WO2018000387A1 - 一种通道训练的方法、装置及系统 - Google Patents

一种通道训练的方法、装置及系统 Download PDF

Info

Publication number
WO2018000387A1
WO2018000387A1 PCT/CN2016/088025 CN2016088025W WO2018000387A1 WO 2018000387 A1 WO2018000387 A1 WO 2018000387A1 CN 2016088025 W CN2016088025 W CN 2016088025W WO 2018000387 A1 WO2018000387 A1 WO 2018000387A1
Authority
WO
WIPO (PCT)
Prior art keywords
training
onu
channel
frame
training frame
Prior art date
Application number
PCT/CN2016/088025
Other languages
English (en)
French (fr)
Inventor
高建河
高波
张红广
付生猛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/088025 priority Critical patent/WO2018000387A1/zh
Priority to CN201680085341.0A priority patent/CN109076269B/zh
Priority to EP16906787.3A priority patent/EP3461143B1/en
Publication of WO2018000387A1 publication Critical patent/WO2018000387A1/zh
Priority to US16/227,366 priority patent/US10666468B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0084Quality of service aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0088Signalling aspects

Definitions

  • the present invention relates to the field of network communication technologies, and in particular, to a channel training method, apparatus, and system.
  • the PON Passive Optical Network
  • the PON is composed of an OLT and a plurality of ONUs, wherein a feeder segment between the OLT and the ONU refers to a trunk fiber, and a passive optical splitter (Splitter) is used to fuse the plurality of fibers together.
  • Drop refers to the branch fiber.
  • the passive optical splitter splits one signal sent by the OLT into N signals and simultaneously sends them to all connected ONUs.
  • the ONU selectively receives downlink data with the same ID as its own ID;
  • the passive optical splitter When performing uplink data transmission, the passive optical splitter combines the optical signals transmitted by the N-way ONUs into one optical signal by using TDMA (Time Division Multiple Access), and divides the uplink transmission time into several time slots. Only one ONU is arranged in a time slot to send packet information to the ONU in a packet manner, wherein each ONU can obtain timing information from the downlink signal sent by the OLT, and then send an uplink packet signal in a time slot specified by the OLT, thereby avoiding each A conflict occurs between ONUs.
  • the PON based on this transmission principle is TDM-PON.
  • PON mainly includes EPON (Ethernet Passive Optical Network) and GPON (Gigabit Passive Optical Network).
  • EPON includes 10GEPON, and the user's bandwidth requirements are continuously improved.
  • the 10G bandwidth of 10G EPON is increasingly insufficient.
  • NGEPON Next Generation Ethernet Passive Optical Network
  • NGEPON is also called 100G EPON, which is a high-speed PON, in order to save costs.
  • the device transmits and receives 25G data, but the performance of the optical signal deteriorates during the transmission of the high-speed optical signal in the existing optical fiber, which causes the ONU to receive the optical signal with a high bit error rate and a high power penalty. .
  • the embodiments of the present invention provide a channel training method, device, and system, which can solve the problem that a newly added ONU in a PON cannot be registered in time.
  • an embodiment of the present invention provides a channel training method, where the method is applied to a passive optical network PON, where the PON includes an optical line terminal OLT and an optical network unit ONU, and the ONU includes an adaptive equalizer. , the method includes:
  • Determining a first moment of triggering channel training then, starting from the first moment, stopping transmitting normal data, generating a training frame; thereby transmitting the training frame to all ONUs in the PON, such that the target ONU is according to the Training frames, training an adaptive equalizer, the target ONU being at least one of the all ONUs.
  • the receiving module of the ONU can improve the receiving sensitivity of the optical module of the ONU, so that the optical module of the ONU receives the optical signal in the best working condition, thereby reducing the error rate of the received optical signal and reducing the power cost.
  • a control signal when the first moment is reached, a control signal is generated, the control signal is used to trigger channel training; then the normal data is stopped by the control signal, and a training frame is generated, the training The frame includes a training identification and a training sequence.
  • the channel training may also be triggered periodically by a timer, and the time at which the channel training is triggered is the first time; from each of the first moments, the normal data is stopped and the training frame is generated.
  • the training frame includes a training identifier and a training sequence.
  • the idle Idle codeword in the physical coding sublayer PCS of the OLT may also be replaced with the training frame; then the 64B/66B in the PCS is encoded. The module and the scrambling module are bypassed.
  • the 64B/66B encoding module and the scrambling code module in the PCS are bypassed before the training frame is sent, which avoids the 64B/66B encoding module and the scrambling module to encode the training frame and destroy the training sequence when scrambling. So that the ONU can receive the correct
  • the training sequence trains the adaptive equalizer according to the training sequence, thereby ensuring that the ONU can register online in time, and reduces the error rate of the ONU receiving optical signal, thereby reducing the power cost.
  • the training frame may also be subjected to 64B/66B inverse coding and descrambling; then the Idle codeword in the physical coding sublayer PCS of the OLT is replaced. It is a training frame that is backward encoded by 64B/66B and descrambled.
  • the training frame is processed by each functional module in the PCS, and the training frame passes through the PCS.
  • the 64B/66B encoding and the scrambling code the original training frame can be recovered, and the original training frame is transmitted to the ONU through the optical fiber, so that the ONU can recognize the correct training sequence from the original training frame, and train according to the correct training sequence.
  • the equalizer Adapt to the equalizer.
  • a retraining command is added to the downlink message, where the retraining command is used to indicate that the problem ONU resets the adaptive equalizer, and the problem ONU is a receiving error.
  • the ONU whose code rate reaches the preset value; then, the time when the downlink message carrying the retraining command is sent is determined as the first time of the trigger channel training.
  • the channel training process may be re-triggered, so that the ONU can improve the receiving sensitivity of the optical module in the ONU after being trained by the channel, and can correctly receive the received signal. Data, reduce the bit error rate of receiving, and improve network performance.
  • the present application provides an apparatus for channel training, comprising: means or means for performing the various steps of the above first aspect.
  • the present application provides an apparatus for channel training, comprising a processor for storing a program, and a processor calling a program stored in the memory to perform the method provided in the first aspect of the present application.
  • the present application provides a channel training system, including an optical network unit ONU, a passive optical splitter, and an optical line termination OLT of the second aspect.
  • the present application provides a channel training apparatus, including for performing At least one processing element (or chip) of the method of the first aspect.
  • the present application provides a channel training program for performing the method of the above first aspect when executed by a processor.
  • the application provides a program product, such as a computer readable storage medium, comprising the program of the sixth aspect.
  • the normal data transmission is stopped first, and the training frame is started to be sent at the same time.
  • the ONU uses the training sequence in the training frame to train the adaptive equalizer, which can be high ONU.
  • the receiving sensitivity of the optical module enables the optical module of the ONU to receive the optical signal in the best working condition, thereby reducing the bit error rate of the received optical signal and reducing the power cost.
  • FIG. 1 is a schematic diagram of a logical structure of a PON network according to the background art of the present invention
  • FIG. 2 is a schematic diagram of a network layering model of an EPON according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a system of an EPON system according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for channel training according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of another method for channel training according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a method for channel training according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of another method for channel training according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another method for channel training according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of another method for channel training according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a logical structure of a device for channel training according to an embodiment of the present invention.
  • FIG. 11 is a logical structure of another channel training device according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a logical structure of another channel training apparatus according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a logical structure of an OLT in a channel training method according to an embodiment of the present invention.
  • the embodiment of the present invention is to solve the problem that the error rate of the optical signal received by the ONU in the 100G EPON is high and the power cost is high.
  • 100G EPON The division of network functions is similar to the division of network functions of existing EPONs.
  • the network layering model of EPON is shown in Figure 2.
  • the MAC (Media Access Control) sublayer is used to encapsulate the data sent by the upper layer into the frame structure of the Ethernet, and send and receive data.
  • the RS Reconciliation Sublayer
  • PHY Physical Layer Device
  • PCS Physical Coding Sublayer
  • PMA Physical Medium Attachment sublayers. It is used to complete the line coding function and also has the FEC (Forward Error Correction) function. .
  • the following describes the data transmission process between the OLT and the ONU in combination with the functional modules of the 10G EPON system.
  • the function module of the 10G EPON system is shown in FIG. 3, and the MAC in the OLT (not shown in FIG. 3) transmits data through the RS interface.
  • the Idle control codeword is inserted according to the electrical interface specification, the Idle control codewords are sent to the PCS, and then the PCS will delete the Idle control codewords according to certain rules, so that Reserve space for subsequent insertion of validation data.
