Low, high production efficiency, continuous production and green environmentally friendly molten carbon thermal magnesium production process and its magnesium smelting system.
  • the technical solution of the present invention is:
  • a molten carbon thermal magnesium production process the specific steps are as follows:
  • Step (1) in the vacuum reactor, the pig iron is metered according to the capacity and proportion of the vacuum reactor, and is melted into iron liquid, and is kept at 1200 ° C - 1650 ° C for use;
  • Step (2) using a vacuum device to maintain the absolute pressure value of the vacuum reactor at 40-10000Pa;
  • Step (3) filling the vacuum reactor with argon gas, heating the vacuum reactor at the same time, boiling the iron liquid, maintaining the temperature at 1200-1650 ° C, and argon gas fills the entire vacuum reactor;
  • Step (4) the carbon powder and the magnesium oxide powder are continuously fed into the vacuum liquid in the form of a gas-solid mixture under the protection of an appropriate amount of argon gas, and the reduction reaction is carried out in the molten iron to produce magnesium.
  • Step (5) feeding magnesium vapor, carbon monoxide gas and argon gas in step (4) to a cooling device, and after cooling, obtaining liquid magnesium; the remaining gas contains argon gas, carbon monoxide and dust;
  • Step (6) separating argon gas, carbon monoxide and dust in the step (5), recovering and utilizing the argon gas, and the carbon monoxide entering the gas collecting device, and the subsequent carbon monoxide may be used for power generation after being burned.
  • the vacuum reactor described in the steps (1) to (4) is a vacuum induction furnace or a vacuum arc furnace.
  • the absolute pressure in the vacuum reactor is maintained at 40 to 100 Pa, and the reaction is more thorough.
  • the argon gas may be replaced by any one of a shielding gas such as nitrogen, helium or neon.
  • the carbon powder is a powder having a particle diameter of 0.05 to 0.3 mm, and the carbon content is 80% to 82%.
  • the fineness of the magnesium oxide powder is 0.05-0.3 mm, and the magnesium oxide powder contains ⁇ 90% of the magnesium oxide powder.
  • the carbon powder and the magnesium oxide powder may be subjected to a pre-mixing operation before entering the vacuum induction furnace.
  • the molten iron is a heat conductive agent
  • the carbon powder is a reducing agent
  • the magnesium metal is obtained by reducing magnesium oxide.
  • the reaction absorbs heat and pressurizes the reaction, lowers the reaction pressure and raises the reaction temperature, and the reaction proceeds to the right.
  • the molten iron is in the liquid phase
  • the carbon powder and the magnesium oxide are in the solid phase
  • the reaction product is that the carbon monoxide and the magnesium vapor spontaneously move upwards away from the molten iron, causing the reaction to proceed to the right
  • the reaction temperature of the present invention is controlled at 1200. °C-1650 °C
  • the reaction is an endothermic reaction, which promotes the reaction to the right, and promotes step (4) to the right.
  • the entire reduction reaction time is controlled within 10s, and the recovery rate of the metal is increased to over 90%.
  • the reaction raw materials are all solid phases
  • the reaction products are all in the gas phase, and no product remains in the molten iron.
  • the molten iron only provides a space for reaction and a heat source, and the molten iron can be continuously used.
  • the argon gas described in the present invention has the following four functions: (1) acts as a shielding gas to prevent oxidation of the product magnesium; (2) argon gas continuously enters the molten iron, and carries the product magnesium vapor and carbon monoxide in the flow.
  • magnesium oxide powder is inevitably mixed with a small amount of impurities, these small amount of solid impurities, insoluble in molten iron, in argon Under the movement of gas, solid impurities are brought to the surface of the molten iron, solid impurities are gradually accumulated, and automatically overflow from the slag discharge port; (4) Carbothermal reduction of magnesium oxide, the reactants are all solid phases, how to improve solid phase carbon and solid phase The frequency of magnesium oxide contact has always been the main factor restricting the reaction rate of the solid phase.
  • the molten carbon thermal magnesium-forming process provided by the invention has complete reaction, high reaction rate, no product residue in the molten iron, no pollution of the molten iron, and the molten iron can be continuously used, and the whole reaction is in the trouble-free condition of the equipment. Continuous continuous production can be achieved.
  • the invention also discloses a molten carbon thermal magnesium smelting system, which comprises a vacuum reaction system and a condensation collection system connected in sequence;
  • the vacuum reaction system comprises a vacuum reaction furnace, comprising a vacuum reaction furnace upper cover and a vacuum reaction furnace body and a necessary vacuuming device, wherein the vacuum reaction furnace is covered with a feeding port, a detecting port and a magnesium vapor conveying pipe.
  • a first overflow port is disposed on the vacuum reactor furnace body; the first conveying pipe and the second conveying pipe are placed in the vacuum reaction furnace through the feeding port, and the first conveying pipe and the second conveying pipe are a nozzle of the tube is placed in the molten iron, a first intake duct is connected to the first feed pipe, and a second intake duct is connected to the second gas transfer pipeline;
  • the condensing collection system comprises a magnesium vapor delivery pipe, a primary cooling device connected to the magnesium vapor delivery pipe, a dust collector connected to the primary cooling device, a magnesium vapor carrying device connected to the primary cooling device, and a magnesium vapor bearing device.
  • a magnesium vapor condensation trapping device connected to the device, a bottom discharge port of the magnesium vapor condensation trapping device is connected to the metal magnesium liquid tank, and an upper discharge port of the magnesium vapor condensation trapping device is connected to the second dust remover, and the top of the second dust remover
  • a gas separator is provided, and the gas outlets of the gas separator are respectively connected to the gas storage tank and the carbon monoxide gas storage tank.
  • the vacuum reactor is a vacuum induction furnace or a vacuum electric arc furnace.
  • the vacuum reaction system further includes a lifting device disposed on the upper cover of the vacuum reactor.
  • the nozzle of the first conveying pipe of the vacuum reaction system is further connected with a first blowing gun
  • the nozzle of the second conveying pipe is further connected with a second blowing gun, the first blowing gun and Second blow gun
  • the muzzle is placed in the molten iron
  • the first delivery tube is connected to the toner storage reservoir
  • the second delivery tube is connected to the magnesium oxide storage reservoir.
  • the vacuum reaction system further includes a slag collecting system
  • the slag collecting system includes a slag collecting tank and a waste slag conveying device connected to the slag collecting tank, and the vacuum reaction furnace is connected to the slag collecting tank through the first slag opening
  • the slag pot is connected to the waste slag conveying device through the second slag port, and a valve is arranged on the first slag port and the second slag port.
  • the bottom of the waste conveying device is provided with a moving device.
  • the bottom of the second precipitator is provided with a dust exhaust valve and a vacuum pump.
  • the metal magnesium liquid tank is provided with a discharge port.
  • the present invention discloses a molten carbon thermal magnesium-forming process and a magnesium-smelting system, which have the following innovations: (1) Compared with the conventional silicon thermal magnesium smelting technology, the present invention relates to a vacuum system.
  • the process requirements for vacuum are relatively less stringent.
  • the absolute pressure in the vacuum furnace of the invention is maintained at 40-100 Pa because: if the gas pressure in the vacuum reactor is high, the liquid partial pressure in the molten iron in the vacuum reactor is increased, and then the pair is increased.
  • the resistance of magnesium vapor and carbon monoxide in order to accelerate the overflow rate of magnesium vapor and carbon monoxide from the molten iron (or iron phase), reduce the gas phase pressure in the vacuum reactor, can make the reaction more thorough and increase the reaction rate.
  • the reaction raw materials of the present invention are carbon powder and magnesium oxide powder.
  • the powder is a powder with a particle size of 0.05-0.3 mm, the carbon content is 80%-82%, the fineness of the controlled magnesium oxide powder is 0.05-0.3 mm, and the content of magnesium oxide is ⁇ 90%, in order to obtain a conversion rate ⁇ 90% of magnesium with a purity of ⁇ 90%, that is, the conversion rate of the raw material magnesium oxide powder to magnesium is ⁇ 90%, the purity of the product magnesium is ⁇ 90%, and sometimes the purity of the product magnesium can reach 95% or even higher.
