WO2024045812A1 - 一种数据传输方法,相关设备以及光通信系统 - Google Patents

一种数据传输方法,相关设备以及光通信系统 Download PDF

Info

Publication number
WO2024045812A1
WO2024045812A1 PCT/CN2023/102514 CN2023102514W WO2024045812A1 WO 2024045812 A1 WO2024045812 A1 WO 2024045812A1 CN 2023102514 W CN2023102514 W CN 2023102514W WO 2024045812 A1 WO2024045812 A1 WO 2024045812A1
Authority
WO
WIPO (PCT)
Prior art keywords
data stream
downlink
communication node
uplink
service
Prior art date
Application number
PCT/CN2023/102514
Other languages
English (en)
French (fr)
Inventor
曾小飞
袁贺
林华枫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024045812A1 publication Critical patent/WO2024045812A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/009Topology aspects
    • H04Q2011/0092Ring

Definitions

  • This application relates to the field of optical fiber communications, and in particular to a data transmission method, related equipment and optical communication systems.
  • FIG 1a is an example diagram of the first structure of a ring network provided by existing solutions.
  • the ring network 100 includes a first central office (central office, CO) device and a second CO device.
  • N communication nodes are connected in sequence between the first CO device and the second CO device, where N is any positive integer greater than 1.
  • the first CO device and the second CO device are optical line terminals (optical line terminal, OLT), and each communication node is an optical network unit (optical network unit, ONU).
  • Figure 1b is an example structural diagram of a communication node provided by an existing solution. Taking the communication node 1 as an example, the communication node 1 includes a first backup system 140 and a second backup system 150 .
  • the first backup system 140 and the second backup system 150 can implement Type C (Type C) protection of a passive optical network (passive optical network, PON).
  • Type C Type C
  • the first backup system 140 includes an optical module 111, a processing module 131 and an optical module 112 connected in sequence.
  • the second backup system 150 includes an optical module 122, a processing module 132 and an optical module 121 connected in sequence.
  • the optical module 111 receives the wavelength ⁇ 1 from the first CO device, and the wavelength ⁇ 1 is used to carry downlink services from the first CO device.
  • the optical module 112 sends the wavelength ⁇ 1 processed by the processing module 131 to the communication node 2 .
  • the optical module 112 receives the wavelength ⁇ 2 from the second communication node, and the wavelength ⁇ 2 is used to carry uplink services from the second communication node.
  • the optical module 111 sends the wavelength ⁇ 2 processed by the processing module 131 to the first CO device.
  • the second backup system 150 receives the downlink service from the first CO device through wavelength ⁇ 3. Receive uplink traffic from the second communication node through wavelength ⁇ 4.
  • the first backup system 140 and the second backup system 150 can communicate with the first CO device and the second CO device simultaneously. If the first backup system 140 fails to work normally, the second backup system 150 is responsible for the transmission of uplink and downlink services.
  • the optical module 111 and the optical module 122 are connected to the same optical fiber, then ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4 are different from each other in order to achieve backup. If the optical module 111 and the optical module 122 are respectively connected to two different optical fibers, then ⁇ 1 is different from ⁇ 2, and ⁇ 3 is different from ⁇ 4.
  • the wavelengths transmitted in the two optical fibers can be the same, for example, ⁇ 1 and ⁇ 3 are the same. Alternatively, the wavelengths transmitted in the two optical fibers may be different, for example, ⁇ 1 is different from ⁇ 3.
  • the communication node needs to support the sending and receiving of four optical signals, which increases the complexity and cost of implementing Type C protection for the communication node.
  • the embodiments of this application provide a data transmission method, related equipment and an optical communication system, which carry uplink
  • the data stream of the service and the data stream carrying the downlink service are multiplexed into a multiplexed data stream, which saves the number of optical signals required for the transmission of the uplink service and the downlink service.
  • multiplexing data streams can achieve Type C protection, reducing the number of optical signals that need to be sent and received to achieve Type C protection, and reducing the complexity and cost of implementing Type C protection.
  • the first aspect of the embodiment of the present application provides a data transmission method.
  • the method includes: a communication node obtains a first downlink data stream, and the first downlink data stream is used to carry a first downlink data stream from a first central office device.
  • the communication node obtains the first uplink data stream, and the first uplink data stream is used to carry the first uplink service sent to the second central office device; the communication node multiplexes the first uplink data stream and The first downlink data stream obtains a first multiplexed data stream; the communication node sends the first multiplexed data stream.
  • the multiplexed first multiplexed data stream by transmitting the multiplexed first multiplexed data stream, only one wavelength can be used to transmit the first upstream data stream and the first downstream data stream. While effectively ensuring the successful transmission of the first upstream data stream and the first downstream data stream, it also reduces the number of wavelengths used by the first upstream data stream and the first downstream data stream, reducing the time required to implement Type C Complexity and cost of protection.
  • the first downlink data flow is a continuous data flow, and the first downlink data flow includes the first downlink service and/or padding information
  • the first uplink data stream is a continuous data stream, and the first uplink data stream includes the first uplink service and/or padding information.
  • the rate of the first multiplexed data flow is equal to the sum of the first downlink data flow rate and the first uplink data flow rate.
  • the first uplink data flow rate is equal to the first downlink data flow rate
  • the first multiplexed data flow rate is equal to the first uplink data flow rate.
  • the rate of the first multiplexed data stream is twice the rate of the first downlink data stream.
  • the rate of the first multiplexed data stream is equal to twice the rate of the first uplink data stream, and the rate of the multiplexed first multiplexed data stream is equal to twice the rate of the first downlink data stream. twice.
  • the communication node multiplexes the first uplink data stream and the first downlink data stream, and obtaining a first multiplexed data stream includes: the communication The node multiplexes the first uplink data stream and the first downlink data stream into one of the first multiplexed data streams through bit interleaving, wherein the first multiplexed data stream includes at least one Bit packets, each of the bit packets including at least part of the bits in the first upstream data stream and at least part of the bits in the first downstream data stream.
  • Adopting this implementation method can improve the success rate of multiplexing the first uplink data stream and the first downlink data stream into a first multiplexed data stream.
  • the communication node obtaining the first downlink data stream includes: the communication node receiving the second downlink data stream; the communication node obtaining the second downlink data stream The first downlink service that has been carried; the communication node copies the second downlink data flow to obtain the first downlink data flow.
  • the first downlink data stream sent by the communication node to the downstream node is the data stream from the first central office.
  • the second downstream data stream of the device is copied, which reduces the delay for the communication node to send the first downstream data stream and reduces the delay jitter.
  • the communication node obtaining the first uplink data stream includes:
  • the communication node obtains the second uplink data stream; the communication node carries the first uplink service on the target time slot of the second uplink data stream according to the time slot scheduling message, and obtains the first uplink data stream,
  • the first uplink service is the uplink service sent by the communication node to the second central office device, and the time slot scheduling message is used to indicate the target time slot.
  • the communication node sends the first uplink service of the communication node according to the time slot scheduling message, which ensures that different communication nodes can send uplink services through different time slots and avoids the possibility of conflicts in the uplink services sent by different communication nodes. .
  • the communication node obtaining the second uplink data stream includes: the communication node receives a second multiplexed data stream, and the second multiplexed data stream is multiplexed One data stream of the second uplink data stream and the second downlink data stream, the second downlink data stream is used to obtain the first downlink data stream; the communication node demultiplexes the second multiplexed data stream to obtain the second upstream data stream and the second downstream data stream.
  • the communication node directly receives the multiplexed second multiplexed data stream, and the communication node can obtain the second upstream data stream and the second downstream data stream through demultiplexing.
  • the multiplexed second multiplexed data stream With the transmission of data streams, only one wavelength can be used to transmit the second upstream data stream and the second downstream data stream. While effectively ensuring the successful transmission of the second upstream data stream and the second downstream data stream, the number of wavelengths occupied by the second upstream data stream and the second downstream data stream is also reduced.
  • the communication node obtaining the second uplink data stream includes: the communication node generating the second uplink data stream.
  • the first central office equipment since the second downlink data stream sent by the first central office equipment to the communication node is an unmultiplexed data stream, the first central office equipment can be guaranteed to be The equipment normally emits the second downlink data stream carrying downlink services sent to each communication node, which reduces the degree of modification to the first central office equipment. Moreover, the communication node generates the second uplink data stream, which effectively ensures the success of each communication node in sending uplink services to the second central office equipment.
  • the method further includes: the communication node obtains a third downlink data stream, the third downlink data stream is used to carry a third data stream from the second central office device. Two downlink services; the communication node obtains a third uplink data stream, and the third uplink data stream is used to carry the second uplink service sent to the first central office device; the communication node multiplexes the third uplink data stream data stream and the third downlink data stream to obtain a third multiplexed data stream; the communication node sends the third multiplexed data stream.
  • communication nodes can successfully implement Type C protection, which reduces the cost of implementing Type C protection and improves the efficiency of ring networking for transmitting uplink and downlink services.
  • the communication node sending the first multiplexed data stream includes: the communication node sending the first multiplexed data stream to the second central office device or a downstream communication node.
  • a multiplexed data stream, the downstream communication node is connected between the communication node and the second central office equipment.
  • the method is applied to an optical communication system.
  • the optical communication system includes a first central office device and a second central office device.
  • the optical communication system further includes a device connected to At least one communication node between the first central office equipment and the second central office equipment, the first communication node being the at least one communication node One of the points.
  • the second aspect of the embodiment of the present application provides a data transmission method.
  • the method includes: a central office device generates an uplink data stream, and the uplink data stream is used to carry uplink services sent to another central office device; the central office device The device generates a downlink data stream, and the downlink data stream is used to carry downlink services from the central office device; the central office device multiplexes the uplink data stream and the downlink data stream to obtain one multiplexed data stream; The central office equipment sends the multiplexed data stream to the communication node.
  • the uplink data flow is a continuous data flow
  • the uplink data flow includes the uplink service and/or filling information
  • the downlink data flow is continuous data.
  • the downlink data stream includes the downlink service and/or padding information.
  • the rate of the multiplexed data flow is equal to the sum of the downlink data flow rate and the uplink data flow rate.
  • the uplink data flow rate is equal to the downlink data flow rate
  • the rate of the multiplexed data flow is equal to twice the uplink data flow rate
  • the The rate of the multiplexed data stream is equal to twice the rate of the downstream data stream.
  • the central office device multiplexes the uplink data stream and the downlink data stream, and obtaining one multiplexed data stream includes: the central office device performs bit interleaving
  • the uplink data stream and the downlink data stream are multiplexed into one of the multiplexed data streams, wherein the multiplexed data stream includes at least one bit group, and each of the bit groups includes the uplink data. at least some of the bits in the stream and at least some of the bits in the downstream data stream.
  • the third aspect of the embodiment of the present application provides a data transmission method.
  • the method is applied to a communication node.
  • the communication node includes multiple receiving ports RX and multiple transmitting ports TX.
  • the method includes: the communication node selects Define the first RX and the first TX, the first RX is one of the plurality of RXs, the first TX is one of the plurality of TXs, and the first RX and the first TX is connected to the first central office equipment; the communication node receives the downlink service data flow from the first central office equipment through the first RX, and the downlink service data flow is used to carry the downlink service data flow from the first central office equipment.
  • Downlink service the communication node sends an uplink service data stream to the first central office device through the first TX, and the uplink service data stream is used to carry the communication node sends to the first central office device. Upside business.
  • the communication node selects a first central office device to transmit uplink and downlink services, and the first RX is connected to the first central office device. Without the need to multiplex uplink services and downlink services, successful transmission of uplink and downlink services between the communication node and the first central office equipment can be achieved, thereby reducing the cost and complexity of transmitting uplink and downlink services.
  • the plurality of RXs further include a second RX
  • the plurality of TXs further include a second TX
  • the second RX and the second TX are related to the second The central office equipment is connected
  • the communication node selecting the first RX and the first TX includes: the communication node selecting the first RX among the first RX and the second RX.
  • the communication node can select a first central office device among two or more connected central office devices to transmit uplink and downlink services, thereby improving the success rate of uplink and downlink service transmission.
  • the communication node selects the first RX including: the communication node detects that the communication node is connected via the The signal quality received by the first RX is better than the signal quality received via the second RX.
  • the communication node selects the first central office device for uplink and downlink service transmission based on signal quality, which improves the quality of communication between the communication node and the first central office device.
  • the communication node selects the first RX including: the communication node detects that the first RX A failure event occurs between the second RX and the second central office equipment.
  • the communication node when a fault event occurs between the communication node and the second central office equipment, the communication node can switch to a state of performing uplink and downlink services with the first central office equipment, which improves the successful transmission of uplink and downlink services.
  • the communication node further includes a switch array, the switch array is connected to the first RX and the first TX, and the switching array is also connected to the service processor.
  • the method further includes: the switch array switches the first RX to be connected to the service
  • the receiving port is connected to a processor and is used to receive the downlink service data flow, and the service processor is used to process the downlink service data flow;
  • the communication node transmits data to the first central office device through the first TX
  • the method further includes: the switch array switches the first TX to a sending port connected to the service processor and used to send the uplink service data flow.
