WO2018000987A1 - 通知方法及相关装置 - Google Patents

通知方法及相关装置 Download PDF

Info

Publication number
WO2018000987A1
WO2018000987A1 PCT/CN2017/085291 CN2017085291W WO2018000987A1 WO 2018000987 A1 WO2018000987 A1 WO 2018000987A1 CN 2017085291 W CN2017085291 W CN 2017085291W WO 2018000987 A1 WO2018000987 A1 WO 2018000987A1
Authority
WO
WIPO (PCT)
Prior art keywords
air interface
contention
synchronization
window
synchronization signal
Prior art date
Application number
PCT/CN2017/085291
Other languages
English (en)
French (fr)
Inventor
张言飞
张武荣
于光炜
温容慧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018000987A1 publication Critical patent/WO2018000987A1/zh

Links

Images

Definitions

  • the present application relates to the field of communications, and in particular to an air interface configuration notification technique.
  • the wireless communication network/system can simultaneously support the competitive access mode and the contention-free access mode in the air interface technology. Therefore, in some or some cases, different time segments can be allocated to the competitive connection. Incoming and contention-free access to obtain the respective advantages of the two types of access methods, enriching the applicability of the scenario. In other cases, only competitive access or contention-free access may be used.
  • a possible implementation manner of notifying the current air interface configuration of the terminal is: the base station broadcasts a broadcast message carrying the air interface configuration on a specific physical channel, and the terminal receives and decodes the broadcast. After the message, the RIC is obtained, so that the specific air interface configuration selected by the system is obtained.
  • the foregoing implementation manner requires the terminal to obtain the air interface configuration after the decoding of the broadcast information is completed. At the same time, the air interface configuration occupies multiple bits of the radio frame for transmission, that is, the system overhead is occupied.
  • the present application provides a method and related apparatus, which can save system overhead.
  • the embodiment of the present invention provides the following technical solutions:
  • the embodiment of the present application provides a notification method, in which the network device determines the currently configured air interface configuration, and determines the synchronization of the currently adopted air interface configuration phase mapping according to at least the corresponding relationship between the air interface configuration and the synchronization signal group.
  • the terminal receives and demodulates the synchronization signal group from the network device and is mapped to the currently adopted air interface configuration, and obtains the air interface configuration indicated by the synchronization signal group according to the corresponding relationship.
  • the air interface configuration includes at least one of a contention-free time window, a contention time window, and a synchronization window.
  • the contention-free time window supports a contention-free access mode
  • the contention time window supports a contention access mode.
  • the network device uses the synchronization signal group to implicitly indicate the air interface configuration, so that the terminal can obtain the current air interface configuration in the process of synchronization, and obtain the air interface configuration from the broadcast message earlier than the prior art.
  • the method further enables the terminal device to accurately acquire the time information of the subsequent communication resource, thereby adjusting the time for receiving the data.
  • the use of the synchronization signal group to carry the air interface configuration can also have the coverage performance of the synchronization signal.
  • the network device can determine (select) different air interface configurations according to different scenarios as the currently adopted air interface configuration, thereby providing more flexibility. For example, air interface configuration can be performed during network planning and is biased for a longer period of time (months). When there is a major change in the service characteristics of the network, another air interface configuration can be re-selected as the currently adopted air interface configuration.
  • the network device may continuously send a synchronization signal group mapped to the currently adopted air interface configuration; correspondingly, the operation performed by the terminal in the synchronization window may include: receiving and demodulating the synchronization signal Group, obtain the air interface configuration implicitly indicated by the synchronization signal group.
  • the purpose of continuously transmitting the synchronization signal group is to enable the terminal to acquire the synchronization signal as soon as possible to achieve synchronization.
  • the centralized transmission of the synchronization signal group in the synchronization window allows some terminals to quickly synchronize before the system acquires the usage right of the channel.
  • the network device can periodically transmit a synchronization signal group that is mapped to the currently employed air interface configuration. More specifically, the network device may send a synchronization signal group, a broadcast message, a control (or scheduling) message, and the like on the physical channel according to the agreed time-frequency resource.
  • the terminal for example, the terminal
  • the terminal can receive the synchronization signal group, the broadcast message, the control (or scheduling) message on the physical channel according to the agreed time and physical resources in the contention-free window, and upload the allocated time-frequency resource.
  • the synchronization signal group mapped to the currently adopted air interface configuration is still periodically transmitted in the contention-free window, so that the terminal waking up in the contention-free window can be synchronized.
  • the synchronization signal group includes N synchronization signals, each synchronization signal corresponds to multiple optional synchronization sequences, and different synchronization sequence combinations of N synchronization signals are mapped with different air interface frame configuration information (air interface)
  • the frame configuration information includes at least an air interface configuration.
  • the foregoing correspondence may specifically include a mapping relationship between the synchronization sequence combination and the air interface frame configuration information.
  • the network device and the terminal may pre-map the relationship.
  • the specific manner in which the network device sends the synchronization signal group may include: the network device determines, according to the mapping relationship, a synchronization sequence combination with the air interface frame configuration information that includes the currently configured air interface configuration, and sends the determined synchronization sequence. combination. Therefore, the terminal can quickly obtain the current air interface configuration.
  • the network device and the terminal may pre-agreed a mapping relationship between the transmission location combination and the air interface frame configuration information.
  • the specific manner for the network device to send the synchronization signal group may include: determining, by the network device, the respective transmission positions of the N synchronization signals according to the mapping relationship (the combination of the transmission positions of the N synchronization signals, and the air interface configuration including the currently adopted The air interface frame configuration information is mapped; the network device transmits the N synchronization signals according to the determined transmission location. Therefore, the terminal can quickly obtain the current air interface configuration.
  • the air interface configuration may include a synchronization window and a contention-free window, where: the contention-free window includes three air interface frames, each of the air interface frames includes 8 subframes, and each air interface frame corresponds to one contention-free competition.
  • the frame number in the window is ICFN, and each subframe corresponds to one subframe number.
  • the sync window length is 160ms and the contention free window length is 3.84s. This design can be applied to China and Europe and the United States.
  • the air interface configuration may include a sync window, a contention free window, and a contention window.
  • This air interface configuration design adapts to scenarios with different systems.
  • the contention free window includes two air interface frames, and the contention window includes one air interface frame.
  • each air interface frame includes 8 subframes, and each subframe corresponds to one subframe number; each air interface frame in the contention-free window corresponds to one ICFN. More specifically, the length of the synchronization window is 160 ms, the length of the contention free window is 2.56 s, and the length of the contention window is 1.28 s.
  • the basic length of the air interface configuration is 4 seconds, which is also applicable to China and Europe and the United States; in another example, the contention free window may include 2 subframes, the contention window includes 4 subframes, and each subframe corresponds to one subframe. number. More specifically, the length of the sync window can be 80 ms, the length of the contention free window can be 320 ms, and the length of the contention window can be 640 ms. In this way, the total duration of the contention-free window and the synchronization window is 400ms, which is suitable for the requirement of "distortion duration" of up to 400 milliseconds in Japan and South Korea.
  • the air interface configuration includes a synchronization window, a contention free window (CFW), and a contention window, and the contention free window is used to transmit downlink feedback and downlink control information.
  • the contention free window takes a short time. For example, it can include only one subframe, and the subframe length is 160 ms.
  • This configuration can be regarded as a CBW-only configuration, which is suitable for scenarios with complex interference environments.
  • the foregoing air interface frame configuration information may further include at least one of an air interface technology version number, a cell identifier ID, an ICFN, and a subframe number to further reduce the number of occupied bits.
  • the embodiment of the present invention provides another notification method, including: determining, by the network device, the currently configured air interface configuration, and determining, according to at least the corresponding relationship between the air interface configuration and the synchronization signal, the synchronization signal of the currently adopted air interface configuration phase mapping.
  • Sending; the terminal receives and demodulates the synchronization signal from the network device and is mapped to the currently adopted air interface configuration, and obtains the air interface configuration indicated by the synchronization signal according to the corresponding relationship.
  • the air interface configuration includes at least one of a contention-free time window, a contention time window, and a synchronization window.
  • the contention-free time window supports a contention-free access mode
  • the contention time window supports a contention access mode.
  • the network device implicitly indicates the air interface configuration by using the synchronization signal, so that the terminal can obtain the current air interface configuration in the process of synchronization, and the manner of obtaining the air interface configuration from the broadcast message is earlier than the prior art.
  • the terminal device can accurately acquire the time information of the subsequent communication resources, and then adjust the receiving time of the data.
  • using the synchronization signal to carry the air interface configuration it is also possible to have the coverage performance of the synchronization signal.
  • the network device can determine (select) different air interface configurations according to different scenarios, thereby providing more flexibility. For example, air interface configuration can be performed during network planning and is biased for a longer period of time (months). When there is a major change in the service characteristics of the network, another air interface configuration can be re-selected as the currently adopted air interface configuration.
  • the network device may continuously send a synchronization signal mapped to the currently adopted air interface configuration; correspondingly, the operation performed by the terminal in the synchronization window may include: receiving and demodulating the synchronization signal, Get the air interface configuration implicitly indicated by the synchronization signal.
  • the purpose of continuously transmitting the synchronization signal is to enable the terminal to acquire the synchronization signal as soon as possible to achieve synchronization.
  • the centralized transmission of the synchronization signal in the synchronization window allows some terminals to quickly synchronize before the system acquires the usage right of the channel.
  • the network device may periodically transmit a synchronization signal that is mapped to the currently employed air interface configuration. More specifically, the network device may send a synchronization signal, a broadcast message, a control (or scheduling) message, and the like on the physical channel according to the agreed time-frequency resource.
  • the terminal for example, the terminal
  • the terminal can receive the synchronization signal, the broadcast message, the control (or scheduling) message on the physical channel according to the agreed time and physical resources in the contention-free window, and transmit on the allocated time-frequency resource. Data to the base station.
  • the synchronization signal that is mapped to the currently adopted air interface configuration is still periodically transmitted in the contention-free window, so that the terminal waking up in the contention-free window can be synchronized.
  • the synchronization signal may correspond to a plurality of optional synchronization sequences, and different synchronization sequences are mapped to different air interface frame configuration information; and the foregoing correspondence may specifically include a synchronization sequence and air interface frame configuration information.
  • Mapping relationship In one example, the network device and the terminal may pre-agreed a mapping relationship between the synchronization sequence and the air interface frame configuration information.
  • the specific manner in which the network device sends the synchronization signal that is mapped to the currently configured air interface configuration may include: the network device determines, according to the mapping relationship, a synchronization sequence that is mapped to the air interface frame configuration information that includes the currently configured air interface configuration, and sends the synchronization sequence. The determined synchronization sequence. Therefore, the terminal can quickly obtain the current air interface configuration.
  • an embodiment of the present invention provides a notification method, including: receiving and demodulating a network device from a terminal a synchronization signal group that is mapped to the currently configured air interface configuration; the terminal acquires an air interface configuration indicated by the synchronization signal group according to a correspondence between the air interface configuration and the synchronization signal group; or, the terminal receives and demodulates the source The synchronization signal of the network device that is mapped to the air interface configuration that is currently used; the terminal acquires the air interface configuration indicated by the synchronization signal according to the correspondence between the air interface configuration and the synchronization signal.
  • the air interface configuration may include a synchronization window and a contention-free window, where: the contention-free window includes three air interface frames, each of the air interface frames includes 8 subframes, and each air interface frame corresponds to one contention-free competition.
  • the frame number in the window is ICFN, and each subframe corresponds to one subframe number.
  • the sync window length is 160ms and the contention free window length is 3.84s. This design can be applied to China and Europe and the United States.
  • the air interface configuration may include a sync window, a contention free window, and a contention window.
  • This air interface configuration design adapts to scenarios with different systems.
  • the contention free window includes two air interface frames, and the contention window includes one air interface frame.
  • each air interface frame includes 8 subframes, and each subframe corresponds to one subframe number; each air interface frame in the contention-free window corresponds to one ICFN. More specifically, the length of the synchronization window is 160 ms, the length of the contention free window is 2.56 s, and the length of the contention window is 1.28 s.
  • the basic length of the air interface configuration is 4 seconds, which is also applicable to China and Europe and the United States; in another example, the contention free window may include 2 subframes, the contention window includes 4 subframes, and each subframe corresponds to one subframe. number. More specifically, the length of the sync window can be 80 ms, the length of the contention free window can be 320 ms, and the length of the contention window can be 640 ms. In this way, the total duration of the contention-free window and the synchronization window is 400ms, which is suitable for the requirement of "distortion duration" of up to 400 milliseconds in Japan and South Korea.
  • the air interface configuration includes a synchronization window, a contention free window (CFW), and a contention window, and the contention free window is used to transmit downlink feedback and downlink control information.
  • the contention free window takes a short time. For example, it can include only one subframe, and the subframe length is 160 ms.
  • This configuration can be regarded as a CBW-only configuration, which is suitable for scenarios with complex interference environments.
  • the foregoing air interface frame configuration information may further include at least one of an air interface technology version number, a cell identifier ID, an ICFN, and a subframe number to further reduce the number of occupied bits.
  • the embodiment of the invention provides a network device, which has the function of realizing the behavior of the network device in the actual method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the network device includes: a processor and a memory, the processor executing the execution of the network device by running a software program stored in the memory, calling data stored in the memory Methods.
  • an embodiment of the present invention provides a terminal, where the terminal has a function of implementing a terminal behavior in the actual method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the terminal includes: a processor and a memory, the processor executing the above method performed by the terminal by running a software program stored in the memory, calling data stored in the memory .
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the network device, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the terminal, including a program designed to perform the above aspects.
  • the network device implicitly indicates the air interface configuration by using a synchronization signal group or a synchronization signal, so that the terminal can acquire the current air interface configuration in the process of synchronization, instead of waiting to decode the broadcast message, and then acquiring it, before the current
  • the technology obtains the air interface configuration from the broadcast message, so that the terminal device can accurately acquire the time information of the subsequent communication resource, and then adjust the receiving time of the data.
  • the use of the synchronization signal to indicate the carrying of the air interface configuration can also have the coverage performance of the synchronization signal.
  • 1a is a schematic diagram of an Internet of Things provided by an embodiment of the present application.
  • FIG. 1b is a schematic diagram of an application environment provided by an embodiment of the present application.
  • FIGS. 2a-2d are schematic diagrams of air interface configuration provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of relative positions of two synchronization signals according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a general-purpose computer of a network device or a terminal according to an embodiment of the present invention.
  • the embodiment of the present application is to protect the notification method and the related device (notifying device, terminal, base station, cellular communication system), and can be applied to, for example, the Internet of Things shown in FIG. 1a, or other various communication technologies/networks/systems competing for coexistence. .
  • the above various communication technologies/systems may include a wireless communication technology/network/system that simultaneously supports a contention-free access mode and a contention access mode, such as a cellular communication technology/network/system (LTE, CDMA, UMTS, GSM), a digital cluster.