  • the method provided by the present invention is carried out in a flowing inert inert argon atmosphere environment, and the generated high-temperature magnesium vapor is continuously carried away by flowing argon gas.
  • the vacuum degree of the vacuum system is Process control is relatively less critical.
  • the technical solution disclosed in CN104120282B employs Si-Fe reduction. It is well known to those skilled in the art that Si is converted to silicon dioxide (SiO 2 ) during the reduction reaction, and SiO 2 is in the vacuum reactor. The solid phase is retained as a reaction product in the molten iron, causing the content of SiO 2 in the molten iron to continuously increase.
  • the reaction cycle of the invention is controlled within 10s, and the raw material cost per ton of metal magnesium is only included in the raw material cost of the magnesium oxide powder and the carbon powder, and the cost of the molten iron is negligible, realizing a green new process of environmental protection and energy saving.
  • argon gas can be recycled after being separated as a shielding gas, and the volume of the vacuum reactor can be appropriately selected according to the yield.
  • FIG. 1 is a schematic view showing the structure of a molten carbon thermal magnesium smelting system according to the present invention.
  • Second delivery pipe 3. Vacuum reactor, 4. Drainage tank, 5. Dust collector, 6. Primary cooling device, 7. Magnesium vapor carrying device 8. Magnesium vapor condensation trapping device, 9. Second dust collector, 10. Second intake pipe, 11. First intake pipe, 12. Metal magnesium liquid tank, 13. Gas storage tank, 14. Carbon monoxide storage Gas tank, 15. Toner storage, 16. Magnesium storage, 17. Waste transfer device, 18. Gas separator, 121. Discharge port, 171. Mobile device, 301. Vacuum reactor cover, 302 Vacuum reactor furnace body, 303. Feeding port, 304. Detection port, 305. Magnesium vapor delivery pipe, 3061. First slag port, 3062. Second slag mouth, 307. iron liquid, 308 first blowing gun, 309 second blowing gun, 310. lifting device, 901. dusting valve, 902. vacuum pump.
  • the fineness of the magnesium oxide powder used is 0.05-0.3 mm, and the magnesium oxide powder contains ⁇ 90% of magnesium oxide.
  • the carbon powder is a powder having a particle diameter of 0.05 to 0.3 mm, and the carbon content is 80% to 82%.
  • the shielding gas used is a high purity gas with a purity of ⁇ 99.9%.
  • the volume of the vacuum reactor (vacuum induction furnace or vacuum arc furnace) is 7-8 cubic meters, the weight of the heated iron is about 40 tons, and the amount of magnesium oxide powder required is about It is 90,000 tons and the amount of toner is about 16,000 tons.
  • the shielding gas used is argon gas, for example, one ton of magnesium is produced, and argon gas of 100 m3 and pressure of 8-10 kg/L is required. If other protective gas is used, the amount is used. Same as argon.
  • the temperature of the carbon powder and the magnesium oxide powder may be normal temperature or may be preheated to a temperature slightly higher than room temperature.
  • reaction cycle described herein also referred to as reduction time, refers to the residence time of the carbon powder and magnesium oxide powder in a vacuum reactor.
  • a molten carbon thermal magnesium production process the specific steps are as follows:
  • Step (1) in the vacuum reactor, the pig iron is metered according to the capacity and proportion of the vacuum reactor, and is melted into iron liquid, and is kept at 1200 ° C - 1650 ° C for use;
  • Step (2) using a vacuum device to maintain the absolute pressure value of the vacuum reactor at 40-10000Pa;
  • Step (3) filling the vacuum reactor with argon gas, heating the vacuum reactor at the same time, boiling the iron liquid, maintaining the temperature at 1200-1650 ° C, and argon gas fills the entire vacuum reactor;
  • Step (4) the carbon powder and the magnesium oxide powder are continuously fed into the vacuum liquid in the form of a gas-solid mixture under the protection of an appropriate amount of argon gas, and the reduction reaction is carried out in the molten iron to produce magnesium.
  • Step (5) feeding the gas in the step (4) to the cooling device, and after cooling, obtaining liquid magnesium; the remaining gas contains argon gas, carbon monoxide and impurities (mainly dust);
  • Step (6) separating the remaining gas in the step (5): argon gas, carbon monoxide and dust, recycling and utilizing argon gas, and the carbon monoxide enters the gas collecting device.
  • a carbon monoxide gas can be used to generate electricity after combustion
  • the vacuum reactor described in the steps (1) to (4) is a vacuum induction furnace, and the induction furnace is an intermediate frequency induction furnace.
  • a molten carbon thermal magnesium production process the specific steps are as follows:
  • Step (1) in the vacuum reactor, the pig iron is metered according to the capacity and proportion of the vacuum reactor, and is melted into iron liquid, and is kept at 1200 ° C - 1650 ° C for use;
  • Step (2) using a vacuum device to maintain the absolute pressure value of the vacuum reactor at 40-100Pa;
  • Step (3) filling the vacuum reactor with nitrogen gas while heating the vacuum reactor to make iron The liquid boils, the temperature is maintained at 1200-1650 ° C, and nitrogen is filled throughout the vacuum reactor;
  • Step (4) the carbon powder and the magnesium oxide powder are continuously fed into the liquid surface of the vacuum reaction furnace in the form of a gas-solid mixture under the protection of an appropriate amount of nitrogen, and the reduction reaction is carried out in the molten iron to generate magnesium vapor. And carbon monoxide;
  • Step (5) feeding the gas in the step (4) to the cooling device, and after cooling, obtaining liquid magnesium; the remaining gas contains nitrogen, carbon monoxide and dust;
  • Step (6) separating the remaining gas in the step (5): nitrogen, carbon monoxide and dust, recycling and utilizing nitrogen, and the carbon monoxide enters the gas collecting device.
  • a carbon monoxide gas can be used to generate electricity after combustion
  • the vacuum reactor described in the steps (1) to (4) is a vacuum arc furnace.
  • a molten carbon thermal magnesium production process the specific steps are as follows:
  • Step (1) in the vacuum reactor, the pig iron is metered according to the capacity and proportion of the vacuum reactor, and is melted into iron liquid, and is kept at 1200 ° C - 1650 ° C for use;
  • Step (2) using a vacuum device to maintain the absolute pressure value of the vacuum reactor at 40-100Pa;
  • Step (3) filling the vacuum reactor with helium gas, heating the vacuum reactor at the same time, boiling the iron liquid, maintaining the temperature at 1200-1650 ° C, and filling the entire vacuum induction furnace with nitrogen;
  • Step (4) the carbon powder and the magnesium oxide powder are continuously fed into the liquid surface of the vacuum reaction furnace in the form of a gas-solid mixture under the protection of an appropriate amount of helium gas, and the reduction reaction is carried out in the molten iron to produce magnesium.
  • Step (5) feeding the gas in the step (4) to the cooling device, and after cooling, obtaining liquid magnesium; the remaining gas contains helium, carbon monoxide and dust;
  • Step (6) separating the remaining gas in the step (5): helium gas, carbon monoxide and dust, and recovering the helium gas, and the carbon monoxide enters the gas collecting device.
  • a carbon monoxide gas can be used to generate electricity after combustion
  • the vacuum reactor described in the steps (1) to (4) is a vacuum induction furnace.
  • a molten carbon thermal magnesium production process the specific steps are as follows:
  • Step (1) in a vacuum reactor, metering according to the capacity and proportion of the vacuum reactor Cast iron, which is melted into molten iron and kept at 1200 ° C - 1650 ° C for use;
  • Step (2) using a vacuum device to maintain the absolute pressure value of the vacuum reactor at 40-100Pa;
  • Step (3) filling the vacuum reactor with helium gas, heating the vacuum reactor at the same time, boiling the iron liquid, maintaining the temperature at 1200-1650 ° C, and filling the entire vacuum induction furnace with helium gas;
  • Step (4) the carbon powder and the magnesium oxide powder are continuously fed into the liquid surface of the vacuum reaction furnace in the form of a gas-solid mixture under the protection of an appropriate amount of helium gas, and the reduction reaction is mainly carried out in the molten iron, mainly generating Magnesium vapor and carbon monoxide;
  • Step (5) feeding the gas in the step (4) to the cooling device, and after cooling, obtaining liquid magnesium; the remaining gas contains helium, carbon monoxide and dust;
  • Step (6) separating the remaining gas in the step (5): helium gas, carbon monoxide, helium gas recovery and utilization, and carbon monoxide entering the gas collecting device.
  • a carbon monoxide gas can be used to generate electricity after combustion
  • the vacuum reactor described in the steps (1) to (4) is a vacuum induction furnace.
  • a molten carbon thermal magnesium smelting system comprising a vacuum reaction system and a condensation collection system connected in sequence;
