WO2018000994A1 - 基于杠杆原理的电动汽车共振发电优化方法和结构 - Google Patents

基于杠杆原理的电动汽车共振发电优化方法和结构 Download PDF

Info

Publication number
WO2018000994A1
WO2018000994A1 PCT/CN2017/085397 CN2017085397W WO2018000994A1 WO 2018000994 A1 WO2018000994 A1 WO 2018000994A1 CN 2017085397 W CN2017085397 W CN 2017085397W WO 2018000994 A1 WO2018000994 A1 WO 2018000994A1
Authority
WO
WIPO (PCT)
Prior art keywords
lever
vibration
generator
straight rack
force
Prior art date
Application number
PCT/CN2017/085397
Other languages
English (en)
French (fr)
Inventor
杨亦勇
Original Assignee
杨亦勇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨亦勇 filed Critical 杨亦勇
Publication of WO2018000994A1 publication Critical patent/WO2018000994A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/08Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching or like movements, e.g. from the vibrations of a machine

Definitions

  • the invention relates to a method for power generation of automobile kinetic energy, in particular to an electric vehicle vibration power generation method based on the principle of leverage.
  • the hollow weight plate that is excited and resonated uses the kinetic energy of the absorbed sprung body and the kinetic energy of the self-vibration to drive the kinetic energy generating device provided on the hollow weight plate to generate electricity.
  • the device using the frequency resonance power generation method adopts multiple sets of composite elastic systems to realize frequency resonance, and through frequency resonance, the kinetic energy of the vibration of the vehicle body can be transferred to the kinetic energy power generation device on the hollow weight plate, thereby realizing vibration reduction of the vehicle body.
  • the kinetic energy of the kinetic energy generating device absorbs the vibration of the vehicle body to resonate and generate electricity, which is converted into usable electric energy, thereby reducing fuel consumption and exhaust gas emissions, and greatly improving the energy consumption of the automobile.
  • the kinetic energy generating device of the solution comprises a gear with a one-way bearing disposed on a central shaft of the generator, and a straight rack meshing with the gear, and the gear along the hollow weight plate is arranged on the frame by frequency resonance.
  • the straight rack motion which drives the generator central axis to rotate, thus generating electricity.
  • the scheme uses the vibration conduction between multiple elastic systems to capture the vibration of the vehicle body.
  • the driving force for driving the central axis of the generator is mainly from the vibration of the sprung body caused by the road excitation when the electric vehicle is running. On the one hand, the flat road surface will make the sprung body amplitude.
  • the technical problem to be solved by the present invention is to provide an optimization method and structure for electric vehicle resonance power generation based on the principle of leverage, to enhance the capturing efficiency of the vibration energy of the vehicle body, to simplify the method for overcoming the starting torque of the generator and to eliminate the waste of the friction heat energy by the conventional vibration damping device.
  • An electric vehicle resonance power generation optimization method based on the principle of leverage comprising a kinetic energy generating device disposed on a hollow weight plate having a vertical elastic system at a sprung body, the kinetic energy generating device including a generator and a speed increaser, and generating electricity a gear provided on a central shaft of the machine with a one-way bearing, the gear being meshed with a straight rack on one side, wherein the hollow weight pallet has the same natural frequency as the sprung body, the straight The rack is driven by the lever, the fulcrum of the lever is arranged on the axle, the power end of the lever is fixedly connected to the spring body, and the vibration force of the spring body is received, and the lever resistance end drives the straight rack to be vertically fixed on the slide rail fixed on the vibration guide frame.
  • the lever drives different straight gears to drive different gears engaged by the straight racks, so that the central axis of the generator continuously rotates in the same direction.
  • the lever includes a labor-saving lever and/or a laborious lever.
  • the force arm of the power end of the labor-saving lever is larger than the force arm of the resistance end, and the force arm of the power end of the labor-consuming lever is smaller than the force arm of the resistance end.
  • the laborious lever includes a co-directional force lever that makes the movement of the straight rack coincide with the vibration direction of the vehicle body.
  • the power end and the resistance end of the same-forced force lever are disposed on the same side of the fulcrum, and in the compression stroke of the sprung body, through the same direction
  • the laborious lever generates power by overcoming the torque resistance of the generator, and the straight rack obtains a displacement greater than the amplitude of the sprung body.
  • the laborious lever further comprises a reverse labor lever for making the movement of the straight rack opposite to the vibration direction of the vehicle body.
  • the power end and the resistance end of the reverse force lever are arranged on both sides of the fulcrum, and the power generation is overcome in the rebound stroke of the sprung body.
  • the torque resistance generated by the machine is combined with the co-directional force lever to continuously drive the central axis of the generator to continuously rotate, and the torque resistance generated by the generator is amplified and transmitted to the sprung body, which is used as the vibration suppression resistance to achieve the body vibration suppression, replacing the Damper leaf spring or damper.
  • the power end and the resistance end of the labor-saving lever are disposed on both sides of the fulcrum, so that the movement of the straight rack is opposite to the vibration direction of the vehicle body, and the straight rack is driven to overcome the starting torque of the kinetic energy generating device when the electric vehicle is started, and the body is sprung.
  • the torsion generated to the center shaft of the generator is the same as that of the same direction on the opposite side.
  • a structure for applying the above-described lever motor-based electric vehicle resonance power generation optimization method comprising: a hollow weight plate connected to a sprung body provided with a vertical elastic system, and a hollow weight support a kinetic energy generating device on a board, the kinetic energy generating device comprising a gear provided with a one-way bearing disposed on a central axis of the generator, the gear is meshed with a straight rack on one side, and the gear and the straight rack are provided with a plurality of groups Each straight rack is driven up and down by a lever.