  • the PCS performs 64B/66B encoding and scrambling on the received data, and then the data enters the FEC function module, and the FEC function module performs FEC encoding on the data and adds the verification data, and then passes through the series of processing.
  • the data is transmitted to the optical fiber through the Gearbox (Interface Converter), PMA interface, and PMD (Physical Media Dependent) interface, and the data is transmitted to the ONU by the optical fiber.
  • the ONU performs the opposite of the received data on the data executed by the OLT.
  • the processing can restore the data sent by the OLT's MAC.
  • the embodiment of the present invention provides a channel training method.
  • the method is applied to a passive optical network PON.
  • the structure of the PON is as shown in FIG. 1 and is specifically applied to a 100G EPON.
  • the 100G EPON includes an OLT and an ONU.
  • the ONU includes an adaptive equalizer, and the adaptive equalizer can It is integrated in the optical module of the ONU, and can also be set independently of the optical module.
  • the method includes:
  • the MAC address of the OLT determines the first time of the training of the trigger channel.
  • the MAC can determine whether the channel training needs to be triggered according to a preset rule or time interval. It can be understood that when a new ONU is added, the OLT The channel training of the newly added ONU needs to be triggered.
  • the specific implementation method is: receiving an instruction of the trigger channel training input by the user, and when receiving the instruction, determining that the time when the instruction is received is the first time of the training of the trigger channel; or The MAC can periodically trigger channel training, such as triggering every other minute.
  • the first moment of the trigger channel training is determined according to a preset rule, and the method of the specific trigger channel training is not limited by the present invention.
  • the training frame includes a training identifier and a training sequence.
  • the training identifier is the start identifier of the training frame.
  • the frame is trained to facilitate the adaptive equalizer in the ONU to discover the start time of the training frame.
  • the training pattern is typically a pseudo-random data bit stream of a certain length.
  • the MAC When the first moment of the training of the trigger channel is reached, the MAC generates a training frame. Since the transmission training frame occupies the transmission channel for transmitting normal data, the MAC stops sending normal data in order to avoid normal data transmission errors. It can be understood that if the first moment is not reached, the MAC will still send normal data according to the existing process.
  • the function of the adaptive equalizer is to adjust the receiving sensitivity of the optical module of the ONU. After training the adaptive equalizer with the training frame, the optical module of the ONU can receive the optical signal with the best performance.
  • the OLT transmits the downlink data in a broadcast manner, that is, each ONU in the PON network can receive the training frame sent by the OLT, and the ONU newly added to the PON determines the downlink data after receiving the downlink data sent by the OLT.
  • the ONU uses the bit data of a certain length after the training identifier as the training data according to the preset rule, and the adaptive equalizer of the ONU calculates the adaptive equalizer according to the training data.
  • the coefficient is configured, and the calculated configuration coefficient is applied to the adaptive equalizer, so that the receiving sensitivity of the ONU optical module is adjusted to the highest, so that the optical module of the ONU receives the optical signal in the state with the best working performance, after the training is completed.
  • the registration message sent by the OLT can be correctly received and the normal registration process can be performed.
  • the equalizer may be fine-tuned according to the training sequence, or the training frame may be directly ignored, and the reception of normal data is not affected.
  • the OLT determines that the training frame has been transmitted, it can continue to transmit normal data.
  • the method for channel training determines the first moment of the training of the trigger channel, and then stops transmitting the normal data from the first moment, generates a training frame, and sends the training frame to all the ONUs in the PON to make the target
  • the ONU trains the adaptive equalizer according to the training frame.
  • the first time of the channel training needs to be determined as the first time in the process of normal operation after the system is powered on, for example, the ONU can be used.
  • the time of the access is determined as the first time, the normal data transmission is stopped first, and the training frame is started to be sent at the same time, and the normal data is not damaged.
  • the ONU After receiving the training frame, the ONU adopts the training sequence in the training frame.
  • the adaptive equalizer is trained to improve the receiving sensitivity of the ONU optical module, so that the optical module of the ONU receives the optical signal in the best working condition, thereby reducing the bit error rate of the received optical signal and reducing the power cost. .
  • the method for triggering the channel training and the method for sending the training frame in the embodiment of the present invention are described in detail below with reference to the method flow shown in FIG. 4 .
  • the MAC in the OLT may be adopted.
  • the process of sending a control signal to the PCS to trigger the channel training as shown in FIG. 5, the above step 402, starting from the first time, stopping the transmission of normal data, and generating a training frame, which may be implemented as steps 4021 and 4022.
  • the MAC in the OLT determines that the first time arrives and the channel training needs to be triggered, the MAC generates a control signal and sends the control signal to the PCS.
  • the MAC After the trigger channel training, the MAC will stop sending normal data, and control signals will be used to control the new training module in the PCS to generate training frames.
  • the training frame After the training frame is generated, the training frame needs to be sent to the ONU.
  • each functional module in the OLT shown in FIG. 3 is also required, and the single wavelength rate of the 100G EPON is increased to 25 Gbps or more.
  • the FEC function In the case of downlink data transmission, the FEC function must be enabled. Generally, the size of the training frame does not exceed 1K bit.
  • the FEC code can carry downlink data. Therefore, FEC encoding of the training frame does not destroy the training identifier and training sequence in the training frame. Integrity. Based on this, in order to ensure that the ONU can receive the training frame, after the training frame is generated, steps 405 and 406 are also performed.
  • the Idle codeword is replaced by the training identifier and the training sequence in the PCS Idle deletion module in the PCS.
  • the PCS receives the control signal sent by the MAC, and bypasses the 64B/66B encoding module and the scrambling code module according to the control signal, so that the data frame does not need to undergo 64B/66B encoding and scrambling code.
  • the process is directly transmitted to the PCS FEC module by the PCS Idle deletion module, which prevents the 64B/66B encoding module and the scrambling module from destroying the training sequence in the training frame when processing the training frame.
  • FIG. 6 A schematic diagram of a method for transmitting a training sequence is shown in FIG. 6.
  • the PCS FEC module After receiving the training frame, the PCS FEC module performs FEC encoding on the training frame and adds check data, and then the training frame is transmitted to the optical fiber via the PCS Gearbox, PMA, and PMD, via the optical fiber.
  • the training frame is transmitted to all ONUs in the PON.
  • the 64B/66B encoding module and the scrambling code module in the PCS are bypassed before the training frame is sent, thereby avoiding the coding of the training frame by the 64B/66B encoding module and the scrambling code module and the disruption training during the scrambling code.
  • the sequence enables the ONU to receive the correct training sequence and train the adaptive equalizer according to the training sequence, thereby ensuring that the ONU can register online in time, and reduce the error rate of the ONU receiving optical signal, thereby reducing the power cost.
  • the process of the channel training may be triggered periodically by using a timer.
  • the foregoing steps 401 and 402 may be specifically implemented as steps 701 and 702 .
  • the channel training is periodically triggered by a timer, and the time at which the channel training is triggered is the first moment.
  • the process of triggering the channel training may be triggered by a timer, and the control signal in the method flow shown in FIG. 5 is replaced by a timer.
  • a schematic diagram of a specific method is shown in FIG. 8.
  • the timer in this step is a timer in the PCS of the OLT, and the timer in the PCS can periodically trigger the channel training.
  • the timers in the MAC and PCS need to maintain strict clock synchronization.
  • the timer in the PCS triggers the channel training
  • the MAC will stop sending normal data.
  • the new trigger will be triggered.
  • the training module generates training frames.
  • steps 703 and 704 are also performed.
  • the PCS may perform 64B/66B reverse encoding and descrambling on the training frame after generating the training frame.
  • the training frame is sequentially processed by each functional module in the PCS, and the training frame passes through the PCS. After 64B/66B encoding and scrambling, the original training frame can be recovered. The original training frame is transmitted to the ONU through the optical fiber, so that the ONU can identify the correct training sequence from the original training frame and train the adaptive according to the correct training sequence. Equalizer.
  • steps 701 and 702 may also be combined with steps 405 and 406 described above to form an implementation manner in which the process of channel training is triggered by a timer in the PCS instead of the control signal.
  • steps 4021 and 4022 described above may also be combined with steps 703 and 704 to form another implementation.
  • the 64B/66B inverse coding and the descrambling code are performed on the training frame before the training frame is transmitted, so that the training frame can recover the original training frame after being subjected to the 64B/66B encoding in the PCS and the scrambling code.
  • the original training frame is sent to the ONU through the optical fiber, so that the ONU can correctly identify the training sequence in the training frame.
  • the channel training method in the embodiment of the present invention is adopted to receive the high-speed data signal and reduce the low-speed optical device. The cost of configuring the ONU.