  • the processor is used to obtain the uplink service data flow.
  • the first RX and the first TX are used to transmit uplink and downlink services with the first central office device, thereby improving the success rate of uplink and downlink service transmission.
  • the fourth aspect of the embodiment of the present application provides a communication node.
  • the communication node includes a transceiver and a service processor.
  • the transceiver is connected to the service processor; the service processor is used to obtain the first downlink data. flow, the first downlink data flow is used to carry the first downlink service from the first central office equipment, and is also used to obtain the first uplink data flow, the first uplink data flow is used to carry the first uplink data flow sent to the second central office
  • the first uplink service of the device is also used to multiplex the first uplink data stream and the first downlink data stream to obtain a first multiplexed data stream; the transceiver is used to send the first multiplexed data stream. data flow.
  • the fifth aspect of the embodiment of the present application provides a central office device.
  • the central office device includes a transceiver and a service processor.
  • the transceiver is connected to the service processor; the service processor is used to generate a second uplink Data flow, the second uplink data flow is used to carry the first uplink service sent to another central office equipment, and is also used to generate a second downlink data flow, the second downlink data flow is used to carry the data from the central office equipment
  • the first downlink service is also used to multiplex the second uplink data stream and the second downlink data stream to obtain a second multiplexed data stream; the transceiver is used to send the second multiplexed data flow.
  • the sixth aspect of the embodiment of the present application provides a communication node.
  • the communication node includes a plurality of receiving ports RX, a plurality of transmitting ports TX and a service processor.
  • Each RX in the plurality of RXs is related to the service processor.
  • Each TX in the plurality of TXs is connected to the service processor: the service processor is used to select the first RX and the first TX, and the first RX is one of the plurality of RXs.
  • the first TX is one of the plurality of TXs, and the first RX and the first TX are connected to the first central office device;
  • the service processor is configured to receive from the first RX
  • the downlink service data flow of the first central office device the downlink service data flow is used to carry the downlink service from the first central office device;
  • the service processor is used to send the first TX to the first central office device through the first TX.
  • the central office device sends an uplink service data stream, and the uplink service data stream is used to carry the uplink service sent by the communication node to the first central office device.
  • the seventh aspect of the embodiment of the present application provides an optical communication system.
  • the optical communication system includes a first central office device, a communication node and a second central office device connected in sequence; the first central office device is used to The communication node sends a second multiplexed data stream, the second multiplexed data stream is a data stream that has multiplexed the second uplink data stream and the second downlink data stream; the communication node is used to demultiplex the The second multiplexed data stream is used to obtain the second uplink data stream and the second downlink data stream; the communication node is used to obtain the first downlink service carried by the second downlink data stream.
  • the first downlink service is the downlink service from the first central office equipment; the communication node is used to copy the second downlink data stream to obtain the first downlink data stream; the communication node is used to schedule according to the time slot
  • the message carries the first uplink service on the target time slot of the second uplink data stream to obtain the first uplink data stream.
  • the first uplink service is the uplink service sent by the communication node to the second central office device.
  • the time slot scheduling message is used to indicate the target time slot;
  • the communication node is used to multiplex the first uplink data stream and the first downlink data stream to obtain a first multiplexed data stream;
  • the communication node is configured to send the first multiplexed data stream.
  • the eighth aspect of the embodiment of the present application provides an optical communication system.
  • the optical communication system includes a first central office device, a communication node and a second central office device connected in sequence; the first central office device is used to The communication node sends a second downlink data stream; the communication node is used to obtain the first downlink service carried by the second downlink data stream, and the first downlink service is from the first central office equipment.
  • the communication node is used to copy the second downlink data stream to obtain the first downlink data stream; the communication node is used to generate a second uplink data stream; the communication node is used to schedule messages according to time slots Carrying the first uplink service on the target time slot of the second uplink data stream to obtain the first uplink data stream, the first uplink service is the uplink service sent by the communication node to the second central office equipment, The time slot scheduling message is used to indicate the target time slot; the communication node is used to multiplex the first uplink data stream and the first downlink data stream to obtain a first multiplexed data stream; The communication node is configured to send the first multiplexed data stream.
  • the ninth aspect of the embodiment of the present application provides an optical communication system.
  • the optical communication system includes a central office device and a communication node connected in sequence.
  • the communication node includes a plurality of receiving ports RX and a plurality of transmitting ports TX:
  • the communication node is used to select a first RX and a first TX, the first RX is one of the plurality of RXs, the first TX is one of the plurality of TXs, and the first RX
  • the first TX is connected to the central office equipment;
  • the communication node is used to receive the downlink service data flow from the central office equipment through the first RX, and the downlink service data flow is used to carry the downlink service data flow from the central office equipment.
  • the communication node is used to send an uplink service data flow to the central office equipment through the first TX, and the uplink service data flow is used to carry the communication node and sends it to the central office equipment Upward business.
  • a tenth aspect of the embodiments of the present application provides a readable storage medium. Execution instructions are stored in the readable storage medium. When at least one processor executes the execution instructions, any one of the first to third aspects is executed. Methods.
  • Figure 1a is an example diagram of the first structure of a ring network provided by existing solutions
  • Figure 1b is an example structural diagram of a communication node provided by existing solutions
  • Figure 2 is a diagram of a first structural example of a ring network provided by an embodiment of the present application
  • Figure 3 is a first step flow chart of the data transmission method provided by the embodiment of the present application.
  • Figure 4a is a first structural example diagram of OLT1 provided by the embodiment of the present application.
  • Figure 4b is an example diagram of the second structure of OLT1 provided by the embodiment of the present application.
  • Figure 5 is an example structural diagram of a downlink data frame provided by the embodiment of the present application.
  • Figure 6a is a first example diagram of the relationship between the rate of the second multiplexed data stream, the rate of the second uplink data stream and the rate of the second downlink data stream provided by the embodiment of the present application;
  • Figure 6b is an example diagram of a second relationship between the rate of the second multiplexed data stream, the rate of the second uplink data stream and the rate of the second downlink data stream provided by the embodiment of the present application;
  • Figure 6c is a first example diagram of ONU1 obtaining the first downlink service provided by the embodiment of the present application.
  • Figure 7 is a first structural example diagram of ONU1 provided by the embodiment of the present application.
  • Figure 8a is a first structural example diagram of OLT2 provided by the embodiment of the present application.
  • Figure 8b is an example diagram of the second structure of OLT2 provided by the embodiment of the present application.
  • Figure 9a is a third structural example diagram of OLT1 provided by the embodiment of the present application.
  • Figure 9b is an example diagram of the second structure of ring networking provided by the embodiment of the present application.
  • Figure 10a is a second step flow chart of the data transmission method provided by the embodiment of the present application.
  • Figure 10b is a second structural example diagram of ONU1 provided by the embodiment of the present application.
  • Figure 11 is an example diagram of the second structure of ring networking provided by existing solutions.
  • Figure 12 is a third structural example diagram of ONU1 provided by the embodiment of the present application.
  • Figure 13 is a third step flow chart of the data transmission method provided by the embodiment of the present application.
  • Figure 14 is a fourth step flow chart of the data transmission method provided by the embodiment of the present application.
  • Figure 15 is a fourth structural example diagram of ONU1 provided by the embodiment of the present application.
  • Figure 16 is a structural example diagram of a communication device provided by an embodiment of the present application.
  • Figure 17 is an example diagram of a dual-ring network structure provided by an embodiment of the present application.
  • the ring network includes a first CO device 101, a second CO device 102, and N connected between the first CO device 101 and the second CO device 102 in sequence. communication nodes.
  • the first CO device 101 is also connected to the second CO device 102 .
  • N shown in this example is any positive integer greater than 1.
  • the first CO device 101 and the second CO device 102 are control centers and signal aggregation processing nodes, such as issuing commands to control various communication nodes. Each communication node needs to feed back information to the first CO device 101 or the second CO device 102.
  • the first CO device 101 is used to transmit data between each communication node and the upper layer network.
  • the first CO device 101 can act as a mediator between each communication node and the upper layer network.
  • the first CO device 101 can forward downlink traffic received from the upper layer network to the corresponding communication node and forward uplink traffic received from each communication node to the upper layer network.
  • the upper layer network can be the Internet, public switched telephone network (PSTN), interactive Internet television (IPTV), voice over Internet protocol (VoIP) and other networks.
  • PSTN public switched telephone network
  • IPTV interactive Internet television
  • VoIP voice over Internet protocol
  • the communication node 1 receives the downlink service from the first CO device 101, the communication node 1 analyzes the downlink service and determines that the downlink service is sent to the communication node 2, then the communication node 1 continues to send the downlink service to the node 2. .
  • the communication node N sends the uplink service to the first CO device 101
  • the communication node N is connected between the communication node N and the first CO device 101 via The communication nodes send the uplink services in sequence.
  • the communication node N sends the uplink service to the communication node N-1, and by analogy, the communication node 1 sends the uplink service to the first CO device 101.
  • the advantage of using a ring network is that once a failure occurs between two communication nodes, it will not affect the normal communication of the ring network. For example, if a fault occurs between communication node 2 and communication node N-1, communication node 2 does not need to communicate through the link between communication node 2 and communication node N-1.
  • Communication node 2 communicates with communication node 1 normally, The communication node 1 communicates with the first CO device 101 to ensure normal communication between the communication node 2 and the first CO device 101.
  • the communication node N-1 communicates with the communication node N, and the communication node N communicates with the second CO device 102 to ensure normal communication between the communication node N-1 and the second CO device 102.
  • the traffic that the communication node 2 needs to send to the second CO device 102 can be forwarded by the first CO device 101.
  • the communication node N-1 needs to send The traffic to the first CO device 101 can be forwarded by the second CO device 102 .
  • This application provides a data transmission method for ring networking, which eliminates the need to implement Type C protection of PON through wavelength division, reduces the cost of implementing Type C protection, and improves the efficiency of ring networking transmission of uplink and downlink services.
  • This embodiment does not limit the application scenarios of ring networking.
  • ring networking is used in optical transport network (OTN), industrial control, data backhaul, data center, monitoring center, etc. There are no specific limitations. .
  • OTN optical transport network
  • FIG. 1a For the description of the ring networking structure, please refer to the description of Figure 1a, and the details will not be repeated.
  • This embodiment does not limit the device types of each device included in the ring network.
  • the CO device can be a base station controller (BSC), and the communication node can be a base transciver station (BTS). ).
  • BSC base station controller
  • BTS base transciver station
  • the CO device can be a server, etc.
  • the communication node can be a switch.
  • the CO device can be a baseband processing unit (building baseband unit, BBU), and the communication node can be a radio remote unit. RRU), as another example, the CO device can be a switch, and the communication node can be a terminal device such as a surveillance camera.
  • the CO equipment included in the ring network can be an optical line terminal (OLT), and the communication node can be an optical network unit (ONU).
  • OLT optical line terminal
  • ONU optical network unit
  • the ring networking applied in this application can be seen in Figure 2, where Figure 2 is a first structural example diagram of the ring networking provided by the embodiment of this application.
  • the ring network includes OLT1, OLT2 and N ONUs connected between OLT1 and OLT2 in sequence.
  • OLT1 and OLT2 may be two communication boards included in the same OLT.
  • OLT1 and OLT2 may be two independent OLTs that have a connection relationship.
  • any two adjacent ONUs do not need to be connected through an optical splitter, and there is no need to connect the OLT1 to the adjacent ONU (that is, ONU1 shown in Figure 2) through an optical splitter.
  • OLT2 there is no need to connect OLT2 to the adjacent ONU (i.e. ONU2) through an optical splitter.
  • ONU1 has two communication ports. One communication port of ONU1 is directly connected to OLT1 through an optical fiber, and the other communication port of ONU1 is directly connected to ONU2 through an optical fiber.
  • the communication delay is effectively reduced, and because the ring network does not require optical splitters, the deployment difficulty of the ring network is reduced, the deployment efficiency is improved, and the insertion loss of the ring network is reduced.
  • the value of N is 2 as an example, and the specific value of N is not limited.
  • OLT1, N ONUs and OLT2 to form a ring network there is no limitation. For example, OLT1, N ONUs and OLT2 can also form a chain network or a tree network, etc.
  • any communication node included in the ring network can transmit uplink and downlink services with OLT1 and OLT2 at the same time.
  • Step 301 OLT1 generates a second downstream data stream.
  • the second downlink data flow shown in this embodiment is the downlink data flow sent to each ONU in the ring network.
  • the process of OLT1 generating the first downlink data stream will be specifically described with reference to FIG. 4a , where FIG. 4a is a first structural example diagram of OLT1 provided by the embodiment of the present application.
  • OLT1 includes a business processing module 402.
  • the service processing module 402 obtains the downlink services sent to each ONU in the ring network.
  • the downlink services can be from the Internet, public switched telephone network (PSTN), interactive Internet television (IPTV), IP-based voice Transmission (voice over internet protocol, VoIP) and other network services.
  • PSTN public switched telephone network
  • IPTV interactive Internet television
  • VoIP IP-based voice Transmission
  • the service processing module 402 sends the downlink service to the downlink processing module 403, and the downlink processing module 403 encapsulates the downlink service sent to each ONU into the second downlink data stream.