  • the power end of the lever is fixedly connected to the spring loaded body beam.
  • the fulcrum of the lever is arranged on the axle, and the resistance end of the lever drives the straight rack motion.
  • the lever includes a labor-saving lever and/or a laborious lever.
  • the force arm of the power end of the labor-saving lever is larger than the force arm of the resistance end, and the force arm of the power end of the labor-consuming lever is smaller than the force arm of the resistance end.
  • the laborious lever includes a co-directional force lever that makes the movement of the straight rack coincide with the vibration direction of the vehicle body, can enlarge the working distance of the vibration of the vehicle body, improve the capturing efficiency of the vibration energy, and make the movement of the straight rack opposite to the vibration direction of the vehicle body.
  • the reverse laborious lever can be combined with the same direction and effort lever to drive the central shaft of the generator to continuously rotate, and at the same time, the generator torque damping can be amplified to reduce the vibration of the vehicle body and suppress the vibration of the vehicle body.
  • the power end and the resistance end of the same-direction struggling lever are disposed on the same side of the fulcrum, and the two-stage labor-force lever composite form is adopted.
  • the power end of the first-stage lever is connected to the spring-loaded body beam, and the resistance end is connected to the power of the second-stage lever. At the end, the resistance end of the second section of the lever drives the straight rack movement.
  • the straight-gear-engaged gear of the same-to-force-force lever connection adopts a one-way driving mechanism with a large angle and a high torque.
  • the large-angle high-torque one-way driving mechanism adopts a large-diameter one-way bearing coaxially connected to both ends of the small-diameter gear through the coupling member, and the two one-way bearings are in the same direction, the small diameter
  • the shaft center of the gear is hollow, and the central connecting shaft of the two one-way bearings is coaxially connected through the shaft center of the small-diameter gear, and the two one-way bearings are coaxially connected together.
  • the generator central shaft is driven by the output of the two one-way bearings to form a one-way drive mechanism with a large angle and high torque.
  • the hollow weight pallet is set on the optical axis by a linear bearing, and the optical axis is vertically fixed on the vibration guiding frame, and the vibration guiding frame is disposed on the torsion support frame at the axle.
  • a vertical rail is disposed between the upper and lower beams of the vibration guiding frame, and a slider is mounted on the sliding rail, and the straight rack is fixed on the slider, and is kept vertical by the slider rail structure The movement of the direction is such that the vibration guiding frame is not subjected to the force from the straight rack during the vibration.
  • the hollow weight pallet is suspended on the spring-loaded body beam by four tension springs.
  • the resistance end of the laborious lever or the labor-saving lever drives a straight rack through a connecting member provided with a double-row roller hollow through hole, and the connecting member is fixedly connected with the straight rack, and the resistance of the laborious lever or the labor-saving lever
  • the front end of the end is arranged in a curved curved shape and passes through the double-row roller hollow through hole.
  • the lever method based on the lever principle of the electric vehicle resonance power generation optimization method and structure, through the arrangement of the lever, the vibration of the sprung body is transmitted to the hollow weight plate through the lever, and the central axis of the generator, and the elasticity is also set
  • the combination of the hollow weight plate of the system and the resonance of the sprung body vibration can amplify the amplitude of the amplitude when the body vibration is small, improve the capture efficiency of the vibration energy, and also suppress the vibration of the vehicle body;
  • the setting of multiple sets of composite elastic systems also improves the conversion efficiency of vibration energy, which greatly improves the energy consumption of automobiles.
  • Figure 1 is a perspective view showing the structure of the present invention.
  • Figure 2 is an enlarged schematic view of three levers in the present invention.
  • Fig. 3 is an enlarged schematic view showing a unidirectional driving structure in the present invention.
  • the sprung body provided with the vertical direction elastic system is supported by the sprung body by the free vibration of its natural frequency.
  • the vertical weight elastic system is also provided, and the hollow weight plate with the kinetic energy generating device generates frequency resonance or effective vibration.
  • the spring body transfers the vibration kinetic energy to the hollow weight.
  • the pallet is used to realize its own vibration damping, and at the same time, the hollow weight pallet which is excited to resonate, uses the kinetic energy of the absorbed sprung body and the kinetic energy of the self-vibration to drive the kinetic energy generating device provided on the hollow weight pallet.
  • it is first proposed to absorb the vibration energy of the vehicle body by the method of generating resonance, and to generate electricity.
  • the present application proposes an electric vehicle resonance power generation optimization method based on the principle of leverage, comprising a kinetic energy power generation device disposed on a hollow weight plate having a vertical elastic system at a sprung body, the kinetic energy generation device including a generator and a speed increaser, And a gear provided on the central shaft of the generator with a one-way bearing, the gear is meshed with a straight rack on one side, and the hollow weight pallet has the same natural frequency as the sprung body, the straight tooth
  • the rod is driven by the lever, and the fulcrum of the lever is arranged on the axle. Because the axle has the smallest vertical displacement when the whole body is vibrated, the effect of the fulcrum of the lever is the best.
  • the lever power end is fixedly connected to the spring body and the spring body is supported.
  • the vibration force the lever resistance end drives the straight rack to move up and down along the slide rail fixed vertically on the vibration guide frame; the compression and reverse of the spring body