  • the first step of determining the trigger channel training may be implemented as step 901 and step 902.
  • the retraining command is used to indicate the problem ONU resets the adaptive equalizer, and the problem ONU is the ONU that receives the preset bit error rate.
  • the OLT may use the reserved field in the downlink Gate message to carry the retraining command.
  • the tap coefficient of the adaptive equalizer is reset, so that the adaptive equalizer is obtained.
  • the training frame delivered by the OLT can be re-received and the adaptive equalizer is trained again.
  • the ONU when the downlink message carrying the retraining command is sent, the ONU resets the tap coefficient of the adaptive equalizer. At this time, the problem ONU can re-receive the training frame delivered by the OLT, so the retraining command will be carried. The moment when the downlink message is sent is determined as the first moment of the trigger channel training.
  • the channel training is still performed according to the method provided in the foregoing embodiment, and details are not described herein again.
  • the channel training method provided by the embodiment of the present invention can re-trigger the channel training process when the receiving error rate of the ONU is increased, so that the ONU can improve the receiving sensitivity of the optical module in the ONU after the channel training. It can correctly receive data, reduce the bit error rate and improve network performance.
  • the embodiment of the present invention further provides a channel training device, which is applied to a passive optical network PON, where the PON includes an optical line terminal OLT and an optical network unit ONU, and the ONU includes an adaptive equalizer, such as As shown in FIG. 10, the apparatus includes: a determining unit 1001, a generating unit 1002, and a transmitting unit 1003.
  • a determining unit 1001 configured to determine a first moment of trigger channel training
  • the generating unit 1002 is configured to start from the first moment determined by the determining unit 1001. Send normal data and generate training frames;
  • the sending unit 1003 is configured to send the training frame generated by the generating unit 1002 to all ONUs in the PON, so that the target ONU trains the adaptive equalizer according to the training frame, and the target ONU is at least one of all ONUs.
  • the generating unit 1002 is further configured to: when the first time is reached, generate a control signal, where the control signal is used to trigger channel training; stop sending normal data by the control signal, and generate a training frame, where the training frame includes Training logo and training sequence.
  • the generating unit 1002 is further configured to periodically trigger the channel training by using a timer, and trigger the channel training time as the first time; from each first time, stop sending the normal data, and generate
  • the training frame includes a training identifier and a training sequence.
  • the device further includes a replacement unit 1004 and a bypass unit 1005.
  • a replacement unit 1004 configured to replace an idle Idle codeword in a physical coding sublayer PCS of the OLT with a training frame;
  • the bypass unit 1005 is configured to bypass the 64B/66B encoding module and the scrambling module in the PCS.
  • the device further includes an encoding unit 1006.
  • the encoding unit 1006 is configured to perform 64B/66B reverse encoding and descrambling on the training frame;
  • the replacing unit 1004 is configured to replace the Idle codeword in the physical coding sublayer PCS of the OLT with the 64B/66B backward coding and descrambling training frame.
  • the determining unit 1001 is further configured to: when the problem ONU is detected, add a retraining command to the downlink message, where the retraining command is used to indicate that the problem ONU resets the adaptive equalizer, and the problem ONU is Receiving an ONU whose bit error rate reaches a preset value; determining a time at which the downlink message carrying the retraining command is completed is determined as the first time of the trigger channel training.
  • the determining unit determines the first time of the trigger channel training, and then the generating unit stops transmitting the normal number from the first moment.
  • the sending unit sends the training frame to all the ONUs in the PON, so that the target ONU trains the adaptive equalizer according to the training frame, and the high-speed optical signal in the prior art is transmitted in the existing optical fiber.
  • the performance of the optical signal may be deteriorated, and the error rate of the optical signal received by the ONU is high, resulting in a higher power cost.
  • the system may be required to work normally after the system is powered on.
  • the first time of the triggering channel training is determined as the first time.
  • the time when the ONU is accessed may be determined as the first time, and the normal data transmission is stopped first from the first time, and the training frame is started to be sent, and the normal data is not
  • the ONU uses the training sequence in the training frame to train the adaptive equalizer to improve the receiving sensitivity of the ONU optical module, so that the optical module of the ONU receives light in the best working condition.
  • the signal reduces the bit error rate of the received optical signal, reducing the power penalty.
  • the embodiment of the present invention further provides a channel training system, which includes an ONU, a passive optical splitter, and the OLT described in FIGS. 10 to 12, wherein the ONU includes an adaptive equalizer.
  • the embodiment of the present invention further provides a channel training device, as shown in FIG. 13, which is a hardware structure diagram of the device described in FIG. 10 to FIG.
  • the device may include a memory 1301, a processor 1302, a transceiver 1303, and a bus 1304.
  • the memory 1301 may be a ROM (Read Only Memory), a static storage device, a dynamic storage device, or a RAM (Random Access Memory).
  • the memory 1301 can store an operating system and other applications.
  • the program code for implementing the technical solution provided by the embodiment of the present invention is stored in the memory 1301 and executed by the processor 1302.
  • the transceiver 1303 is used for communication between the device and other devices or communication networks (such as, but not limited to, Ethernet, RAN Radio Access Network, WLAN (Wireless Local Area Network), etc.).
  • devices or communication networks such as, but not limited to, Ethernet, RAN Radio Access Network, WLAN (Wireless Local Area Network), etc.
  • the processor 1302 may be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for executing related programs.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • Bus 1304 can include a path for communicating information between various components of the device, such as memory 1301, transceiver 1303, and processor 1302.
  • FIG. 13 only shows the memory 1301, the transceiver 1303, and the processor 1302, and the bus 1304, in a specific implementation process, those skilled in the art should understand that the device also includes a normal implementation. Other devices necessary for operation. At the same time, those skilled in the art will appreciate that hardware devices that implement other functions may also be included, depending on the particular needs.
  • the processor 1302 in the apparatus is coupled with the memory 1301 and the transceiver 1303 for determining the trigger channel training.
  • One time starting from the first moment, stop sending normal data and generate a training frame.
  • the transceiver 1303 is configured to send the training frame to all ONUs in the PON, so that the target ONU trains the adaptive equalizer according to the training frame, and the target ONU is at least one of all ONUs.
  • the processor 1302 is further configured to: when the first time is reached, generate a control signal, where the control signal is used to trigger channel training; stop sending normal data by the control signal to generate a training frame, where the training frame includes Training logo and training sequence.
  • the processor 1302 is further configured to periodically trigger channel training by using a timer, and trigger a channel training time as a first time; start from each first time, stop sending normal data, and generate
  • the training frame includes a training identifier and a training sequence.
  • the processor 1302 is further configured to replace the idle Idle codeword in the physical coding sublayer PCS of the OLT with a training frame; bypass the 64B/66B coding module and the scrambling code module in the PCS. .
  • the processor 1302 is further configured to perform 64B/66B reverse coding and descrambling on the training frame, and replace the Idle codeword in the physical coding sublayer PCS of the OLT with the 64B/66B. Reverse coding and training frames for descrambling codes.
  • the processor 1302 is further configured to: when a problem ONU is detected, add a retraining command to the downlink message, where the retraining command is used to indicate that the problem ONU resets the adaptive equalizer, and the problem ONU is Receive error rate reaches preset Value of ONU;
  • the moment when the downlink message carrying the retraining command is sent is determined as the first moment of the trigger channel training.
  • the processor determines the first time of the trigger channel training, and then stops transmitting the normal data from the first time, generates a training frame, and the transceiver sends the training frame to all ONUs in the PON.
  • the performance of the optical signal may deteriorate, causing the ONU to receive the error of the optical signal.
  • the first time of the channel training needs to be determined as the first time in the process of normal operation after the system is powered on, for example, the ONU can be connected.
  • the time of the entry is determined as the first time, the normal data transmission is stopped first, and the training frame is started to be sent at the same time, and the normal data is not damaged.
  • the ONU After receiving the training frame, the ONU adopts the training sequence pair in the training frame.
  • the adaptive equalizer is trained to improve the receiving sensitivity of the ONU optical module, so that the optical module of the ONU is connected in the best working condition. An optical signal, thereby reducing the received optical signal error rate, reduced power penalty.
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, by hardware, but in many cases, the former is a better implementation. .
  • the technical solution of the present invention which is essential or contributes to the prior art, can be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk, etc. includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开一种通道训练的方法、装置及系统,涉及通信技术领域,可以解决PON中新加入的ONU不能及时注册上线的问题。本发明实施例通过确定触发通道训练的第一时刻,从第一时刻开始,停止发送正常数据,生成训练帧,然后将训练帧发送至PON中的所有ONU,以使得目标ONU根据训练帧,训练自适应均衡器,其中,目标ONU为PON中所有ONU中的至少一个。本发明实施例提供的方案适于训练ONU的均衡器时采用。