  • a wireless communication technology/network/system such as a cellular communication technology/network/system (LTE, CDMA, UMTS, GSM), a digital cluster.
  • Communication technology/network/system broadcast television communication technology/network/system, and many private communication technologies/networks/systems (such as IEEE 802.15.4 series, IEEE 802.11ah) or new network systems.
  • the above-mentioned wireless communication technology/network/system supporting the competition-free access mode and the competitive access mode can be applied to smart meter reading and backhaul, sensor data collection and alarm in the factory, smart home, smart office and the like. It can work in unlicensed frequency bands (spectrum), and can support both competing and contention-free access on unlicensed spectrum. For licensed spectrum, it can only support contention-free access, or support competitive access and exemption. Competitive access.
  • the competitive access method is more suitable for users who work intermittently, and the multiple access technology of the contention-free access mode (such as scheduling, reservation, and on-demand allocation) can obtain better real-time performance and higher spectrum utilization. And reliability.
  • the multiple access technology of the contention-free access mode such as scheduling, reservation, and on-demand allocation
  • the terminal device may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • RAN can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • It can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • a wireless terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, or an access point.
  • Remote Terminal Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • the network device involved in the embodiments of the present invention may be a base station, or an access point, or may refer to a device in the access network that communicates with the wireless terminal through one or more sectors on the air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE. This application is not limited.
  • FIG. 1b shows an application environment of a wireless cellular communication technology/network/system supporting both a contention-free access mode and a contention access mode: applied to a base station (or control node or access node) 101 and similar to terminal 102. Any number of terminals of the terminal 104 communicate.
  • the base station (or the control node or the access node) 101 is mainly responsible for receiving data and request information reported by each terminal, and transmitting synchronization, broadcast, and control signals to the terminal, allocating physical resources for the terminal, and scheduling the terminal device.
  • the base station is a device deployed in the radio access network to provide wireless communication functions for the mobile terminal, and may include various forms of macro base stations, micro base stations, and relay stations. Access points and more.
  • the name of a device having a base station function may be different.
  • an evolved Node B evolved Node B: eNB or eNodeB
  • Node B In the 3G network, it is called Node B and so on.
  • the above-mentioned devices for providing wireless communication functions to mobile terminals are collectively referred to as base stations or BSs.
  • the terminal 102 and the terminal 104 are mainly responsible for accessing the base station according to synchronization, broadcasting, and control signals of the base station, and receiving the message of the base station.
  • the terminal may be various handheld devices with wireless communication functions, in-vehicle devices, wearable devices, computing devices, positioning devices or other processing devices connected to the wireless modem, and various forms of User Equipment (UE), Mobile station (MS), terminal equipment (Terminal Equipment) and so on.
  • the terminal may also be a device integrating the sensor and the communication module, for example, a smoke alarm that triggers reporting of an alarm message, or a plant temperature measuring device that can periodically report data, a smart water meter, and the like.
  • Air interface configuration Radio Interface Configure, RIC;
  • SS Synchronization Signal, synchronization signal
  • AFA Adaptive Frequency Agility, adaptive frequency switching frequency hopping
  • Duty cycle Duty Cycle
  • CCA Clear channel access: idle channel access
  • Clear Channel Detection Window CCA Operation
  • Channel Listening Window Sleep Window
  • the length of time is uncertain.
  • the CSA operation window is used herein to refer to the idle channel detection window/channel listening window/sleep window.
  • the LBT method can be used to obtain the channel usage right, so the specific length of the window is uncertain.
  • the base station or control node or access node
  • the behavior of the base station (or control node or access node) and the terminal in the CCA window is as follows:
  • the base station listens for the available channel (or channel or band) on the operating band (the operating band can include at least one of the licensed band and the unlicensed band). If there is a signal on the channel (or channel or band), the channel (or channel or band) is considered "busy", the CCA operation window continues; if there is no signal on the channel (or channel or band), then The channel is in the "free” state, the channel (or channel or band) is available, and the CCA Operation window ends.
  • the terminal sleeps in the CCA operation window or listens to whether there is a signal sent by the base station.
  • the communication system needs to acquire channel usage rights by using LBT (+AFA or AFA equivalent technology) in the CCA operation window, and obtain channel usage rights, in the communication system.
  • the device can communicate by using at least one of a contention access method and a contention-free access method.
  • Synchronization Window/Synchronization Head/Synchronization Time Window For the sake of simplicity, this document refers to the synchronization window/synchronization header/synchronization time window.
  • the behavior of the base station (or control node or access node) and the terminal in the synchronization window is as follows:
  • the base station (or the control node or the access node) continuously transmits the synchronization signal or the synchronization signal group, and the purpose thereof is to enable the terminal to acquire the synchronization signal as soon as possible to achieve synchronization;
  • the terminal can receive and demodulate the synchronization signal or the synchronization signal group in the synchronization window, and acquire the air interface frame configuration information implicitly carried by the synchronization signal or the synchronization signal group, such as a frame number, a subframe number, etc., and the terminal can know that the synchronization time is The first few subframes of the first few frames, in turn, know when to receive the PBCH (broadcast channel), acquire system messages, and the like.
  • PBCH broadcast channel
  • the near-end user (the user closer to the base station) can successfully demodulate by receiving a small number of synchronization signal groups or synchronization signals, and the remote user needs to receive many synchronization signal groups or synchronization signals to succeed. demodulation.
  • the synchronization signal is transmitted in a specific subframe of each radio frame, and the transmission period is long, which causes the remote user to take a long time to synchronize, which wastes valuable channel usage time. .
  • the present invention increases the synchronization window, and the synchronization signal can be sent multiple times in the synchronization window, so that some terminals can be quickly synchronized before the system acquires the usage right of the channel.
  • Contention free window (CFW, contention free window) / contention free time period / scheduling window / scheduling time period:
  • the contention avoidance window in this document refers to the contention free window / competition free time period / scheduling window / scheduling time period.
  • the behavior of the base station (or control node or access node) and the terminal is as follows:
  • the base station (or the control node or the access node) transmits a synchronization signal (or synchronization signal group), a broadcast message, a control (or scheduling) message on the physical channel according to the agreed time-frequency resource.
  • the terminal receives the synchronization signal (or synchronization signal group), the broadcast message, the control (or scheduling) message on the physical channel according to the agreed time and physical resources, and transmits the data to the base station (or the control node or the allocated time-frequency resource) Connect Into the node).
  • the base station (or the control node or the access node) and the terminal allocate time-frequency resources and transmit data similar to the traditional cellular technology, and the base station (or the control node or the access node) can cycle in the contention-free window.
  • a synchronization signal (or a synchronization signal group) is transmitted, for example, a synchronization signal (or a synchronization signal group) is transmitted on a fixed subframe.
  • the base station (or control node or access node) has continuously transmitted the synchronization signal (or synchronization signal group). However, it is also necessary to send a sync signal (or sync signal group) within the contention free window:
  • the terminal may be a smoke alarm, a factory temperature measuring device that periodically reports data, a smart water meter, etc., such devices require power control, and the transceiver cannot be turned on all the time. It is possible to report the data once in an hour. When the data is uploaded, it wakes up and reports, and the other time can sleep and save power. Sending the synchronization signal (or synchronization signal group) in the contention-free window can synchronize the terminal waking up in the window. Otherwise, the channel usage time needs to be ended, and the synchronization can be realized after the next acquisition of the channel.
  • the contention-free competition window refers to the competition window/competition time period/competition time period.
  • the behavior of the base station (or control node or access node) and the terminal is as follows:
  • a base station (or a control node or an access node): receiving data or other messages reported by the terminal;
  • Terminal Send data to the base station (or control node or access node) in LBT or low duty cycle mode.
  • the terminal waking up in the contention window needs to wait until the next synchronization window or the contention-free window for synchronization.
  • the contention-free window includes three air interface frames.
  • the frame length of each air interface frame is 1.28 s.
  • Each air interface frame in the contention-free window corresponds to an intra-competitive window frame number (ICFN, Inner CFW Frame Number).
  • Each air interface frame may include 8 subframes, each subframe is 160 ms, and each subframe corresponds to one subframe number, and 8 subframe numbers are required, that is, 3 bits are required to indicate.
  • the basic length of RIC#0 is 4 seconds. Applicable to China and Europe and the United States. It should be noted that the CCA operation in FIG. 2a to FIG. 2d does not belong to the air interface configuration.
  • Configuration 2 (No. RIC#1) Adapts to scenarios with different systems. Referring to Figure 2b, this configuration includes a 160ms sync window, a 2.56s contention free window, and a 1.28s contention window.
  • the contention-free window includes two air interface frames, and the contention window includes one air interface frame, and the frame length of each air interface frame is 1.28 s.
  • each of the above air interface frames includes 8 subframes, and each subframe corresponds to one subframe number.
  • Each air interface frame in the contention window corresponds to an ICFN.
  • the basic length of RIC#1 is 4 seconds, which is also applicable to China, Europe and America.
  • the farther terminal preferentially adopts the contention access mode (that is, preferentially accesses in the contention window), and the nearby terminal preferentially adopts the contention-free access mode (also That is, priority is given to access in the contention free window.
  • the base station (or the control node or the access node) broadcasts the near-far discriminating condition, and the terminal determines that it belongs to the near-end user or the remote user according to the obtained discriminating condition by judging the coverage level of the self, thereby clarifying that the user has priority.
  • Configuration 3 (No. RIC#2) Adapts to Japan and South Korea. See Figure 2c. This configuration includes an 80ms synchronization window, a 320ms contention free window, and a 640ms contention window.
  • the contention-free window includes 2 subframes, and the contention window includes 4 subframes. Each subframe corresponds to one subframe number.
  • Sub 1GHz refers to the band below 1 GHz
  • the regulations for the Sub 1GHz band not only limits the transmit power of the device, but also defines two air interface access methods:
  • LBT + AFA or AFA equivalent technology can be realized: the sender listens to whether the channel is idle before transmitting the signal, and the channel is available only when the channel is idle. If the intercepted channel is occupied, the sender needs to perform self-adapted frequency hopping, change one channel, or perform AFA equivalent measures, such as CSMA/CA backoff mechanism adopted by 802.11ah or 802.15.4;
  • Duty Cycle refers to the ratio of the total transmission time of the equipment within one hour of the unit time. In general, the duty cycle limit is 1% for each frequency band and 0.1% or 10% for individual frequency bands.
  • the so-called “conversation” refers to the form of communication in the form of a round.
  • the base station downlinks to the terminal to reply with an acknowledgement signal.
  • the base station does not need to listen to the channel before transmitting the downlink acknowledgment signal.
  • the base station After the base station preempts the channel, if the channel is utilized for "conversation", it can take a long time.
  • the form of "conversation” is not limited, it can be cellular scheduling, and it can be simple polling.
  • the base station and its connected terminals can communicate in a contention-free manner.
  • RIC#2 the total duration of the contention-free window and the synchronization window is 400ms, and the "session duration" required for the Japan-Korea region is up to 400 milliseconds.
  • the aforementioned RIC#0 is applicable to China and Europe and the United States.
  • Configuration 4 (No. RIC#3) Adapts to a scene with a complex interference environment. See Figure 2d. This configuration includes a synchronization window, a downstream window (CFW), and a contention window.
  • CCW downstream window
  • the CFW in the RIC#3 configuration is used for downlink feedback and downlink control information, and the occupation time is very short.
  • the CFW may include only one subframe, the subframe length may be 160 ms, and the synchronization window length is 160ms, the CBW window is typically 3.68s.
  • the CBW window can include 23 subframes. Each subframe corresponds to one subframe number, and each subframe has a length of 160 ms.
  • the network device base station or control node or access node in the communication network/system needs to inform the terminal which air interface configuration is currently adopted.
  • An embodiment of the present invention provides a notification method, and a network device and a terminal based on the method, after determining, by the network device, the currently configured air interface configuration, determining, according to at least the corresponding relationship between the air interface configuration and the synchronization signal group or the synchronization signal,
  • the currently used air interface configures a phased synchronization signal group or a synchronization signal, and transmits a synchronization signal group or a synchronization signal that implicitly indicates the currently used air interface configuration.
  • the terminal demodulates the received synchronization signal group or synchronization signal, performs synchronization, and obtains the currently adopted air interface configuration according to the above correspondence.
  • the air interface configuration is implicitly indicated by the synchronization signal group or the synchronization signal, so that the terminal can obtain the current air interface configuration in the process of synchronization, and the air interface configuration manner is obtained from the broadcast message earlier than the prior art.
  • the terminal device can accurately acquire the time information of the subsequent communication resources, and then adjust the receiving time of the data.
  • the use of the synchronization signal to indicate the carrying of the air interface configuration can also have the coverage performance of the synchronization signal.
  • the terminal can receive system broadcast message messages, control information (or scheduling information), receive and transmit data. It should be noted that different messages are sent on different physical channels, and obtaining an air interface configuration is a prerequisite for acquiring each physical channel pattern (resource allocation pattern).
  • FIG. 3 shows an exemplary flow of the interaction between the network device and the notification method performed by the terminal.
  • the network device sends a synchronization signal group, and the synchronization signal group includes N synchronization signals (N is not An integer less than 2), each synchronization signal has multiple optional synchronization sequences, and different air interface frame configuration information is mapped with different synchronization sequence combinations of N synchronization signals.
  • the interaction process includes:
  • the network device and the terminal pre-arrange the mapping relationship between the synchronization sequence combination of the N synchronization signals and the air interface frame configuration information in the synchronization signal group.
  • the foregoing reference relationship includes a mapping relationship between the synchronization sequence combination and the air interface frame configuration information.
  • the air interface frame configuration information may include one or more of an air interface technology version number, a frame number, a cell ID, an ICFN, and a subframe number, as needed, in addition to the RIC. In this way, the implicit indication function of the synchronization signal group can be fully utilized.
  • the content of the air interface frame configuration information is not specifically limited in the present invention.
  • the network device and the terminal can negotiate a mapping relationship through negotiation.
  • the above mapping relationship can also be specified in a public protocol, so that the terminal and the network device have already stored the above mapping relationship at the time of shipment.
  • mapping relationship has been stored at the factory, the 300 part can be executed.
  • the network device determines the air interface frame configuration information.
  • the network device can select the currently adopted air interface configuration from a plurality of air interface configurations, and determine other information that needs an implicit indication, such as a cell ID, an ICFN, a subframe number, and the like.
  • air interface configuration is configurable. For example, air interface configuration can be performed during network planning and biased toward It will remain unchanged for a long time (months). When the service characteristics of the network change significantly, another air interface configuration may be reconfigured or selected as the currently adopted air interface configuration.
  • the network device determines, according to the foregoing mapping relationship, a synchronization sequence combination mapped with the air interface frame configuration information including the currently adopted air interface configuration, and transmits the synchronization sequence.
  • one of the synchronization signals may be referred to as SS-1 (or the first synchronization signal), and the other synchronization signal may be referred to as SS-2 (or the second synchronization signal).
  • SS-1 may be a primary synchronization signal
  • SS-2 may be a secondary synchronization signal
  • SS-1 corresponds to multiple optional synchronization sequences
  • SS-2 also corresponds to multiple optional synchronization sequences.
  • SS-1 and SS-2 have n kinds of optional synchronization sequence combinations, each combination is mapped with an air interface frame configuration information, and the number of bits of the air interface frame configuration information is m, which satisfies at least: n ⁇ 2 m .
  • the combination of SS-1 and SS-2 sequences may indicate 7 bits of information. Taking the four RICs mentioned above as an example, it needs to occupy 2 bits out of 7 bits, and the remaining 5 bits can indicate other information.
  • group number can be used to represent different synchronization signal groups.
  • sequence combination of N signals in different synchronization signal groups is also different, but this does not mean that there must be a "group number”.
  • the mapping between the synchronization sequence combination of the SS-1 and the SS-2 and the air interface frame configuration information may include:
  • the synchronization signal group of group number 1-32 is mapped to RIC#0;
  • the synchronization signal group of group number 33-64 is mapped to RIC#1;
  • the synchronization signal group of group number 65-96 is mapped to RIC#2;