  • the second downlink data stream includes multiple downlink data frames.
  • the structure of the downlink data frame will be described with reference to FIG. 5 , where FIG. 5 is an example diagram of the structure of the downlink data frame provided by the embodiment of the present application.
  • the downlink data frame 500 includes a physical synchronization block (PSBd) 501 and a physical layer frame payload (physical layer frame payload) 502.
  • the payload502 is used to carry downlink services.
  • PSBd501 includes fields physical synchronization (PSync) field 511, superframe counter (superframe counter, SFC) field 512, operation control (operation control, OC) field 513 and upstream bandwidth map (upstream bandwidth map, US BWmap) field 514 .
  • PSync physical synchronization
  • superframe counter superframe counter
  • operation control operation control
  • upstream bandwidth map upstream bandwidth map, US BWmap
  • the Psync field 511 is a physical layer synchronization field, which can be used to carry downlink frame synchronization indicator symbols.
  • the SFC field 512 is used to carry the superframe number.
  • the superframe number carried by the SFC field 512 is essentially a frame cycle counter with a width of 30 bits. When the superframe number is 0, it indicates the start of a superframe.
  • the US BWmap field 514 is the first time slot scheduling message shown in this embodiment.
  • the first time slot scheduling message is used to instruct each ONU to send the time slot of the uplink service to OLT1.
  • the US BWmap field 514 is used to carry the user's bandwidth map (BWMAP) information.
  • the US BWmap field 514 includes N allocation structures (Allocation Structure).
  • Each Allocation Structure includes a bandwidth allocation identifier (allocation identifier, Alloc-ID) field 521, a slot start time (start time) field 522, and a grant size (Grant size) field 523.
  • allocation identifier allocation identifier
  • Alloc-ID bandwidth allocation identifier
  • start time slot start time
  • Grant size grant size
  • the Allocation ID1 field is used to carry the identifier (Identity, ID) of ONU1 authorized to send
  • the start time field is used to indicate the starting time of the time slot allocated by OLT1 to ONU1
  • the Grant size field 523 is used to Indicates the length of the time slot granted to ONU1.
  • the Allocation ID2 field is the field allocated by OLT1 to ONU2, and so on.
  • the Allocation IDN field is the field allocated by OLT1 to ONUN.
  • each Allocation ID field please refer to the description of the Allocation ID1 field. The details will not be repeated.
  • This embodiment describes the downlink data frame. This is an optional description and is not limited, as long as each ONU included in the ring network can obtain the corresponding time slot according to the downlink data frame.
  • each Allocation Structure1 field may include an end time, which is used to indicate the end time of the time slot.
  • the second downlink service data flow shown in this embodiment is a continuous data flow.
  • the two downlink data frames may be continuous, or the two downlink data frames may carry filling information.
  • the continuity of the second downlink service data flow is ensured, in which the filling information can be a regular or random byte string.
  • Step 302 OLT1 generates a second upstream data stream.
  • the second upstream data stream shown in this embodiment carries the upstream services sent by each ONU in the ring network to OLT2.
  • OLT1 may generate a second upstream data stream for carrying upstream services sent by each ONU to OLT2.
  • the uplink processing module 404 of OLT1 generates a second uplink data stream.
  • the second upstream data stream is a continuous data stream, and all the second upstream data stream carries is padding information.
  • FIG. 4b is a second structural example diagram of the OLT1 provided by the embodiment of the present application.
  • the downlink processing module 403 shown in this example is connected to the service processing module 402.
  • OLT1 can send uplink services to OLT2 through the second uplink data flow.
  • the uplink processing module 404 obtains the uplink service that needs to be sent to OLT2 from the service processing module 402.
  • the uplink processing module 404 carries the uplink services that need to be sent to OLT2 in the uplink time slot of the second uplink data stream. Specifically, the uplink processing module 404 obtains a second time slot scheduling message, and the second time slot scheduling message is used to indicate the uplink time slot.
  • the uplink processing module 404 carries the uplink service that needs to be sent to OLT2 in the uplink time slot of the second uplink data flow according to the instruction of the second time slot scheduling message.
  • the second time slot scheduling message shown in this embodiment is generated by OLT2.
  • OLT2 For a description of the second time slot scheduling message generated by OLT2, please refer to the description of the first time slot scheduling message generated by OLT1 shown in step 301.
  • OLT1 receives the downlink data stream of OLT2 via ONU2 and ONU1 in sequence, and the downlink data stream carries the second time slot scheduling message.
  • Step 303 OLT1 multiplexes the second upstream data stream and the second downstream data stream to obtain a second multiplexed data stream.
  • the rate of the second multiplexed data stream shown in this embodiment is greater than the rate of the second uplink data stream, and the rate of the second multiplexed data stream is greater than the rate of the second downlink data stream.
  • the second multiplexed data stream is K times that of the second upstream data stream
  • the second multiplexed data stream is J times that of the second downstream data stream.
  • K and J shown in this embodiment are both greater than any value of 1.
  • Figure 6a is a first example diagram of the relationship between the rate of the second multiplexed data stream, the rate of the second uplink data stream and the rate of the second downlink data stream provided by the embodiment of the present application.
  • the rate of the second multiplexed data stream is equal to the sum of the second upstream data stream rate and the second downstream data stream rate.
  • the second uplink data flow includes multiple uplink data frames
  • the second downlink data flow includes multiple downlink data frames.
  • the frame lengths of the uplink data frame and the downlink data frame are both 125 microseconds (microsecond, us).
  • the second multiplexed data stream includes a plurality of multiplexed data frames.
  • OLT1 multiplexes uplink data frame 601 and downlink data frame 602 to obtain multiplexed data frame 603.
  • the frame length of the multiplexed data frame 603 is also 125us. It can be understood that when the rate of the downlink data frame 602 is the same as the rate of the uplink data frame 601, the length of the multiplexed data frame 603 The rate is the rate of downlink data frame 602 is twice the rate of the multiplexed data frame 603, and the rate of the multiplexed data frame 603 is twice the rate of the uplink data frame 601.
  • the OLT1 can multiplex the uplink data frame 601 and the downlink data frame 602 into a multiplexed data frame 603 based on a bit interleaving method.
  • Bit interleaving refers to using time division multiplexing to separate the symbols of the uplink data frame 601 in time, and the time in between can be filled by the symbols of the downlink data frame 602.
  • the multiplexed data frame 603 includes a bit group, which bit group includes all the bits of the uplink data frame 601 with a frame length of 125 us, and the bit group also includes all the bits of the downlink data frame 602 with a frame length of 125 us. Therefore, the rate of the multiplexed data frame 603 shown in FIG. 6a is twice the rate of the downlink data frame 602, and the rate of the multiplexed data frame 603 is twice the rate of the uplink data frame 601.
  • FIG. 6b is an example diagram of a second relationship between the rate of the second multiplexed data stream, the rate of the second uplink data stream, and the rate of the second downlink data stream provided by the embodiment of the present application.
  • the frame lengths of the uplink data frame, downlink data frame and multiplexed data frame are all 125us as an example.
  • OLT1 divides the uplink data frame 611 with a frame length of 125 us into two uplink subframes, namely the first uplink subframe 612 and the second uplink subframe 613. It can be understood that the first uplink subframe 612 includes the first 62.5 us bits of the uplink data frame 611.
  • the second uplink subframe 613 includes the last 62.5 us bits of the uplink data frame 611 .
  • OLT1 divides the downlink data frame 614 with a frame length of 125 us into two downlink subframes, namely the first downlink subframe 615 and the second downlink subframe 616. It can be understood that the first downlink subframe 615 includes the first 62.5 us bits of the downlink data frame 614.
  • the second downlink subframe 616 includes the last 62.5 us bits of the downlink data frame 614 .
  • OLT1 multiplexes the first uplink subframe 612 and the first downlink subframe 615 to obtain a first bit group.
  • the frame length of the first bit group is 62.5 us.
  • OLT1 multiplexes the second uplink subframe 613 and the second downlink subframe 616 to obtain a second bit group.
  • the frame length of the second bit group is 62.5us.
  • the first downlink subframe 615 includes the first 62.5 us bits of the downlink data frame 614.
  • the first downlink subframe 615 may include bits at any position of the downlink data frame 614, as long as the extracted frame length of the first downlink subframe 615 is 62.5 us.
  • the multiplexed data frame includes two bit groups as an example.
  • the details are not limited.
  • the multiplexed data frame may include three bit groups, or four bit groups, or any number of bit groups.
  • the second upstream data stream and the second downstream data stream shown in this embodiment can be encoded based on the non-return to zero (NRZ) code, and then the second multiplexed data stream after multiplexing by the OLT can maintain NRZ encoding.
  • the second uplink data stream and the second downlink data stream are based on the NRZ encoding of the symmetric passive optical network (10-gigabit-capable symmetric passive optical network 10G, XGS-PON), and the second multiplexed data stream after the rate is increased Also based on NRZ encoding of XGS-PON.
  • the encoding methods of the second upstream data stream before the rate increase, the second downlink data stream and the second multiplexed data stream after the rate increase are the same. In other examples, they may also be different, for example, the second uplink data stream
  • the data stream and the second downstream data stream are based on NRZ encoding, and the encoding method of the second multiplexed data stream may be fourth-generation pulse amplitude modulation (PAM4).
  • PAM4 pulse amplitude modulation
  • Step 304 OLT1 sends the second multiplexed data stream to ONU1.
  • the multiplexing module 405 of OLT1 sends a second multiplexed data stream to the optical module 401.
  • the optical module 401 is used to perform electro-optical conversion on the second multiplexed data stream to output a second multiplexed data stream in the form of an optical signal. Use data flow. Since the OLT 1 shown in this embodiment has multiplexed the second upstream data stream and the second downstream data stream into a second multiplexed data stream, the second multiplexed data stream in the form of an optical signal output by the optical module 401 can be There is only one wavelength, for example, the wavelength of the second multiplexed data stream is ⁇ 1.
  • the optical module 401 only sends an optical signal of one wavelength to the ONU1 through the optical fiber connected between the optical module 401 and the ONU1, thereby carrying the second upstream data stream and the second downstream data stream. Because OLT1 does not need to send the second upstream data stream and the second downstream data stream to ONU1 through two different wavelengths, the number of wavelengths sent by OLT1 to ONU1 is reduced, and the number of wavelengths that the optical modules of OLT1 and ONU1 need to be supported is reduced, thereby reducing the number of wavelengths that OLT1 and ONU1 need to support. Reduces the complexity of optical signal processing by optical modules.
  • the OLT1 can perform forward error correction (FEC) encoding on the second multiplexed data stream to encode the second multiplexed data stream.
  • ONU1 sends the FEC-encoded second multiplexed data stream.
  • FEC encoding encodes the second multiplexed data stream so that the receiving end (ONU1) can directly detect errors in data transmission from the FEC-encoded second multiplexed data stream and correct transmission errors to a certain extent. code.
  • FEC coding can reduce the bit error rate and save the transmission power of OLT1 in sending the second multiplexed data stream to ONU1 under the same reception result.
  • Each module included in the OLT1 shown in this embodiment may be one or more chips, or one or more integrated circuits.
  • each module included in OLT1 can be one or more field-programmable gate arrays (FPGA), application specific integrated circuit (ASIC), system on chip (SoC) , central processor (central processor unit, CPU), network processor (network processor, NP), digital signal processing circuit (digital signal processor, DSP), microcontroller (micro controller unit, MCU), programmable controller ( programmable logic device (PLD) or other integrated chips, or any combination of the above chips or processors, etc.
  • FPGA field-programmable gate arrays
  • ASIC application specific integrated circuit
  • SoC system on chip
  • central processor central processor unit, CPU
  • network processor network processor
  • NP digital signal processing circuit
  • DSP digital signal processor
  • microcontroller microcontroller
  • micro controller micro controller unit, MCU
  • PLD programmable logic device
  • each module included in OLT1 can also be partially or fully implemented through software.
  • the service processor included in the OLT1 reads and executes the computer program stored in the memory included in the OLT1 to realize the corresponding functions of the multiplexing module 405 .
  • Step 305 ONU1 demultiplexes the second multiplexed data stream to obtain the second uplink data stream and the second downlink data stream.
  • ONU1 When ONU1 receives the second multiplexed data stream, ONU1 demultiplexes the second multiplexed data stream to obtain the second upstream data stream and the second downstream data stream.
  • ONU1 demultiplexes the second multiplexed data stream to obtain the second upstream data stream and the second downstream data stream.
  • FIG. 7 is a first structural example diagram of ONU1 provided by the embodiment of the present application.
  • the optical module 701 of ONU1 is connected to the optical module 401 of OLT1 through optical fibers.
  • the optical module 701 receives the second multiplexed data stream with the wavelength ⁇ 1.
  • the optical module 701 performs photoelectric conversion on the second multiplexed data stream to output the second multiplexed data stream in the form of an electrical signal.
  • the optical module 701 sends the second multiplexed data stream to the demultiplexing module 702.
  • the demultiplexing module 702 demultiplexes the second multiplexed data stream to output a second upstream data stream and a second downstream data stream.
  • ONU1 performs FEC decoding on the second multiplexed data stream and then performs the demultiplexing process.