  • the vacuum reaction system comprises a vacuum reactor 3, comprising a vacuum reactor upper cover 301 and a vacuum reactor body 302 and a necessary vacuuming device.
  • the vacuum reactor upper cover 301 is provided with a feeding port 303 (vacuum reactor) 3 is provided with a plurality of feeding ports, such as a feeding port of the molten iron, a feeding port of the carbon powder, a feeding port of the magnesium oxide powder, collectively referred to as a feeding port 303, which are not listed one by one), a detecting port 304 and
  • the magnesium vapor delivery pipe 305 is provided with a first overflow port 3061 on the vacuum reactor furnace body; the first delivery pipe 1 and the second delivery pipe 2 are placed in the vacuum reactor 3 through the feeding port 303. And the nozzles of the first delivery pipe 1 and the second delivery pipe 2 are placed in the molten iron 307, and the first intake pipe 1 is connected to the first intake pipe 11 at the second a second intake duct 10 is connected to the gas pipeline 2;
  • the condensing collection system comprises a magnesium vapor delivery pipe 305, a primary cooling device 6 connected to the magnesium vapor delivery pipe 305, a dust collector 5 connected to the primary cooling device 6, and a magnesium vapor bearing connected to the primary cooling device 6.
  • the device 7 and the magnesium vapor condensing and collecting device 8 connected to the magnesium vapor carrying device 7 are connected to the metal magnesium liquid tank 12 at the bottom discharge port of the magnesium vapor condensing and collecting device 8, and the magnesium vapor
  • the upper discharge port of the condensation trap 8 is connected to the second dust collector 9.
  • the top of the second dust collector 9 is provided with a gas separator 18, and the discharge port of the gas separator 18 is respectively connected to the gas storage tank 13 and the carbon monoxide gas storage tank. 14 connected.
  • the vacuum reactor is a vacuum induction furnace or a vacuum arc furnace.
  • the working principle of the above-mentioned molten carbon thermal magnesium smelting system is: adding iron powder to the vacuum reaction furnace 3 through the feeding port 303, gradually heating up, heating the temperature to 1200 ° C - 1650 ° C, so that the iron powder is completely melted, and the heat is reserved.
  • the absolute pressure value of the vacuum reactor is maintained at 40-100 Pa by using a vacuuming device; then the protective gas is filled into the vacuum reactor while the vacuum reactor is continuously heated to boil the molten iron and the temperature is maintained at 1200-1650 ° C.
  • the shielding gas fills the entire vacuum induction furnace; opens the valves on the first intake duct 11 and the second intake duct 10, opens the first delivery pipe 1 for conveying the carbon powder, and the second delivery pipe 2 for conveying the magnesium oxide powder
  • the upper valve such that a gas-solid mixture of carbon powder-protective gas is formed in the first delivery pipe 1, and a gas-solid mixture of magnesium oxide powder-protective gas is formed in the second delivery pipe 2, and the toner-protective gas
  • the gas-solid mixture of the gas-solid mixture and the magnesium oxide powder-protective gas enters the molten iron 307 of the vacuum reactor 3 along the first feed pipe 1 and the second feed pipe 2, respectively, and undergoes a reduction reaction in the molten iron 307.
  • the partial shielding gas enters the subsequent condensation collecting system along the magnesium vapor conveying pipe 305; in the condensation collecting system, the magnesium vapor, the carbon monoxide gas and the partial shielding gas enter the dust collector 305 along the magnesium vapor conveying pipe 305, and are dusted, and then enter the first stage.
  • the cooling device 6 is cooled and then enters the magnesium vapor carrying device 7 to be further cooled, and then enters the magnesium vapor condensation trapping device 8.
  • the magnesium vapor is condensed into a magnesium liquid to realize carbon monoxide gas and partial protection.
  • the gas is cooled and not condensed in the magnesium vapor condensation trap 8 to achieve separation of the magnesium vapor from the carbon monoxide gas and part of the shielding gas.
  • the magnesium liquid is concentrated by gravity at the bottom of the magnesium vapor condensation trap 8 and condensed by the magnesium vapor.
  • the discharge port of the trap device 8 enters the metal magnesium liquid tank 12, and the cooled carbon monoxide and part of the shielding gas enter the gas separator 18 after being removed from the second dust remover 9 (the gas separator 18 may be an adsorption-desorption separator) It can also be a condensate separator or other gas separator.
  • the type and model of the gas separator are not limited here, as long as Enough to achieve the separation of carbon monoxide gas and shielding gas). After separation, the carbon monoxide gas into carbon monoxide storage tank 14, the protective gas 13 into the recycling tank.
  • the vacuum reactor 3 in order to facilitate the inspection and charging of the vacuum reactor 3, the vacuum reactor 3 is covered with a lifting device 310.
  • a first injection gun 308 is connected to the nozzle of the first delivery pipe 1
  • a second injection gun 309 is connected to the nozzle of the second delivery pipe 2 and the first injection is blown.
  • the muzzle of the gun 308 and the second blowing gun 309 are both placed in the molten iron.
  • the gun body of the first blowing gun 308 and the second blowing gun 309 should be long enough to enter the vacuum reactor 3 through the feeding port, Part of the gun body is placed in the vacuum reactor 3, and part of the gun body is exposed outside the vacuum reactor 3).
  • the first injection gun 308 and the second injection gun are also provided with necessary control valves, and the control valves are disposed at Exposed on the gun body outside the vacuum reactor 3 for convenient control; the first feed pipe 1 is connected to the toner storage bank 15, and the second feed pipe is connected to the magnesium oxide storage bank 16 in the carbon
  • the necessary valves and control instruments are provided between the powder storage bank 15 and the first storage tank 1.
  • the carbon powder and the magnesium oxide powder are mixed, and the first delivery pipe 1 is fed into the vacuum reaction furnace 3 through the feed port 303 to carry out a reduction reaction.
  • the raw materials are carbon powder and magnesium oxide powder
  • solid impurities which do not participate in the reaction are inevitably contained in the carbon powder and the magnesium oxide powder, and when the carbon powder and the magnesium oxide powder are reacted in the vacuum reactor 3, the remaining The solid impurity particles move upward with the ascending air current (the gas flow formed by the upward movement of the magnesium vapor, the carbon monoxide gas and the shielding gas), and finally float on the surface of the molten iron 307 due to gravity, and after a long period of accumulation, form on the surface of the molten iron.
  • the vacuum reaction system further includes a slag collection system, and the slag collection system includes a slag collection tank 4 and a slag collection tank 4
  • the slag collection system includes a slag collection tank 4 and a slag collection tank 4
  • the connected waste slag conveying device 17 is connected to the slag collecting tank 4 through the first slag port 3061, and the slag collecting tank 4 is connected to the slag conveying device 17 through the second slag opening 3062, at the first slag port 3061
  • the necessary valves are provided on the second overflow port 3062.
  • the bottom of the waste conveying device 17 may also be provided with a moving device to facilitate the movement of the waste conveying device.
  • the second slag port 3062 When the slag is unloaded, the second slag port 3062 is closed, the first slag port 3061 is opened, and the solid impurity particles enter the slag pot 4 along the first slag port 3061. After the slag is discharged, the first slag port 3061 is closed. can.
  • the bottom of the second precipitator 9 is provided with a dust exhaust valve 901 and a vacuum pump 902.
  • the function of the dust exhaust valve 901 is to facilitate the discharge of dust in the second dust remover 9, and the main function of the vacuum pump 902 is to realize the vacuum operation of the second dust remover 9.
  • the metal magnesium liquid tank 12 is provided with a discharge port 121.
  • Setting the discharge port The purpose of 121 is to facilitate the overflow of metallic magnesium in the magnesium metal canister 12 and to proceed to subsequent further processing steps, such as magnesium metal refining or to make a magnesium product.
  • the necessary valves and gauges should be installed in the molten carbon thermal magnesium smelting system of the present invention. Further, according to common knowledge in the art, the vacuum reactor 3 should be connected with the necessary vacuuming device.
  • the fineness and particle size of the magnesium oxide powder and the carbon powder are not limited to the above fineness and particle diameter, and the parameters of the carbon content and the magnesium content may also be reasonably selected according to the cost price of the region. And purity.