  • the sync signal group of group number 97-128 is mapped to RIC#3.
  • the air interface frame configuration information includes PCI (occupying 1 bit, 2 types in total), ICFN (occupying 2 bits, 4 types in total), and SFN (occupying 3 bits, a total of 8), in addition to the RIC (2 bits in total).
  • the mapping relationship between the synchronization sequence combination of the SS-1 and the SS-2 and the air interface frame configuration information may include:
  • the combination of SS-1 and SS-2 sequences may indicate 14 bits of information. Taking the four RICs mentioned above as an example, it needs to occupy 2 bits out of 14 bits, and the remaining 12 bits can indicate other information.
  • group number can be used to represent different synchronization signal groups.
  • sequence combination of N signals in different synchronization signal groups is also different, but this does not mean that there must be a "group number”.
  • mapping between the synchronization sequence combination of SS-1 and SS-2 and the configuration information of the air interface frame may be included.
  • the synchronization signal group of group number 1-4096 is mapped to RIC#0;
  • the synchronization signal group of group number 4097-8192 is mapped to RIC#1;
  • the synchronization signal group of group number 8193-12288 is mapped to RIC#2;
  • the synchronization signal group of group number 12289-16384 is mapped to RIC#3.
  • the air interface frame configuration information may include PCI (occupying 6 bits, 64 types), ICFN (occupying 2 bits, 4 types in total), SFN (occupying 3 bits, a total of 8), and
  • the mapping relationship between the synchronization sequence combination of the SS-1 and the SS-2 and the air interface frame configuration information may include:
  • the base station sends the currently used air interface configuration phase mapped synchronization signal group.
  • the network device determines the air interface frame configuration information according to other information, such as the cell ID, the ICFN, and the subframe number, and determines the group number according to the mapping relationship. Then, a specific SS-1 sequence and an SS-2 sequence are generated according to the group number, and are transmitted at a predetermined position on the synchronization channel.
  • the terminal receives and demodulates the synchronization signal group (ie, the synchronization sequence combination determined above);
  • the terminal acquires the air interface frame configuration information indicated by the synchronization signal group according to the mapping relationship.
  • the terminal and the network device can pre-agreed the mapping relationship between all synchronization sequence combinations and each air interface frame configuration information. Therefore, after receiving and successfully demodulating SS-1 and SS-2, the terminal can The pre-agreed mapping relationship obtains the air interface frame configuration information indicated by the synchronization signal group, and the air interface frame configuration information includes the currently adopted air interface configuration, and other information mentioned above.
  • the terminal can receive system broadcast message messages, control information (or scheduling information), receive and transmit data. It should be noted that different messages are sent on different physical channels, and obtaining an air interface configuration is a prerequisite for acquiring each physical channel pattern.
  • the network device uses a small number of bits in the number of bits that can be indicated by the combination of the synchronization sequence to indicate the format of the air interface frame, which enables the terminal to quickly obtain the air interface configuration, and at the same time takes into account the coverage performance of the indication message.
  • FIG. 4 is a schematic diagram of another interaction for implementing a notification air interface configuration according to an embodiment of the present invention.
  • the biggest difference from the foregoing embodiment is that, in this embodiment, the combination of the transmission positions of the N synchronization signals in the synchronization signal group and the air interface frame configuration information are in a mapping relationship.
  • the N sync signals can use the same sync sequence, or different sync sequences can be used.
  • the above correspondence may include a mapping relationship between the transmission location combination and the air interface frame configuration information.
  • the network device and the terminal pre-agreed the mapping relationship between the transmission location combination and the air interface frame configuration information.
  • the network device and the terminal can negotiate a mapping relationship through negotiation.
  • mapping relationship may also be specified in a public protocol, and the terminal and the network device already store the above mapping relationship at the time of shipment. If the mapping relationship has already been stored at the factory, the 400 part may not be executed.
  • one of the synchronization signals may be referred to as SS-1 (or the first synchronization signal), and the other synchronization signal may be referred to as SS-2 (or the second synchronization signal).
  • SS-1 and SS-2 appear in pairs, which can map the relative positions of SS-1 and SS-2 in the time domain to the air interface configuration RIC.
  • the base station implicitly indicates RIC by transmitting the relative positions of SS-1 and SS-2.
  • Figure 5 shows an example of the relative positions of SS-1 and SS-2 in different air interface configurations of SS-1 and SS-2.
  • SS-1 may be before SS-2 or after SS-2.
  • the sequence and positional interval of the SS-1 and SS-2 sequences can be arbitrarily designed. As long as the network device and the terminal agree on the mapping relationship between the location relationship of SS-1 and SS-2 and the RIC.
  • the location combination of SS-1 and SS-2 may indicate one or more of an air interface technology version number, a frame number, a cell ID, an ICFN, and a subframe number, in addition to indicating the RIC.
  • SS-1 and SS-2 have 2 x selectable position combinations (x ⁇ 2), they can implicitly indicate x bits of information. Taking the four RICs mentioned above as an example, it needs to occupy 2 bits out of x bits, and the remaining (x-2) bits can indicate other information.
  • mapping relationship can be as follows:
  • the first 8-8 position combinations are mapped to RIC#0;
  • the 9-16th position combination is mapped to RIC#1.
  • the 17-24th position combination is mapped with RIC#2;
  • the 25-32 position combination is mapped to RIC#3.
  • the network device determines the air interface frame configuration information.
  • the network device can select the currently adopted air interface configuration from a plurality of air interface configurations, and determine other information that needs to be indicated, such as a cell ID, an ICFN, a subframe number, and the like.
  • the network device determines a transmission location of each synchronization signal according to a mapping relationship between the transmission location combination and the air interface frame configuration information.
  • the network device further combines other messages requiring an indication, such as a cell ID, an ICFN, a subframe number, etc., to determine a unique transmission location combination (or combination number) from the 17-24th location combination.
  • the network device transmits the synchronization signal group according to the determined transmission location.
  • the network device may send the synchronization signal group according to the determined transmission location on the synchronization channel.
  • the terminal receives and demodulates the synchronization signal group.
  • the terminal acquires the air interface frame configuration information indicated by the synchronization signal group according to the mapping relationship between the foregoing sending location combination and the air interface frame configuration information.
  • the terminal first detects SS-1 and then detects SS-2. Before the terminal detects the SS-2, it is not clear which air interface configuration the system uses. The terminal will attempt to decode the SS-2 sequence in all possible locations of the SS-2 under all air interface configurations that it can support. The location of the SS-2 is detected to know the air interface configuration.
  • FIG. 6 is a schematic diagram of another interaction for implementing a notification air interface configuration according to an embodiment of the present invention.
  • the present embodiment does not employ a synchronization signal group, but uses a single synchronization signal to indicate air interface frame configuration information.
  • one of the plurality of synchronization sequences may be selected as the synchronization signal, and different synchronization sequences are mapped to different air interface frame configuration information (the air interface frame configuration information includes RIC).
  • the network device and the terminal pre-agreed the mapping relationship between the synchronization sequence and each air interface frame configuration information.
  • the foregoing correspondence relationship may include a mapping relationship between the synchronization sequence and the air interface frame configuration information in this embodiment.
  • the network device and the terminal can negotiate a mapping relationship through negotiation.
  • the above mapping relationship may also be specified in a public protocol, and the terminal and the network device have already stored the above mapping relationship at the time of shipment. If the mapping relationship has been stored at the factory, the 600 part may not be executed.
  • the synchronization signal has n kinds of optional synchronization sequences, and each synchronization sequence maps a specific air interface frame configuration information. If the number of bits of the air interface frame configuration information is m, then at least: n ⁇ 2 m is satisfied.
  • the present invention does not limit the generation method and number of all optional synchronization sequences of the SS.
  • the air interface frame configuration information may include one or more of an air interface technology version number, a frame number, a cell ID, an ICFN, and a subframe number, as needed, in addition to the air interface configuration. In this way, the implicit indication function of the synchronization signal group can be fully utilized.
  • the content of the air interface frame configuration information is not specifically limited in the present invention.
  • sequence number/root index/index number may be used to represent different SS sequences, and in practice, there may be no “serial number/root index/index number”.
  • mapping relationship between the SS sequence and the air interface frame configuration information may be as follows:
  • each synchronization sequence can indicate 7 bits of information. Two of them can indicate RIC, and the other 5 bits can indicate other information.
  • the sync signal group of sequence number 1-32 can be mapped to RIC#0;
  • the sync signal group of sequence numbers 33-64 can be mapped to RIC#1;
  • the synchronization signal group of sequence number 65-96 can be mapped with RIC#2;
  • the sync signal group of sequence numbers 97-128 can be mapped to RIC#3.
  • the air interface frame configuration information includes PCI (occupying 1 bit, 2 types in total), ICFN (occupying 2 bits, 4 types in total), and SFN (occupying 3 bits, a total of 8).
  • the mapping relationship between the SS sequence and the air interface frame configuration information may further include:
  • mapping relationship is only an example, and the optional sequence number of the SS and the indicated information are not limited in the present invention.
  • the network device determines the air interface frame configuration information.
  • Section 601 is similar to Sections 301 and 401 and will not be described here.
  • the network device determines, according to the mapping relationship, an air interface frame configuration including the currently adopted air interface configuration.
  • the synchronization sequence of the information phase mapping
  • the 97-128 sequence of the SS can be used to implicitly indicate RIC#2.
  • the network device then combines other messages that require indication, such as cell ID, ICFN, subframe number, etc., to determine a unique synchronization sequence.
  • the network device determines the air interface frame configuration information according to other required indication messages, such as a cell ID, an ICFN, and a subframe number, and then determines the sequence number according to the mapping relationship.
  • the root index/index number is then generated based on the serial number/root index/index number to generate a specific SS sequence.
  • the network device transmits the determined synchronization sequence.
  • the network device may send the determined synchronization sequence at a specified location on the synchronization channel.
  • a combination of a synchronization sequence and a transmission location may also be employed to implicitly indicate.
  • two different synchronization sequences, and four different transmission positions can be combined in eight ways to indicate 3-bit information.
  • the terminal receives and demodulates the synchronization sequence
  • the terminal acquires the air interface frame configuration information indicated by the synchronization sequence according to the foregoing mapping relationship.
  • FIG. 7 is a schematic structural diagram of a network device involved in the foregoing embodiment, including:
  • the processing module 701 is configured to determine a currently configured air interface configuration, and determine a synchronization signal group that is currently mapped by the air interface configuration according to at least the corresponding relationship between the air interface configuration and the synchronization signal group, or
  • the processing module 701 can be configured to select the currently adopted air interface configuration from the plurality of air interface configurations in determining the currently configured air interface configuration. It should be noted that the air interface configuration is configurable. For example, air interface configuration can be performed during network planning and is biased for a longer period of time (months). When the service characteristics of the network change significantly, another air interface configuration may be reconfigured or selected as the currently adopted air interface configuration. Thus, in one example, the processing module 701 is not always in an active state. Instead, wake up from hibernation when you need to work.
  • the determined sync signal group includes N sync signals, (N is an integer not less than 2), and each sync signal has a plurality of available sync sequences.
  • the air interface frame configuration information is mapped to a different synchronization sequence combination of N synchronization signals (the air interface frame configuration information includes RIC).
  • the air interface frame configuration information includes RIC.
  • mapping between the sending position combination of the N synchronization signals and the air interface frame configuration information in the synchronization signal group is related to the description of the 400-403 part shown in FIG. 4, and details are not described herein.
  • the synchronization signal corresponds to a plurality of selectable synchronization sequences, and different synchronization sequences are mapped to different air interface frame configuration information.
  • the synchronization signal corresponds to a plurality of selectable synchronization sequences, and different synchronization sequences are mapped to different air interface frame configuration information.
  • the processing module 701 can execute the 301, 302 portions shown in FIG. 3, the 401, 402 portions shown in FIG. 4, and the 601, 602 portions shown in FIG.
  • the sending module 702 is configured to send at least a synchronization signal group or a synchronization signal that is currently mapped to the air interface configuration.
  • the sending module 702 may continuously send the synchronous signal group or the synchronization signal that is currently mapped in the air interface configuration in the synchronization window, or send the broadcast message and control on the physical channel according to the agreed time-frequency resource in the contention-free window.
  • the transmitting module 702 in all of the above embodiments can be used to support the network device to communicate with other devices.
  • the communication network device is used to communicate with the terminals shown in FIG. 3 (part 300, part 303), FIG. 4 (part 400, part 405), and FIG. 6 (part 600, part 603).
  • the sending module 702 can also be used to support listening in the CCA window, transmitting data in the contention-free window, data reported in the contention-free window receiving terminal, or other messages.
  • FIG. 8 is a schematic structural diagram of a terminal involved in the foregoing embodiment, including:
  • the receiving unit 801 is configured to receive and demodulate a synchronization signal group or a synchronization signal from the network device that is mapped to the currently adopted air interface configuration;
  • the receiving unit 801 can be used to support the terminal to communicate with other devices. For example, a network for supporting the terminal and FIG. 3 (300 part, 303 part, 304 part), FIG. 4 (400 part, 403 part, 404 part), FIG. 6 (600 part, 603 part, 604 part) The device communicates.
  • the receiving unit 801 can also be used to support the terminal to listen in the CCA window, transmit data in the contention-free window, and transmit data in the contention-free window in LBT or low duty cycle.
  • the processing unit 802 is configured to acquire the air interface frame configuration information indicated by the received synchronization signal group or the synchronization signal according to the foregoing correspondence.
  • processing unit 802 can execute the 305 portion shown in FIG. 3, the 405 portion shown in FIG. 4, or the 605 portion shown in FIG.
  • FIG. 9 is a schematic diagram showing another possible structure of the network device/terminal involved in the foregoing embodiment, including:
  • controller/processor 1 memory 2, communication interface 3, input device 4, and output device 5.
  • the processor 1, the memory 2, the communication interface 3, the input device 4, and the output device 5 are connected to each other through a bus. among them:
  • the bus can include a path for communicating information between various components of the computer system.
  • the controller/processor 1 may be a general-purpose processor, such as a general-purpose central processing unit (CPU), a network processor (NP Processor, NP for short, a microprocessor, etc., or an application-specific integrated circuit. , ASIC), or one or more integrated circuits for controlling the execution of the program of the present invention. It can also be a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components.
  • the controller/processor 1 can also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the program for executing the technical solution of the present invention is stored in the memory 2, and an operating system and other applications can also be saved.
  • the program can include program code, the program code including computer operating instructions.
  • the memory 2 may be a read-only memory (ROM), other types of static storage devices that can store static information and instructions, random access memory (RAM), storable information, and Other types of dynamic storage devices, disk storage, and the like.
  • Input device 4 may include means for receiving data and information input by a user, such as a keyboard, mouse, camera, scanner, light pen, voice input device, touch screen, and the like.
  • Output device 5 may include devices that allow output of information to the user, such as a display screen, printer, speaker, and the like.
  • Communication interface 3 may include devices that use any type of transceiver to communicate with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Network (WLAN), and the like.
  • the communication interface of the network device can be used to implement the functions of the foregoing sending module 702, and the communication interface of the terminal can be used to implement the functions of the foregoing receiving unit 801.
  • the controller/processor of the network device can then be used to perform the processes involved in the network device of Figures 3, 4, 6 and/or other processes for the techniques described herein.
  • the controller/processor can also be used to implement the functions of the aforementioned processing module 701.
  • the controller/processor of the terminal can be used to perform the processes involved in the terminal of Figures 3, 4, 6 and/or other processes for the techniques described herein.
  • the controller/processor of the terminal can also be used to implement the functions of the aforementioned processing unit 802.
  • Figure 9 only shows a simplified design of the network device/terminal.
  • the network device/terminal may include any number of transmitters, receivers, processors, controllers, memories, communication interfaces, etc., and all network devices/terminals that can implement the present invention are within the scope of the present invention. within.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment.
  • the processor and the storage medium may also reside as discrete components in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信领域,特别是涉及空口配置通知技术。在一种空口配置通知方法中,网络设备用同步信号组或同步信号来隐式指示空口配置,使终端能在同步的过程中即获取当前的空口配置,而不是等待解码广播消息后再获取,从而能够使终端快速获取空口配置。此外,使用同步信号指示携带空口配置,还可以拥有同步信号的覆盖性能。