  • the ONU1 performs FEC decoding on the second multiplexed data stream to detect errors in the transmission of the second multiplexed data stream and correct transmission errors to a certain extent.
  • Step 306 ONU1 obtains the first upstream data stream according to the second upstream data stream.
  • ONU1 shown in this embodiment can obtain the second time slot scheduling message from the second downlink data stream.
  • ONU1 can receive the downlink data stream from OLT2, and the downlink data stream from OLT2 includes the second time slot scheduling message.
  • OLT2 may sequentially send the downstream data stream carrying the second time slot scheduling message to ONU1 through forwarding by the ONU connected between OLT2 and ONU1.
  • the second time slot scheduling message please refer to the description of the first time slot scheduling message shown in step 301, and details will not be described again.
  • ONU1 carries the uplink service of ONU1 on the first time slot included in the second uplink data stream according to the second time slot scheduling message, and obtains the first uplink data stream.
  • the uplink service of ONU1 is the uplink service sent to OLT2.
  • the demultiplexing module 702 of ONU1 sends the second uplink data stream to the uplink processing module 704 , and the demultiplexing module 702 also sends the second downlink data stream to the downlink processing module 703 .
  • the Alloc-ID1 field included in the downstream data stream from OLT2 carries the identity of ONU1.
  • ONU1 obtains Allocation Structure1 including Alloc-ID1 from the downstream data stream from OLT2.
  • ONU1 performs CRC check on the received Allocation Structure1. If the verification result is correct, ONU1 obtains the first uplink time slot.
  • the starting time of the first uplink time slot is the start time included in the obtained Allocation Structure1 field
  • the duration of the first uplink time slot is the Grant size included in the Allocation Structure1 field.
  • the uplink processing module 704 of ONU1 carries the uplink service of ONU1 on the first uplink time slot in the second uplink data stream to obtain the first uplink data stream.
  • Step 307 ONU1 obtains the first downlink service carried by the second downlink data stream.
  • the downlink processing module 403 when the downlink processing module 403 receives the second downlink data stream, it obtains the first downlink service carried by the second downlink data stream, and performs optional methods for obtaining the first downlink service.
  • the first downlink service carried by the second downlink data stream is the downlink service sent to ONU1, and the first downlink service is the downlink service from OLT1 that ONU1 needs to process.
  • Figure 6c is a first example diagram of ONU1 obtaining the first downlink service provided by the embodiment of the present application.
  • the second downstream data stream received by ONU1 shown in this example already carries the first downstream service sent to ONU1.
  • the first downstream service comes from OLT1.
  • ONU1 obtains the first downlink service sent to ONU1 from the downlink time slot 621 of the second downlink data stream 620. Specifically, ONU1 obtains a downlink data frame used to carry the first downlink service sent to ONU1 from the plurality of downlink data frames included in the second downlink data stream 620 . Wherein, the destination address of the downlink data frame used to carry the first downlink service is the address of ONU1. ONU1 obtains the first downlink service from the downlink data frame.
  • Step 308 ONU1 copies the second downstream data stream to obtain the first downstream data stream.
  • the ONU1 copies the second downstream data stream and obtains the first downstream data stream. It can be understood that the first downstream data flow and The content carried by the second downstream data stream is exactly the same.
  • the downlink processing module 703 copies the second downlink data stream to obtain the first downlink data stream.
  • the downlink processing module 703 processes the second downlink data flow and obtains the downlink service sent to ONU1 that has been carried by the second downlink data flow. Specifically, the downlink processing module 703 obtains the downlink data frame carrying the ONU1 identification from the second downstream data stream based on the ONU1 identification, and ONU1 obtains the downlink service sent to ONU1 from the payload of the downlink data frame carrying the ONU1 identification.
  • the downlink processing module 703 also sends the first downlink data stream to the multiplexing module 705.
  • Step 309 ONU1 multiplexes the first upstream data stream and the first downstream data stream to obtain a first multiplexed data stream.
  • the multiplexing module 705 of ONU1 when the multiplexing module 705 of ONU1 obtains the first downstream data stream and the first upstream data stream, the multiplexing module 705 multiplexes the first downstream data stream and the first upstream data stream. to output the first multiplexed data stream.
  • ONU1 shown in this embodiment multiplexes the first upstream data stream and the first downstream data stream.
  • the process of obtaining the first multiplexed data stream please refer to the OLT1 multiplexing the second upstream data stream and the second upstream data stream shown in step 303.
  • the second downstream data stream and the process of obtaining the second multiplexed data stream will not be described in details.
  • ONU1 when ONU1 in this embodiment obtains the first multiplexed data stream, ONU1 can perform FEC encoding on the first multiplexed data stream to send the FEC-encoded first multiplexed data stream to ONU2. data flow.
  • ONU1 performs FEC encoding on the first multiplexed data stream to send the FEC-encoded first multiplexed data stream to ONU2.
  • data flow For instructions on how ONU1 performs FEC encoding on the first multiplexed data stream, please refer to the above description of how OLT1 performs FEC encoding on the second multiplexed data stream, which will not be described in detail.
  • Step 310 ONU1 sends the first multiplexed data stream to ONU2.
  • the multiplexing module 705 of ONU1 sends a first multiplexed data stream to the optical module 706.
  • the optical module 706 is used to perform electro-optical conversion on the first multiplexed data stream to output the first multiplexed data stream in the form of an optical signal. Use data flow. Since the ONU1 shown in this embodiment has multiplexed the first upstream data stream and the first downstream data stream into a first multiplexed data stream, the first multiplexed data stream output by the optical module 706 is an optical signal. The wavelength is ⁇ 1.
  • the optical module 706 only sends an optical signal of one wavelength to the ONU2 through the optical fiber connected between the optical module 706 and the ONU2, thereby carrying the first upstream data stream and the first downstream data stream.
  • Step 311 ONU2 demultiplexes the first multiplexed data stream to obtain the first upstream data stream and the first downstream data stream.
  • Step 312 ONU2 obtains the fourth upstream data stream according to the first upstream data stream.
  • Step 313 ONU2 obtains the second downlink service carried by the first downlink data stream.
  • Step 314 ONU2 copies the first downstream data stream to obtain the fourth downstream data stream.
  • Step 315 ONU2 multiplexes the fourth upstream data stream and the fourth downstream data stream to obtain a fourth multiplexed data stream.
  • Step 316 ONU2 sends the fourth multiplexed data stream to OLT2.
  • This embodiment takes two ONUs connected between OLT1 and OLT2 in a ring network as an example. This embodiment does not limit the number of ONUs connected between OLT1 and OLT2.
  • Step 317 OLT2 demultiplexes the fourth multiplexed data stream to obtain the fourth uplink data stream and the fourth downlink data stream.
  • OLT2 When OLT2 receives the fourth multiplexed data stream, OLT2 demultiplexes the fourth multiplexed data stream, obtains the fourth uplink data stream and the fourth downlink data stream, and demultiplexes the fourth multiplexed data to OLT2
  • the stream please refer to the description of ONU1 demultiplexing the first multiplexed data stream shown in step 305, and the details will not be described again.
  • FIG. 8a is a first structural example diagram of OLT2 provided by the embodiment of the present application.
  • the optical module 801 of OLT2 is connected to the optical module 706 of ONU2 through optical fibers.
  • the optical module 801 receives the fourth multiplexed data stream with wavelength ⁇ 1.
  • the optical module 801 performs photoelectric conversion on the fourth multiplexed data stream to output the fourth multiplexed data stream in the form of an electrical signal.
  • the optical module 801 sends the fourth multiplexed data stream to the demultiplexing module 802.
  • the demultiplexing module 802 demultiplexes the fourth multiplexed data stream to output a fourth upstream data stream and a fourth downstream data stream.
  • Step 318 OLT2 obtains the uplink service according to the fourth uplink data flow.
  • Each time slot of the fourth upstream data stream shown in this embodiment carries the upstream services that each ONU in the ring network needs to send to OLT2.
  • OLT2 obtains the carried uplink services from each time slot of the fourth uplink data stream.
  • the demultiplexing module 802 of OLT2 sends the fourth uplink data stream to the uplink processing module 804, and the uplink processing module 804 parses out the uplink service from the fourth uplink data stream.
  • the uplink processing module 804 sends the uplink service to the service processing module 805 of OLT2.
  • the service processing module 805 please refer to the description of the service processing module of OLT1 corresponding to Figure 4a, and the details will not be repeated.
  • Step 319 OLT2 terminates the transmission of the fourth downlink data stream.
  • the second downlink data stream sent by OLT1 to ONU1 shown in this embodiment is used to carry the downlink service sent by OLT1 to ONU1.
  • the first downlink data stream sent by ONU1 to ONU2 is used to carry the downlink service sent by OLT1 to ONU2. It can be understood that each ONU included in the ring network has successfully obtained the downlink service from OLT1 through the received downlink data stream from OLT1. For this reason, OLT2 receives the fourth downlink data stream. , which can terminate the transmission of the fourth downlink data stream.
  • the downlink processing module 803 receives the fourth downlink data stream from the demultiplexing module 802.
  • the downlink processing module 803 terminates the transmission of the fourth downlink data stream.
  • OLT2 needs to obtain the downlink service sent to OLT2 from the fourth downlink data stream.
  • Figure 8b which is a second structural example diagram of OLT2 provided by the embodiment of the present application.
  • the downlink processing module 803 receives the fourth downlink data stream from the demultiplexing module 802, and extracts the downlink service sent by OLT1 to OLT2 from the fourth downlink data stream.
  • each ONU in the ring network carries the uplink services that it needs to send to OLT2 on the allocated time slot.
  • the uplink services sent by each ONU included in the ring network are based on time division multiple access (time division multiple access). division multiple access (TDMA), which avoids the conflict of time slots allocated by different ONUs and ensures that each The delay of the uplink services sent by the ONU will not deteriorate.
  • TDMA division multiple access
  • the uplink data stream carrying uplink services shown in this embodiment is a data stream with continuous signals, which reduces the power and performance requirements for the optical signals processed by the optical modules of each ONU and the optical module of the OLT, and reduces the cost of each optical module.
  • This ring networking can be applied to gigabit-capable passive optical network (GPON), 10Gbit passive optical network (10-gigabit-capable passive optical networks, XG-PON), 10G symmetric passive optical network Network (10-gigabit-capable symmetric passive optical network, XGS-PON), time and wavelength division multiplexed multiplexed PON (TWDM-PON), ethernet passive optical networks (ethernet passive optical networks) , EPON), 10Gbit/s ethernet passive optical network (10Gbit/s ethernet passive optical network, 10G-EPON) and other passive optical networks (PON) with various time-division multiplexing technologies (TDM) .
  • GPON gigabit-capable passive optical network
  • 10Gbit passive optical network 10-gigabit-capable passive optical networks, XG-PON
  • 10G symmetric passive optical network Network (10-gigabit-capable symmetric passive optical network, XGS-PON)
  • TWDM-PON time and wavelength division multiple
  • ONU1 when ONU1 receives the second downstream data stream, it first copies the second downstream data stream to obtain the first downstream data stream, because ONU1 does not need to perform related operations to obtain services from the second downstream data stream. This effectively reduces the delay for ONU1 to send the first downstream data stream to ONU2, ensuring that each ONU included in the ring network can obtain downstream services in a timely manner.
  • the ring network shown in this embodiment includes a multiplexed data stream
  • what is transmitted between the two nodes is a multiplexed data stream.
  • what is transmitted between ONU1 and ONU2 is a first multiplexed data stream.
  • the first multiplexed data stream is The second upstream data stream and the second downstream data stream have been multiplexed with the data stream, so that the multiplexed second upstream data stream and the second downstream data can be transmitted between ONU1 and ONU2 only through an optical signal of one wavelength. stream without transmitting the second upstream data stream and the second downstream data stream over two different wavelengths.
  • the rate of the first multiplexed data stream is equal to the sum of the rate of the first downlink data stream and the rate of the first uplink data stream, timely transmission of uplink and downlink services on the ring network is effectively guaranteed, and the uplink cost is reduced. There is a possibility of retransmission of services or downstream services.
  • FIG. 9a is a third structural example diagram of OLT1 provided by the embodiment of the present application.
  • the optical module 901 of OLT1 electro-optically converts the second multiplexed data stream from the multiplexing module 405 into a second multiplexed data stream with a wavelength of ⁇ 1.
  • OLT1 transmits the second multiplexed data stream with wavelength ⁇ 1 to the optical module 921 of ONU1.
  • ONU1 processes the second multiplexed data stream received via the optical module 921 to obtain the first multiplexed data stream.
  • step 309 corresponding to Figure 3.
  • the optical module 922 of ONU1 sends the first multiplexed data stream with the wavelength ⁇ 1 to the optical module 931 of ONU2.
  • ONU2 processes the first multiplexed data stream received via the optical module 931 to obtain a fourth multiplexed data stream.
  • the optical module 932 of ONU2 sends the optical module 941 of OLT2 with the wavelength ⁇ 1. Four multiplexed data streams.