Description

一种通道训练的方法、装置及系统 技术领域
本发明涉及网络通信技术领域,尤其涉及一种通道训练的方法、装置及系统。
背景技术
PON(Passive Optical Network,无源光网络)技术使得接入网的局端OLT(Optical Line Terminal,光线路终端)与用户ONU(Optical Network Unit,光网络单元)之间只需光纤、光分路器等无源器件连接,无需机房和配备电源。如图1所示,PON由一个OLT和多个ONU组成,其中,OLT和ONU之间的馈线段(Feeder)指主干光纤,无源光分离器(Splitter)用于将多根光纤熔在一起,衰减段(Drop)指分支光纤。在PON工作过程中,当进行下行数据传输时,无源光分离器将OLT下发的一路信号分成N路信号同时发送给连接的所有ONU,ONU选择性接收和自身ID相同的下行数据;当进行上行数据传输时,无源光分离器将N路ONU发送的光信号采用TDMA(Time Division Multiple Access,时分多址)组合成一路光信号,将上行传输时间分为若干个时隙,在每个时隙内只安排一个ONU以分组的方式向ONU发送分组信息,其中,各个ONU可以从OLT发送的下行信号中获取定时信息,然后在OLT规定的时隙内发送上行分组信号,从而避免各ONU之间产生冲突。基于这种传输原理的PON为TDM-PON。
目前PON主要有EPON(Ethernet Passive Optical Network,以太网无源光网络)和GPON(Gigabit Passive Optical Network,吉比特无源光网络),其中,EPON中包括10GEPON,随着用户对带宽的要求不断提高,10G EPON的10G带宽日益不足,NGEPON(Next Generation Ethernet Passive Optical Network,下一代以太网无源光网络)也开始发展,NGEPON也被称为100G EPON,即高速的PON,为了在节约成本的前提下提高带宽,可以使OUN利用低速的10G光 器件来收发25G的数据,但是高速光信号在现有的光纤中传输的过程中,光信号的性能会发生恶化,导致ONU接收到该光信号的误码率较高,产生较高的功率代价。
发明内容
本发明的实施例提供一种通道训练的方法、装置及系统,可以解决PON中新加入的ONU不能及时注册上线的问题。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本发明实施例提供一种通道训练的方法,所述方法应用于无源光网络PON中,所述PON包括光线路终端OLT以及光网络单元ONU,所述ONU包括自适应均衡器,所述方法包括:
确定触发通道训练的第一时刻;然后从所述第一时刻开始,停止发送正常数据,生成训练帧;从而将所述训练帧发送至所述PON中的所有ONU,以使得目标ONU根据所述训练帧,训练自适应均衡器,所述目标ONU为所述所有ONU中的至少一个。
通过本发明实施例,可以提高ONU的光模块的接收灵敏度,使得ONU的光模块在工作性能最好的状态下接收光信号,进而降低接收到光信号的误码率,减小功率代价
在一种可能的设计中,当到达所述第一时刻时,会生成控制信号,所述控制信号用于触发通道训练;然后通过所述控制信号停止发送正常数据,生成训练帧,所述训练帧包括训练标识和训练序列。
在一种可能的设计中,还可以通过定时器周期性地触发通道训练,触发通道训练的时刻为所述第一时刻;从每个所述第一时刻开始,停止发送正常数据,生成训练帧,所述训练帧包括训练标识和训练序列。
在一种可能的设计中,在生成训练帧之后,还可以将所述OLT的物理编码子层PCS中的空闲Idle码字替换为所述训练帧;然后将所述PCS中的64B/66B编码模块和扰码模块旁路。
通过这种方法,在发送训练帧之前,将PCS中的64B/66B编码模块和扰码模块旁路,避免了64B/66B编码模块和扰码模块对训练帧进行编码以及扰码时破坏训练序列,使得ONU可以接收到正确的 训练序列并根据该训练序列训练自适应均衡器,从而保证了ONU可以及时注册上线,且减小了ONU接收光信号的误码率,减小了功率代价。
在一种可能的设计中,在生成训练帧之后,还可以对所述训练帧进行64B/66B反向编码以及解扰码;然后将所述OLT的物理编码子层PCS中的Idle码字替换为经过64B/66B反向编码以及解扰码的训练帧。
对于本发明实施例,将Idle码字替换为经过64B/66B反向编码以及解扰码的训练帧之后,该训练帧会依次被PCS中的各功能模块进行处理,在该训练帧通过PCS中的64B/66B编码以及扰码之后,可以恢复出原始训练帧,原始训练帧被通过光纤传输至ONU,以使得ONU可以从原始训练帧中识别出正确的训练序列,根据正确的训练序列训练自适应均衡器。
在一种可能的设计中,当检测到存在问题ONU时,在下行消息中增加重新训练命令,所述重新训练命令用于指示所述问题ONU复位自适应均衡器,所述问题ONU为接收误码率达到预设值的ONU;然后将所述携带重新训练命令的下行消息发送完成的时刻确定为触发通道训练的第一时刻。
对于本发明实施例,当检测到ONU的接收误码率增高时,可以重新触发通道训练的过程,以使得该ONU经过通道训练之后,能够提高ONU中光模块的接收灵敏度,能够正确的接收到数据,减少接收误码率,提高网络性能。
第二方面,本申请提供了一种通道训练的装置,包括:用于执行以上第一方面各个步骤的单元或手段。
第三方面,本申请提供一种通道训练的装置,包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请第一方面中提供的方法。
第四方面,本申请提供一种通道训练的系统,包括光网络单元ONU、无源光分离器以及第二方面的光线路终端OLT。
第五方面,本申请提供一种通道训练的装置,包括用于执行以 上第一方面的方法的至少一个处理元件(或芯片)。
第六方面,本申请提供一种通道训练的程序,该程序在被处理器执行时用于执行以上第一方面的方法。
第七方面,本申请提供一种程序产品,例如计算机可读存储介质,包括第六方面的程序。
在以上各个方面中,从第一时刻开始先停止正常数据的发送,同时开始发送训练帧,ONU接收到训练帧之后,采用训练帧中的训练序列对自适应均衡器进行训练,可以高ONU的光模块的接收灵敏度,使得ONU的光模块在工作性能最好的状态下接收光信号,进而降低了接收到光信号的误码率,减小了功率代价。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明背景技术提供的一种PON网络的逻辑结构示意图;
图2为本发明实施例提供的一种EPON的网络分层模型的示意图;
图3为本发明实施例提供的一种EPON的系统的逻辑结构示意图;
图4为本发明实施例提供的一种通道训练的方法的流程图;
图5为本发明实施例提供的另一种通道训练的方法的流程图;
图6为本发明实施例提供的一种通道训练的方法的示意图;
图7为本发明实施例提供的另一种通道训练的方法的流程图;
图8为本发明实施例提供的另一种通道训练的方法的示意图;
图9为本发明实施例提供的另一种通道训练的方法的流程图;
图10为本发明实施例提供的一种通道训练的装置的逻辑结构示意图;
图11为本发明实施例提供的另一种通道训练的装置的逻辑结构 示意图;
图12为本发明实施例提供的另一种通道训练的装置的逻辑结构示意图;
图13为本发明实施例提供的通道训练方法中OLT的逻辑结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了方便理解,首先对本发明实施例所应用的网络进行说明,本发明实施例是为了解决100G EPON中ONU接收到光信号的误码率较高,产生较高的功率代价的问题,100G EPON的网络功能划分和现有的EPON的网络功能划分是类似的,EPON的网络分层模型如图2所示。
其中,MAC(Media Access Control,媒体接入控制)子层用于将上层发送的数据封装到以太网的帧结构中,并对数据进行发送和接收。
RS(Reconciliation Sublayer,协调子层)用于把MAC发送的数据通过电接口传输至PHY(Physical Layer Device,物理层设备)。
PCS(Physical Coding Sublayer,物理编码子层)位于RS和PMA(Physical Medium Attachment,物理介质连接)子层之间,用于完成线路编码功能,也具备FEC(Forward Error Correction,前向纠错)功能。