Description

通知方法及相关装置
本申请要求于2016年7月1日提交中国专利局、申请号为201610518298.4、发明名称为“通知方法及相关装置”的国内申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别是涉及空口配置通知技术。
背景技术
随着通信技术的发展,无线通信网络/系统在空口技术上可同时支持竞争接入方式和免竞争接入方式,因此,在某一或某些情况下,可将不同时间段分配给竞争接入和免竞争接入,以获得两类接入方式的各自优势,丰富场景适用性。而在另一些情况下,也可仅采用竞争接入或免竞争接入。
因此,竞争接入方式和免竞争接入方式的时间配比可有多种,也即存在多种空口配置,则通信网络/系统中的基站(或控制节点或接入节点)需要通知终端当前具体采用哪一种空口配置(RIC)。
基于无线通信网络/系统(例如LTE系统)现有的通信流程,一种通知终端当前空口配置的可能的实现方式是:基站在特定物理信道上广播携带空口配置的广播消息,终端接收并解码广播消息后,获取RIC,从而获知系统选用的具体的空口配置。
上述实现方式需要终端在完成解码广播信息后才可获取空口配置,同时,空口配置占用了无线帧的多个比特进行传输,也即,占用了系统开销。
发明内容
为了解决上述问题,本申请提供法及相关装置,能够节省系统开销。
为实现上述目的,本发明实施例提供如下技术方案:
一方面,本申请的实施例提供一种通知方法,在该方法中,网络设备确定当前采用的空口配置,至少根据空口配置与同步信号组的对应关系,确定当前采用的空口配置相映射的同步信号组并发送。终端则接收并解调来自网络设备的、与当前采用的空口配置相映射的同步信号组,并根据上述对应关系,获取同步信号组所指示的空口配置。其中,空口配置包括免竞争时间窗口、竞争时间窗口和同步窗口中的至少一种;所述免竞争时间窗口支持免竞争接入方式,所述竞争时间窗口支持竞争接入方式。通过本申请实施例提供的方案,网络设备用同步信号组来隐式指示空口配置,使终端能在同步的过程中获取当前的空口配置,要早于现有技术从广播消息中获取空口配置的方式,进而使终端设备能够准确获取后续通信资源的时间信息,进而调整自身对数据的接收时间。此外,使用同步信号组携带空口配置,还可以拥有同步信号的覆盖性能。
在一个可能的设计中,网络设备可根据不同场景确定(选择)不同的空口配置作为当前采用的空口配置,从而更具灵活性。例如,可在网络规划时进行空口配置,并偏向于较长时间内(数月)不变。当网络内的业务特征发生重大变化时,可重新选择另一种空口配置作为当前采用的空口配置。
在一个可能的设计中,在上述同步窗口内,网络设备可连续发送与当前采用的空口配置相映射的同步信号组;相应的,终端在同步窗口执行的操作可包括:接收并解调同步信号组,获取同步信号组隐式指示的空口配置。连续发送同步信号组的目的是令终端尽快获取同步信号,实现同步。在同步窗口内集中多次发送同步信号组,可以使得一些终端在系统获取到信道的使用权之前就快速同步上。
在一个可能的设计中,在上述免竞争窗口内,网络设备可周期发送与当前采用的空口配置相映射的同步信号组。更具体的,网络设备可按照约定好的时频资源,在物理信道上发送同步信号组、广播消息、控制(或调度)消息等。相应的,终端(例如终端)在免竞争窗口内,可按照约定好的时间和物理资源,在物理信道上接收同步信号组、广播消息、控制(或调度)消息,在分配的时频资源上传送数据给网络设备。在免竞争窗口内仍周期发送与当前采用的空口配置相映射的同步信号组,可令在免竞争窗口内醒来的终端实现同步。
在一个可能的设计中,上述同步信号组包括N个同步信号,每一同步信号对应多个可选的同步序列,N个同步信号不同的同步序列组合与不同的空口帧配置信息相映射(空口帧配置信息至少包括空口配置)。则前述的对应关系具体可包括同步序列组合与空口帧配置信息之间的映射关系。在一个示例中,网络设备和终端可预先所述映射关系。相应的,网络设备发送同步信号组的具体方式可包括:网络设备根据所述映射关系,确定出与包含当前采用的空口配置的空口帧配置信息相映射同步序列组合,并发送确定出的同步序列组合。从而可更好得实现终端快速获取当前的空口配置。
在一个可能的设计中,上述同步信号组中N个同步信号不同的发送位置组合与不同的空口帧配置信息相映射(空口帧配置信息至少包括空口配置)。在一个示例中,网络设备和终端可预先约定发送位置组合与空口帧配置信息之间的映射关系。相应的,网络设备发送同步信号组的具体方式可包括:网络设备根据上述映射关系,确定N个同步信号各自的发送位置(这N个同步信号的发送位置组合,与包含当前采用的空口配置的空口帧配置信息相映射);网络设备根据确定出的发送位置,发送所述N个同步信号。从而可更好得实现终端快速获取当前的空口配置。
在一个可能的设计中,空口配置可包括同步窗口和免竞争窗口,其中:所述免竞争窗口包括三个空口帧,每一所述空口帧包括8个子帧,每一空口帧对应一个免竞争窗口内帧号ICFN,每一子帧对应一个子帧号。在一个示例中,同步窗口长度为160ms,而免竞争窗口长度为3.84s。此种设计可适用于中国和欧美地区。
在一个可能的设计中,空口配置可包括同步窗口、免竞争窗口和竞争窗口。此空口配置设计适配存在异系统的场景。在一个示例中,其中的免竞争窗口包括二个空口帧,而竞争窗口包括一个空口帧。并且,每一空口帧包括8个子帧,每一子帧对应一个子帧号;免竞争窗口内的每一空口帧对应一个ICFN。更具体的,该同步窗口的长度为160ms,免竞争窗口的长度为2.56s,竞争窗口的长度为1.28s。这样,空口配置的基本长度为4秒,也适用于中国和欧美地区;而在另一个示例中,免竞争窗口可包括2个子帧,竞争窗口包括4个子帧;每一子帧对应一个子帧号。更具体的,同步窗口的长度可为80ms,免竞争窗口的长度可为320ms,竞争窗口的长度可为640ms。这样,免竞争窗口与同步窗口总时长为400ms,适用于日韩地区“对话时长”最长为400毫秒的要求。
在一个可能的设计中,空口配置包括同步窗口、免竞争窗口(CFW)和竞争窗口,并且,免竞争窗口用于发送下行反馈和下行控制信息。在本空口配置中,免竞争窗口占用时间很短,例如,其可只包括一个子帧,子帧长度为160ms。此配置可以视为CBW-only配置,适配干扰环境较为复杂的场景。
在一个可能的设计中,前述的空口帧配置信息还可包括空口技术版本号、小区标识ID、ICFN和子帧号中的至少一种,以进一步减少所占用的比特数。
另一方面,本发明实施例提供了另一种通知方法,包括:网络设备确定当前采用的空口配置,至少根据空口配置与同步信号的对应关系,确定当前采用的空口配置相映射的同步信号并发送;终端则接收并解调来自网络设备的、与当前采用的空口配置相映射的同步信号,并根据上述对应关系,获取同步信号所指示的空口配置。其中,所述空口配置包括免竞争时间窗口、竞争时间窗口和同步窗口中的至少一种;所述免竞争时间窗口支持免竞争接入方式,所述竞争时间窗口支持竞争接入方式。本申请实施例提供的方案中,网络设备用同步信号来隐式指示空口配置,使终端能在同步的过程中获取当前的空口配置,要早于现有技术从广播消息中获取空口配置的方式,进而使终端设备能够准确获取后续通信资源的时间信息,进而调整自身对数据的接收时间。此外,使用同步信号携带空口配置,还可以拥有同步信号的覆盖性能。
在一个可能的设计中,网络设备可根据不同场景确定(选择)不同的空口配置,从而更具灵活性。例如,可在网络规划时进行空口配置,并偏向于较长时间内(数月)不变。当网络内的业务特征发生重大变化时,可重新选择另一种空口配置作为当前采用的空口配置。
在一个可能的设计中,在上述同步窗口内,网络设备可连续发送与当前采用的空口配置相映射的同步信号;相应的,终端在同步窗口执行的操作可包括:接收并解调同步信号,获取同步信号隐式指示的空口配置。连续发送同步信号的目的是令终端尽快获取同步信号,实现同步。在同步窗口内集中多次发送同步信号,可以使得一些终端在系统获取到信道的使用权之前就快速同步上。
在一个可能的设计中,在上述免竞争窗口内,网络设备可周期发送与当前采用的空口配置相映射的同步信号。更具体的,网络设备可按照约定好的时频资源,在物理信道上发送同步信号、广播消息、控制(或调度)消息等。相应的,终端(例如终端)在免竞争窗口内,可按照约定好的时间和物理资源,在物理信道上接收同步信号、广播消息、控制(或调度)消息,在分配的时频资源上传送数据给基站。在免竞争窗口内仍周期发送与当前采用的空口配置相映射的同步信号,可令免竞争窗口内醒来的终端实现同步。
在一个可能的设计中,同步信号可对应多个可选的同步序列,不同的同步序列与不同的空口帧配置信息相映射;而前述的对应关系可具体包括同步序列与空口帧配置信息之间的映射关系。在一个示例中,网络设备和终端可预先约定同步序列与空口帧配置信息之间的映射关系。相应的,网络设备发送与当前采用的空口配置相映射的同步信号的具体方式可包括:网络设备根据映射关系,确定与包含当前采用的空口配置的空口帧配置信息相映射的同步序列,并发送确定出的同步序列。从而可更好得实现终端快速获取当前的空口配置。
又一方面,本发明实施例提供了一种通知方法,包括:终端接收并解调来自网络设备 的、与当前采用的空口配置相映射的同步信号组;所述终端根据空口配置与同步信号组的对应关系,获取所述同步信号组所指示的空口配置;或者,终端接收并解调来自所述网络设备的、与当前采用的空口配置相映射的同步信号;所述终端根据空口配置与同步信号的对应关系,获取所述同步信号所指示的空口配置。
在一个可能的设计中,空口配置可包括同步窗口和免竞争窗口,其中:所述免竞争窗口包括三个空口帧,每一所述空口帧包括8个子帧,每一空口帧对应一个免竞争窗口内帧号ICFN,每一子帧对应一个子帧号。在一个示例中,同步窗口长度为160ms,而免竞争窗口长度为3.84s。此种设计可适用于中国和欧美地区。
在一个可能的设计中,空口配置可包括同步窗口、免竞争窗口和竞争窗口。此空口配置设计适配存在异系统的场景。在一个示例中,其中的免竞争窗口包括二个空口帧,而竞争窗口包括一个空口帧。并且,每一空口帧包括8个子帧,每一子帧对应一个子帧号;免竞争窗口内的每一空口帧对应一个ICFN。更具体的,该同步窗口的长度为160ms,免竞争窗口的长度为2.56s,竞争窗口的长度为1.28s。这样,空口配置的基本长度为4秒,也适用于中国和欧美地区;而在另一个示例中,免竞争窗口可包括2个子帧,竞争窗口包括4个子帧;每一子帧对应一个子帧号。更具体的,同步窗口的长度可为80ms,免竞争窗口的长度可为320ms,竞争窗口的长度可为640ms。这样,免竞争窗口与同步窗口总时长为400ms,适用于日韩地区“对话时长”最长为400毫秒的要求。
在一个可能的设计中,空口配置包括同步窗口、免竞争窗口(CFW)和竞争窗口,并且,免竞争窗口用于发送下行反馈和下行控制信息。在本空口配置中,免竞争窗口占用时间很短,例如,其可只包括一个子帧,子帧长度为160ms。此配置可以视为CBW-only配置,适配干扰环境较为复杂的场景。
在一个可能的设计中,前述的空口帧配置信息还可包括空口技术版本号、小区标识ID、ICFN和子帧号中的至少一种,以进一步减少所占用的比特数。
另一方面,本发明实施例提供了一种网络设备,该网络设备具有实现上述方法实际中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,网络设备的结构包括:处理器和存储器,所述处理器通过运行存储在所述存储器内的软件程序、调用存储在所述存储器内的数据,执行上述网络设备所执行的方法。
又一方面,本发明实施例提供了一种终端,该终端具有实现上述方法实际中终端行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,终端的结构包括:处理器和存储器,所述处理器通过运行存储在所述存储器内的软件程序、调用存储在所述存储器内的数据,执行终端所执行的上述方法。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
在本发明中,网络设备用同步信号组或同步信号来隐式指示空口配置,使终端能在同步的过程中即获取当前的空口配置,而不是等待解码广播消息后再获取,要早于现有技术从广播消息中获取空口配置的方式,进而使终端设备能够准确获取后续通信资源的时间信息,进而调整自身对数据的接收时间。此外,使用同步信号指示携带空口配置,还可以拥有同步信号的覆盖性能。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1a为本申请实施例提供的物联网示意图;
图1b为本申请实施例提供的一种应用环境示意图;
图2a-2d为本申请实施例提供的空口配置示意图;
图3、4、6为本申请实施例提供的通知方法示例性流程图;
图5为本申请实施例提供的两同步信号相对位置示意图;
图7为本申请实施例提供的网络设备示例性结构示意图;
图8为本申请实施例提供的终端示例性结构示意图;
图9为本发明实施例提供的网络设备或终端通用计算机架构示意图。
具体实施方式
本申请实施例欲保护通知方法及相关装置(通知装置、终端、基站、蜂窝通信系统),可应用在例如图1a所示的物联网,或者其他各种通信技术/网络/系统竞争共存的场景。
上述各种通信技术/系统中可包含同时支持免竞争接入方式和竞争接入方式无线通信技术/网络/系统,例如蜂窝通信技术/网络/系统(LTE、CDMA、UMTS、GSM)、数字集群通信技术/网络/系统、广播电视通信技术/网络/系统,以及诸多私有通信技术/网络/系统(例如IEEE 802.15.4系列、IEEE 802.11ah)或新的网络系统等。
本申请中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。
上述同时支持免竞争接入方式和竞争接入方式的无线通信技术/网络/系统,具体可应用在智能抄表与回传、工厂中传感器数据采集与报警、智能家居、智能办公等领域。其可工作在非授权频段(频谱),并且,在非授权频谱上可同时支持竞争接入和免竞争接入,对于授权频谱,可仅支持免竞争接入,或同时支持竞争接入和免竞争接入。
竞争接入方式比较适用间歇性工作的用户,而免竞争接入方式(例如调度类、预约类、按需分配类)的多址技术,可以获得更好的实时性、较高的频谱利用率和可靠性。
本发明实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如, 可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(PCS,Personal Communication Service)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(PDA,Personal Digital Assistant)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)。
本发明实施例所涉及的网络设备,可以是基站,或者接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B),本申请并不限定。
下面以LTE系统为例进行具体实施例的介绍。
图1b给出了同时支持免竞争接入方式和竞争接入方式的无线蜂窝通信技术/网络/系统的一种应用环境:应用于基站(或控制节点或接入节点)101与类似于终端102、终端104的任意数目的终端通信。
其中,基站(或控制节点或接入节点)101主要负责接收各终端上报的数据和请求信息等,发送同步、广播、控制信号给终端,为终端分配物理资源,调度终端设备等。
更具体的,上述基站101(base station,简称BS)是一种部署在无线接入网中用以为移动终端提供无线通信功能的装置,其可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB简称:eNB或者eNodeB),在第三代3G网络中,称为节点B(Node B)等等。为方便描述,本申请中,上述为移动终端提供无线通信功能的装置统称为基站或BS。