  • OLT2 sends the third multiplexed data stream with the wavelength ⁇ 1 to the optical module 902 of OLT1 via the optical module 942 of OLT2, the optical module 932 of ONU2, the optical module 931 of ONU2, the optical module 922 of ONU1, and the optical module 921 of ONU1 in sequence.
  • the process of OLT2 sending the third multiplexed data stream to OLT1 please refer to the description of OLT1 sending the first multiplexed data stream to OLT2.
  • the third multiplexed data stream has multiplexed the third downstream data stream and the third upstream data stream.
  • the third downlink data stream is used to carry downlink services from OLT2.
  • the third uplink data stream is used to carry uplink services sent to OLT1.
  • the optical module 902 of the OLT1 performs photoelectric conversion on the fourth multiplexed data stream to send the fourth multiplexed data stream in the form of electrical signals to the demultiplexing module 421 .
  • the demultiplexing module 421 demultiplexes the fourth multiplexed data stream to obtain a third downstream data stream and a third upstream data stream.
  • OLT1 demultiplexing please refer to the description of ONU1 demultiplexing shown in step 305 corresponding to Figure 3, which will not be described in detail.
  • the third downlink data stream shown in this embodiment has carried the second time slot scheduling message.
  • the second time slot scheduling message is used to instruct OLT1 to send the time slot occupied by the uplink service to OLT2.
  • the second time slot scheduling message is For instructions, please refer to the corresponding instructions in Figure 3. Details will not be repeated.
  • the downlink processing module 422 obtains the second time slot scheduling message from the third downlink data stream
  • the downlink processing module 422 sends the second time slot scheduling message to the downlink processing module 403, so that the uplink processing module 404 performs the second time slot scheduling message according to the second time slot scheduling message.
  • the time slot scheduling message is used to send uplink services to OLT2 on the time slot allocated by OLT2.
  • the downlink processing module 422 sends the second downlink service extracted from the third downlink data flow to the service processing module 402.
  • the uplink processing module 423 sends the second uplink service extracted from the third uplink data flow and sent to the OLT1 to the service processing module 402 .
  • the wavelength used by OLT1 to send the multiplexed data stream to OLT2 (such as ⁇ 1 in this example) is different from the wavelength used by OLT2 to send the multiplexed data stream to OLT1 (such as ⁇ 2 in this example).
  • the ring network can use ⁇ 2 for communication, ensuring normal communication of the ring network and achieving Type C protection of the ring network.
  • the data channel with wavelength ⁇ 1 fails, at least one of the following events may occur:
  • the optical module in the data channel of wavelength ⁇ 1 fails (such as the optical module of OLT1, ONU1, ONU2 or OLT2 fails), or the optical fiber in the data channel of wavelength ⁇ 1 fails (such as the optical fiber connected between OLT1 and ONU1 , the optical fiber connected between ONU1 and ONU2, or the optical fiber connected between ONU2 and OLT2 fails), etc.
  • the data stream emitted by OLT1 is a multiplexed data stream.
  • the data stream emitted by OLT1 has not gone through the multiplexing process as shown in Figure 3.
  • FIG. 10a is a second step flow chart of the data transmission method provided by the embodiment of the present application.
  • Step 1001 OLT1 generates a second downstream data stream.
  • step 1001 For an explanation of the execution process of step 1001 shown in this embodiment, please refer to the corresponding step 301 shown in Figure 3, and details will not be described again.
  • Step 1002 OLT1 sends the second downstream data stream to ONU1.
  • Step 1003 ONU1 generates a second upstream data stream.
  • ONU1 In order to enable each ONU included in the ring network to send uplink services to OLT2, ONU1 generates a second uplink data stream used to carry the uplink services of each ONU.
  • ONU1 generating the second upstream data stream shown in this embodiment please refer to the description of the process of OLT1 generating the second upstream data stream shown in step 302 corresponding to Figure 3, which will not be described in detail.
  • FIG. 10b is a second structural example diagram of ONU1 provided by the embodiment of the present application.
  • the optical module 1021 of ONU1 receives the second downstream data stream with wavelength ⁇ 1 from OLT1.
  • the optical module 1201 performs photoelectric conversion on the second downstream data stream to send the second downstream data stream in the form of an electrical signal to the downstream processing module 1023 of the ONU1.
  • the upstream processing module 1024 of ONU1 generates the second upstream data stream.
  • the uplink processing module 1024 can continuously generate the second uplink data stream.
  • the downlink processing module 1023 receives the second downlink data stream, it sends a generation instruction to the uplink processing module 1024.
  • the uplink processing module 1024 generates the second uplink data stream according to the generation instruction.
  • the first ONU that is, ONU1 directly connected to OLT1 generates the first upstream data stream.
  • the uplink processing module 1024 can pre-store a configuration indication message, which is used to indicate that ONU1 is the first ONU directly connected to OLT1, and then ONU1 continues to generate the second upstream data stream according to the instructions of the configuration indication message.
  • the downlink processing module 1023 can detect the rate of the received data stream.
  • the downlink processing module 1023 detects that the rate of the received second downlink data stream is less than or equal to the preset rate M, the downlink processing module 1023 After determining that it is the first ONU directly connected to OLT1, the downlink processing module 1023 sends a generation instruction to the uplink processing module 1024. Since the data stream emitted by the ONU (for example, ONU2) indirectly connected to OLT1 is a multiplexed data stream accelerated by multiplexing, the rate of the received data stream detected by the ONU indirectly connected to OLT1 is greater than the preset rate M. Thus, the ONU can detect the rate of the received data stream to confirm whether it is an ONU directly connected to OLT1.
  • the ONU can detect the rate of the received data stream to confirm whether it is an ONU directly connected to OLT1.
  • Step 1004 ONU1 obtains the first upstream data stream according to the second upstream data stream.
  • Step 1005 ONU1 obtains the first downlink service carried by the second downlink data stream.
  • Step 1006 ONU1 copies the second downstream data stream to obtain the first downstream data stream.
  • Step 1007 ONU1 multiplexes the first upstream data stream and the first downstream data stream to obtain a first multiplexed data stream.
  • the multiplexing module 1025 of ONU1 receives the first downstream data stream from the downstream processing module 1023 and the first upstream data stream from the upstream processing module 1024.
  • the multiplexing module 1025 multiplexes the first downstream data stream and the first upstream data stream to obtain a first multiplexed data stream.
  • Step 1008 ONU1 sends the first multiplexed data stream to ONU2.
  • Step 1009 ONU2 demultiplexes the first multiplexed data stream to obtain the first upstream data stream and the first downstream data stream.
  • Step 1010 ONU2 obtains the fourth upstream data stream according to the first upstream data stream.
  • Step 1011 ONU2 obtains the second downlink service carried by the first downlink data stream.
  • step 1004 to step 1011 For a description of the execution process of step 1004 to step 1011 shown in this embodiment, please refer to the description of the execution process of step 306 to step 313 corresponding to Figure 3, and details will not be described again.
  • ONU2 shown in this embodiment is an ONU directly connected to OLT2 in a ring network, and ONU2 is the last ONU connected to OLT1. Then ONU2 obtains the second data stream that needs to be sent to ONU2 from the first downstream data stream. After the downlink service, ONU2 can terminate the transmission of the first downlink data stream, that is, ONU2 shown in this embodiment does not need to send the first downlink data stream to OLT2. Specifically, ONU2 may pre-store a configuration indication message, and the configuration indication message is used to indicate that ONU2 is an ONU directly connected to OLT2.
  • Step 1012 ONU2 sends the fourth upstream data stream to OLT2.
  • ONU2 does not need to send the multiplexed data stream to OLT2, but directly sends the fourth upstream data stream to OLT2. From the above, it can be seen that the fourth upstream data stream already carries the upstream data stream that ONU1 needs to send to OLT2. services and the uplink services that have been carried by ONU2 and need to be sent to OLT2.
  • Step 1013 OLT2 obtains the uplink service according to the fourth uplink data flow.
  • step 1013 For an explanation of the execution process of step 1013 shown in this embodiment, please refer to the corresponding step 318 shown in Figure 3, and details will not be described again.
  • the data stream emitted by the OLT is a data stream that does not need to be multiplexed, there is no need to modify the OLT so that the OLT can normally emit the second downstream data stream carrying the downstream services sent to each ONU. , reducing the degree of modification of the ring network to implement the method shown in this embodiment.
  • Figure 11 is an example diagram of the second structure of a ring network provided by an existing solution.
  • Figure 11 shows a ring network including ONU1, ONU2, ONU3 to ONUN.
  • ONU1 is connected to the first port of optical splitter 1101
  • the second port of optical splitter 1101 is connected to optical splitter 1102
  • the third port of optical splitter 1101 is connected to OLT1.
  • the connection of the optical splitter 1102, the optical splitter 1103 and the optical splitter 1104 please refer to the description of the optical splitter 1101, and the details will not be repeated.
  • OLT1 sends the downlink data stream to the optical splitter 1101.
  • the optical splitter 1101 splits the downlink data stream to obtain the first split data stream and the second split data stream.
  • the first split data stream It is consistent with the service carried by the second optical split data stream.
  • the optical power of the first split data stream is smaller than the optical power of the second split data stream.
  • the optical splitter 1101 sends the first split data stream to ONU1.
  • the optical splitter 1101 sends the second optical split data stream to the optical splitter 1102.
  • the optical splitter 1102 also splits the second optical data stream again.
  • optical splitting by the optical splitter 1102 please refer to the description of the optical splitting by the optical splitter 1101, and the details will not be repeated.
  • OLT1 in order to send downlink services to each ONU (such as ONU1), OLT1 needs to split the light through an optical splitter, resulting in a loss of optical power.
  • the optical power of the downlink data stream received by ONU2, Part of the light has been split to ONU1.
  • the loss of optical power makes it difficult and accurate for each ONU to obtain downlink services.
  • each optical splitter shown in Figure 11 is an unequal ratio optical splitter. If a larger number of optical splitters are connected to a ring network, the insertion loss of the ring network will be increased.
  • any two adjacent nodes included in the ring network of the embodiment shown in Figure 3 and Figure 10a are directly connected through optical fibers.
  • OLT1 and ONU1 are directly connected through optical fibers
  • ONU1 and ONU2 are directly connected through optical fibers.
  • Optical fiber connection eliminates the need to use unequal splitters for connection, reducing the insertion loss of ring networking.
  • each ONU performs photoelectric conversion on the downstream data stream and processes the downstream data stream in the form of electrical signals (as shown in the above copy), which reduces the downstream data stream received by each ONU. loss of optical power.
  • FIG. 12 is a third structural example diagram of the ONU1 provided by the embodiment of the present application.
  • the structure of the communication node shown in Figure 12 is ONU1 as an example.
  • the structure of the ONU shown in Figure 12 can be any ONU included in the ring network.
  • ONU1 shown in this embodiment includes an optical module 1201 and an optical module 1202.
  • the optical module 1201 includes a first transmit port (transport, TX) and a first receive port (receive, RX).
  • the optical module 1202 includes a second TX and a second RX.
  • This embodiment does not limit the number of optical modules included in ONU1.
  • the first TX, the first RX, the second TX and the second RX are all different ports of the same optical module.
  • ONU1 may include any number of more than two optical modules.
  • the first RX and the first TX are the transceiver ports of one optical module included in the ONU1, and the second RX and the second TX are other optical modules included in the ONU1.
  • the transceiver port of an optical module is the transceiver port of an optical module.
  • the ONU1 shown in this embodiment also includes a switching device.
  • the switching device includes a detector 1210 and a switch array 1230 connected to the detector 1210.
  • the switch array 1230 includes M input ports and M output ports. M shown in this embodiment is any positive integer greater than or equal to 2.
  • ONU1 includes two optical modules as an example.
  • the switch array 1230 includes four input ports, namely a first input port 1211, a second input port 1222, a third input port 1213 and a fourth input port 1224.
  • the switch array 1230 includes four output ports, namely a first output port 1221, a second output port 1212, a third output port 1223 and a fourth output port 1214.
  • the number of input ports and output ports included in the switch array 1230 shown in this embodiment is not limited.
  • the detector 1210 shown in this embodiment is used to connect any input port included in the switch array 1230 to the first output port included in the switch array 1230 .
  • OLT1 shown in this embodiment is the master OLT
  • OLT2 is the slave OLT.
  • the transmission of upstream data flow and downlink data flow is implemented between ONU1 and the master OLT1.
  • the detector shown in this embodiment 1210 causes the first input port 1211 of the switch array 1230 to be connected to the first output port 1221, and the first output port 1221 is connected to the first processing port 1241 of the service processor 1240.
  • the detector 1210 also makes the fourth output port 1214 and the fourth input port 1224 of the switch array conductive, and the fourth input port 1224 is connected to the second processing port 1242 of the service processor 1240.
  • the first input port 1211 and the fourth output port 1214 are both connected to the optical module 1201.
  • the detector 1210 makes the second output port 1212 of the switch array 1230 conduct with the second input port 1222, and the second input port 1222 is connected to the third processing port 1243 of the service processor 1240.
  • Detector 1210 The third input port 1213 of the switch array 1230 is connected to the third output port 1223, and the third output port 1223 is connected to the fourth processing port 1244 of the service processor 1240.
  • the detector 1210 shown in this embodiment may be one or more chips, or one or more integrated circuits.