  • the lever drives the gears meshed by the straight racks to drive the gears meshed by the straight racks, so that the central shaft of the generator generates the same direction continuous torque, and the force of the resonance of the hollow weight pallet when the vehicle body vibrates. Superimpose to make the generator generate electricity.
  • the straight rack maintains vertical movement by a slider rail structure disposed on the vibration guiding frame, and the gear and the straight rack are provided with a plurality of sets, and each straight rack is driven by a lever.
  • the lever After the lever is arranged at the axle, the power end of the lever is connected to the spring loaded body beam, and the resistance end of the lever drives the straight rack.
  • the lever includes a labor-saving lever and/or a laborious lever, and the power arm of the power-saving lever A force arm larger than the resistance end, the force arm of the power end of the laborious lever is smaller than the force arm of the resistance end.
  • a labor-saving lever and two laborious lever settings are used.
  • the power end of a labor-saving lever is arranged on a sprung body-forced beam which is far from the fulcrum of the lever, that is, the axle.
  • the power end and the resistance end of the labor-saving lever are arranged on both sides of the fulcrum, and the resistance end is connected with the generator central axis.
  • the upper inner sleeve has a straight toothed rack engaged by the gear of the one-way bearing, and can overcome the starting torque of the kinetic energy generating device to start the rotation of the central shaft of the generator during the compression stroke of the vehicle starting and the sprung body.
  • the two laborious levers include a co-directional force lever that makes the movement of the straight rack coincide with the direction of vibration of the vehicle body.
  • the power end and the resistance end of the same-forced force lever are disposed on the same side of the fulcrum, and the straight rack is obtained by the same-direction laborious lever.
  • the displacement of the upper body amplitude increases the efficiency of capturing the vibration energy; and the reverse force lever that makes the movement of the straight rack opposite to the vibration direction of the vehicle body, and the power end and the resistance end of the reverse force lever are disposed on both sides of the fulcrum, and can be the same
  • the central shaft of the generator is continuously rotated, and in the rebound stroke of the sprung body, the torque resistance generated by the generator is overcome, and the torque resistance generated by the generator is amplified and transmitted to the sprung body as vibration suppression.
  • the resistance achieves body vibration suppression.
  • the same-directional labor lever adopts a two-stage labor-force lever composite form, the power end of the first-stage lever is connected to the spring-loaded body beam, the resistance end is connected to the power end of the second-stage lever, and the resistance of the second-stage lever is The end drives the straight rack motion.
  • This is illustrated in the enlarged schematic view of a single three levers in Figure 2.
  • the straight rack obtains a vertical displacement greater than the amplitude of the sprung body, and the straight rack excites the hollow weight plate, so that the amplitude of the hollow weight plate is amplified by the first stage; meanwhile, the straight tooth
  • the large-diameter gear rolls on the engaged straight rack driven by the labor-saving lever, so that the hollow weight pallet obtains a large vertical displacement, so that the hollow weight pallet is once again subjected to the amplitude amplification of the second stage.
  • the large-angle high-torque one-way driving mechanism adopts a large-diameter one-way bearing coaxially connected to both ends of the small-diameter gear, and the two one-way bearings are in the same direction, and the axial center of the small-diameter gear
  • the central axes of the two one-way bearings pass through the axis of the small-diameter gear in a non-contact manner, and the two one-way bearings are coaxially connected together, and the output shafts of the two one-way bearings drive the generator central shaft
  • a one-way drive mechanism that forms a large angle and high torque. As shown in Figure 3.
  • the hollow weight pallet is set on the optical axis by a linear bearing, and the optical axis is vertically fixed on the vibration guiding frame, and the vibration guiding frame is disposed on the torsion support frame at the axle.
  • a vertical rail is disposed between the upper and lower beams of the vibration guiding frame, and a slider is mounted on the sliding rail, and the straight rack is fixed on the slider.
  • the hollow weight pallet is suspended by the four springs on the spring loaded beam. With the arrangement of the structure, the gravity and the force of the hollow weight pallet mainly act directly on the spring loaded beam.
  • the straight rack passes through the slider slide structure, and in addition to the vibration force acting on the central shaft of the generator, the direct force of the vibration guide frame is also avoided.
  • the vibrating frame can be placed in front of or behind the axle.
  • the resistance end of the laborious lever or the labor-saving lever drives a straight rack through a connecting member provided with a double-row roller hollow through hole, and the connecting member is fixedly connected with the straight rack, which is laborious.
  • the front end of the resistance end of the lever or the labor-saving lever is arranged in a curved curved shape, and the hollow through the double-row roller The hole can maximize the displacement and force of the straight rack in the vertical direction, thereby converting the swing angle obtained by the laborious lever or the labor-saving lever resistance end into the vertical displacement of the straight rack.
  • the lever method based on the lever principle of the electric vehicle resonance power generation optimization method and structure, through the arrangement of the lever, the vibration of the sprung body is transmitted to the hollow weight plate through the lever, and the central axis of the generator, and the elasticity is also set
  • the combination of the hollow weight plate of the system and the resonance of the sprung body vibration can amplify the amplitude of the amplitude when the body vibration is small, improve the capture efficiency of the vibration energy, and also suppress the vibration of the vehicle body;
  • the setting of multiple sets of composite elastic systems also improves the conversion efficiency of vibration energy, which greatly improves the energy consumption of automobiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