而终端102、终端104主要负责根据基站的同步、广播、控制信号等,接入基站,接收基站的消息。终端可以是各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备、定位设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,简称UE)、移动台(Mobile station,简称MS)、终端设备(Terminal Equipment)等等。此外,终端还可以是集成传感器与通信模块的设备等,例如,触发上报报警信息的烟雾报警器、或者可以定期上报数据的厂区温度测量装置、智能水电表等。
本发明可能使用的技术名词、简写或缩写如下:
空口配置:Radio Interface Configure,RIC;
SS:Synchronization Signal,同步信号;
LBT:Listen Before Talk,先听后讲;
AFA:Adaptive Frequency Agility,自适应频率切换跳频;
占空比:Duty Cycle;
CCA,Clear channel access:空闲信道接入;
空闲信道检测窗口(CCA Operation)/信道侦听窗口/休眠窗口:时间长度不确定。为简单起见,本文后续以CCA operation窗口统指空闲信道检测窗口/信道侦听窗口/休眠窗口。
在CCA operation窗口中可采用LBT方式获取信道使用权,因此该窗口具体的时间长度不确定。在一个示例中,可由基站(或控制节点或接入节点)负责CCA检测这一工作,但不限定。
在CCA窗口中基站(或控制节点或接入节点)与终端的行为如下:
基站(或控制节点或接入节点)在工作频带(工作频带可包含授权频段和非授权频段的至少一种)上侦听信道(或频道或频段)是否可用。如果侦听到信道(或频道或频段)上有信号,则将信道(或频道或频段)视为“忙”状态,CCA operation时间窗继续;如果信道(或频道或频段)上没有信号,则信道为“闲”状态,信道(或频道或频段)可用,CCA Operation窗结束。
终端在CCA operation窗口内或者休眠,或者侦听是否有基站发送的信号。
在有多种通信技术/网络/系统竞争共存的场景下,通信系统需要在CCA operation窗口中采用LBT(+AFA或AFA等效技术)获取信道使用权,获取信道使用权后,该通信系统中的设备可采用竞争接入方式和免竞争接入方式的至少一种来进行通信。
同步窗口(Synchronization Window)/同步头/同步时间窗:为简单起见,本文后续以同步窗口统指同步窗口/同步头/同步时间窗。
在同步窗口中基站(或控制节点或接入节点)与终端的行为如下:
基站(或控制节点或接入节点)连续发送同步信号或同步信号组,其目的是令终端尽快获取同步信号,实现同步;
终端在同步窗口可接收并解调同步信号或同步信号组,获取同步信号或同步信号组隐式携带的空口帧配置信息,例如帧号,子帧号等,终端从而可知道同步上的时刻在第几个帧的第几个子帧,进而知道在什么时刻接收PBCH(广播信道)、获取系统消息等。
需要说明的是,近端用户(距离基站较近的用户)接收少量次数的同步信号组或同步信号就可以成功解调,而远端用户则需要接收很多次同步信号组或同步信号,才能成功解调。在常规的同步方案里,同步信号是在每一无线帧的特定的子帧中发送的,其发送周期较长,导致远端用户需要花费较长的时间才能同步上,浪费宝贵的信道使用时间。为此,本发明增加同步窗口,在同步窗口内可集中多次发送同步信号,这样,可以使得一些终端在系统获取到信道的使用权之前就快速同步上。
免竞争窗口(CFW,Contention free Window)/免竞争时间段/调度窗口/调度时间段:为简单起见,本文后续以免竞争窗口统指免竞争窗口/免竞争时间段/调度窗口/调度时间段。
在免竞争窗口中,基站(或控制节点或接入节点)与终端的行为如下:
基站(或控制节点或接入节点)按照约定好的时频资源,在物理信道上发送同步信号(或同步信号组)、广播消息、控制(或调度)消息。
终端按照约定好的时间和物理资源,在物理信道上接收同步信号(或同步信号组)、广播消息、控制(或调度)消息,在分配的时频资源上传送数据给基站(或控制节点或接 入节点)。
在免竞争窗口内,基站(或控制节点或接入节点)与终端采用类似于传统的蜂窝类技术分配时频资源及传送数据,基站(或控制节点或接入节点)在免竞争窗口可周期发送同步信号(或同步信号组),例如在固定子帧上发送同步信号(或同步信号组)。
需要说明的是,尽管在同步窗口内,基站(或控制节点或接入节点)已经连续发送了同步信号(或同步信号组)。但在免竞争窗口内发送同步信号(或同步信号组)也是必要的:
前述提及了,终端可以是烟雾报警器、定期上报数据的厂区温度测量装置、智能水电表等,这类设备需要电量控制,不能一直打开收发机。可能1小时才上报一次数据,有数据上传的时候,才醒来,进行上报,其他时间可以休眠省电。在免竞争窗口内发送同步信号(或同步信号组),可令在该窗口内醒来的终端实现同步,否则,需要本次信道使用时间结束,等到下一次获取到信道后才能实现同步。
竞争窗口(CBW,Contention Based Window)/竞争窗口/竞争时间段:为简单起见,本文后续以免竞争窗口统指竞争窗口/竞争时间段/竞争时间段。
在竞争窗口,基站(或控制节点或接入节点)与终端的行为如下:
基站(或控制节点或接入节点):接收终端上报的数据或者其他消息;
终端:以LBT或者低占空比的方式,把数据发送给基站(或控制节点或接入节点)。
需要说明的是,由于在竞争窗口基站并不下发同步信号或同步信号组,所以在竞争窗口醒来的终端,需要等到下一个同步窗口或免竞争窗口进行同步。
授权频谱:无线电磁波的使用在国际上和各个国家有严格的规则,每个国家都会根据自身资源情况并顺应国际趋势来给运营商划分好各自的频谱,这部分频谱被称为授权频谱。剩下的尚未利用的或者被批准可以公用的频谱就是非授权频谱了。
下面将基于上面所述的本发明涉及的共性方面,对本发明实施例如何通知当前采用的空口配置进一步详细说明。
先介绍空口配置(RIC)。
根据法规限制和场景,可有如下的空口配置。
配置一:(编号RIC#0):请参见图2a,此配置包含160ms的同步窗口和3.84s的免竞争窗口(CFW),总长为4s。其中:
免竞争窗口包括三个空口帧,每一空口帧的帧长为1.28s,免竞争窗口内的每一空口帧都对应一个免竞争窗口内帧号(ICFN,Inner CFW Frame Number)。
每一空口帧可包括8个子帧,每一子帧为160ms,每一个子帧对应一个子帧号,需要8个子帧号,也即需要3bit来指示。
RIC#0的基本长度为4秒。可适用于中国和欧美地区。需要说明的是,图2a至图2d中的CCA operation不属于空口配置。
配置二:(编号RIC#1)适配存在异系统的场景。请参见图2b,此配置包含160ms的同步窗口、2.56s的免竞争窗口和1.28s的竞争窗口。
其中,免竞争窗口包含2个空口帧,竞争窗口包含1个空口帧,每一空口帧的帧长为1.28s。
与RIC#0相同的是,上述每一空口帧包括8个子帧,每一子帧对应一个子帧号,免竞 争窗口内的每一空口帧对应一个ICFN。
RIC#1的基本长度为4秒,也可适用于中国和欧美地区。
针对有异系统共存的场景,距离基站较远的终端很容易受到附近的异系统设备,很难被基站有效地调度。因此,在一个示例中,在有异系统共存的场景下,较远的终端优先采用竞争接入方式(也即优先在竞争窗口接入),近处的终端优先采用免竞争接入方式(也即优先在免竞争窗口接入)。
在具体实现时,基站(或控制节点或接入节点)广播远近判别条件,终端通过判断自己的覆盖等级,根据获取到的判别条件,确定自己属于近端用户或远端用户,从而明确自己优先采用的接入方式。
配置三:(编号RIC#2)适配日韩地区,请参见图2c,此配置包含80ms的同步窗口、320ms的免竞争窗口和640ms的竞争窗口。
其中,免竞争窗口包括2个子帧,竞争窗口包括4个子帧。每一子帧对应一个子帧号。
需要说明的是,欧洲和日韩的法规可能要求非授权频谱上的所有设备都要遵循LBT或者满足比较小的占空比。
例如,在欧洲,Sub 1GHz频段(Sub 1GHz是指在1GHz以下的频带)的法规不仅限制了设备的发射功率,还规定了两种空口接入方式:
1),LBT+AFA或AFA等效技术可实现:发送方在发射信号之前侦听信道是否空闲,只有信道空闲时,该信道才是可用。如果侦听的到信道被占用,则发送方需要进行自适用跳频,换一个信道,或执行AFA等效措施,如802.11ah或802.15.4采用的CSMA/CA退避机制;
2),Duty Cycle要求。Duty Cycle是指设备在一个小时的单位时间内,总的发射时间不能超过规定的时间比例。一般的,各频段上duty cycle的限制为1%,个别频段上为0.1%或10%。
欧洲电信标准化协会(ETSI)的EN 300 220(Harmonized European Standard)规范中的9.2.5.2章节中,还规定了“对话类”(transmission dialogue)系统,如果采用LBT接入方式,抢占到信道之后,最长可以占用信道4秒时间。在这段时间内,可以进行类似蜂窝技术的调度。而日本和韩国的无线电法规中允许的“对话”时长最长只有400毫秒。
所谓“对话”是指回合形式的通信方式。例如终端上行发送数据之后,基站下行给该终端回复一个确认信号。在这种情况下,基站发送下行的确认信号之前就不需要侦听信道。“对话”的具体回合次数、顺序以及参与“对话”的设备数量等则没有限制,这就为免竞争技术提供可能。
基站抢占到信道后,如果信道被利用来“对话”,可以占用较长时间。“对话”的形式不限,可以是蜂窝调度,可以是简单轮询。总之在法规允许的“对话”时长内,基站以及其连接的多个终端可以进行免竞争方式的通信。
在RIC#2中,免竞争窗口与同步窗口总时长为400ms,适用于日韩地区要求的“对话时长”最长为400毫秒。而前述的RIC#0则适用于中国和欧美地区。
配置四:(编号RIC#3)适配干扰环境较为复杂的场景,请参见图2d,此配置包含同步窗口、下行窗口(CFW)和竞争窗口。
需要说明的是,RIC#3配置中的CFW用来做下行反馈和下行控制信息等,占用时间很短,例如,CFW可只包括一个子帧,该子帧长度可为160ms,同步窗口长度为160ms,CBW窗口典型值为3.68s。
CBW窗口可包括23个子帧。每一子帧对应一个子帧号,每一子帧长度为160ms。
RIC#3配置的绝大部分时间分配在CBW窗口,因此,此配置可以视为CBW-only配置。
需要说明的是,在干扰环境较为复杂的场景下,系统在CFW窗口难以保障正常工作,甚至还不如在CBW窗口工作效率高。因此,RIC#3配置的绝大部分时间分配在CBW窗口。
由于有多种RIC,因此,通信网络/系统中的网络设备(基站或控制节点或接入节点)需要通知终端当前具体采用哪一种空口配置。
本发明的一个实施例提供一种通知方法,和基于这个方法的网络设备、终端,上述网络设备确定出当前采用的空口配置后,至少根据空口配置与同步信号组或同步信号的对应关系,确定当前采用的空口配置相映射的同步信号组或同步信号,并发送隐式指示当前采用的空口配置的同步信号组或同步信号。而终端则解调接收到的同步信号组或同步信号,进行同步,并根据上述对应关系得到当前采用的空口配置。可见,本实施例用同步信号组或同步信号来隐式指示空口配置,使终端能在同步的过程中即获取当前的空口配置,要早于现有技术从广播消息中获取空口配置的方式,进而使终端设备能够准确获取后续通信资源的时间信息,进而调整自身对数据的接收时间。此外,使用同步信号指示携带空口配置,还可以拥有同步信号的覆盖性能。
后续,终端可接收系统广播消息消息、控制信息(或调度信息)、接收和发送数据。需要说明的是,不同的消息是在不同的物理信道上发送的,获取空口配置是获取各物理信道pattern(资源分配样式)的前提。
图3示出了网络设备与终端所执行的通知方法一种交互性示例性流程,在本实施例中,网络设备会下发同步信号组,同步信号组中包含N个同步信号(N为不小于2的整数),每一同步信号存在多个可选的同步序列,而不同的空口帧配置信息与N个同步信号不同的同步序列组合相映射。该交互流程包括:
在300部分,网络设备和终端预先约定好同步信号组中N个同步信号不同的同步序列组合与空口帧配置信息之间的映射关系。
在本实施例中,前述提及的对应关系包括同步序列组合与空口帧配置信息之间的映射关系。
在一个示例中,空口帧配置信息除了可包含RIC外,根据需要还可包含空口技术版本号、帧号、小区ID、ICFN和子帧号中的一种或多种等。这样,可充分利用同步信号组的隐式指示功能。本发明对空口帧配置信息所包含的内容不做具体限定。
需要说明的是,网络设备和终端可通过协商来约定映射关系。也可在公共协议中规定上述映射关系,这样,在出厂时,终端和网络设备就已经存储了上述映射关系。
若是出厂时就已经存储映射关系,300部分可不执行。
在301部分,网络设备确定空口帧配置信息。
更具体的,网络设备可从多种空口配置中选择当前采用的空口配置,并确定其他需要隐式指示的信息,例如小区ID、ICFN、子帧号等。
需要说明的是,空口配置是可配的。例如,可在网络规划时进行空口配置,并偏向于 较长时间内(数月)不变。当网络内的业务特征发生重大变化时,可能会重新配置或选择另一种空口配置作为当前采用的空口配置。
在302部分,网络设备根据前述提及的映射关系,确定出与包含当前采用的空口配置的空口帧配置信息相映射的同步序列组合,并发送。
以同步信号组包括两个同步信号为例,其中一个同步信号可称为SS-1(或第一同步信号),另一个同步信号可称为SS-2(或第二同步信号)。
更具体的,SS-1可为主同步信号,SS-2可为辅同步信号。
SS-1对应多个可选的同步序列,SS-2亦对应多个可选的同步序列。则SS-1和SS-2可选的SS序列有多种组合方式。假定,SS-1有2个可选SS序列,SS-2有64个可选SS序列,则SS-1和SS-2的同步序列组合有128种,本发明对具体有多少种组合、以及SS-1和SS-2的可选SS序列有多少个都不进行限制。
假设SS-1与SS-2有n种可选的同步序列组合,每一种组合与一种空口帧配置信息相映射,空口帧配置信息的比特数为m,则至少满足:n≥2m
在一个示例中,若SS-1与SS-2有128(=27)个可选的序列组合,则SS-1与SS-2序列的组合可以指示7比特的信息。以前述提及的4种RIC为例,其需要占用7比特中的2比特,其余5比特可指示其他信息。
为了方便,可用“组号”代表不同的同步信号组,不同的同步信号组中N个信号的序列组合也不相同,但这并不代表一定有“组号”。
若只用于指示RIC,SS-1与SS-2的同步序列组合与空口帧配置信息的映射关系可包括:
组号1-32的同步信号组与RIC#0映射;
组号33-64的同步信号组与RIC#1映射;
组号65-96的同步信号组与RIC#2映射;
组号97-128的同步信号组与RIC#3映射。
若除了指示RIC(占用2bit,共4种),空口帧配置信息还包括PCI(占用1bit,共2种)、ICFN(占用2bit,共4种)、SFN(占用3bit,共8个)。则SS-1与SS-2的同步序列组合与空口帧配置信息的映射关系可包括:
组号与RIC的映射不变。
若RIC=0,则PCI=0对应组号1-16;若RIC=0,则PCI=1对应组号17-32;
若RIC=1,则PCI=0对应组号33-38,若RIC=1,则PCI=1对应组号49-64,RIC=2以及RIC=3时,不同PCI的取值与组号的映射关系可类推,在此不作赘述。
同时,若RIC=0,PCI=0,则ICFN=0对应组号1-8,同时,组号1-8分别对应不同的SFN;其他情况可类推,在此不作赘述。
在另一个示例中,若SS-1与SS-2有214个可选的序列组合,则SS-1与SS-2序列的组合可以指示14比特的信息。以前述提及的4种RIC为例,其需要占用14比特中的2比特,其余12比特可指示其他信息。
为了方便,可用“组号”代表不同的同步信号组,不同的同步信号组中N个信号的序列组合也不相同,但这并不代表一定有“组号”。