Abstract

一种熔态碳热法制镁工艺及炼镁系统。熔态碳热法制镁工艺,包括:熔融制铁液、抽真空、填充保护气体,将碳粉、氧化镁粉在适量氩气的保护下,以气固混合物的形式连续送入真空反应炉内铁液的液面下,在铁液中进行还原反应,产生镁蒸气和一氧化碳;将气体送入冷却装置,冷却后,得到液态镁;剩余的气体进行分离,保护气体回收利用,一氧化碳进入气体收集装置。

Description

一种熔态碳热法制镁工艺及炼镁系统
本申请要求于2016年06月29日提交中国专利局、申请号为201610495930.8、发明名称为“一种熔态碳热法感应炉真空炼镁系统及其炼镁方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于有色金属冶金技术领域,具体涉及一种熔态碳热法制镁工艺及炼镁系统。
背景技术
镁是地球中储量极为丰富的金属元素,约占地球总质量的2.1%--2.7%,我国储量是全球镁资源储量最大的国家。目前,已探明数百亿吨。镁及镁合金具有比重小,强度高,减震性好,抗冲击,切削性好,导热性好,可回收再利用,对环境污染少,具有优良的环境优势和性能优势,适用范围广泛,是一种可循环利用的难得金属。大力发展镁产业在我国和全球具有明显的资源优势和市场优势。
世界上的炼镁方法主要有电解法和热还原法两大类。热还原法是以煅烧白云石为原料,以Al、C或硅为还原剂,以铁为导热剂,在高温真空条件下还原氧化镁制得金属镁。自加拿大皮江教授发明“皮江法”至今,大多数的制镁工作者都在围绕如何提高和改善还原周期,提高镁差率等技术问题进行研究。CN104120282B东北大学张廷安等人在2014年发明了一种“快速连续炼镁的方法”,采用的技术方案是:配料造球、球团煅烧、将煅烧后的高温球团,不经冷却在氩气保护下连续送入到密闭的高温还原炉中,然后在流动的氩气气氛中进行高温还原反应,反应温度为1300-1600℃,连续得到高温镁蒸气,并与氩气混合在一起,形成高温混合气,同时把还原渣连续排除高温还原炉,高温镁蒸气经冷凝得到金属镁。此方法反应速度快,还原时间在90min内,镁的回收率提高到88%。CN103882246B公开了一种真空炼镁装置及其方法,采用将硅铁熔化,向硅铁熔液中吹入氧化镁的方法,还原制镁。上述两种方法,具有如下缺点:(1)反应一段时间后,需要将Si-Fe-SiO2熔液,经长时间冷却后,从还原炉中取出,重新装填原料;(2)上述两种方法均采用硅做还原剂,铁为导热剂,硅和铁在 反应的过程中,硅逐渐被氧化生成固体二氧化硅,二氧化硅熔点在1650℃左右,二氧化硅的沸点在2230℃,在该反应条件下,二氧化硅与铁混合,随着反应的不断进行,硅逐渐减少,二氧化硅的生产量不断增加,铁液导热率逐渐降低,当硅在铁液中的重量份不足30%时,需要停止实验,将还原炉中的铁液和还原渣全部清除,由此造成导热剂铁的浪费,生产成本依然较高,且整个制备过程只能称之为“快速半连续炼镁”。综上,硅为还原剂、铁为导热剂,还原氧化镁制备金属镁,由于其还原剂为固体、导热剂为液-固相、产物为固体,导热剂本身不参与反应,却无法与原料和产物分开,导致反应过程需要连续不断的供应导热剂,所以,无论该反应如何进行技术改进,都无法实现导热剂的连续无消耗使用,生产成本依然较高,且为了卸渣只能实现半连续化生产。
硅热还原法的还原剂价格较高,导热剂无法重复利用,用碳还原得到金属镁的方法一直为人们重视。在19世纪30年代开始,关于碳热还原制镁的研究一直在不断的进行,但是多是以研究碳热还原氧化镁制镁的反应机理进行的研究,且基本上都是在实验室进行的,至今没有关于碳热还原氧化镁制镁工业化的相关报道。
发明内容
针对现有硅热法炼镁生产及研究所存在的缺点和不足,解决传统的硅热炼镁所存在的还原周期长,能耗高、成本高等缺点,本发明提供一种成本低、能耗低、生产效率高、能够连续化生产且绿色环保熔态碳热法制镁工艺及其炼镁系统。
为实现以上技术目的,本发明的技术方案是:
一种熔态碳热法制镁工艺,具体的操作步骤如下:
步骤(1):在真空反应炉中,根据真空反应炉的容量及比例计量加入生铁,使其熔化呈铁液,在1200℃-1650℃左右保温待用;
步骤(2):采用抽真空装置将真空反应炉的绝对压力值维持在40-10000Pa;
步骤(3):向真空反应炉中填充氩气,同时对真空反应炉加热,使铁液沸腾、温度保持在1200-1650℃,且氩气充满整个真空反应炉;
步骤(4):将碳粉、氧化镁粉在适量氩气的保护下,以气固混合物的形式连续送入真空反应炉内铁液的液面下,在铁液中进行还原反应,产生镁蒸气和一氧化碳气体;
步骤(5):将步骤(4)中镁蒸气、一氧化碳气体和氩气送入冷却装置,冷却后,得到液态镁;剩余的气体中含有氩气、一氧化碳和灰尘;
步骤(6):将步骤(5)中氩气、一氧化碳和灰尘进行分离,氩气回收利用,一氧化碳进入气体收集装置,后续一氧化碳经燃烧后,可用于发电。
进一步,步骤(1)~(4)中所述的真空反应炉为真空感应炉或真空电弧炉。
进一步,步骤(2)中,真空反应炉内的绝对压力维持在40-100Pa,反应更彻底。
进一步,步骤(3)中,所述的氩气也可以采用氮气、氦气、氖气等保护气中任意一种替换。
进一步,步骤(4)中,所述的碳粉为粒径为0.05-0.3mm的粉剂,含碳量为80%-82%。
进一步,步骤(4)中,所述的氧化镁粉的细度为0.05-0.3mm,所述的氧化镁粉中,含氧化镁量≥90%。
进一步,步骤(4)中,所述的碳粉和氧化镁粉可以在进入真空感应炉之前进行事先混匀操作。
本发明所提供的熔态碳热法制镁工艺中,即步骤(4)中,铁液是导热剂、碳粉是还原剂、通过还原氧化镁得到金属镁。化学反应是:C(S)+MgO(S)=CO(g)+Mg(g),此反应吸热、增压的反应,降低反应压力和升高反应温度,反应向右进行。在真空反应炉内,铁液呈液相,碳粉和氧化镁是固相,反应产物是一氧化碳和镁蒸气会自发向上运动离开铁液,促使反应向右进行,本发明的反应温度控制在1200℃-1650℃,反应是吸热反应,促使反应向右进行,促使步骤(4)向右彻底进行,整个还原反应时间控制在10s内,金属的回收率提高到90%以上。并且,在步骤(4)中,反应原料全是固相,反应产物全是气相,在铁液中没有产物残留,铁液只提供反应的空间和热源,铁液可以连续使用。此外,本发明中所述的氩气,有以下四个作用:(1)充当保护气,避免产物镁被氧化;(2)氩气连续进入铁液, 在流动中将产物镁蒸气和一氧化碳携带走,大大缩短了镁蒸气和一氧化碳在反应界面的停留时间,促使反应向右进行;(3)氧化镁粉末中不可避免的会混有少量杂质,这些少量固体杂质,不溶于铁液,在氩气的运动下,将固体杂质带至铁液表面,固体杂质逐渐累加,从排渣口自动溢出;(4)碳热还原氧化镁,反应物都是固相,如何提高固相碳和固相氧化镁接触的频率,一直是制约固相反应速率的主要因素,本发明在原料进入真空反应炉时,在适量氩气的作用下,变为气-固相,固体呈运动状态分散在气相中,由此,大大提高了碳和氧化镁的接触频率,极大提高了反应速率。因此,本发明提供的熔态碳热法制镁工艺,反应彻底,反应速率高,在铁液中无产物残留,不污染铁液,铁液可以连续化使用,整个反应在设备无故障条件下,可以实现持续连续化生产。
本发明还公开了一种熔态碳热法炼镁系统,该系统包括依次连接的真空反应系统、冷凝收集系统;
所述的真空反应系统包括真空反应炉,包括真空反应炉上盖和真空反应炉炉体以及必要的抽真空装置,在真空反应炉上盖上设有加料口、检测口和镁蒸气输送管,在真空反应炉炉体上设置有第一溢渣口;所述的第一输料管和第二输料管通过加料口置于真空反应炉内,且第一输料管和第二输料管的管口置于铁液内,在所述的第一输料管上连接有第一进气管道,在所述的第二输气管道上连接有第二进气管道;