  • the detector 1210 may be one or more FPGAs, ASICs, SoCs, CPUs, NPs, DSPs, MCUs, PLDs or other integrated chips, or any combination of the above chips or service processors.
  • the service processor 1240 please refer to the description of the form of the detector 1210, and details will not be described again.
  • the detector 1210 and the service processor 1240 shown in this embodiment may be two separate devices, or the detector 1210 and the service processor 1240 may be the same device, which is not limited in this embodiment.
  • Figure 13 is a third step flow chart of the data transmission method provided by the embodiment of the present application.
  • both OLT1 and OLT2 send out downlink service data flows normally.
  • ONU1 shown in this embodiment selects one channel from the downlink data flow from OLT1 and the downlink data flow from OLT2 to transmit the uplink and downlink services.
  • Step 1301 ONU1 selects the first RX and the first TX.
  • OLTs are connected to ONU1, that is, ONU1 is connected to OLT1 through the first RX and the first TX, and ONU1 is connected to OLT2 through the second RX and the second TX.
  • ONU1 selects an OLT as the main OLT for upstream and downstream service transmission. If ONU1 determines OLT1 as the main OLT, ONU1 selects the first RX and the first TX connected to the main OLT. If ONU1 determines OLT2 as the main OLT, ONU1 selects the second RX and the second TX connected to the main OLT. In this embodiment, ONU1 selects OLT1 as the main OLT as an example. In other examples, ONU1 can also select OLT2 as the main OLT.
  • ONU1 For instructions on ONU1 selecting OLT2 as the main OLT, please refer to the selection of ONU1 shown in this embodiment. The description of OLT1 as the main OLT will not be described in detail.
  • ONU1 includes two RXs as an example. In other examples, ONU1 may include any number of more than two RXs. The following describes several optional ways for ONU1 to select the first RX:
  • the service processor 1240 attempts to receive the downlink data stream through both the first RX and the second RX. When the first RX receives the downlink service data stream from OLT1, but the second RX does not receive the downlink service data stream from OLT2 , the service processor 1240 determines OLT1 as the main OLT.
  • the service processor 1240 attempts to receive the downlink data stream through both the first RX and the second RX.
  • the service processor determines whether the signal quality of the downlink data stream received by the first RX is better than the signal quality of the downlink data stream received by the second RX. In the case where the service processor determines that the signal quality of the downlink data stream received by the first RX is better than the signal quality of the downlink data stream received by the second RX, the service processor determines OLT1 as the primary OLT.
  • the signal quality received by the first RX is better than the signal quality received by the second RX, which means at least one of the following:
  • the bit error rate of the downlink service data stream received by the first RX is lower than that of the downlink service data stream received by the second RX.
  • the optical power of the downlink service data stream received by the first RX is greater than that of the downlink service data stream received by the second RX.
  • the optical power of the downlink service data stream and the delay of the downlink service data stream received by the first RX are lower than the number of downlink services received by the second RX.
  • the delay of the data stream or the crosstalk of the downlink service data stream received by the first RX is lower than the crosstalk of the downlink service data stream received by the second RX, etc.
  • Step 1302 ONU1 receives the first downlink service data stream through the first RX.
  • the service processor 1240 controls each input port and each output port included in the switch array 1230 through the detector 1210 to be in the first conduction mode.
  • the description of the conduction mode is shown in Figure 12, and the details will not be repeated.
  • the first RX of ONU1 receives the first downlink service data stream from OLT1.
  • the optical module 1201 performs photoelectric conversion on the first downlink service data stream to obtain a first downlink service data stream in the form of an electrical signal.
  • the first downlink service data flow is sequentially transmitted to the first processing port 1241 of the service processor 1240 via the first input port 1211 and the first output port 1221.
  • the service processor 1240 is configured to obtain the first downlink service from OLT1 for the first downlink service data flow from the first processing port 1241.
  • the service processor 1240 obtains the first downlink service sent to ONU1 from the downlink time slot of the first downlink service data flow.
  • ONU1 obtains a downlink data frame used to carry the first downlink service sent to ONU1 from the plurality of downlink data frames included in the first downlink service data flow.
  • the destination address of the downlink data frame used to carry the first downlink service is the address or identification of ONU1.
  • ONU1 obtains the first downlink service from the downlink data frame.
  • the downlink data frame please refer to Figure 5, which will not be described in detail.
  • Step 1303 ONU1 sends the second downlink service data stream through the second TX.
  • ONU1 obtains the second downlink service data flow to be sent to ONU2 according to the first downlink service data flow.
  • OLT1 the main OLT
  • ONU1 obtains the second downstream service data stream to be sent to ONU2 according to the first downlink service data flow.
  • ONU1 When ONU1 extracts the first downlink service sent to ONU1 from the downlink time slot of the first downlink service data flow, ONU1 carries filling information in the downlink time slot to obtain the second downlink service data flow.
  • ONU1 extracts the second downlink service from the first downlink service data flow.
  • the second downlink service is the downlink service already carried by the first downlink service data flow.
  • ONU1 determines that the second downlink service also needs to be sent to ONU2. For example, if ONU1 determines that the second downlink service is a service broadcast by OLT1.
  • the identifier included in the second downlink service is the identifier of ONU2, etc.
  • ONU1 re-carries the second downlink service on the first downlink service data flow to obtain the second downlink service data flow.
  • ONU1 After ONU1 receives the first downlink service data flow, ONU1 copies the first downlink service data flow to obtain the second downlink service data flow. ONU1 extracts the first downlink service sent to ONU1 from the first downlink service data stream. ONU1 directly sends the second downlink service data flow to ONU2, which reduces the delay for ONU1 to send the second downlink service data flow to ONU2.
  • the third processing port 1243 of the service processing module 1240 outputs the second downlink service data.
  • the second downlink service data flow is sequentially transmitted to the optical module 1202 via the second input port 1222 and the second output port 1212.
  • the optical module 1202 performs electro-optical conversion on the second downlink service data stream to obtain a second downlink service data stream in the form of an electrical signal.
  • the optical module 1202 sends the second downlink service data stream to ONU2 through the second TX.
  • Step 1304 ONU1 receives the second uplink service data stream through the second RX.
  • ONU2 when ONU2 also uses OLT1 as the main OLT, ONU2 obtains that the second downlink service data stream has carried the time slot scheduling message from OLT1.
  • This time slot scheduling message is used to indicate the second uplink time slot allocated by OLT1 to ONU2.
  • ONU2 In the second upstream time slot of the second upstream data stream, ONU2 carries the second upstream service that ONU2 needs to send to OLT1.
  • the time slot scheduling message please refer to the description of the corresponding embodiment in Figure 3, and details will not be described again.
  • Step 1305 ONU1 sends the first uplink service data stream through the first TX.
  • ONU1 obtains that the first downlink service data stream has carried the time slot scheduling message from OLT1. This time slot scheduling message is used to indicate the first uplink time slot allocated by OLT1 to ONU1. In the first upstream time slot of the second upstream data stream, ONU1 carries the first upstream service that ONU1 needs to send to OLT1 to obtain the first upstream service data stream.
  • the second uplink service data stream received by the second RX is sent to the optical module 1202 .
  • the optical module 1202 performs photoelectric conversion on the second uplink service data stream to obtain a second uplink service data stream in the form of an electrical signal.
  • the second uplink service data flow is transmitted to the fourth processing port 1244 via the third input port 1213 and the third output port 1223 in sequence.
  • the service processor 1240 processes the second uplink service data flow from the fourth processing port 1244 to obtain the first uplink service data flow.
  • the service processor 1240 transmits to the optical module 1201 via the second processing port 1242, the fourth input port 1224, and the fourth output port 1214 in sequence.
  • the optical module 1204 performs electro-optical conversion on the first uplink service data stream to obtain the first uplink service data stream in the form of an electrical signal.
  • ONU1 sends the first uplink service data stream to OLT1 through the first TX.
  • FIG. 14 is a fourth step flow chart of the data transmission method provided by the embodiment of the present application.
  • OLT1 can normally send downlink service data flows, but a fault event occurs between OLT2 and ONU1, resulting in normal uplink and downlink service transmission between OLT2 and ONU1.
  • Step 1401 ONU1 detects a fault event between the second RX and OLT2.
  • Figure 15 is a fourth structural example diagram of ONU1 provided by the embodiment of the present application.
  • the detector 1410 of ONU1 can be connected to the optical module 1432, and the detector 1410 detects whether the second RX of the optical module 1432 can receive the optical signal normally. If the detector 1410 continues to be unable to detect the event that the second RX successfully receives the optical signal beyond the preset time period or the optical power of the continuously detected optical signal is less than the preset threshold, then determine whether the second RX of OLT2 and ONU1 A fault event occurred during the period. For another example, the detector 1410 is connected to the line between the optical module 1432 and the third input port 1413 .
  • the detector 1410 obtains the electrical signal output by the optical module 1432 based on the line.
  • the detector 1410 detects whether the electrical signal includes a continuous valid frame header. If not, it is determined that a fault event occurs between OLT2 and the second RX of ONU1. For another example, the detector 1410 detects that the bit error rate of the electrical signal exceeds a preset threshold.
  • This embodiment does not limit how the detector 1410 determines that a fault event occurs between OLT2 and the second RX of ONU1. As long as there is a fault event between OLT2 and the second RX of ONU1, the downstream data flow from OLT2 cannot Successfully transmitted to ONU1. It can be understood that when ONU1 determines that a fault event occurs between the second RX and OLT2, ONU1 determines that OLT1 is Main OLT.
  • Step 1402 The detector of ONU1 switches the switch array from the second conduction mode to the first conduction mode.
  • the switch array 1430 When the switch array 1430 is in the second conduction mode, the first input port 1411 of the switch array 1430 is connected to the third output port 1423, and the third output port 1423 is connected to the fourth processing port 1444.
  • the fourth output port 1414 of the switch array 1430 is connected to the second input port 1422, and the second input port 1422 is connected to the third processing port 1443.
  • the second output port 1412 of the switch array 1430 is connected to the fourth input port 1424, and the fourth input port 1424 is connected to the second processing port 1442.
  • the second input port 1413 of the switch array 1430 is connected to the first output port 1421, and the first output port 1421 is connected to the first processing port 1441.
  • the switch array 1430 is in the second conduction mode, the downlink data flow from the OLT2 can be transmitted to the service processor 1440 via the second RX, the third input port 1413 and the first output port 1421 of the optical module 1432, so as to Let the service processor 1440 process the downlink service from OLT2.
  • the detector 1410 When the detector 1410 detects a fault event between OLT2 and the second RX, the detector 1410 switches the conduction mode of the switch array from that shown in Figure 15 to that shown in Figure 12, so that OLT1 is the main OLT and OLT2 is from OLT. After switching, ONU1 can receive the first downlink service data flow from OLT1.
  • This example uses passive switching based on a fault event between OLT2 and ONU1.
  • OLT1 and OLT2 can also negotiate active switching, so that OLT1 switches to the master OLT and OLT2 switches to the slave OLT.
  • Step 1403 ONU1 selects the first RX and the first TX.
  • ONU1 determines the first RX as the receiving port that receives the downstream data stream of the main OLT (that is, OLT1).
  • Step 1404 ONU1 receives the first downlink service data stream through the first RX.
  • step 1404 For an explanation of the execution process of step 1404 shown in this embodiment, please refer to the corresponding step 1302 shown in Figure 13, and details will not be described again.
  • Step 1405 ONU1 sends the second downlink service data stream through the second TX.
  • ONU1 when ONU1 detects a fault event between OLT2 and ONU1, ONU1 can send the second downstream service data stream to ONU2 to ensure that ONU2 Can successfully transmit uplink and downlink services with OLT1.
  • step 1405 For the execution process of step 1405 shown in this embodiment, please refer to the corresponding step 1303 in Figure 13, and details will not be described again.
  • Step 1406 ONU1 receives the second uplink service data stream through the second RX.
  • Step 1407 ONU1 sends the first uplink service data stream through the first TX.
  • steps 1406 to 1407 For an explanation of the execution process of steps 1406 to 1407 shown in this embodiment, please refer to the corresponding steps 1304 to 1305 shown in Figure 13, and details will not be described again.
  • FIG. 16 is an example structural diagram of the communication device provided by an embodiment of the present application.
  • the communication device 1600 shown in this embodiment includes a transceiver 1601 and a service processor 1602.
  • the transceiver 1601 and the service processor 1602 are connected.
  • the communication device shown in this embodiment may be an OLT.
  • the transceiver 1601 included in the OLT is used to execute the processes related to transceiver performed by the OLT in the embodiments shown in FIG. 3, FIG. 10a, FIG. 13, and FIG. 14.
  • the service processor 1602 included in the OLT is used to execute the processing-related processes executed by the OLT in the embodiments shown in FIG. 3, FIG. 10a, FIG. 13, and FIG. 14.
  • the communication device shown in this embodiment can be any ONU included in the ring network.
  • the transceiver 1601 included in the ONU is used to execute the processes related to transceiver and transceiver executed by the ONU in the embodiments shown in Fig. 3, Fig. 10a, Fig. 13 and Fig. 14.