一种基于杠杆原理的电动汽车共振发电优化方法和结构,包括设置于簧上车身处具有垂直弹性系统的中空重物托板(20)上的动能发电装置,动能发电装置包括发电机(22)和增速器(21),以及在发电机中心轴(36)上设置的内套有单向轴承的齿轮(32),齿轮单侧啮合有直齿条(6),中空重物托板(20)与簧上车身具有相同的固有频率,直齿条(6)被杠杆带动,杠杆的支点设置在车轴(17)上;在簧上车身的压缩及反弹行程中,杠杆通过分别带动不同的直齿条(6),驱动直齿条(6)所啮合的齿轮(32),使发电机中心轴(36)产生同向连续扭力,并与中空重物托板(20)在车身振动时的共振的作用力进行叠加,使发电机发电,提高了振动能量的转化效率。

Description

基于杠杆原理的电动汽车共振发电优化方法和结构 技术领域
本发明涉及汽车动能发电的方法,尤其涉及基于杠杆原理的电动汽车振动发电方法。
背景技术
关于利用汽车动能发电的方法,除了汽车刹车制动时的动能回收之外,对于汽车行驶时振动的垂直方向所产生的动能的回收利用,中国专利申请号为201310132727.0的《一种将频率共振应用于汽车动能发电的方法和结构》,提出了将设置有垂直方向弹性系统的簧上车身以其固有频率的自由振动,激励以簧上车身为支撑的,具有相同或相近固有频率的,同样设置有垂直方向弹性系统的,安装有动能发电装置的中空重物托板发生频率共振或有效振动,通过频率共振,簧上车身将振动的动能转移到中空重物托板以实现自身的减振,同时,被激励而发生共振的中空重物托板,利用所吸收的簧上车身的动能以及自身振动的动能,驱动中空重物托板上设置的动能发电装置进行发电的方法。而利用频率共振的发电方法的装置采用了多组复合弹性系统来实现频率共振,通过频率共振,能将车身振动的动能转移到中空重物托板上的动能发电装置,实现车身的减振,使动能发电装置吸收车身振动的动能发生共振并进行发电,转化为可以利用的电能,从而减少燃油消耗及尾气排放,使汽车的能源消耗得到巨大的改善。
该方案的动能发电装置包括设置在发电机中心轴上的内套有单向轴承的齿轮,以及与齿轮啮合的直齿条,通过频率共振带动中空重物托板上的齿轮沿设置在框架上的直齿条运动,从而带动发电机中心轴转动,因此发电。该 方案采用多重弹性系统之间的振动传导捕捉车身振动,驱动发电机中心轴转动的动力主要来源于电动汽车行驶时路面激励所致的簧上车身的振动,一方面平坦路面会使簧上车身振幅变小,另一方面颠簸路面又会使簧上车身存在抑振需求,而传统减振器或减振板簧虽然通过产生摩擦阻尼方式抑制车身振动,但是却浪费了振动的能量;另外在实践安装中,预紧力拉簧的设置要求较高且复杂,因此如何增强车身振动能量的捕捉效率,简化发电机启动扭矩的克服方法以及消除传统减振装置对摩擦热能的浪费等还没有更完善的解决方案。
发明内容
本发明所要解决的技术问题是提供基于杠杆原理的电动汽车共振发电优化方法和结构,增强车身振动能量的捕捉效率,简化克服发电机启动扭矩的方法以及消除传统减振装置对摩擦热能的浪费。
技术方案
一种基于杠杆原理的电动汽车共振发电优化方法,包括设置于簧上车身处具有垂直弹性系统的中空重物托板上的动能发电装置,动能发电装置包括发电机和增速器,以及在发电机中心轴上设置的内套有单向轴承的齿轮,所述齿轮单侧啮合有直齿条,其特征在于:所述中空重物托板与簧上车身具有相同的固有频率,所述直齿条被杠杆带动,杠杆的支点设置在车轴上,杠杆动力端固定连接簧上车身,承接簧上车身的振动力,杠杆阻力端带动直齿条沿垂直固定在振动导向框架上的滑轨上下移动,克服发电机转矩阻力;在簧上车身的压缩及反弹行程中,杠杆通过直齿条,驱动直齿条所啮合的齿轮,使发电机中心轴转动,并与中空重物托板在车身振动时的共振的作用力进行叠加,使发电机发电。
进一步,所述杠杆通过分别带动不同的直齿条,驱动直齿条所啮合的不同的齿轮,使发电机中心轴同向连续转动。
进一步,所述杠杆包括省力杠杆和/或费力杠杆,省力杠杆的动力端的力臂大于阻力端的力臂,费力杠杆的动力端的力臂小于阻力端的力臂。
所述费力杠杆包括使直齿条的移动与车身振动方向一致的同向费力杠杆,同向费力杠杆的动力端和阻力端设置在支点同侧,在簧上车身的压缩行程中,通过同向费力杠杆,克服发电机的转矩阻力而发电,直齿条获得大于簧上车身振幅的位移。
所述费力杠杆还包括使直齿条的移动与车身振动方向相反的反向费力杠杆,反向费力杠杆的动力端和阻力端设置在支点两侧,在簧上车身的反弹行程中,克服发电机发电的转矩阻力,并与同向费力杠杆结合连续驱动发电机中心轴持续旋转,并将发电机发电的转矩阻力放大传导到簧上车身,作为抑振阻力实现车身抑振,取代了减振板簧或减振器。