所述的冷凝收集系统,包括镁蒸气输送管、与镁蒸气输送管相连一级冷却装置、与一级冷却装置相连的除尘器、与一级冷却装置相连的镁蒸气承载装置、与镁蒸气承载装置相连的镁蒸气冷凝捕集装置,镁蒸气冷凝捕集装置底部出料口与金属镁液体罐相连,镁蒸气冷凝捕集装置上部出料口与第二除尘器相连,第二除尘器的顶部设置有气体分离器,气体分离器的出料口分别与储气罐和一氧化碳储气罐相连。
作为改进,所述的真空反应炉为真空感应炉或真空电弧炉。
作为改进,所述的真空反应系统,还包括设置在真空反应炉上盖的升降装置。
作为改进,所述的真空反应系统的第一输料管的管口还连接有第一喷吹枪,第二输料管的管口还连接有第二喷吹枪,第一喷吹枪和第二喷吹枪 的枪口均置于铁液内,所述第一输料管与碳粉储料库相连,所述第二输料管与氧化镁储料库相连。
作为改进,所述的真空反应系统还包括收渣系统,所述的收渣系统包括收渣罐和与收渣罐相连的废渣输送装置,真空反应炉通过第一溢渣口与收渣罐相连,收渣罐通过第二溢渣口与废渣输送装置相连,在第一溢渣口和第二溢渣口上设置有阀门。所述的废渣输送装置的底部设置有移动装置。
作为改进,所述的第二除尘器的的底部设置有排尘阀和真空泵。
作为改进,所述的金属镁液体罐上开设有排放口。
与现有技术相比较,本发明公开的一种熔态碳热法制镁工艺及炼镁系统,具有如下创新点:(1)与传统的硅热法炼镁技术相比,本发明对真空系统的真空度的工艺要求相对不严苛。本发明控制真空反应炉内的绝对压力维持在40-100Pa,是因为:如果真空反应炉内气相压力偏高,会造成对真空反应炉内铁液内液相分压增大,进而增大对镁蒸气和一氧化碳的阻力,为了加快镁蒸气和一氧化碳从铁液(或称铁相)中的溢出速度,降低真空反应炉内气相压力,能够使反应更彻底,提高反应速率。
(2)本发明的反应原料是碳粉和氧化镁粉,从理论上讲,本发明提供的熔态碳热法制镁工艺及炼镁系统,对原料的纯度和细度要求较低,控制碳粉为粒径为0.05-0.3mm的粉剂,含碳量为80%-82%,控制氧化镁粉的细度为0.05-0.3mm,含氧化镁量≥90%,是为了制得转化率≥90%且纯度为≥90%的镁,即,原料氧化镁粉转化为镁的转化率≥90%,产品镁的纯度≥90%,有时产品镁的纯度能够达到95%,甚至更高。
(3)本发明提供的方法由于高温还原过程是在流动的惰性其他氩气气氛环境中进行,生成的高温镁蒸气被流动的氩气连续带走,实际生产中,对真空系统的真空度的工艺控制相对不严苛。最重要的是,CN104120282B中公开的技术方案采用的是Si-Fe还原,本领域的技术人员公知,Si在还原反应过程中转化为二氧化硅(SiO2),在真空反应炉中SiO2是固相,作为反应产物滞留在铁液中,造成铁液中SiO2的含量不断增大,当铁液中SiO2的含量超过70%时,整个铁液的流动性变得极其缓慢,无法继续反应,只能停机、将整个真空反应炉内铁液全部换新,所以CN104120282B不能完全实现连续化生产。本申请公开的技术方案采用C(Fe)做还原剂,在 操作温度下,反应产物全是气体,在铁液中没有反应产物的滞留,不可避免的反应微量杂质废渣浮在铁液上,到达第一溢渣口,自动溢出,所以,在实验设备允许的条件下,整个铁液可以无限期的使用,真正实现连续化生产。本发明的反应周期控制在10s以内,每生产1吨金属镁的原料成本仅包括氧化镁粉和碳粉的原料成本,铁液的成本可以忽略不计,真正实现环保、节能的绿色新工艺。
(4)本发明提供的方法,氩气作为保护气体经分离后可以循环使用,真空反应炉的体积大小根据产量可以合理选型。
附图说明
图1是本发明所述的熔态碳热法炼镁系统的结构示意图。
附图标记:1.第一输料管,2.第二输料管,3.真空反应炉,4.收渣罐,5.除尘器,6.一级冷却装置,7.镁蒸气承载装置,8.镁蒸气冷凝捕集装置,9.第二除尘器,10.第二进气管道,11.第一进气管道,12.金属镁液体罐,13.储气罐,14.一氧化碳储气罐,15.碳粉储料库,16.氧化镁储料库,17.废渣输送装置,18.气体分离器,121.排放口,171.移动装置,301.真空反应炉上盖,302.真空反应炉炉体,303.加料口,304.检测口,305.镁蒸气输送管,3061.第一溢渣口,3062。第二溢渣口,307.铁液,308第一喷吹枪,309第二喷吹枪,310.升降装置,901.排尘阀,902.真空泵。
具体实施方式
以下实施例中:
所采用的氧化镁粉的细度为0.05-0.3mm,所述的氧化镁粉中,含氧化镁量≥90%。
所述的碳粉为粒径为0.05-0.3mm的粉剂,含碳量为80%-82%。
所采用的保护气为纯度≥99.9%的高纯气体。
以年产5万吨镁为计,真空反应炉(真空感应炉或真空电弧炉)的体积为7-8立方米,加热的铁的重量为40吨左右,所需的氧化镁粉的用量约为9万吨,碳粉用量约为1.6万吨。所采用的保护气,以氩气为例,产镁一吨,需要100m3、压力为8-10kg/L的氩气,若采用其他的保护气,用量 与氩气用量相同。
所述的碳粉和氧化镁粉的温度可以是常温,也可以经过预先加热为稍高于室温的温度。
本文所述的反应周期,也称为还原时间,是指碳粉和氧化镁粉在真空反应炉内的停留时间。
实施例1
一种熔态碳热法制镁工艺,具体的操作步骤如下:
步骤(1):在真空反应炉中,根据真空反应炉的容量及比例计量加入生铁,使其熔化呈铁液,在1200℃-1650℃左右保温待用;
步骤(2):采用抽真空装置将真空反应炉的绝对压力值维持在40-10000Pa;
步骤(3):向真空反应炉中填充氩气,同时对真空反应炉加热,使铁液沸腾、温度保持在1200-1650℃,且氩气充满整个真空反应炉;
步骤(4):将碳粉、氧化镁粉在适量氩气的保护下,以气固混合物的形式连续送入真空反应炉内铁液的液面下,在铁液中进行还原反应,产生镁蒸气和一氧化碳;
步骤(5):将步骤(4)中气体送入冷却装置,冷却后,得到液态镁;剩余的气体中含有氩气、一氧化碳以及杂质(主要是灰尘);
步骤(6):将步骤(5)中的剩余气体:氩气、一氧化碳和灰尘进行分离,氩气回收利用,一氧化碳进入气体收集装置。(一氧化碳气体经燃烧后,可用于发电)
进一步,步骤(1)~(4)中所述的真空反应炉为真空感应炉,该感应炉是中频感应炉。
实施例2
一种熔态碳热法制镁工艺,具体的操作步骤如下:
步骤(1):在真空反应炉中,根据真空反应炉的容量及比例计量加入生铁,使其熔化呈铁液,在1200℃-1650℃左右保温待用;
步骤(2):采用抽真空装置将真空反应炉的绝对压力值维持在40-100Pa;
步骤(3):向真空反应炉中填充氮气,同时对真空反应炉加热,使铁 液沸腾、温度保持在1200-1650℃,且氮气充满整个真空反应炉;
步骤(4):将碳粉、氧化镁粉在适量氮气的保护下,以气固混合物的形式连续送入真空反应炉内铁液的液面下,在铁液中进行还原反应,产生镁蒸气和一氧化碳;
步骤(5):将步骤(4)中气体送入冷却装置,冷却后,得到液态镁;剩余的气体中含有氮气、一氧化碳和灰尘;
步骤(6):将步骤(5)中的剩余气体:氮气、一氧化碳和灰尘进行分离,氮气回收利用,一氧化碳进入气体收集装置。(一氧化碳气体经燃烧后,可用于发电)
进一步,步骤(1)~(4)中所述的真空反应炉为真空电弧炉。
实施例3
一种熔态碳热法制镁工艺,具体的操作步骤如下:
步骤(1):在真空反应炉中,根据真空反应炉的容量及比例计量加入生铁,使其熔化呈铁液,在1200℃-1650℃左右保温待用;
步骤(2):采用抽真空装置将真空反应炉的绝对压力值维持在40-100Pa;
步骤(3):向真空反应炉中填充氦气,同时对真空反应炉加热,使铁液沸腾、温度保持在1200-1650℃,且氮气充满整个真空感应炉;
步骤(4):将碳粉、氧化镁粉在适量氦气的保护下,以气固混合物的形式连续送入真空反应炉内铁液的液面下,在铁液中进行还原反应,产生镁蒸气和一氧化碳;