以下结合10G EPON系统的功能模块对OLT与ONU之间的数据传输过程进行说明,10G EPON系统的功能模块如图3所示,OLT中的MAC(图3中未示出)通过RS接口发送数据的时候,会根据电接口规范插入一些空闲(Idle)控制码字,这些Idle控制码字会被发送到PCS中,然后PCS会按照一定规则将这些Idle控制码字删除,以便 为后续插入校验数据预留空间。之后,PCS会对接收到的数据进行64B/66B编码以及扰码(scramble),之后数据进入FEC功能模块,由FEC功能模块对数据进行FEC编码并添加校验数据,然后经过这一系列处理的数据经由Gearbox(接口转换器)、PMA接口和PMD(Physical Media Dependent,物理介质相关)接口传输至光纤,由光纤将数据传输至ONU,ONU对接收到的数据执行与OLT对数据执行过的相反的处理,即可还原出OLT的MAC发送的数据。
基于上述描述,在PON系统中,高速光信号在现有的光纤中传输的过程中,光信号的性能会发生恶化,导致ONU接收到光信号的误码率较高,产生较高的功率代价,为了减小ONU接收的光信号的误码率,需在ONU注册前对ONU的自适应均衡器进行训练,以提高ONU的接收灵敏度,基于此,本发明实施例提供了一种通道训练的方法,该方法应用于无源光网络PON中,PON的结构如图1所示,具体应用于100G EPON中,该100G EPON中包括OLT以及ONU,ONU包括自适应均衡器,自适应均衡器可以集成在ONU的光模块内部,也可以独立于光模块单独设置,如图4所示,该方法包括:
401、确定触发通道训练的第一时刻。
其中,由OLT中的MAC确定触发通道训练的第一时刻,MAC可以根据预设的规则或时间间隔,判断接下来是否需要触发通道训练,可以理解的是,当有新的ONU加入后,OLT需要触发对新加入的ONU的通道训练,具体实现方法为:接收用户输入的触发通道训练的指令,当接收到该指令时,确定接收到该指令的时刻为触发通道训练的第一时刻;或者,MAC可以周期性的触发通道训练,例如每隔一分钟触发一次。
需要说明的是,本发明实施例是根据预设的规则来确定触发通道训练的第一时刻,本发明不限制具体的触发通道训练的方法。
402、从第一时刻开始,停止发送正常数据,生成训练帧。
其中,训练帧包括训练标识和训练序列。训练标识(marker)为训练帧的开始标识,在ONU接收数据时,识别到该训练标识时,则可确定接收到的不是普通的数据帧,而是用于承载训练序列的训 练帧,便于ONU中的自适应均衡器发现训练帧的开始时刻。训练序列(pattern)一般为一定长度的伪随机数据比特流。
当到达触发通道训练的第一时刻时,MAC会生成训练帧,由于传输训练帧会占用发送正常数据的传输通道,为了避免正常数据传输错误,MAC会停止发送正常数据。可以理解的是,如果未到达第一时刻,MAC依然会按照现有的流程发送正常数据。
403、将训练帧发送至PON中的所有ONU,以使得目标ONU根据训练帧,训练自适应均衡器。
其中,自适应均衡器的作用是调节ONU的光模块的接收灵敏度,采用训练帧对自适应均衡器进行训练之后,可以使得ONU的光模块在工作性能最好的情况下接收光信号。
需要说明的是,OLT以广播的方式发送下行数据,即PON网络中的每个ONU都能接收到OLT发送的训练帧,新加入PON的ONU在接收到OLT发送的下行数据之后会判断下行数据中是否出现训练标识,当识别到训练标识时,该ONU就会根据预设的规则采用训练标识后一定长度的比特数据作为训练数据,ONU的自适应均衡器根据训练数据计算自适应均衡器的配置系数,并将计算出的配置系数应用于自适应均衡器,从而将ONU的光模块的接收灵敏度调节到最高,使得ONU的光模块在工作性能最好的状态下接收光信号,训练完成之后即可正确接收到OLT发送的注册消息,并执行正常的注册流程。而当原有的已经正常工作的ONU识别到训练标识后,可以根据训练序列对均衡器进行微调,或者直接忽略该训练帧,不会影响对正常数据的接收。
还需说明的是,当OLT确定训练帧已经发送完成之后,就可以继续发送正常数据。
本发明实施例提供的通道训练的方法,确定触发通道训练的第一时刻,然后从第一时刻开始,停止发送正常数据,生成训练帧,将训练帧发送至PON中的所有ONU,以使得目标ONU根据训练帧训练自适应均衡器,与现有技术中高速光信号在现有的光纤中传输的过程中,光信号的性能会发生恶化,导致ONU接收到该光信号的 误码率较高,产生较高的功率代价相比,本发明实施例可以在系统上电后正常工作的过程中,将需要触发通道训练的第一时刻确定为第一时刻,例如可以把ONU接入的时刻确定为第一时刻,从第一时刻开始先停止正常数据的发送,同时开始发送训练帧,不会对正常数据造成破坏,ONU接收到训练帧之后,采用训练帧中的训练序列对自适应均衡器进行训练,以提高ONU的光模块的接收灵敏度,使得ONU的光模块在工作性能最好的状态下接收光信号,进而降低接收到光信号的误码率,减小功率代价。
以下将结合图4所示的方法流程,对本发明实施例中触发通道训练的方法以及发送训练帧的方法进行详细说明,在本发明实施例提供的一种实现方式中,可以通过OLT中的MAC向PCS发送控制信号来触发通道训练的过程,如图5所示,上述步骤402、从第一时刻开始,停止发送正常数据,生成训练帧,具体可以实现为步骤4021和4022。
4021、当到达第一时刻时,生成控制信号,控制信号用于触发通道训练。
具体的,当OLT中的MAC确定到达第一时刻,需要触发通道训练时,MAC会生成控制信号,并将该控制信号发送至PCS。
4022、通过控制信号停止发送正常数据,生成训练帧。
在触发通道训练之后,MAC会停止发送正常数据,通过控制信号控制PCS中新增的训练模块产生训练帧。
在生成训练帧之后,需要把训练帧发送到ONU中,在训练帧传输的过程中,也需要经过图3所示的OLT中的各功能模块,当100G EPON的单波长速率提升到25Gbps及以上时,下行数据传输必须开启FEC功能,通常训练帧的大小不会超过1K bit,用一个FEC码就可以承载下行数据,所以对训练帧进行FEC编码不会破坏训练帧中的训练标识和训练序列的完整性。基于此,为了保证ONU能够接收到训练帧,在生成训练帧之后,还需执行步骤405和步骤406。
405、将OLT的物理编码子层PCS中的Idle(空闲)码字替换为训练帧。
本步骤中,具体由PCS新增的训练模块生成训练帧之后,在PCS中的PCS Idle deletion模块内采用训练标识和训练序列替换Idle码字。
406、将PCS中的64B/66B编码模块和扰码模块旁路。
需要说明的是,当需要进行通道训练时,PCS会接收到MAC发送的控制信号,并根据控制信号旁路64B/66B编码模块和扰码模块,使得数据帧无需经过64B/66B编码以及扰码的过程,直接由PCS Idle deletion(PCS空闲码字删除)模块传输至PCS FEC模块,这样就避免了64B/66B编码模块和扰码模块对训练帧进行处理时破坏训练帧中的训练序列。发送训练序列的方法的示意图如图6所示,PCS FEC模块接收到训练帧之后,对训练帧进行FEC编码并添加校验数据,之后训练帧经PCS Gearbox、PMA以及PMD传输至光纤,经由光纤将训练帧传送至PON中的所有ONU。
对于本发明实施例,在发送训练帧之前,将PCS中的64B/66B编码模块和扰码模块旁路,避免了64B/66B编码模块和扰码模块对训练帧进行编码以及扰码时破坏训练序列,使得ONU可以接收到正确的训练序列并根据该训练序列训练自适应均衡器,从而保证了ONU可以及时注册上线,且减小了ONU接收光信号的误码率,减小了功率代价。
在本发明实施例提供的另一种实现方式中,还可以通过定时器周期性地触发通道训练的过程,如图7所示,上述步骤401和402具体可以实现为步骤701和702。
701、通过定时器周期性地触发通道训练,触发通道训练的时刻为第一时刻。
需要说明的是,在本发明实施例中,可以用定时器触发通道训练的过程,以定时器来代替图5所示的方法流程中的控制信号。具体的方法示意图如图8所示,其中,本步骤中的定时器为OLT的PCS中的定时器,PCS中的定时器可以周期性的触发通道训练。
702、在每个第一时刻,停止发送正常数据,生成训练帧。
需要说明的是,为了保证MAC发送的正常数据与训练帧的传输 不发生冲突,MAC与PCS中的定时器需保持严格的时钟同步,在PCS中的定时器每次触发通道训练时,MAC都会停止发送正常数据,定时器触发通道训练之后,会触发新增的训练模块生成训练帧。