若只用于指示RIC,SS-1与SS-2的同步序列组合与空口帧配置信息的映射关系可包 括:
组号1-4096的同步信号组与RIC#0映射;
组号4097-8192的同步信号组与RIC#1映射;
组号8193-12288的同步信号组与RIC#2映射;
组号12289-16384的同步信号组与RIC#3映射。
若除了指示RIC(占用2bit,共4种),空口帧配置信息还可包括PCI(占用6bit,共64种)、ICFN(占用2bit,共4种)、SFN(占用3bit,共8个)及预留信息(占用1bit,共2种),则SS-1与SS-2的同步序列组合与空口帧配置信息的映射关系可包括:
组号与RIC的映射不变;
若RIC=0,则PCI=0对应组号1-64;若RIC=0,则PCI=1对应组号65-128,以此类推到RIC=0,PCI=63对应组号4033-4096。
若RIC=1,那么PCI=0对应组号4097-4160以此类推到RIC=1,PCI=63对应组号8129-8192。
RIC=2以及RIC=3时,不同PCI的取值与组号的映射关系可类推,在此不作赘述。
同时,若RIC=0,PCI=0,则ICFN=0对应组号1-16,而ICFN=1对应组号17-32,其他情况可类推,在此不作赘述。
另外,若RIC=0,PCI=0,ICFN=0,则SFN=0对应组号1-2,SFN=1对应组号3-4,其他情况可类推,在此不作赘述。
在303部分:基站发送当前采用的空口配置相映射的同步信号组。
在一个示例中,在确定出当前采用的RIC后,网络设备再结合其他需要指示的消息,例如小区ID、ICFN、子帧号等确定出空口帧配置信息,再根据映射关系确定出组号,然后根据组号生成具体的SS-1序列和SS-2序列,并在同步信道上约定好的位置上进行发送。
在304部分,终端接收并解调同步信号组(也即上述确定出的同步序列组合);
在305部分,终端根据上述映射关系,获取同步信号组所指示的空口帧配置信息。
前述提及,终端与网络设备可预先约定好了所有同步序列组合与各空口帧配置信息之间的映射关系,因此,在接收并成功解调出SS-1和SS-2后,终端可根据预先约定的映射关系获取同步信号组所指示的空口帧配置信息,该空口帧配置信息包括了当前采用的空口配置,以及前述提及的其他信息等。
后续,终端可接收系统广播消息消息、控制信息(或调度信息)、接收和发送数据。需要说明的是,不同的消息是在不同的物理信道上发送的,获取空口配置是获取各物理信道pattern的前提。
在本实施例中,网络设备用同步序列组合所能指示的比特数中的少量比特来指示空口帧格式,能够使终端快速获取空口配置,同时兼顾了指示消息的覆盖性能。
图4为本发明实施例提供的另一种实现通知空口配置的交互示意图。与前述实施例最大的不同是,在本实施例中,同步信号组中N个同步信号的发送位置组合与空口帧配置信息存在映射关系。这N个同步信号可采用相同的同步序列,也可采用不同的同步序列。
也即,上述对应关系可包括发送位置组合与空口帧配置信息之间的映射关系。
在400部分,网络设备和终端预先约定发送位置组合与空口帧配置信息之间的映射关系。
需要说明的是,网络设备和终端可通过协商来约定映射关系。
当然,也可在公共协议中规定上述映射关系,在出厂时,终端和网络设备就已经存储了上述映射关系。若是出厂时就已经存储映射关系,400部分可不执行。
仍以两个同步信号为例,其中一个同步信号可称为SS-1(或第一同步信号),另一个同步信号可称为SS-2(或第二同步信号)。
SS-1与SS-2成对出现,可令SS-1与SS-2在时域上的相对位置与空口配置RIC相映射。基站通过发送SS-1和SS-2的相对位置隐式指示RIC。
图5示出了SS-1与SS-2在不同的空口配置下,SS-1与SS-2的相对位置不同的一个示例。在其他示例中,SS-1可以在SS-2之前,也可以在SS-2之后。每种RIC下,SS-1与SS-2序列的前后顺序和位置间隔都可以任意设计。只要网络设备和终端约定好SS-1与SS-2的位置关系与RIC的映射关系即可。
当然,SS-1与SS-2的位置组合除可指示RIC外,还可指示空口技术版本号、帧号、小区ID、ICFN和子帧号中的一种或多种等。
与前述300部分介绍的方式类似,若SS-1与SS-2有2x个可选的位置组合(x≥2),则其可隐式指示x比特的信息。以前述提及的4种RIC为例,其需要占用x比特中的2比特,其余(x-2)比特可指示其他信息。
假定SS-1与SS-2位置组合共32种,RIC共4种,在一个示例中,映射关系可如下:
第1-8种位置组合与RIC#0映射;
第9-16种位置组合与RIC#1映射。
第17-24种位置组合与RIC#2映射;
第25-32种位置组合与RIC#3映射。
在401部分,网络设备确定空口帧配置信息。
更具体的,网络设备可从多种空口配置中选择当前采用的空口配置,并确定其他需要指示的信息,例如小区ID、ICFN、子帧号等。
具体内容可参见前述301部分,在此不作赘述。
在402部分,网络设备根据发送位置组合与空口帧配置信息之间的映射关系,确定各同步信号的发送位置。
以SS-1与SS-2为例,假定当前采用的空口配置为RIC#2,SS-1与SS-2位置组合共32种,其中,第17-24种位置组合与RIC#2映射。
网络设备再结合其他需要指示的消息,例如小区ID、ICFN、子帧号等,从第17-24种位置组合中确定出唯一的发送位置组合(或组合号)。
在403部分,网络设备根据确定出的发送位置发送同步信号组。
具体的,网络设备可在同步信道上根据确定出的发送位置发送同步信号组。
在404部分,终端接收并解调上述同步信号组。
在405部分,终端根据上述发送位置组合与空口帧配置信息之间的映射关系,获取同步信号组所指示的空口帧配置信息。
需要说明的是,在同步过程中,以SS-1在前SS-2在后为例,终端先检测SS-1,再检测SS-2。终端在检测出SS-2之前,不清楚系统使用的是哪一种空口配置。终端会在自己能够支持的所有空口配置下的所有SS-2可能出现的位置,尝试解码SS-2序列,最终根据 检测到SS-2的位置即可获知空口配置。
图6为本发明实施例提供的又一种实现通知空口配置的交互示意图。与前述实施例最大的不同在于,本实施例不采用同步信号组,而采用单个同步信号指示空口帧配置信息。在本实施例中,可选用多个同步序列中的其中一个作为同步信号,不同的同步序列与不同的空口帧配置信息相映射(空口帧配置信息中包含RIC)。
在600部分,网络设备和终端预先约定同步序列与各空口帧配置信息之间的映射关系。
也即,前述的对应关系在本实施例中可包括同步序列与空口帧配置信息之间的映射关系。
需要说明的是,网络设备和终端可通过协商来约定映射关系。
也可在公共协议中规定上述映射关系,在出厂时,终端和网络设备就已经存储了上述映射关系。若是出厂时就已经存储映射关系,600部分可不执行。
假设同步信号有n种可选的同步序列,每一同步序列映射一个具体的空口帧配置信息。如果空口帧配置信息的比特数为m,则至少满足:n≥2m
本发明对SS的所有可选的同步序列的产生方法以及个数不做限定。
在一个示例中,空口帧配置信息除了可包含空口配置外,根据需要还可包含空口技术版本号、帧号、小区ID、ICFN和子帧号中的一种或多种等。这样,可充分利用同步信号组的隐式指示功能。本发明对空口帧配置信息所包含的内容不做具体限定。
为了方便,可用“序列号/根指数/索引号”代表不同的SS序列,实际中可以没有“序列号/根指数/索引号”。
以前述提及的4种RIC为例,在一个示例中,SS序列与空口帧配置信息之间的映射关系可如下:
假定,SS有128(=27)个同步序列可选,则每一同步序列可指示7比特信息。其中2比特可指示RIC、其他5比特可指示其他信息。
序列号1-32的同步信号组可与RIC#0映射;
序列号33-64的同步信号组可与RIC#1映射;
序列号65-96的同步信号组可与RIC#2映射;
序列号97-128的同步信号组可与RIC#3映射。
若除了RIC(占用2bit,共4种),空口帧配置信息还包括PCI(占用1bit,共2种)、ICFN(占用2bit,共4种)、SFN(占用3bit,共8个)。则SS序列与空口帧配置信息的映射关系还可包括:
若RIC=0,则PCI=0对应序列号1-16;若RIC=0,则PCI=1对应序列号17-32;
若RIC=1,则PCI=0对应序列号33-38,若RIC=1,则PCI=1对应序列号49-64。RIC=2以及RIC=3时,不同PCI的取值与序列号的映射关系可类推,在此不作赘述。
同时,若RIC=0,PCI=0,则ICFN=0对应序列号1-8,同时,序列号1-8分别对应不同的SFN;其他情况可类推,在此不作赘述。
上述映射关系只是举例说明,其中SS的可选序列数、指示的信息本发明都不做限定。
在601部分,网络设备确定空口帧配置信息。
601部分与301和401部分相类似,在此不作赘述。
在602部分:网络设备根据映射关系,确定与包含当前采用的空口配置的空口帧配置 信息相映射的同步序列。
举例来讲,假定当前采用的空口配置为RIC#2,则SS的第97-128序列可用于隐式指示RIC#2。网络设备再结合其他需要指示的消息,例如小区ID、ICFN、子帧号等,确定出唯一的同步序列。
在一个示例中,在确定出当前采用的RIC后,网络设备再结合其他需要指示的消息,例如小区ID、ICFN、子帧号等确定出空口帧配置信息,再根据映射关系确定出序列号/根指数/索引号,然后根据序列号/根指数/索引号生成具体的SS序列。
在603部分:网络设发送确定出的同步序列。
具体的,网络设备可在同步信道上的指定位置发送确定出的同步序列。
在本发明其他实施例中,还可采用同步序列与发送位置的组合来隐式指示。例如,2个不同的同步序列,与4种不同的发送位置,可有8种组合方式,指示3比特的信息。
在604部分:终端接收并解调上述同步序列;
在605部分:终端根据上述映射关系,获取同步序列所指示的空口帧配置信息。
上述主要从各个装置之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个装置,例如网络设备、终端等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
图7示出了上述实施例中所涉及的网络设备的一种可能的结构示意图,包括:
处理模块701,用于确定当前采用的空口配置,以及至少根据空口配置与同步信号组的对应关系,确定当前采用的空口配置相映射的同步信号组,或者,
用于确定当前采用的空口配置,以及至少根据空口配置与同步信号的对应关系,确定当前采用的空口配置相映射的同步信号。
其中,在确定当前采用的空口配置方面,处理模块701可用于从多种空口配置中选择当前采用的空口配置。需要说明的是,空口配置是可配的。例如,可在网络规划时进行空口配置,并偏向于较长时间内(数月)不变。当网络内的业务特征发生重大变化时,可能会重新配置或选择另一种空口配置作为当前采用的空口配置。因此,在一个示例中,处理模块701并不会始终处于工作状态。而是在需要工作时从休眠中醒来。
在一个示例中,确定出的同步信号组中包含N个同步信号,(N为不小于2的整数),每一同步信号有多个可用的同步序列。
更具体的,不同的空口帧配置信息与N个同步信号不同的同步序列组合相映射(空口帧配置信息中包含RIC)。具体可参见图3所示300-303部分的介绍,在此不作赘述。
或者,同步信号组中N个同步信号的发送位置组合与空口帧配置信息存在映射关系,具体可参见图4所示400-403部分的介绍,在此不作赘述。
在另一个示例中,同步信号对应多个可选的同步序列,不同的同步序列与不同的空口帧配置信息相映射。具体可参见图6所示600部分的介绍,在此不作赘述。
RIC的具体格式请参见本文前述记载,在此不作赘述。
处理模块701可执行图3所示的301、302部分,图4所示的401、402部分,以及图6所示的601、602部分。
发送模块702,至少可用于发送当前采用的空口配置相映射的同步信号组或同步信号。
具体的,发送模块702可在同步窗口连续发送当前采用的空口配置相映射的同步信号组或同步信号,也可在免竞争窗口按照约定好的时频资源,在物理信道上发送广播消息、控制(或调度)消息、当前采用的空口配置相映射的同步信号组或同步信号等。
实际上,上述所有实施例中的发送模块702可用于支持网络设备与其他装置进行通信。例如,用于支持网络设备与图3(300部分、303部分)、图4(400部分、405部分)、图6(600部分、603部分)中示出的终端进行通信。此外,发送模块702还可用于支持在CCA窗口侦听、在免竞争窗口传送数据、在免竞争窗口接收终端上报的数据或者其他消息等。
图8示出了上述实施例中所涉及的终端的一种可能的结构示意图,包括:
接收单元801,用于接收并解调来自网络设备的、与当前采用的空口配置相映射的同步信号组或同步信号;
接收单元801可用于支持终端与其他装置进行通信。例如,用于支持终端与图3(300部分、303部分、304部分)、图4(400部分、403部分、404部分)、图6(600部分、603部分、604部分)中示出的网络设备进行通信。接收单元801还可用于支持终端在CCA窗口侦听、在免竞争窗口传送数据、在免竞争窗口以LBT或者低占空比的方式发送数据。
处理单元802,用于根据上述对应关系,获取接收到的同步信号组或同步信号所指示的空口帧配置信息。
更具体的,处理单元802可执行图3所示的305部分、图4所示的405部分,或者,可执行图6所示的605部分。
图9示出了上述实施例中所涉及的网络设备/终端的另一种可能的结构示意图,包括:
总线、控制器/处理器1、存储器2、通信接口3、输入设备4和输出设备5。处理器1、存储器2、通信接口3、输入设备4和输出设备5通过总线相互连接。其中:
总线可包括一通路,在计算机系统各个部件之间传送信息。
控制器/处理器1可以是通用处理器,例如通用中央处理器(CPU)、网络处理器(Network Processor,简称NP)、微处理器等,也可以是特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。控制器/处理器1也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
存储器2中保存有执行本发明技术方案的程序,还可以保存有操作系统和其他应用程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。更具体的,存储器2可以是只读存储器(read-only memory,ROM)、可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)、可存储信息和指令的其他类型的动态存储设备、磁盘存储器等等。
输入设备4可包括接收用户输入的数据和信息的装置,例如键盘、鼠标、摄像头、扫描仪、光笔、语音输入装置、触摸屏等。
输出设备5可包括允许输出信息给用户的装置,例如显示屏、打印机、扬声器等。
通信接口3可包括使用任何收发器一类的装置,以便与其他设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网(WLAN)等。网络设备的通信接口可用于实现前述发送模块702的功能,而终端的通信接口可用于实现前述接收单元801的功能。
网络设备的控制器/处理器则可用于执行图3、4、6中涉及网络设备的处理过程和/或用于本申请所描述的技术的其他过程。控制器/处理器也可用于实现前述处理模块701的功能。
而终端的控制器/处理器可用于执行图3、4、6中涉及终端的处理过程和/或用于本申请所描述的技术的其他过程。终端的控制器/处理器也可用于实现前述处理单元802的功能。
可以理解的是,图9仅仅示出了网络设备/终端的简化设计。在实际应用中,网络设备/终端可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信接口等,而所有可以实现本发明的网络设备/终端都在本发明的保护范围之内。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (18)