步骤(5):将步骤(4)中气体送入冷却装置,冷却后,得到液态镁;剩余的气体中含有氦气、一氧化碳和灰尘;
步骤(6):将步骤(5)中的剩余气体:氦气、一氧化碳和灰尘进行分离,氦气回收利用,一氧化碳进入气体收集装置。(一氧化碳气体经燃烧后,可用于发电)
进一步,步骤(1)~(4)中所述的真空反应炉为真空感应炉。
实施例4
一种熔态碳热法制镁工艺,具体的操作步骤如下:
步骤(1):在真空反应炉中,根据真空反应炉的容量及比例计量加入 生铁,使其熔化呈铁液,在1200℃-1650℃左右保温待用;
步骤(2):采用抽真空装置将真空反应炉的绝对压力值维持在40-100Pa;
步骤(3):向真空反应炉中填充氖气,同时对真空反应炉加热,使铁液沸腾、温度保持在1200-1650℃,且氖气充满整个真空感应炉;
步骤(4):将碳粉、氧化镁粉在适量氖气的保护下,以气固混合物的形式连续送入真空反应炉内铁液的液面下,在铁液中进行还原反应,主要产生镁蒸气和一氧化碳;
步骤(5):将步骤(4)中气体送入冷却装置,冷却后,得到液态镁;剩余的气体中含有氖气、一氧化碳和灰尘;
步骤(6):将步骤(5)中的剩余气体:氖气、一氧化碳进行分离,氖气回收利用,一氧化碳进入气体收集装置。(一氧化碳气体经燃烧后,可用于发电)
进一步,步骤(1)~(4)中所述的真空反应炉为真空感应炉。
实施例5
一种熔态碳热法炼镁系统,该系统包括依次连接的真空反应系统、冷凝收集系统;
所述的真空反应系统包括真空反应炉3,包括真空反应炉上盖301和真空反应炉炉体302以及必要的抽真空装置,在真空反应炉上盖301上设有加料口303(真空反应炉3上设置有多个加料口,如进铁液的加料口,进碳粉的加料口、进氧化镁粉的加料口,统称为加料口303,此处不逐一列出)、检测口304和镁蒸气输送管305,在真空反应炉炉体上设置有第一溢渣口3061;所述的第一输料管1和第二输料管2通过加料口303置于真空反应炉3内,且第一输料管1和第二输料管2的管口置于铁液307内,在所述的第一输料管1上连接有第一进气管道11,在所述的第二输气管道2上连接有第二进气管道10;
所述的冷凝收集系统,包括镁蒸气输送管305、与镁蒸气输送管305相连一级冷却装置6、与一级冷却装置6相连的除尘器5、与一级冷却装置6相连的镁蒸气承载装置7、与镁蒸气承载装置7相连的镁蒸气冷凝捕集装置8,镁蒸气冷凝捕集装置8底部出料口与金属镁液体罐12相连,镁蒸气 冷凝捕集装置8上部出料口与第二除尘器9相连,第二除尘器9的顶部设置有气体分离器18,气体分离器18的出料口分别与储气罐13和一氧化碳储气罐14相连。
作为改进,所述的真空反应炉采用真空感应炉或真空电弧炉。
上述熔态碳热法炼镁系统的工作原理是:通过加料口303向真空反应炉3内添加铁粉,逐渐升温加热,将温度升温至1200℃-1650℃,使铁粉全部融化,保温备用,采用抽真空装置将真空反应炉的绝对压力值维持在40-100Pa;然后向真空反应炉内充填保护气,同时持续对真空反应炉加热,使铁液沸腾、温度保持在1200-1650℃,且保护气充满整个真空感应炉;打开第一进气管道11和第二进气管道10上的阀门,打开输送碳粉的第一输料管1和输送氧化镁粉的第二输料管2上的阀门,这样,在第一输料管1内形成碳粉-保护气的气固混合物,在第二输料管2内形成氧化镁粉-保护气的气固混合物,碳粉-保护气的气固混合物和氧化镁粉-保护气的气固混合物分别沿着第一输料管1和第二输料管2进入真空反应炉3的铁液307内,在铁液307内进行还原反应,产生的镁蒸气和一氧化碳气体与部分保护气沿着镁蒸气输送管305进入后续的冷凝收集系统;在冷凝收集系统中,镁蒸气、一氧化碳气体和部分保护气沿着镁蒸气输送管305进入除尘器305经除尘后,进入一级冷却装置6,经冷却后进入镁蒸气承载装置7进一步冷却后,进入镁蒸气冷凝捕集装置8,在镁蒸气冷凝捕集装置8内,镁蒸气冷凝为镁液体,实现,一氧化碳气体和部分保护气在镁蒸气冷凝捕集装置8内仅冷却未冷凝,从而实现镁蒸气与一氧化碳气体和部分保护气的分离,镁液体依靠重力作用集聚在镁蒸气冷凝捕集装置8的底部,通过镁蒸气冷凝捕集装置8的出料口进入金属镁液体罐12,冷却后的一氧化碳和部分保护气,进入第二除尘器9除尘后,进入气体分离器18(气体分离器18可以为吸附-解吸分离器,也可以为冷凝分离器或其他气体分离器,此处对气体分离器的种类和型号不做限定,只要能够实现一氧化碳气体和保护气的分离即可),经分离后,一氧化碳气体进入一氧化碳储气罐14、保护气进入储气罐13循环利用。
作为改进,所述的真空反应系统,为了方便真空反应炉3的检修、装料,在真空反应炉3上盖上设置有升降装置310。
作为改进,为了增大气固混合物通过第一输料管1、第二输料管2进入真空反应炉3时的速度,第一输料管1和第二输料管2的管口不直接进入真空反应炉3,而是在第一输料管1的管口还连接有第一喷吹枪308,第二输料管2的管口还连接有第二喷吹枪309,第一喷吹枪308和第二喷吹枪309的枪口均置于铁液内,(第一喷吹枪308和第二喷吹枪309的枪体应足够长,通过加料口进入真空反应炉3内,部分枪体置于真空反应炉3内、部分枪体外露在真空反应炉3外,)在第一喷吹枪308和第二喷吹枪上还设置有必要的控制阀,这些控制阀设置在外露在真空反应炉3外的枪体上,方便控制;所述第一输料管1与碳粉储料库15相连,所述第二输料管与氧化镁储料库16相连,在碳粉储料库15与第一储料罐1之间设置有必要的阀门和控制仪表。
作为改进,碳粉和氧化镁粉实现进行混匀,由第一输料管1通过加料口303送入真空反应炉3的铁液307下进行还原反应。
作为改进,由于原料为碳粉和氧化镁粉,在碳粉和氧化镁粉中不可避免的会含有不参与反应的固体杂质,当碳粉和氧化镁粉在真空反应炉3内反应后,剩余的固体杂质颗粒随着上升气流(镁蒸气、一氧化碳气体和保护气向上运动形成的气流)向上运动,最后由于重力作用漂浮在铁液307表面,经过长时间的积累后,在铁液表面形成具有一定厚度的固体杂质,这些固体杂质的存在,会对上升气流产生阻力,所以,所述的真空反应系统还包括收渣系统,所述的收渣系统包括收渣罐4和与收渣罐4相连的废渣输送装置17,真空反应炉3通过第一溢渣口3061与收渣罐4相连,收渣罐4通过第二溢渣口3062与废渣输送装置17相连,在第一溢渣口3061和第二溢渣口3062上设置有必要的阀门。所述的废渣输送装置17的底部还可以设置有移动装置,方便废渣输送装置的移动。卸渣时,关闭第二溢渣口3062,开启第一溢渣口3061,固体杂质颗粒,顺着第一溢渣口3061进入收渣罐4,卸渣完毕,关闭第一溢渣口3061即可。
作为改进,所述的第二除尘器9的的底部设置有排尘阀901和真空泵902。排尘阀901的作用是方便排出第二除尘器9中的尘土,真空泵902的主要作用是实现第二除尘器9的真空操作。
作为改进,所述的金属镁液体罐12上开设有排放口121。设置排放口 121的目的是,方便金属镁液体罐12内的金属镁溢出,进入后续的进一步处理步骤,如金属镁精炼或制成镁产品。
作为改进,在本发明所述的熔态碳热法炼镁系统中应安装有必要的阀门和仪表。此外,根据本领域的公知常识,真空反应炉3应该连接有必要的抽真空装置,
在实际操作中,氧化镁粉和碳粉的细度和粒径不限于上述细度和粒径,含碳量和含镁量的参数也可以根据该地区成本价进行合理选择细度、粒径和纯度。
可以理解的是,以上关于本发明的具体描述,仅用于说明本发明而并非受限于本发明实施例所描述的技术方案。本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换,以达到相同的技术效果,只要满足使用需要,都在本发明的保护范围之内。