为了保证ONU能够接收到训练帧,在生成训练帧之后,还需执行步骤703和步骤704。
703、对训练帧进行64B/66B反向编码以及解扰码。
其中,在OLT和ONU事先约定好的训练标识和训练序列不会发生改变的情况下,PCS可以在生成训练帧之后,对训练帧进行64B/66B反向编码以及解扰码。
704、将OLT的物理编码子层PCS中的Idle码字替换为经过64B/66B反向编码以及解扰码的训练帧。
可以理解的是,将Idle码字替换为经过64B/66B反向编码以及解扰码的训练帧之后,该训练帧会依次被PCS中的各功能模块进行处理,在该训练帧通过PCS中的64B/66B编码以及扰码之后,可以恢复出原始训练帧,原始训练帧被通过光纤传输至ONU,以使得ONU可以从原始训练帧中识别出正确的训练序列,根据正确的训练序列训练自适应均衡器。
还需说明的是,步骤701和702还可以和上述步骤405和步骤406结合构成一种实现方式,由PCS中的定时器代替控制信号触发通道训练的过程。同样,上述步骤4021和4022也可以和步骤703和704结合构成另一种实现方式。
对于本发明实施例,在传输训练帧之前先对训练帧进行64B/66B反向编码以及解扰码,使得训练帧在经过PCS中的64B/66B编码以及扰码之后能够恢复出原始的训练帧,将原始的训练帧通过光纤发送至ONU,可以使得ONU正确地识别出训练帧中的训练序列,此外,采用本发明实施例的通道训练方法,实现了采用低速光器件接受高速数据信号,降低了配置ONU的成本。
还需说明的是,在ONU注册完成之后的正常工作过程中,会存在ONU的接收误码率增加的情况,例如,信道特性发生变化时,比如多电平调制时发射机眼图随激光器老化等原因会导致ONU的接 收误码率增加,当OLT检测到ONU的接收误码率增加时,可强制复位ONU均衡器,控制ONU重新进行通道训练,基于此,在本发明实施例提供的另一种实现方式中,如图9所示,上述步骤401、确定触发通道训练的第一时刻还可以实现为步骤901和步骤902。
901、当检测到存在问题ONU时,在下行消息中增加重新训练命令。
其中,重新训练命令用于指示问题ONU复位自适应均衡器,问题ONU为接收误码率达到预设值的ONU。
具体的,OLT可以利用下行Gate消息中的保留字段承载重新训练命令,在问题ONU接收到Gate消息,并从中识别出重新训练命令之后,会复位自适应均衡器的抽头系数,使得自适应均衡器可以重新接收OLT下发的训练帧并重新进行自适应均衡器的训练。
902、将携带重新训练命令的下行消息发送完成的时刻确定为触发通道训练的第一时刻。
可以理解的是,当携带重新训练命令的下行消息发送完成时,ONU就会复位自适应均衡器的抽头系数,此时问题ONU能够重新接收OLT下发的训练帧,所以将携带重新训练命令的下行消息发送完成的时刻确定为触发通道训练的第一时刻。
在确定触发通道训练的第一时刻之后,仍然按照上述实施例所提供的方法进行通道训练,此处不再赘述。
本发明实施例提供的通道训练的方法,当检测到ONU的接收误码率增高时,可以重新触发通道训练的过程,以使得该ONU经过通道训练之后,能够提高ONU中光模块的接收灵敏度,能够正确的接收到数据,减少接收误码率,提高网络性能。
对应上述方法实施例,本发明实施例还提供一种通道训练的装置,该装置应用于无源光网络PON中,PON包括光线路终端OLT以及光网络单元ONU,ONU包括自适应均衡器,如图10所示,该装置包括:确定单元1001,生成单元1002,发送单元1003。
确定单元1001,用于确定触发通道训练的第一时刻;
生成单元1002,用于从确定单元1001确定的第一时刻开始,停 止发送正常数据,生成训练帧;
发送单元1003,用于将生成单元1002生成的训练帧发送至PON中的所有ONU,以使得目标ONU根据训练帧,训练自适应均衡器,目标ONU为所有ONU中的至少一个。
在本发明另一实施例中,生成单元1002,还用于当到达第一时刻时,生成控制信号,控制信号用于触发通道训练;通过控制信号停止发送正常数据,生成训练帧,训练帧包括训练标识和训练序列。
在本发明另一实施例中,生成单元1002,还用于通过定时器周期性地触发通道训练,触发通道训练的时刻为第一时刻;从每个第一时刻开始,停止发送正常数据,生成训练帧,训练帧包括训练标识和训练序列。
在该装置的一种构成方式中,如图11所示,该装置还包括:替换单元1004,旁路单元1005。
替换单元1004,用于将OLT的物理编码子层PCS中的空闲Idle码字替换为训练帧;
旁路单元1005,用于将PCS中的64B/66B编码模块和扰码模块旁路。
在该装置的一种构成方式中,如图12所示,该装置还包括:编码单元1006。
编码单元1006,用于对训练帧进行64B/66B反向编码以及解扰码;
替换单元1004,用于将OLT的物理编码子层PCS中的Idle码字替换为经过64B/66B反向编码以及解扰码的训练帧。
在本发明另一实施例中,确定单元1001,还用于当检测到存在问题ONU时,在下行消息中增加重新训练命令,重新训练命令用于指示问题ONU复位自适应均衡器,问题ONU为接收误码率达到预设值的ONU;将携带重新训练命令的下行消息发送完成的时刻确定为触发通道训练的第一时刻。
本发明实施例提供的通道训练的装置,确定单元确定触发通道训练的第一时刻,然后生成单元从第一时刻开始,停止发送正常数 据,生成训练帧,发送单元将训练帧发送至PON中的所有ONU,以使得目标ONU根据训练帧训练自适应均衡器,与现有技术中高速光信号在现有的光纤中传输的过程中,光信号的性能会发生恶化,导致ONU接收到该光信号的误码率较高,产生较高的功率代价相比,本发明实施例可以在系统上电后正常工作的过程中,将需要触发通道训练的第一时刻确定为第一时刻,例如可以把ONU接入的时刻确定为第一时刻,从第一时刻开始先停止正常数据的发送,同时开始发送训练帧,不会对正常数据造成破坏,ONU接收到训练帧之后,采用训练帧中的训练序列对自适应均衡器进行训练,以提高ONU的光模块的接收灵敏度,使得ONU的光模块在工作性能最好的状态下接收光信号,进而降低接收到光信号的误码率,减小功率代价。
本发明实施例还提供一种通道训练的系统,该系统包括ONU、无源光分离器以及图10至12所描述的OLT,其中ONU中包含自适应均衡器。
本发明实施例还提供一种通道训练的装置,如图13所示,该装置为图10至图12描述的装置的硬件结构示意图。其中,该装置可包括存储器1301,处理器1302,收发器1303,总线1304。
存储器1301可以是ROM(Read Only Memory,只读存储器),静态存储设备,动态存储设备或者RAM(Random Access Memory,随机存取存储器)。存储器1301可以存储操作系统和其他应用程序。在通过软件或者固件来实现本发明实施例提供的技术方案时,用于实现本发明实施例提供的技术方案的程序代码保存在存储器1301中,并由处理器1302来执行。
收发器1303用于装置与其他设备或通信网络(例如但不限于以太网,RAN Radio Access Network,无线接入网),WLAN(Wireless Local Area Network,无线局域网)等)之间的通信。
处理器1302可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),或者一个或多个集成电路,用于执行相关程序,以实现本发明实施例所提供的技术方案。
总线1304可包括一通路,在装置各个部件(例如存储器1301、收发器1303和处理器1302)之间传送信息。
应注意,尽管图13所示的硬件仅仅示出了存储器1301、收发器1303、和处理器1302以及总线1304,但是在具体实现过程中,本领域的技术人员应当明白,该装置还包含实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当明白,还可包含实现其他功能的硬件器件。
具体的,图13所示的装置用于实现图10至图12实施例所示的装置时,该装置中的处理器1302,与存储器1301和收发器1303耦合,用于确定触发通道训练的第一时刻;从第一时刻开始,停止发送正常数据,生成训练帧。
收发器1303,用于将训练帧发送至PON中的所有ONU,以使得目标ONU根据训练帧,训练自适应均衡器,目标ONU为所有ONU中的至少一个。