  1. 一种通知方法,其特征在于,所述方法包括:
    网络设备确定当前采用的空口配置;
    所述网络设备至少根据空口配置与同步信号组的对应关系,确定当前采用的空口配置相映射的同步信号组;
    所述网络设备发送所述当前采用的空口配置相映射的同步信号组;
    其中,所述空口配置包括免竞争时间窗口、竞争时间窗口和同步窗口中的至少一种;所述免竞争时间窗口支持免竞争接入方式,所述竞争时间窗口支持竞争接入方式。
  2. 如权利要求1所述的方法,其特征在于,
    在所述同步窗口内,所述网络设备执行的操作包括:连续发送与当前采用的空口配置相映射的同步信号组;
    在所述免竞争窗口内,所述网络设备执行的操作至少包括:周期发送与当前采用的空口配置相映射的同步信号组。
  3. 如权利要求1或2所述的方法,其特征在于,
    所述同步信号组包括N个同步信号,所述N个同步信号中的每一所述同步信号对应多个可选的同步序列,所述N个同步信号不同的同步序列组合与不同的空口帧配置信息相映射;所述空口帧配置信息至少包括空口配置;
    所述对应关系包括同步序列组合与空口帧配置信息之间的映射关系。
  4. 如权利要求1或2所述的方法,其特征在于,
    所述同步信号组包括N个同步信号,所述N个同步信号不同的发送位置组合与不同的空口帧配置信息相映射;所述空口帧配置信息至少包括空口配置;
    所述对应关系包括发送位置组合与空口帧配置信息之间的映射关系。
  5. 如权利要求1-4任一项所述的方法,其特征在于,
    所述空口配置的其中一种配置包括同步窗口和免竞争窗口,其中:
    所述免竞争窗口包括三个空口帧,每一所述空口帧包括8个子帧,每一空口帧对应一个免竞争窗口内帧号ICFN,每一子帧对应一个子帧号。
  6. 如权利要求1-4任一项所述的方法,其特征在于,所述空口配置的其中一种包括同步窗口、免竞争窗口和竞争窗口。
  7. 如权利要求6所述的方法,其特征在于,
    所述免竞争窗口包括二个空口帧,所述竞争窗口包括一个空口帧;
    每一所述空口帧包括8个子帧,每一所述子帧对应一个子帧号;
    所述免竞争窗口内的每一空口帧对应一个ICFN;或者,
    所述免竞争窗口包括二个子帧,所述竞争窗口包括4个子帧;每一所述子帧对应一个子帧号;或者,
    所述免竞争窗口包括一个子帧,用于发送下行反馈和下行控制信息。
  8. 如权利要求3-7任一项所述的方法,其特征在于,所述空口帧配置信息还包括空口技术版本号、小区标识ID、ICFN和子帧号中的至少一种。
  9. 一种通知方法,其特征在于,包括:
    网络设备确定当前采用的空口配置;
    所述网络设备至少根据空口配置与同步信号的对应关系,确定当前采用的空口配置相映射的同步信号;
    所述网络设备发送所述当前采用的空口配置相映射的同步信号;
    其中,所述空口配置包括免竞争时间窗口、竞争时间窗口和同步窗口中的至少一种;所述免竞争时间窗口支持免竞争接入方式,所述竞争时间窗口支持竞争接入方式。
  10. 如权利要求9所述的方法,其特征在于,
    在所述同步窗口内,所述网络设备执行的操作包括:连续发送与当前采用的空口配置相映射的同步信号;
    在所述免竞争窗口内,所述网络设备执行的操作包括:周期性发送与当前采用的空口配置相映射的同步信号。
  11. 如权利要求9或10所述的方法,其特征在于,
    所述同步信号对应多个可选的同步序列,不同的同步序列与不同的空口帧配置信息相映射;
    所述对应关系包括同步序列与空口帧配置信息之间的映射关系。
  12. 一种网络设备,其特征在于,包括:
    处理模块,用于确定当前采用的空口配置,以及至少根据空口配置与同步信号组的对应关系,确定当前采用的空口配置相映射的同步信号组;
    发送模块,用于发送所述处理模块确定的、当前采用的空口配置相映射的同步信号组;
    其中,所述空口配置包括免竞争时间窗口、竞争时间窗口和同步窗口中的至少一种;所述免竞争时间窗口支持免竞争接入方式,所述竞争时间窗口支持竞争接入方式。
  13. 如权利要求12所述的网络设备,其特征在于,在发送同步信号组的方面,所述发送模块用于:
    在所述同步窗口内,连续发送与当前采用的空口配置相映射的同步信号组;
    在所述免竞争窗口内,周期发送与当前采用的空口配置相映射的同步信号组。
  14. 如权利要求12所述的网络设备,其特征在于,
    所述同步信号组包括N个同步信号,所述N个同步信号中的每一所述同步信号对应多个可选的同步序列,所述N个同步信号不同的同步序列组合与不同的空口帧配置信息相映射;所述空口帧配置信息至少包括空口配置;
    所述对应关系包括同步序列组合与空口帧配置信息之间的映射关系。
  15. 如权利要求12所述的网络设备,其特征在于,
    所述同步信号组包括N个同步信号,所述N个同步信号不同的发送位置组合与不同的空口帧配置信息相映射;所述空口帧配置信息至少包括空口配置;
    所述对应关系包括发送位置组合与空口帧配置信息之间的映射关系。
  16. 一种网络设备,其特征在于,包括:
    处理模块,用于确定当前采用的空口配置,以及至少根据空口配置与同步信号的对应关系,确定当前采用的空口配置相映射的同步信号;
    发送模块,用于发送所述当前采用的空口配置相映射的同步信号;
    其中,所述空口配置包括免竞争时间窗口、竞争时间窗口和同步窗口中的至少一种;所述免竞争时间窗口支持免竞争接入方式,所述竞争时间窗口支持竞争接入方式。
  17. 如权利要求15所述的网络设备,其特征在于,在发送与当前采用的空口配置相映射的同步信号的方面,所述发送模块用于:
    在同步窗口内,连续发送与当前采用的空口配置相映射的同步信号;
    在所述免竞争窗口内,周期性发送与当前采用的空口配置相映射的同步信号。
  18. 如权利要求16或17所述的网络设备,其特征在于,
    所述同步信号对应多个可选的同步序列,不同的同步序列与不同的空口帧配置信息相映射;
    所述对应关系包括同步序列与空口帧配置信息之间的映射关系。
PCT/CN2017/085291 2016-07-01 2017-05-22 通知方法及相关装置 WO2018000987A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610518298.4 2016-07-01
CN201610518298.4A CN107566149A (zh) 2016-07-01 2016-07-01 通知方法及相关装置