  • the service processor 1602 included in the ONU is used to execute the processing-related processes executed by the ONU in the embodiments shown in FIG. 3, FIG. 10a, FIG. 13, and FIG. 14.
  • the transceiver 1601 of the communication device 1600 may include the optical module shown in FIG. 12 or FIG. 15 .
  • the transceiver 1601 includes two optical modules as an example. In other examples, the transceiver 1601 may include only one optical module, or more than two optical modules.
  • a complex-structured network can be implemented. This embodiment does not limit the specific networking type.
  • communication equipment including three optical modules can form a dual-ring network.
  • Figure 17 is an example diagram of a dual-ring network structure provided by an embodiment of the present application.
  • the dual ring network 1700 includes OLT1 and ONU1 connected to OLT1.
  • the service processor 1702 of ONU1 is connected to the optical module 1701, the optical module 1703 and the optical module 1704 respectively.
  • Optical module 1701 is connected to OLT1
  • optical module 1703 is connected to ONU2
  • optical module 1701 is connected to ONU3.
  • the dual ring network 1700 also includes ONU4 connected to OLT2.
  • the ONU4 includes a service processor 1714, which is connected to the optical module 1711, the optical module 1712 and the optical module 1713 respectively.
  • the optical module 1711 is connected to ONU2.
  • the optical module 1712 is connected to ONU3.
  • the optical module 1713 is connected to the OLT2.
  • each optical module and service processor included in the ONU4 please refer to the description of the corresponding optical module in Figure 12 or Figure 15, and the details will not be repeated.
  • this embodiment takes the communication device including three optical modules to form a dual-ring network as an example. This embodiment does not limit the specific type of network. It can be understood that this embodiment can realize flexible networking of any shape, reduces the difficulty of adding subsequent communication nodes to the network, and improves the subsequent scalability of the network.
  • the communication device shown in this embodiment may also include a detector and a switch array as shown in Figure 12 or Figure 15.
  • a detector and a switch array as shown in Figure 12 or Figure 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Small-Scale Networks (AREA)

Abstract

本申请公开了一种数据传输方法,相关设备以及光通信系统,通过将承载上行业务的数据流和承载下行业务的数据流复用成一路复用数据流的情况下,节省了上行业务和下行业务传输所需要的光信号的数量。方法包括:通信节点获得第一下行数据流,通信节点获得第一上行数据流,通信节点复用第一上行数据流和第一下行数据流,获得一路第一复用数据流;通信节点发送第一复用数据流。本申请实施例还提供了一种能够降低上下行业务传输过程中的复杂度和成本的方法,方法包括:通信节点选定第一RX和第一TX;通信节点通过第一RX接收来自第一中心局设备的下行业务数据流;通信节点通过第一TX向第一中心局设备发送上行业务数据流。

Description

一种数据传输方法,相关设备以及光通信系统
本申请要求于2022年8月31日提交中国国家知识产权局、申请号202211058806.7、申请名称为“一种数据传输方法,相关设备以及光通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光纤通信领域,尤其涉及一种数据传输方法,相关设备以及光通信系统。
背景技术
图1a为已有方案提供的环形组网的第一种结构示例图。环形组网100包括第一中心局(central office,CO)设备和第二CO设备。第一CO设备和第二CO设备之间依次连接N个通信节点,N为大于1的任意正整数。其中,第一CO设备和第二CO设备为光线路终端(optical line terminal,OLT),而各通信节点为光网络单元(optical network unit,ONU)。图1b为已有方案提供的通信节点的结构示例图。以通信节点1为例,该通信节点1包括第一备份系统140以及第二备份系统150。第一备份系统140以及第二备份系统150能够实现无源光纤网络(passive optical network,PON)的类型C(Type C)保护。
具体的,第一备份系统140包括依次连接的光模块111,处理模块131以及光模块112。第二备份系统150包括依次连接的光模块122,处理模块132以及光模块121。光模块111接收来自第一CO设备的波长λ1,波长λ1用于承载来自第一CO设备的下行业务。光模块112向通信节点2发送经由处理模块131处理后的波长λ1。光模块112接收来自第二通信节点的波长λ2,波长λ2用于承载来自第二通信节点的上行业务。光模块111向第一CO设备发送经由处理模块131处理后的波长λ2。依次类推,第二备份系统150通过波长λ3接收来自第一CO设备的下行业务。通过波长λ4接收来自第二通信节点的上行业务。第一备份系统140和第二备份系统150能够与第一CO设备和第二CO设备同时通信。若第一备份系统140无法正常工作,则由第二备份系统150负责上下行业务的传输。其中,若光模块111和光模块122与同一光纤连接,则为实现备份,λ1、λ2、λ3以及λ4互不相同。若光模块111和光模块122分别与两个不同的光纤连接,则λ1不同于λ2,且λ3不同于λ4。而分别在这两个光纤中所传输的波长可相同,例如,λ1与λ3相同。或者,分别在这两个光纤中所传输的波长可不同,例如,λ1不同于λ3。
但是,若需要通信节点的每个备份系统分别与两个CO设备同时通信,通信节点需要支持四路光信号的收发,提高了通信节点实现Type C保护的复杂度和成本。
发明内容
本申请实施例提供了一种数据传输方法,相关设备以及光通信系统,其通过将承载上行 业务的数据流和承载下行业务的数据流复用成一路复用数据流的方式,节省了上行业务和下行业务传输所需要的光信号的数量。而且复用数据流能够实现Type C保护,降低了实现Type C保护需要收发的光信号的数量,降低了实现Type C保护的复杂度和成本。
本申请实施例第一方面提供了一种数据传输方法,所述方法包括:通信节点获得第一下行数据流,所述第一下行数据流用于承载来自第一中心局设备的第一下行业务;所述通信节点获得第一上行数据流,所述第一上行数据流用于承载发送至第二中心局设备的第一上行业务;所述通信节点复用所述第一上行数据流和所述第一下行数据流,获得一路第一复用数据流;所述通信节点发送所述第一复用数据流。
采用本方面所示,已复用的第一复用数据流的传输,仅使用一个波长即可传输第一上行数据流以及第一下行数据流。在有效的保证了第一上行数据流和第一下行数据流成功传输的情况下,还降低了第一上行数据流和第一下行数据流所使用的波长的数量,降低了实现Type C保护的复杂度和成本。
基于第一方面,一种可选的实现方式中,所述第一下行数据流为连续的数据流,所述第一下行数据流包括所述第一下行业务和/或填充信息,所述第一上行数据流为连续的数据流,所述第一上行数据流包括所述第一上行业务和/或填充信息。
采用本实现方式,在第一下行数据流和第一上行数据流为连续的数据流的情况下,降低了通信节点处理第一下行数据流和第一上行数据流的复杂度。
基于第一方面,一种可选的实现方式中,所述第一复用数据流的速率等于所述第一下行数据流速率与所述第一上行数据流速率之和。
采用本实现方式,有效的保证了第一上行数据流和第一下行数据流的及时传输,降低了第一上行数据流和第一下行数据流发生重传的可能。
基于第一方面,一种可选的实现方式中,所述第一上行数据流速率等于所述第一下行数据流速率,所述第一复用数据流的速率等于所述第一上行数据流速率的二倍,且所述第一复用数据流的速率等于所述第一下行数据流速率的二倍。
采用本实现方式,在所述第一上行数据流速率等于所述第一下行数据流速率的情况下,为保证第一上行数据流和第一下行数据流的及时传输,则复用后的所述第一复用数据流的速率等于所述第一上行数据流速率的二倍,且复用后的所述第一复用数据流的速率等于所述第一下行数据流速率的二倍。
基于第一方面,一种可选的实现方式中,所述通信节点复用所述第一上行数据流和所述第一下行数据流,获得一路第一复用数据流包括:所述通信节点通过比特交织的方式,将所述第一上行数据流和所述第一下行数据流复用成一路所述第一复用数据流,其中,所述第一复用数据流包括至少一个比特分组,每个所述比特分组包括所述第一上行数据流中的至少部分比特以及所述第一下行数据流中的至少部分比特。
采用本实现方式,能够提高将第一上行数据流和第一下行数据流复用为一路第一复用数据流的成功率。
基于第一方面,一种可选的实现方式中,所述通信节点获得第一下行数据流包括:所述通信节点接收第二下行数据流;所述通信节点获得所述第二下行数据流已承载的所述第一下行业务;所述通信节点复制所述第二下行数据流,获得所述第一下行数据流。
采用本实现方式,通信节点向下游节点所发送的第一下行数据流,为对来自第一中心局 设备的第二下行数据流进行复制而成,降低了通信节点发送第一下行数据流的时延,降低了时延抖动。
基于第一方面,一种可选的实现方式中,所述通信节点获得第一上行数据流包括:
所述通信节点获得第二上行数据流;所述通信节点根据时隙调度消息在所述第二上行数据流的目标时隙上承载所述第一上行业务,获得所述第一上行数据流,所述第一上行业务为所述通信节点发送至所述第二中心局设备的上行业务,所述时隙调度消息用于指示所述目标时隙。
采用本实现方式,通信节点根据时隙调度消息发送通信节点的第一上行业务,保证了不同通信节点能够通过不同的时隙发送上行业务,避免了不同通信节点所发送的上行业务出现冲突的可能。
基于第一方面,一种可选的实现方式中,所述通信节点获得第二上行数据流包括:所述通信节点接收第二复用数据流,所述第二复用数据流为已复用所述第二上行数据流和第二下行数据流的一路数据流,所述第二下行数据流用于获得所述第一下行数据流;所述通信节点解复用所述第二复用数据流,获得所述第二上行数据流和所述第二下行数据流。
采用本实现方式,通信节点直接接收复用后的第二复用数据流,通信节点通过解复用的方式即可获得第二上行数据流以及第二下行数据流,已复用的第二复用数据流的传输,仅使用一个波长即可传输第二上行数据流以及第二下行数据流。在有效的保证了第二上行数据流和第二下行数据流成功传输的情况下,还降低了第二上行数据流和第二下行数据流占用的波长数量。
基于第一方面,一种可选的实现方式中,所述通信节点获得第二上行数据流包括:所述通信节点生成所述第二上行数据流。
采用本实现方式,因第一中心局设备向通信节点所发送的第二下行数据流为未经过复用的数据流,则无需改动第一中心局设备的情况下,即可保证第一中心局设备正常出射承载发送给各通信节点的下行业务的第二下行数据流,降低了对第一中心局设备的改动程度。而且由通信节点生成该第二上行数据流,有效保证了各通信节点向第二中心局设备发送上行业务的成功。
基于第一方面,一种可选的实现方式中,所述方法还包括:所述通信节点获得第三下行数据流,所述第三下行数据流用于承载来自所述第二中心局设备的第二下行业务;所述通信节点获得第三上行数据流,所述第三上行数据流用于承载发送至所述第一中心局设备的第二上行业务;所述通信节点复用所述第三上行数据流和所述第三下行数据流,获得一路第三复用数据流;所述通信节点发送所述第三复用数据流。
采用本实现方式,通信节点能够成功的实现Type C保护,降低了实现Type C保护的成本,以及提高了环形组网传输上下行业务的效率。