在本发明另一实施例中,处理器1302,还用于当到达第一时刻时,生成控制信号,控制信号用于触发通道训练;通过控制信号停止发送正常数据,生成训练帧,训练帧包括训练标识和训练序列。
在本发明另一实施例中,处理器1302,还用于通过定时器周期性地触发通道训练,触发通道训练的时刻为第一时刻;从每个第一时刻开始,停止发送正常数据,生成训练帧,训练帧包括训练标识和训练序列。
在本发明另一实施例中,处理器1302,还用于将OLT的物理编码子层PCS中的空闲Idle码字替换为训练帧;将PCS中的64B/66B编码模块和扰码模块旁路。
在本发明另一实施例中,处理器1302,还用于对训练帧进行64B/66B反向编码以及解扰码;将OLT的物理编码子层PCS中的Idle码字替换为经过64B/66B反向编码以及解扰码的训练帧。
在本发明另一实施例中,处理器1302,还用于当检测到存在问题ONU时,在下行消息中增加重新训练命令,重新训练命令用于指示问题ONU复位自适应均衡器,问题ONU为接收误码率达到预设 值的ONU;
将携带重新训练命令的下行消息发送完成的时刻确定为触发通道训练的第一时刻。
本发明实施例提供的通道训练的装置,处理器确定触发通道训练的第一时刻,然后从第一时刻开始,停止发送正常数据,生成训练帧,收发器将训练帧发送至PON中的所有ONU,以使得目标ONU根据训练帧训练自适应均衡器,与现有技术中高速光信号在现有的光纤中传输的过程中,光信号的性能会发生恶化,导致ONU接收到该光信号的误码率较高,产生较高的功率代价相比,本发明实施例可以在系统上电后正常工作的过程中,将需要触发通道训练的第一时刻确定为第一时刻,例如可以把ONU接入的时刻确定为第一时刻,从第一时刻开始先停止正常数据的发送,同时开始发送训练帧,不会对正常数据造成破坏,ONU接收到训练帧之后,采用训练帧中的训练序列对自适应均衡器进行训练,以提高ONU的光模块的接收灵敏度,使得ONU的光模块在工作性能最好的状态下接收光信号,进而降低接收到光信号的误码率,减小功率代价。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种通道训练的方法,其特征在于,所述方法应用于无源光网络PON中,所述PON包括光线路终端OLT以及光网络单元ONU,所述ONU包括自适应均衡器,所述方法包括:
    确定触发通道训练的第一时刻;
    从所述第一时刻开始,停止发送正常数据,生成训练帧;
    将所述训练帧发送至所述PON中的所有ONU,以使得目标ONU根据所述训练帧,训练自适应均衡器,所述目标ONU为所述所有ONU中的至少一个。
  2. 根据权利要求1所述的通道训练的方法,其特征在于,所述从所述第一时刻开始,停止发送正常数据,生成训练帧,包括:
    当到达所述第一时刻时,生成控制信号,所述控制信号用于触发通道训练;
    通过所述控制信号停止发送正常数据,生成训练帧,所述训练帧包括训练标识和训练序列。
  3. 根据权利要求1所述的通道训练的方法,其特征在于,所述确定触发通道训练的第一时刻;从所述第一时刻开始,停止发送正常数据,生成训练帧,包括:
    通过定时器周期性地触发通道训练,触发通道训练的时刻为所述第一时刻;
    从每个所述第一时刻开始,停止发送正常数据,生成训练帧,所述训练帧包括训练标识和训练序列。
  4. 根据权利要求2或3所述的通道训练的方法,其特征在于,在所述生成训练帧之后,所述方法还包括:
    将所述OLT的物理编码子层PCS中的空闲Idle码字替换为所述训练帧;
    将所述PCS中的64B/66B编码模块和扰码模块旁路。
  5. 根据权利要求2或3所述的通道训练的方法,其特征在于,在所述生成训练帧之后,所述方法还包括:
    对所述训练帧进行64B/66B反向编码以及解扰码;
    将所述OLT的物理编码子层PCS中的Idle码字替换为经过64B/66B反向编码以及解扰码的训练帧。
  6. 根据权利要求1至5中任一项所述的通道训练的方法,其特征在于,所述确定触发通道训练的第一时刻还包括:
    当检测到存在问题ONU时,在下行消息中增加重新训练命令,所述重新训练命令用于指示所述问题ONU复位自适应均衡器,所述问题ONU为接收误码率达到预设值的ONU;
    将所述携带重新训练命令的下行消息发送完成的时刻确定为触发通道训练的第一时刻。
  7. 一种通道训练的装置,其特征在于,所述装置应用于无源光网络PON中,所述PON包括光线路终端OLT以及光网络单元ONU,所述ONU包括自适应均衡器,所述装置包括:
    确定单元,用于确定触发通道训练的第一时刻;
    生成单元,用于从所述确定单元确定的所述第一时刻开始,停止发送正常数据,生成训练帧;
    发送单元,用于将所述生成单元生成的所述训练帧发送至所述PON中的所有ONU,以使得目标ONU根据所述训练帧,训练自适应均衡器,所述目标ONU为所述所有ONU中的至少一个。
  8. 根据权利要求7所述的通道训练的装置,其特征在于,
    所述生成单元,还用于当到达所述第一时刻时,生成控制信号,所述控制信号用于触发通道训练;通过所述控制信号停止发送正常数据,生成训练帧,所述训练帧包括训练标识和训练序列。
  9. 根据权利要求7所述的通道训练的装置,其特征在于,
    所述生成单元,还用于通过定时器周期性地触发通道训练,触发通道训练的时刻为所述第一时刻;从每个所述第一时刻开始,停止发送正常数据,生成训练帧,所述训练帧包括训练标识和训练序列。
  10. 根据权利要求8或9所述的通道训练的装置,其特征在于,所述装置还包括:
    替换单元,用于将所述OLT的物理编码子层PCS中的空闲Idle码字替换为所述训练帧;
    旁路单元,用于将所述PCS中的64B/66B编码模块和扰码模块旁路。
  11. 根据权利要求8或9所述的通道训练的装置,其特征在于,所述装置还包括:
    编码单元,用于对所述训练帧进行64B/66B反向编码以及解扰码;
    替换单元,用于将所述OLT的物理编码子层PCS中的Idle码字替换为经过64B/66B反向编码以及解扰码的训练帧。
  12. 根据权利要求7至11中任一项所述的通道训练的装置,其特征在于,
    所述确定单元,还用于当检测到存在问题ONU时,在下行消息中增加重新训练命令,所述重新训练命令用于指示所述问题ONU复位自适应均衡器,所述问题ONU为接收误码率达到预设值的ONU;将所述携带重新训练命令的下行消息发送完成的时刻确定为触发通道训练的第一时刻。
  13. 一种通道训练的系统,其特征在于,所述系统包括:光网络单元ONU、无源光分离器以及权利要求7至12任一项所述的光线路终端OLT。
PCT/CN2016/088025 2016-06-30 2016-06-30 一种通道训练的方法、装置及系统 WO2018000387A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/088025 WO2018000387A1 (zh) 2016-06-30 2016-06-30 一种通道训练的方法、装置及系统
CN201680085341.0A CN109076269B (zh) 2016-06-30 2016-06-30 一种通道训练的方法、装置及系统
EP16906787.3A EP3461143B1 (en) 2016-06-30 2016-06-30 Channel training method, device and system
US16/227,366 US10666468B2 (en) 2016-06-30 2018-12-20 Channel training method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/088025 WO2018000387A1 (zh) 2016-06-30 2016-06-30 一种通道训练的方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/227,366 Continuation US10666468B2 (en) 2016-06-30 2018-12-20 Channel training method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2018000387A1 true WO2018000387A1 (zh) 2018-01-04