所述省力杠杆的动力端和阻力端设置在支点两侧,使直齿条的移动与车身振动方向相反,在电动汽车启动时带动直齿条克服动能发电装置的启动扭矩,并在簧上车身的压缩行程中,对发电机中心轴产生的扭力与设置在对侧的同向费力杠杆相同。
一种应用上述的基于杠杆原理的电动汽车共振发电优化方法的结构,其特征在于:包括设置有垂直方向的弹性系统的、与簧上车身连接的中空重物托板和设置在中空重物托板上的动能发电装置,动能发电装置包括设置在发电机中心轴上的内套有单向轴承的齿轮,所述齿轮一侧啮合有直齿条,所述齿轮和直齿条设置有多组,每根直齿条由杠杆带动进行上下移动,杠杆的动力端固定连接簧上车身受力横梁,杠杆的支点设置在车轴上,杠杆的阻力端带动直齿条运动。
进一步,所述杠杆包括省力杠杆和/或费力杠杆,省力杠杆的动力端的力臂大于阻力端的力臂,费力杠杆的动力端的力臂小于阻力端的力臂。
所述费力杠杆包括使直齿条的移动与车身振动方向一致的同向费力杠杆,能将车身振动的作用距离放大,提高振动能量的捕捉效率,和使直齿条的移动与车身振动方向相反的反向费力杠杆,能与同向费力杠杆结合驱动发电机中心轴持续旋转,同时能将发电机转矩阻尼放大从而减小车身振动,起到对车身的抑振。
所述同向费力杠杆的动力端和阻力端设置在支点同侧,采用两段费力杠杆复合形式,第一段杠杆的动力端连接簧上车身受力横梁,阻力端连接第二段杠杆的动力端,第二段杠杆的阻力端带动直齿条运动。
进一步,所述同向费力杠杆连接的直齿条啮合的齿轮采用大转角高扭矩的单向驱动机构。
所述大转角高扭矩的单向驱动机构采用小直径齿轮的两端各通过联轴件同轴连接有一个大直径的单向轴承,两个单向轴承为同向受力,所述小直径齿轮的轴心为空心设置,两个单向轴承的中心连接轴非接触地穿过所述小直径齿轮的轴心将两个单向轴承同轴连接在一起,所述小直径齿轮受力后通过两个单向轴承的输出带动发电机中心轴,形成大转角高扭矩的单向驱动机构。
进一步,所述中空重物托板通过直线轴承套装在光轴上,光轴垂直固定在振动导向框架上,所述振动导向框架设置在车轴处的扭力支撑架上。
进一步,在所述振动导向框架的上下横梁之间设置有竖直方向的滑轨,滑轨上安装有滑块,所述直齿条固定在滑块上,通过滑块滑轨结构保持竖直方向的移动,使得振动导向框架在振动过程中不受到来自直齿条的作用力。
进一步,所述中空重物托板通过四根拉簧悬吊在簧上车身受力横梁上。
进一步,所述费力杠杆或省力杠杆的阻力端通过设置有双排滚轴中空通孔的连接件带动直齿条,所述连接件与直齿条固定连接,所述费力杠杆或省力杠杆的阻力端前端设置为曲面弧形,穿过所述双排滚轴中空通孔。
有益效果
本发明的基于杠杆原理的电动汽车共振发电优化方法和结构通过杠杆的设置,将簧上车身的振动通过杠杆传导作用在中空重物托板,以及发电机中心轴上,同时还与设置了弹性系统的中空重物托板的与簧上车身振动的共振结合,能够在车身振动很小时放大了振幅的作用距离,提高了振动能量的捕捉效率,也能起到对车身的抑振;简化了多组复合弹性系统的设置,还提高了振动能量的转化效率,使汽车的能源消耗得到巨大的改善。
附图说明
图1为本发明结构立体示意图。
图2为本发明中三根杠杆的放大示意图。
图3为本发明中的单向驱动结构放大示意图。
其中:1-滑轨的下定位横梁,2-振动导向框架,3-拉簧,4-滑轨,5-滑轨的上定位横梁,6-直齿条,7-反向费力杠杆的支点,8-簧上车身受力横梁,9-反向费力杠杆,10-同向费力杠杆,11-车底板,12-车架,13-省力杠杆,14-省力杠杆的支点,15-空气弹簧,16-车轮,17-车轴,18-导向光轴,19-单向驱动机构,20-中空重物托板,21-增速器,22-发电机,23-扭力支撑架,24-反向费力杠杆的阻力端,25-反向费力杠杆的动力端,26-同向费力杠杆的支点,27-同向费力杠杆的动力端,28-同向费力杠杆的阻力端,29-省力杠杆的阻力端,30-省力杠杆的动力端,31-有双排滚轴中空通孔的连接件,32-小直 径齿轮,33-大直径的单向轴承,34-联轴件,35-连接键,36-发电机中心轴。
具体实施方式
下面结合具体实施例和附图,进一步阐述本发明。
对于本申请人之前提出的将频率共振应用于汽车动能发电的方法的发明中,利用设置有垂直方向弹性系统的簧上车身以其固有频率的自由振动,激励以簧上车身为支撑的,具有相同或相近固有频率的,同样设置有垂直方向弹性系统的,安装有动能发电装置的中空重物托板发生频率共振或有效振动,通过频率共振,簧上车身将振动的动能转移到中空重物托板以实现自身的减振,同时,被激励而发生共振的中空重物托板,利用所吸收的簧上车身的动能以及自身振动的动能,驱动中空重物托板上设置的动能发电装置进行发电的技术方案中,首次提出以产生共振的方法吸收转化汽车的车身振动能量,进行发电。