Publications (1)

Publication Number Publication Date
WO2018000987A1 true WO2018000987A1 (zh) 2018-01-04

Family

ID=60785052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085291 WO2018000987A1 (zh) 2016-07-01 2017-05-22 通知方法及相关装置

Country Status (2)

Country Link
CN (1) CN107566149A (zh)
WO (1) WO2018000987A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018420587A1 (en) 2018-04-25 2020-12-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method and communication device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123485A (zh) * 2010-01-08 2011-07-13 中兴通讯股份有限公司 Csg id及基站类型的指示方法、csg id指示的获取方法
WO2013143580A1 (en) * 2012-03-27 2013-10-03 Fujitsu Limited Presence indication in a wireless communication system
CN104125037A (zh) * 2013-04-25 2014-10-29 中兴通讯股份有限公司 参考信号配置信息的处理方法、装置和系统
WO2015115977A1 (en) * 2014-01-31 2015-08-06 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for the synchronization of a device-to-device communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123485A (zh) * 2010-01-08 2011-07-13 中兴通讯股份有限公司 Csg id及基站类型的指示方法、csg id指示的获取方法
WO2013143580A1 (en) * 2012-03-27 2013-10-03 Fujitsu Limited Presence indication in a wireless communication system
CN104125037A (zh) * 2013-04-25 2014-10-29 中兴通讯股份有限公司 参考信号配置信息的处理方法、装置和系统
WO2015115977A1 (en) * 2014-01-31 2015-08-06 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for the synchronization of a device-to-device communication

Also Published As

Publication number Publication date
CN107566149A (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
WO2020169071A1 (zh) 随机接入的方法和装置
KR102381712B1 (ko) 통신 방법 및 통신 장치
US11770866B2 (en) Service data transmission method, access point, and station
TWI511491B (zh) 動態分時雙工方法及其裝置
WO2021259129A1 (zh) 一种通信方法及通信装置
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
EP3806521A1 (en) Data transmission method and device, and signal feedback method and device
US10772126B2 (en) Communication method on unlicensed frequency band, terminal device, and network device
CN108370590B (zh) 信道竞争方法及装置
WO2020248287A1 (zh) 随机接入的方法和设备
CN110381602A (zh) 随机接入的方法、网络设备和用户设备
WO2019141123A1 (zh) 信号传输的方法和装置
TWI731117B (zh) 傳輸信息的方法和裝置
WO2024026978A1 (zh) 通信方法及终端设备
WO2017128285A1 (zh) 一种上行传输方法、基站及终端设备
WO2024036671A1 (zh) 侧行通信的方法及装置
WO2020199220A1 (zh) 接收信息、发送信息的方法和设备
WO2016119219A1 (zh) 通信方法、基站和用户设备
WO2020052763A1 (en) Uplink grant-free transmission in a communication network
CN114731580B (zh) 检测物理下行控制信道pdcch的方法以及装置
WO2020151350A1 (zh) 一种资源预留方法及相关设备
WO2020030008A1 (zh) 一种传输信号的方法和装置
WO2018000987A1 (zh) 通知方法及相关装置
WO2019141069A1 (zh) 用于管理非授权频段的信道占用时长的方法和设备
WO2020029299A1 (zh) 数据中断指示方法及其装置、通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17818984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17818984

Country of ref document: EP

Kind code of ref document: A1