Claims (10)

  1. 一种熔态碳热法制镁工艺,其特征在于,具体的操作步骤如下:
    步骤(1):在真空反应炉中,加入生铁,使其熔化呈铁液,在1200℃-1650℃保温待用;
    步骤(2):采用抽真空装置将真空反应炉的绝对压力值维持在40-10000Pa;
    步骤(3):向真空反应炉中填充氩气,同时对真空反应炉加热,使铁液沸腾、温度保持在1200-1650℃,且氩气充满整个真空反应炉;
    步骤(4):将碳粉、氧化镁粉在适量氩气的保护下,以气固混合物的形式连续送入真空反应炉内铁液的液面下,在铁液中进行还原反应,产生镁蒸气和一氧化碳气体;
    步骤(5):将步骤(4)中镁蒸气、一氧化碳气体和氩气送入冷却装置,冷却后,得到液态镁;剩余的气体为氩气、一氧化碳和灰尘;
    步骤(6):将步骤(5)中氩气、一氧化碳和灰尘进行分离,氩气回收利用,一氧化碳进入气体收集装置。
  2. 根据权利要求1所述的一种熔态碳热法制镁工艺,其特征在于,步骤(1)~(4)中所述的真空反应炉为真空感应炉或真空电弧炉。
  3. 根据权利要求1所述的一种熔态碳热法制镁工艺,其特征在于,步骤(2)中,真空反应炉内的绝对压力维持在40-100Pa。
  4. 根据权利要求1所述的一种熔态碳热法制镁工艺,其特征在于,步骤(3)中,所述的氩气用氮气、氦气、氖气中任意一种替换。
  5. 根据权利要求1所述的一种熔态碳热法制镁工艺,其特征在于,步骤(4)中,所述的碳粉为粒径为0.05-0.3mm的粉剂,含碳量为80%-82%。
  6. 根据权利要求1所述的一种熔态碳热法制镁工艺,其特征在于,步骤(4)中,所述的氧化镁粉的细度为0.05-0.3mm;所述的氧化镁粉中,含氧化镁量≥90%。
  7. 一种熔态碳热法炼镁系统,其特征在于,该系统包括依次连接的真空反应系统和冷凝收集系统,所述的真空反应系统还包括收渣系统;
    所述的真空反应系统包括真空反应炉(3),包括真空反应炉上盖(301)、 真空反应炉炉体(302)和抽真空装置,在真空反应炉上盖(301)上设有加料口(303)、检测口(304)和镁蒸气输送管(305),在真空反应炉炉体上设置有第一溢渣口(3061);所述的第一输料管(1)和第二输料管(2)通过加料口(303)置于真空反应炉(3)内,且第一输料管(1)和第二输料管(2)的管口置于铁液(307)内,在所述的第一输料管(1)上连接有第一进气管道(11),在所述的第二输气管道(2)上连接有第二进气管道(10);
    所述的收渣系统包括收渣罐(4)和与收渣罐(4)相连的废渣输送装置(17),真空反应炉(3)通过第一溢渣口(3061)与收渣罐(4)相连,收渣罐(4)通过第二溢渣口(3062)与废渣输送装置(17)相连,在第一溢渣口(3061)和第二溢渣口(3062)上设置有阀门;
    所述的冷凝收集系统,包括镁蒸气输送管(305)、与镁蒸气输送管(305)相连一级冷却装置(6)、与一级冷却装置(6)相连的除尘器(5)、与一级冷却装置(6)相连的镁蒸气承载装置(7)、与镁蒸气承载装置(7)相连的镁蒸气冷凝捕集装置(8),镁蒸气冷凝捕集装置(8)底部出料口与金属镁液体罐(12)相连,镁蒸气冷凝捕集装置(8)上部出料口与第二除尘器(9)相连,第二除尘器(9)的顶部设置有气体分离器(18),气体分离器(18)的出料口分别与储气罐(13)和一氧化碳储气罐(14)相连。
  8. 根据权利要求7所述的一种熔态碳热法炼镁系统,其特征在于,所述的真空反应炉(301)为真空感应炉或真空电弧炉。
  9. 根据权利要求7所述的一种熔态碳热法炼镁系统,其特征在于,所述的真空反应系统的第一输料管(1)的管口还连接有第一喷吹枪(308),第二输料管(2)的管口还连接有第二喷吹枪(309),第一喷吹枪(308)和第二喷吹枪(309)的枪口均置于铁液(307)内,所述第一输料管(1)与碳粉储料库(15)相连,所述第二输料管(2)与氧化镁储料库(16)相连。
  10. 根据权利要求7所述的一种熔态碳热法炼镁系统,其特征在于,所述第一输料管(1)和第二输料管(2)为同一进料管,所述的同一进料管用于输送碳粉和氧化镁的混合物,在所述的同一进料管上,连接有进气管道。
PCT/CN2017/090506 2016-06-29 2017-06-28 一种熔态碳热法制镁工艺及炼镁系统 WO2018001265A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610495930.8A CN106011500A (zh) 2016-06-29 2016-06-29 一种熔态碳热法感应炉真空炼镁系统及其炼镁方法
CN201610495930.8 2016-06-29