由于在实践中,多组复合弹性系统的设置和安装较为繁琐,以及振动的轮齿传导间隙具有对车身振幅的一定抵消,对于车身振动动能的转化效率有一定影响。
本申请提出一种基于杠杆原理的电动汽车共振发电优化方法,包括设置于簧上车身处具有垂直弹性系统的中空重物托板上的动能发电装置,动能发电装置包括发电机和增速器,以及在发电机中心轴上设置的内套有单向轴承的齿轮,所述齿轮单侧啮合有直齿条,所述中空重物托板与簧上车身具有相同的固有频率,所述直齿条被杠杆带动,杠杆的支点设置在车轴上,因为车轴在整个车身受到振动的时候,垂直位移最小,对于杠杆的支点的效果最好,杠杆动力端固定连接簧上车身,承接簧上车身的振动力,杠杆阻力端带动直齿条沿垂直固定在振动导向框架上的滑轨上下移动;在簧上车身的压缩及反 弹行程中,杠杆通过分别带动不同的直齿条,驱动直齿条所啮合的齿轮,使发电机中心轴产生同向连续扭力,并与中空重物托板在车身振动时的共振的作用力进行叠加,使发电机发电。
所述直齿条通过设置在振动导向框架上的滑块滑轨结构保持竖直方向的移动,齿轮和直齿条设置有多组,每根直齿条都由杠杆带动。
采用支点设置在车轴处的杠杆后,所述杠杆的动力端连接簧上车身受力横梁,杠杆的阻力端带动直齿条,杠杆包括省力杠杆和/或费力杠杆,省力杠杆的动力端的力臂大于阻力端的力臂,费力杠杆的动力端的力臂小于阻力端的力臂。如附图1中整体装置的结构图所示意,采用一根省力杠杆和两根费力杠杆的设置。
一根省力杠杆的动力端设置在离杠杆的支点即车轴较远的一个簧上车身受力横梁上,省力杠杆的动力端与阻力端设置在支点两侧,阻力端连接着与发电机中心轴上的内套有单向轴承的齿轮啮合的一段直齿条上,能在汽车启动及簧上车身的压缩行程中,克服动能发电装置的启动扭矩使发电机中心轴开始转动。
两根费力杠杆包括使直齿条的移动与车身振动方向一致的同向费力杠杆,同向费力杠杆的动力端和阻力端设置在支点同侧,通过同向费力杠杆,直齿条获得大于簧上车身振幅的位移,提高捕捉振动能量的效率;和使直齿条的移动与车身振动方向相反的反向费力杠杆,反向费力杠杆的动力端和阻力端设置在支点两侧,能与同向费力杠杆结合驱动发电机中心轴持续旋转,同时在簧上车身的反弹行程中,克服发电机发电的转矩阻力,并将发电机发电的转矩阻力放大传导到簧上车身,作为抑振阻力实现车身抑振。
所述同向费力杠杆采用两段费力杠杆复合形式,第一段杠杆的动力端连接簧上车身受力横梁,阻力端连接第二段杠杆的动力端,第二段杠杆的阻力 端带动直齿条运动。如附图2中单三根杠杆的放大示意图中示意。
通过所述同向费力杠杆,使得直齿条获得大于簧上车身振幅的垂直位移,直齿条激励中空重物托板,使中空重物托板的振幅得到第一级放大;同时,直齿条通过啮合的设置在发电机中心轴上的单向驱动结构的小直径齿轮,对同轴的内套有单向轴承的大直径齿轮输出扭矩,使大直径齿轮获得了大的转角位移,通过大直径齿轮在啮合的由省力杠杆带动的直齿条上滚动,使中空重物托板获得了大的垂直位移,从而使中空重物托板再一次受到第二级的振幅放大。
所述大转角高扭矩的单向驱动机构采用小直径齿轮的两端各同轴连接有一个大直径的单向轴承,两个单向轴承为同向受力,所述小直径齿轮的轴心为空心设置,两个单向轴承的中心轴非接触地穿过所述小直径齿轮的轴心将两个单向轴承同轴连接在一起,两个单向轴承的输出轴带动发电机中心轴,形成大转角高扭矩的单向驱动机构。如附图3所示意。
整体结构中,所述中空重物托板通过直线轴承套装在光轴上,光轴垂直固定在振动导向框架上,所述振动导向框架设置在车轴处的扭力支撑架上。在所述振动导向框架的上下横梁之间设置有竖直方向的滑轨,滑轨上安装有滑块,所述直齿条固定在滑块上。所述中空重物托板通过四根拉簧悬吊在簧上车身受力横梁上。采用本结构的设置,中空重物托板的重力和受力主要直接作用于簧上车身受力横梁。而直齿条通过滑块滑轨结构,除了能够将振动力作用于发电机中心轴上外,也避免了振动导向框架的直接受力。安装时,振动框架可以设置在车轴的前方或后方。
如附图2中所示意,所述费力杠杆或省力杠杆的阻力端通过设置有双排滚轴中空通孔的连接件带动直齿条,所述连接件与直齿条固定连接,所述费力杠杆或省力杠杆的阻力端前端设置为曲面弧形,穿过所述双排滚轴中空通 孔,能最大程度使直齿条获得在竖直方向的位移和受力,从而将费力杠杆或省力杠杆阻力端获得的摆角位移转化为直齿条的垂直位移。
本发明的基于杠杆原理的电动汽车共振发电优化方法和结构通过杠杆的设置,将簧上车身的振动通过杠杆传导作用在中空重物托板,以及发电机中心轴上,同时还与设置了弹性系统的中空重物托板的与簧上车身振动的共振结合,能够在车身振动很小时放大了振幅的作用距离,提高了振动能量的捕捉效率,也能起到对车身的抑振;简化了多组复合弹性系统的设置,还提高了振动能量的转化效率,使汽车的能源消耗得到巨大的改善。