Family

ID=60785634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088025 WO2018000387A1 (zh) 2016-06-30 2016-06-30 一种通道训练的方法、装置及系统

Country Status (4)

Country Link
US (1) US10666468B2 (zh)
EP (1) EP3461143B1 (zh)
CN (1) CN109076269B (zh)
WO (1) WO2018000387A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108449219A (zh) * 2018-06-21 2018-08-24 武汉意谷光电科技有限公司 一种光模块自动优化配置的方法及系统
WO2022247380A1 (zh) * 2021-05-25 2022-12-01 华为技术有限公司 一种信号发送方法、装置、电子设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112671518A (zh) * 2019-10-14 2021-04-16 瑞昱半导体股份有限公司 通信方法及其装置
US11973624B2 (en) 2019-11-29 2024-04-30 Intel Corporation Extended link-training time negotiated on link start-up
CN112929083B (zh) * 2021-02-04 2022-04-26 烽火通信科技股份有限公司 一种相干光模块及其监测方法
CN115347955B (zh) * 2021-05-14 2023-11-24 上海诺基亚贝尔股份有限公司 用于信道均衡的方法、设备、装置和介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131134A (zh) * 2011-03-11 2011-07-20 中兴通讯股份有限公司 吉比特无源光网络中onu快速激活的方法及装置
CN103634054A (zh) * 2012-08-23 2014-03-12 北京邮电大学 用于高速相干接收系统的线性损伤补偿和偏振解复用方法
CN104144360A (zh) * 2013-05-06 2014-11-12 上海贝尔股份有限公司 用于重配置光网络单元的波长的方法和装置
WO2014180495A1 (en) * 2013-05-06 2014-11-13 Huawei Technologies Co., Ltd. Optical channel sounder

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9337948B2 (en) * 2003-06-10 2016-05-10 Alexander I. Soto System and method for performing high-speed communications over fiber optical networks
WO2011062528A1 (en) * 2009-11-18 2011-05-26 Telefonaktiebolaget L M Ericsson Overhead adjustment scheme for passive optical networks
CN101789918B (zh) * 2010-02-26 2012-11-14 清华大学 并行信道均衡方法
CN104009802A (zh) * 2013-02-22 2014-08-27 中兴通讯股份有限公司 一种延长无源光网络系统传输距离的方法和光线路终端
US9800348B2 (en) * 2014-11-18 2017-10-24 Huawei Technologies Co., Ltd. Chromatic dispersion estimation for digital coherent optical receivers
US20190089463A1 (en) * 2017-09-15 2019-03-21 Zte Corporation Using multi-level modulated signals in passive optical networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131134A (zh) * 2011-03-11 2011-07-20 中兴通讯股份有限公司 吉比特无源光网络中onu快速激活的方法及装置
CN103634054A (zh) * 2012-08-23 2014-03-12 北京邮电大学 用于高速相干接收系统的线性损伤补偿和偏振解复用方法
CN104144360A (zh) * 2013-05-06 2014-11-12 上海贝尔股份有限公司 用于重配置光网络单元的波长的方法和装置
WO2014180495A1 (en) * 2013-05-06 2014-11-13 Huawei Technologies Co., Ltd. Optical channel sounder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108449219A (zh) * 2018-06-21 2018-08-24 武汉意谷光电科技有限公司 一种光模块自动优化配置的方法及系统
CN108449219B (zh) * 2018-06-21 2021-05-14 武汉意谷光电科技有限公司 一种光模块自动优化配置的方法及系统
WO2022247380A1 (zh) * 2021-05-25 2022-12-01 华为技术有限公司 一种信号发送方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN109076269B (zh) 2020-06-02
CN109076269A (zh) 2018-12-21
EP3461143A1 (en) 2019-03-27
EP3461143B1 (en) 2020-02-26
EP3461143A4 (en) 2019-07-03
US20190123941A1 (en) 2019-04-25
US10666468B2 (en) 2020-05-26

Similar Documents

Publication Publication Date Title
WO2018000387A1 (zh) 一种通道训练的方法、装置及系统
US9209897B2 (en) Adaptive forward error correction in passive optical networks
CN102461041B (zh) 用于向多个收发器的信道自适应错误复原传输的系统
WO2017041743A1 (en) Channel bonding in passive optical networks
JP2012529854A (ja) 受動光ネットワークにおける改良型アップストリームフレーム同期化のための方法及び装置
US8755695B2 (en) Burst transmission method, and receiver resetting method and apparatus in a passive optical network
WO2012014365A1 (ja) 通信装置、通信システム、通信方法、プログラム
US20190190650A1 (en) Communication method for ethernet passive optical network and apparatus
CN101729194B (zh) 数据编码、数据解码的方法、装置和系统
US11063783B2 (en) Passive optical network communication method, apparatus, and system
WO2010064119A1 (en) Wdm-pon system, ont, olt and method for initialization of tunable laser
US20230019473A1 (en) Frame Coding and Optical Network Unit (ONU) Synchronization in Passive Optical Networks (PONs)
CN101488827A (zh) 实现数据报错的方法和装置
JP2007036607A (ja) 光通信システム
JP2009260882A (ja) 復号化装置及び光通信システムの宅内装置
WO2010096969A1 (zh) 无源光网络中发送上行传送帧的方法及设备
CN101572834B (zh) 无源光网络数据处理的方法、装置和无源光网络系统
WO2011153878A1 (zh) 无源光网络通信的方法、装置和系统
JP2008294510A (ja) 光信号受信機及び受信方法
WO2018171595A1 (zh) 数据传输方法和光线路终端
JP2012044671A (ja) バーストモードクロック、データ復元装置、および方法
WO2018165893A1 (zh) 一种光网络单元发送光信号的方法及光网络单元
JP2010118896A (ja) 復号化装置及び光通信システムの局側装置
US20150326346A1 (en) System and method for setting downstream forward error correction code in time division multiplexing passive optical network
WO2024045812A1 (zh) 一种数据传输方法,相关设备以及光通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016906787

Country of ref document: EP

Effective date: 20181220