Publications (1)

Publication Number Publication Date
WO2018001265A1 true WO2018001265A1 (zh) 2018-01-04

Family

ID=57104553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090506 WO2018001265A1 (zh) 2016-06-29 2017-06-28 一种熔态碳热法制镁工艺及炼镁系统

Country Status (2)

Country Link
CN (2) CN106011500A (zh)
WO (1) WO2018001265A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108746560A (zh) * 2018-08-14 2018-11-06 广州德志金属制品有限公司 一种镁炉加工装置
CN112391574A (zh) * 2020-11-13 2021-02-23 新兴铸管股份有限公司 一种镁蒸发器
CN112501446A (zh) * 2020-11-30 2021-03-16 贵州航天风华精密设备有限公司 一种镁合金熔体机械旋转搅拌喷吹处理装置及处理方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106011500A (zh) * 2016-06-29 2016-10-12 狄保法 一种熔态碳热法感应炉真空炼镁系统及其炼镁方法
CN109797296A (zh) * 2017-11-17 2019-05-24 狄保法 一种熔态碳热法炼镁装置
CA3169055A1 (en) * 2019-12-17 2021-06-24 Zhengzhou University Method of carbothermic process of magnesium production and co-production of calcium carbide
CN111270088B (zh) * 2020-02-10 2023-10-13 中国恩菲工程技术有限公司 感应加热液态搅拌连续炼镁的系统和方法
CN112609091A (zh) * 2020-12-28 2021-04-06 金先奎 一种碳热还原冶炼金属镁的方法
CN114870568B (zh) * 2022-03-24 2023-06-27 东北大学 碳热还原冶炼活泼的高蒸气压金属的装置及其使用方法
CN114737057B (zh) * 2022-03-24 2024-03-26 东北大学 一种碳热还原制备高蒸气压金属的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761248A (en) * 1967-06-26 1973-09-25 J Avery Metallothermic production of magnesium induced by a stream of inert gas
CN101397609A (zh) * 2008-09-18 2009-04-01 昆明理工大学 一种菱镁矿真空碳热还原制备金属镁的方法
CN101684524A (zh) * 2008-09-24 2010-03-31 何锡钧 碳热还原制备金属镁的方法及其装置
CN103882246A (zh) * 2014-01-08 2014-06-25 中国重型机械研究院股份公司 一种真空炼镁装置及其方法
CN106011500A (zh) * 2016-06-29 2016-10-12 狄保法 一种熔态碳热法感应炉真空炼镁系统及其炼镁方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159945A (ja) * 1983-03-04 1984-09-10 Yoshizawa Sekkai Kogyo Kk ドロマイトより金属マグネシウム及びカルシウム・フエライトを製造する方法
CN102041398B (zh) * 2010-11-19 2012-02-01 重庆大学 一种熔融还原碳热法制镁工艺及装置
CN103205583B (zh) * 2013-05-06 2014-06-18 重庆大学 一种碳热还原制镁方法
CN205046181U (zh) * 2015-08-31 2016-02-24 山西恒天镁业有限公司 一种金属镁精炼冶炼生产装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761248A (en) * 1967-06-26 1973-09-25 J Avery Metallothermic production of magnesium induced by a stream of inert gas
CN101397609A (zh) * 2008-09-18 2009-04-01 昆明理工大学 一种菱镁矿真空碳热还原制备金属镁的方法
CN101684524A (zh) * 2008-09-24 2010-03-31 何锡钧 碳热还原制备金属镁的方法及其装置
CN103882246A (zh) * 2014-01-08 2014-06-25 中国重型机械研究院股份公司 一种真空炼镁装置及其方法
CN106011500A (zh) * 2016-06-29 2016-10-12 狄保法 一种熔态碳热法感应炉真空炼镁系统及其炼镁方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108746560A (zh) * 2018-08-14 2018-11-06 广州德志金属制品有限公司 一种镁炉加工装置
CN112391574A (zh) * 2020-11-13 2021-02-23 新兴铸管股份有限公司 一种镁蒸发器
CN112391574B (zh) * 2020-11-13 2022-03-25 新兴铸管股份有限公司 一种镁蒸发器
CN112501446A (zh) * 2020-11-30 2021-03-16 贵州航天风华精密设备有限公司 一种镁合金熔体机械旋转搅拌喷吹处理装置及处理方法

Also Published As

Publication number Publication date
CN106011500A (zh) 2016-10-12
CN107541608A (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
WO2018001265A1 (zh) 一种熔态碳热法制镁工艺及炼镁系统
WO2018000587A1 (zh) 一种真空感应炉、电弧炉真空炼镁系统及其炼镁方法
KR101191956B1 (ko) 수직형 마그네슘 제조 장치 및 이를 이용한 마그네슘 제조 방법
WO2016086521A1 (zh) 微波加热真空二次富集回收低品位褐煤锗精矿中锗的方法及设备
CN205679048U (zh) 一种煤基直接还原焙烧窑
WO2017031798A1 (zh) 一种处理及回收铝电解固体废料的装置
CN100494430C (zh) 利用锌渣生产锌合金的方法
CN107604383A (zh) 一种熔炼法提取碳渣中电解质的方法
WO2017143697A1 (zh) 铝工业固体废料回收/石油焦高温脱硫装置及其使用方法
CN102353250B (zh) 一种锌镉电热冶炼回转窑
RU2741038C1 (ru) Способ и устройство для выплавки меди с комплексной переработкой шлака
CN1644720A (zh) 高富氧炼锌法
CN103215446B (zh) 一种蛇纹石型红土镍矿盐酸常压浸出清洁生产方法
CN201497341U (zh) 一种粗锌冶炼窑
CN202316145U (zh) 一种风冷式旋风除尘器
CN204661804U (zh) 捕集低品位贵金属原料中贵金属的装置
CN201455266U (zh) 转移弧直流等离子锌粉电炉
CN207130313U (zh) 一种处理含锌废渣的系统
CN212293706U (zh) 一种洁净化真空火法炼锌装置
CN203112514U (zh) 应用于标准碳化硅冶炼炉的安全回收废气装置
CN101665879A (zh) 一种粗锌冶炼方法及所用的冶炼窑
CN205953530U (zh) 一种电石渣提纯回用系统
CN202030805U (zh) 一种回收铂族金属元素的等离子体弧熔融设备
CN108787695A (zh) 一种分离破碎后铅酸蓄电池内铅板栅与塑料的方法
CN111778410A (zh) 洁净化真空火法炼锌装置及炼锌方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819262

Country of ref document: EP

Kind code of ref document: A1