Claims (16)

  1. 一种基于杠杆原理的电动汽车共振发电优化方法,包括设置于簧上车身处具有垂直弹性系统的中空重物托板上的动能发电装置,动能发电装置包括发电机和增速器,以及在发电机中心轴上设置的内套有单向轴承的齿轮,所述齿轮单侧啮合有直齿条,其特征在于:所述中空重物托板与簧上车身具有相同的固有频率,所述直齿条被杠杆带动,杠杆的支点设置在车轴上,杠杆动力端固定连接簧上车身,承接簧上车身的振动力,杠杆阻力端带动直齿条沿垂直固定在振动导向框架上的滑轨上下移动,克服发电机转矩阻力;在簧上车身的压缩及反弹行程中,杠杆通过直齿条,驱动直齿条所啮合的齿轮,使发电机中心轴转动,并与中空重物托板在车身振动时的共振的作用力进行叠加,使发电机发电。
  2. 如权利要求1所述的基于杠杆原理的电动汽车共振发电优化方法,其特征在于:所述杠杆通过分别带动不同的直齿条,驱动直齿条所啮合的不同的齿轮,使发电机中心轴同向连续转动。
  3. 如权利要求1所述的基于杠杆原理的电动汽车共振发电优化方法,其特征在于:所述杠杆包括省力杠杆和/或费力杠杆,省力杠杆的动力端的力臂大于阻力端的力臂,费力杠杆的动力端的力臂小于阻力端的力臂。
  4. 如权利要求3所述的基于杠杆原理的电动汽车共振发电优化方法,其特征在于:所述费力杠杆包括使直齿条的移动与车身振动方向一致的同向费力杠杆,同向费力杠杆的动力端和阻力端设置在支点同侧,在簧上车身的压缩行程中,通过同向费力杠杆,克服发电机的转矩阻力而发电,直齿条获得大于簧上车身振幅的位移。
  5. 如权利要求3所述的基于杠杆原理的电动汽车共振发电优化方法,其特征在于:所述费力杠杆还包括使直齿条的移动与车身振动方向相反的反向费力杠杆,反向费力杠杆的动力端和阻力端设置在支点两侧,在簧上车身的 反弹行程中,克服发电机发电的转矩阻力,并与同向费力杠杆结合连续驱动发电机中心轴持续旋转,并将发电机发电的转矩阻力放大传导到簧上车身,作为抑振阻力实现车身抑振,取代了减振板簧或减振器。
  6. 如权利要求3或4所述的基于杠杆原理的电动汽车共振发电优化方法,其特征在于:所述省力杠杆的动力端和阻力端设置在支点两侧,使直齿条的移动与车身振动方向相反,在电动汽车启动时带动直齿条克服动能发电装置的启动扭矩,并在簧上车身的压缩行程中,对发电机中心轴产生的扭力与设置在对侧的同向费力杠杆相同。
  7. 一种应用如权利要求1所述的基于杠杆原理的电动汽车共振发电优化方法的结构,其特征在于:包括设置有垂直方向的弹性系统的、与簧上车身连接的中空重物托板和设置在中空重物托板上的动能发电装置,动能发电装置包括设置在发电机中心轴上的内套有单向轴承的齿轮,所述齿轮一侧啮合有直齿条,所述齿轮和直齿条设置有多组,每根直齿条由杠杆带动进行上下移动,杠杆的动力端固定连接簧上车身受力横梁,杠杆的支点设置在车轴上,杠杆的阻力端带动直齿条运动。
  8. 如权利要求7所述的结构,其特征在于:所述杠杆包括省力杠杆和/或费力杠杆,省力杠杆的动力端的力臂大于阻力端的力臂,费力杠杆的动力端的力臂小于阻力端的力臂。
  9. 如权利要求8所述的结构,其特征在于:所述费力杠杆包括使直齿条的移动与车身振动方向一致的同向费力杠杆,能将车身振动的作用距离放大,提高振动能量的捕捉效率,和使直齿条的移动与车身振动方向相反的反向费力杠杆,能与同向费力杠杆结合驱动发电机中心轴持续旋转,同时能将发电机转矩阻尼放大从而减小车身振动,起到对车身的抑振。
  10. 如权利要求9所述的结构,其特征在于:所述同向费力杠杆的动力端 和阻力端设置在支点同侧,采用两段费力杠杆复合形式,第一段杠杆的动力端连接簧上车身受力横梁,阻力端连接第二段杠杆的动力端,第二段杠杆的阻力端带动直齿条运动。
  11. 如权利要求9所述的结构,其特征在于:所述同向费力杠杆连接的直齿条啮合的齿轮采用大转角高扭矩的单向驱动机构。
  12. 如权利要求11所述的结构,其特征在于:所述大转角高扭矩的单向驱动机构采用小直径齿轮的两端各通过联轴件同轴连接有一个大直径的单向轴承,两个单向轴承为同向受力,所述小直径齿轮的轴心为空心设置,两个单向轴承的中心连接轴非接触地穿过所述小直径齿轮的轴心将两个单向轴承同轴连接在一起,所述小直径齿轮受力后通过两个单向轴承的输出带动发电机中心轴,形成大转角高扭矩的单向驱动机构。
  13. 如权利要求7至12之一所述的结构,其特征在于:所述中空重物托板通过直线轴承套装在光轴上,光轴垂直固定在振动导向框架上,所述振动导向框架设置在车轴处的扭力支撑架上。
  14. 如权利要求13所述的结构,其特征在于:在所述振动导向框架的上下横梁之间设置有竖直方向的滑轨,滑轨上安装有滑块,所述直齿条固定在滑块上,通过滑块滑轨结构保持竖直方向的移动,使得振动导向框架在振动过程中不受到来自直齿条的作用力。
  15. 如权利要求7至12之一所述的结构,其特征在于:所述中空重物托板通过四根拉簧悬吊在簧上车身受力横梁上。
  16. 如权利要求7所述的结构,其特征在于:所述费力杠杆或省力杠杆的阻力端通过设置有双排滚轴中空通孔的连接件带动直齿条,所述连接件与直齿条固定连接,所述费力杠杆或省力杠杆的阻力端前端设置为曲面弧形,穿过所述双排滚轴中空通孔。
PCT/CN2017/085397 2016-06-29 2017-05-22 基于杠杆原理的电动汽车共振发电优化方法和结构 WO2018000994A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610496171.7A CN105971834B (zh) 2016-06-29 2016-06-29 基于杠杆原理的电动汽车共振发电优化方法和结构
CN201610496171.7 2016-06-29

Publications (1)

Publication Number Publication Date
WO2018000994A1 true WO2018000994A1 (zh) 2018-01-04

Family

ID=57019537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085397 WO2018000994A1 (zh) 2016-06-29 2017-05-22 基于杠杆原理的电动汽车共振发电优化方法和结构

Country Status (2)

Country Link
CN (1) CN105971834B (zh)
WO (1) WO2018000994A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112356664A (zh) * 2020-05-26 2021-02-12 韩军 汽车减震发电装置系统
CN115030446A (zh) * 2022-06-15 2022-09-09 中国一冶集团有限公司 一种建筑垃圾运输管道

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105971834B (zh) * 2016-06-29 2018-07-10 杨亦勇 基于杠杆原理的电动汽车共振发电优化方法和结构
CN107013430B (zh) * 2017-05-09 2019-04-19 杨亦勇 用于电动汽车共振发电的杠杆侧向受力减轻方法
CN107061589B (zh) * 2017-05-09 2023-04-07 西南交通大学 一种基于车辆振动的馈能减震器
CN106907307B (zh) * 2017-05-09 2020-12-22 杨亦勇 基于电动汽车共振发电结构重力的振动导向方法
CN106949027B (zh) * 2017-05-09 2019-04-09 杨亦勇 基于电动汽车共振发电的双轴杠杆驱动装置
CN108626085B (zh) * 2018-04-24 2020-02-14 杨亦勇 一种基于电动汽车共振发电的液压分流驱动方法
CN108644081B (zh) * 2018-04-24 2020-04-21 杨亦勇 基于杠杆效应的电动汽车共振发电液压驱动方法和装置
CN112796967B (zh) * 2020-12-28 2023-06-13 西南交通大学 一种杠杆式震动发电装置
CN112709120B (zh) * 2021-01-20 2022-04-26 山东衢通建工有限公司 一种四轴共振破碎机
CN112790147B (zh) * 2021-01-31 2022-11-22 伊瓦特机器人设备制造有限公司 一种活鱼运输缓震装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132336A (ja) * 2006-03-30 2007-05-31 Sei Hybrid Kk 波力発電装置
CN202557315U (zh) * 2012-06-01 2012-11-28 北京航空航天大学 一种电动汽车用增程器装置
CN103195677A (zh) * 2012-04-18 2013-07-10 杨亦勇 一种将频率共振应用于汽车动能发电的方法和结构
CN103267000A (zh) * 2012-06-05 2013-08-28 杨亦勇 一种提高汽车动能发电效率的方法和装置
CN104791207A (zh) * 2015-03-18 2015-07-22 沈阳建筑大学 转动惯性驱动的弹性共振发电装置
CN105971834A (zh) * 2016-06-29 2016-09-28 杨亦勇 基于杠杆原理的电动汽车共振发电优化方法和结构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020194939A1 (en) * 2001-06-20 2002-12-26 Cox James Edward Inertial oscillator control system
CN1208552C (zh) * 2001-11-15 2005-06-29 应建新 振动发电装置
CN201934271U (zh) * 2010-08-18 2011-08-17 浙江兴美电动汽车有限公司 电动汽车利用震动自发电的装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132336A (ja) * 2006-03-30 2007-05-31 Sei Hybrid Kk 波力発電装置
CN103195677A (zh) * 2012-04-18 2013-07-10 杨亦勇 一种将频率共振应用于汽车动能发电的方法和结构
CN202557315U (zh) * 2012-06-01 2012-11-28 北京航空航天大学 一种电动汽车用增程器装置
CN103267000A (zh) * 2012-06-05 2013-08-28 杨亦勇 一种提高汽车动能发电效率的方法和装置
CN104791207A (zh) * 2015-03-18 2015-07-22 沈阳建筑大学 转动惯性驱动的弹性共振发电装置
CN105971834A (zh) * 2016-06-29 2016-09-28 杨亦勇 基于杠杆原理的电动汽车共振发电优化方法和结构

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112356664A (zh) * 2020-05-26 2021-02-12 韩军 汽车减震发电装置系统
CN115030446A (zh) * 2022-06-15 2022-09-09 中国一冶集团有限公司 一种建筑垃圾运输管道
CN115030446B (zh) * 2022-06-15 2023-05-16 中国一冶集团有限公司 一种建筑垃圾运输管道

Also Published As

Publication number Publication date
CN105971834B (zh) 2018-07-10
CN105971834A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
WO2018000994A1 (zh) 基于杠杆原理的电动汽车共振发电优化方法和结构
WO2013181927A1 (zh) 一种提高汽车动能发电效率的方法和装置
CN109826480A (zh) 单向阻尼铰装置及应用其进行结构被动振动控制的方法
WO2013155876A1 (zh) 一种将频率共振应用于汽车动能发电的方法和结构
CN110762150A (zh) 减震器
CN107061607A (zh) 一种汽车振动能量回收利用阻尼器
CN106224188B (zh) 一种主动避震发电装置
TWI425157B (zh) 使用力矩臂設計之馬達馬力放大裝置
CN106828001A (zh) 一种新能源客车
CN109807059B (zh) 一种双偏心凸轮轴自同步驱动直线振动筛
CN106014898B (zh) 一种基于费力杠杆的电动汽车共振发电的车身抑振方法
CN106150944B (zh) 一种基于费力杠杆的电动汽车共振发电的振动捕捉方法
US7735386B2 (en) Power generation device
CN202147597U (zh) 汽车减震节能加速器
JP5705618B2 (ja) 振動発電装置
CN216814557U (zh) 一种具有减震功能的中央空调管道
CN210680977U (zh) 一种磁吸附式爬壁机器人
CN209756867U (zh) 一种基于多级缓冲的汽车座椅减震系统
CN102155189A (zh) 游梁式抽油机用平衡变矩装置
CN106522726B (zh) 宽通道剪式扇门驱动装置
CN206138731U (zh) 儿童摇摆机机座
CN206494453U (zh) 一种轨道物流小车驱动齿轮缓冲装置
CN105235466B (zh) 一种基于滚珠配合的板簧减震器发电机构
CN220527813U (zh) 一种压电-机械电磁复合式电动拖拉机振动馈能装置
CN108644081A (zh) 基于杠杆效应的电动汽车共振发电液压驱动方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17818991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17818991

Country of ref document: EP

Kind code of ref document: A1