基于第一方面,一种可选的实现方式中,所述通信节点发送所述第一复用数据流包括:所述通信节点向所述第二中心局设备或下游通信节点,发送所述第一复用数据流,所述下游通信节点连接于所述通信节点和所述第二中心局设备之间。
基于第一方面,一种可选的实现方式中,所述方法应用于光通信系统,所述光通信系统包括第一中心局设备和第二中心局设备,所述光通信系统还包括连接在所述第一中心局设备和所述第二中心局设备之间的至少一个通信节点,所述第一通信节点为所述至少一个通信节 点中的一个。
本申请实施例第二方面提供了一种数据传输方法,所述方法包括:中心局设备生成上行数据流,所述上行数据流用于承载发送至另一中心局设备的上行业务;所述中心局设备生成下行数据流,所述下行数据流用于承载来自所述中心局设备的下行业务;所述中心局设备复用所述上行数据流和所述下行数据流,获得一路复用数据流;所述中心局设备向通信节点发送所述复用数据流。
本方面有益效果的说明,请参见第一方面所示,具体不做赘述。
基于第二方面,一种可选的实现方式中,所述上行数据流为连续的数据流,所述上行数据流包括所述上行业务和/或填充信息,所述下行数据流为连续的数据流,所述下行数据流包括所述下行业务和/或填充信息。
基于第二方面,一种可选的实现方式中,所述复用数据流的速率等于所述下行数据流速率与所述上行数据流速率之和。
基于第二方面,一种可选的实现方式中,所述上行数据流速率等于所述下行数据流速率,所述复用数据流的速率等于所述上行数据流速率的二倍,且所述复用数据流的速率等于所述下行数据流速率的二倍。
基于第二方面,一种可选的实现方式中,所述中心局设备复用所述上行数据流和所述下行数据流,获得一路复用数据流包括:所述中心局设备通过比特交织的方式,将所述上行数据流和所述下行数据流复用成一路所述复用数据流,其中,所述复用数据流包括至少一个比特分组,每个所述比特分组包括所述上行数据流中的至少部分比特以及所述下行数据流中的至少部分比特。
本申请实施例第三方面提供了一种数据传输方法,所述方法应用于通信节点,所述通信节点包括多个接收端口RX和多个发送端口TX,所述方法包括:所述通信节点选定第一RX和第一TX,所述第一RX为所述多个RX中的一个,所述第一TX为所述多个TX中的一个,且所述第一RX和所述第一TX与第一中心局设备连接;所述通信节点通过所述第一RX接收来自所述第一中心局设备的下行业务数据流,所述下行业务数据流用于承载来自所述第一中心局设备的下行业务;所述通信节点通过所述第一TX向所述第一中心局设备发送上行业务数据流,所述上行业务数据流用于承载所述通信节点发送至所述第一中心局设备的上行业务。
采用本方面所示的方法,通信节点选择一个第一中心局设备进行上下行业务的传输,该第一RX与该第一中心局设备连接。在无需通过复用上行业务和下行业务的情况下,即可实现通信节点与第一中心局设备之间上下行业务的成功传输,降低了传输上下行业务的成本和复杂度。
基于第三方面,一种可选的实现方式中,所述多个RX还包括第二RX,所述多个TX还包括第二TX,所述第二RX和所述第二TX与第二中心局设备连接,所述通信节点选定第一RX和第一TX包括:所述通信节点在所述第一RX和所述第二RX中,选定所述第一RX。
采用本实现方式,通信节点能够在所连接的两个或两个以上中心局设备中,选择一个第一中心局设备进行上下行业务的传输,提高上下行业务传输的成功率。
基于第三方面,一种可选的实现方式中,所述通信节点在所述第一RX和所述第二RX中,选定所述第一RX包括:所述通信节点检测到经由所述第一RX所接收到的信号质量优于经由所述第二RX所接收到的信号质量。
采用本实现方式,通信节点基于信号质量选择用于进行上下行业务传输的第一中心局设备,提高了通信节点与第一中心局设备通信的质量。
基于第三方面,一种可选的实现方式中,所述通信节点在所述第一RX和所述第二RX中,选定所述第一RX包括:所述通信节点检测到所述第二RX和所述第二中心局设备之间出现故障事件。
采用本实现方式,在通信节点与第二中心局设备之间出现故障事件的情况下,通信节点能够切换至与第一中心局设备进行上下行业务的状态,提高了上下行业务的成功传输。
基于第三方面,一种可选的实现方式中,所述通信节点还包括开关阵列,所述开关阵列与所述第一RX以及所述第一TX连接,所述开光阵列还与业务处理器连接,所述通信节点通过所述第一RX接收来自所述第一中心局设备的下行业务数据流之前,所述方法还包括:所述开关阵列将所述第一RX切换为与所述业务处理器连接,且用于接收所述下行业务数据流的接收端口,所述业务处理器用于处理所述下行业务数据流;所述通信节点通过所述第一TX向所述第一中心局设备发送上行业务数据流之前,所述方法还包括:所述开关阵列将所述第一TX切换为与所述业务处理器连接,且用于发送所述上行业务数据流的发送端口,所述业务处理器用于获得所述上行业务数据流。
采用本实现方式,通过通信节点的开关阵列的切换,使得第一RX和第一TX用于与第一中心局设备之间进行上下行业务的传输,提高了上下行业务传输的成功率。
本申请实施例第四方面提供了一种通信节点,所述通信节点包括收发器以及业务处理器,所述收发器与所述业务处理器连接;所述业务处理器用于获得第一下行数据流,所述第一下行数据流用于承载来自第一中心局设备的第一下行业务,还用于获得第一上行数据流,所述第一上行数据流用于承载发送至第二中心局设备的第一上行业务,还用于复用所述第一上行数据流和所述第一下行数据流,获得一路第一复用数据流;所述收发器用于发送所述第一复用数据流。
本方面有益效果的说明,请参见第一方面所示,具体不做赘述。
本申请实施例第五方面提供了一种中心局设备,所述中心局设备包括收发器以及业务处理器,所述收发器与所述业务处理器连接;所述业务处理器用于生成第二上行数据流,所述第二上行数据流用于承载发送至另一中心局设备的第一上行业务,还用于生成第二下行数据流,所述第二下行数据流用于承载来自所述中心局设备的第一下行业务,还用于复用所述第二上行数据流和所述第二下行数据流,获得一路第二复用数据流;所述收发器用于发送所述第二复用数据流。
本方面有益效果的说明,请参见第一方面所示,具体不做赘述。
本申请实施例第六方面提供了一种通信节点,所述通信节点包括多个接收端口RX、多个发送端口TX以及业务处理器,所述多个RX中的每个RX与所述业务处理器连接,所述多个TX中每个TX与所述业务处理器连接:所述业务处理器用于选定第一RX和第一TX,所述第一RX为所述多个RX中的一个,所述第一TX为所述多个TX中的一个,且所述第一RX和所述第一TX与第一中心局设备连接;所述业务处理器用于通过所述第一RX接收来自所述第一中心局设备的下行业务数据流,所述下行业务数据流用于承载来自所述第一中心局设备的下行业务;所述业务处理器用于通过所述第一TX向所述第一中心局设备发送上行业务数据流,所述上行业务数据流用于承载所述通信节点发送至所述第一中心局设备的上行业务。
本方面有益效果的说明,请参见第三方面所示,具体不做赘述。
本申请实施例第七方面提供了一种光通信系统,所述光通信系统包括依次连接的第一中心局设备,通信节点以及第二中心局设备;所述第一中心局设备用于向所述通信节点发送第二复用数据流,所述第二复用数据流为已复用第二上行数据流和第二下行数据流的一路数据流;所述通信节点用于解复用所述第二复用数据流,获得所述第二上行数据流和所述第二下行数据流;所述通信节点用于获得所述第二下行数据流已承载的第一下行业务,所述第一下行业务为来自所述第一中心局设备的下行业务;所述通信节点用于复制所述第二下行数据流,获得第一下行数据流;所述通信节点用于根据时隙调度消息在所述第二上行数据流的目标时隙上承载第一上行业务,获得第一上行数据流,所述第一上行业务为所述通信节点发送至所述第二中心局设备的上行业务,所述时隙调度消息用于指示所述目标时隙;所述通信节点用于复用所述第一上行数据流和所述第一下行数据流,获得一路第一复用数据流;所述通信节点用于发送所述第一复用数据流。
本方面有益效果的说明,请参见第一方面所示,具体不做赘述。
本申请实施例第八方面提供了一种光通信系统,所述光通信系统包括依次连接的第一中心局设备,通信节点以及第二中心局设备;所述第一中心局设备用于向所述通信节点发送第二下行数据流;所述通信节点用于获得所述第二下行数据流已承载的第一下行业务,所述第一下行业务为来自所述第一中心局设备的下行业务;所述通信节点用于复制所述第二下行数据流,获得第一下行数据流;所述通信节点用于生成第二上行数据流;所述通信节点用于根据时隙调度消息在所述第二上行数据流的目标时隙上承载第一上行业务,获得第一上行数据流,所述第一上行业务为所述通信节点发送至所述第二中心局设备的上行业务,所述时隙调度消息用于指示所述目标时隙;所述通信节点用于复用所述第一上行数据流和所述第一下行数据流,获得一路第一复用数据流;所述通信节点用于发送所述第一复用数据流。
本方面有益效果的说明,请参见第一方面所示,具体不做赘述。
本申请实施例第九方面提供了一种光通信系统,所述光通信系统包括依次连接的中心局设备以及通信节点,所述通信节点包括多个接收端口RX和多个发送端口TX:所述通信节点用于选定第一RX和第一TX,所述第一RX为所述多个RX中的一个,所述第一TX为所述多个TX中的一个,且所述第一RX和所述第一TX与所述中心局设备连接;所述通信节点用于通过所述第一RX接收来自所述中心局设备的下行业务数据流,所述下行业务数据流用于承载来自所述中心局设备的下行业务;所述通信节点用于通过所述第一TX向所述中心局设备发送上行业务数据流,所述上行业务数据流用于承载所述通信节点发送至所述中心局设备的上行业务。
本方面有益效果的说明,请参见第三方面所示,具体不做赘述。
本申请实施例第十方面提供了一种可读存储介质,可读存储介质中存储有执行指令,当至少一个处理器执行该执行指令时,执行第一方面至第三方面任一项所示的方法。
附图说明
图1a为已有方案提供的环形组网的第一种结构示例图;
图1b为已有方案提供的通信节点的结构示例图;
图2为本申请实施例提供的环形组网的第一种结构示例图;
图3为本申请实施例提供的数据传输方法的第一种步骤流程图;
图4a为本申请实施例提供的OLT1的第一种结构示例图;
图4b为本申请实施例提供的OLT1的第二种结构示例图;
图5为本申请实施例提供的下行数据帧的结构示例图;
图6a为本申请实施例提供的第二复用数据流的速率,第二上行数据流的速率以及第二下行数据流的速率之间的第一种关系示例图;
图6b为本申请实施例提供的第二复用数据流的速率,第二上行数据流的速率以及第二下行数据流的速率之间的第二种关系示例图;
图6c为本申请实施例提供的ONU1获得第一下行业务的第一种示例图;
图7为本申请实施例提供的ONU1的第一种结构示例图;
图8a为本申请实施例提供的OLT2的第一种结构示例图;
图8b为本申请实施例提供的OLT2的第二种结构示例图;
图9a为本申请实施例提供的OLT1的第三种结构示例图;
图9b为本申请实施例提供的环形组网的第二种结构示例图;
图10a为本申请实施例提供的数据传输方法的第二种步骤流程图;
图10b为本申请实施例提供的ONU1的第二种结构示例图;
图11为已有方案提供的环形组网的第二种结构示例图
图12为本申请实施例提供的ONU1的第三种结构示例图;
图13为本申请实施例提供的数据传输方法的第三种步骤流程图;
图14为本申请实施例提供的数据传输方法的第四种步骤流程图;
图15为本申请实施例提供的ONU1的第四种结构示例图;
图16为本申请实施例提供的通信设备的结构示例图;
图17为本申请实施例所提供的双环形组网结构示例图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
继续参见图1a对已有的环形组网的结构进行说明,环形组网包括第一CO设备101,第二CO设备102以及依次连接在第一CO设备101和第二CO设备102之间的N个通信节点。第一CO设备101还与第二CO设备102连接。本示例所示的N为大于1的任意正整数。第一CO设备101和第二CO设备102是控制中心和信号的汇聚处理节点,比如下发命令控制各个通信节点。各个通信节点需要反馈信息给第一CO设备101或第二CO设备102。以第一CO设备101为例,该第一CO设备101用于实现各通信节点与上层网络之间传输数据,具体的,第一CO设备101可以充当各通信节点与上层网络之间的媒介,第一CO设备101能够将从上层网络接收到的下行业务转发到对应的通信节点以及将从各通信节点接收到的上行业务转发到上层网络。其中,上层网络可为因特网、公共交换电话网络(public switched telephone network,PSTN),交互式网络电视(IPTV),基于IP的语音传输(voice over internet protocol,VoIP)等网络。以下说明环形组网的 工作流程:以第一CO1设备101向通信节点发送的业务为下行业务为例,若第一CO设备101向通信节点2发送下行业务,例如发送控制命令等,第一CO设备101向通信节点1发送用于给通信节点2的下行业务。通信节点1接收到来自第一CO设备101的下行业务的情况下,通信节点1解析该下行业务,确定该下行业务是发送给通信节点2的,则通信节点1继续向节点2发送该下行业务。
以通信节点向第一CO设备101发送的业务为上行业务为例,若通信节点N向第一CO设备101发送上行业务,则通信节点N经由连接在通信节点N和第一CO设备101之间的通信节点依次发送该上行业务。具体的,通信节点N向通信节点N-1发送上行业务,依次类推,通信节点1向第一CO设备101发送该上行业务。
采用环形组网的优势在于,一旦两个通信节点之间出现故障,不影响环形组网的正常通信。例如,若通信节点2与通信节点N-1之间出现了故障,通信节点2无需通过通信节点2与通信节点N-1之间的链路进行通信,通信节点2正常与通信节点1通信,通信节点1与第一CO设备101通信,以保证通信节点2和第一CO设备101之间通信的正常。而通信节点N-1与通信节点N通信,通信节点N与第二CO设备102通信,以保证通信节点N-1与第二CO设备102之间通信的正常。而且因第一CO设备101和第二CO设备102之间连接,则通信节点2需要发送至第二CO设备102的业务,可由第一CO设备101转发,同样的,通信节点N-1需要发送至第一CO设备101的业务,可由第二CO设备102转发。
本申请提供了一种应用于环形组网的数据传输方法,无需通过波分的方式实现PON的Type C保护,降低了实现Type C保护的成本,以及提高了环形组网传输上下行业务的效率。本实施例对环形组网的应用场景不做限定,例如,环形组网用于光传送网(optical transport network,OTN)、工业控制、数据回传、数据中心以及监控中心等,具体不做限定。对环形组网结构的说明请参见图1a的说明,具体不做赘述。本实施例对环形组网所包括的各个设备的设备类型不做限定,例如,CO设备可为基站控制器(base station controller,BSC),通信节点可为基站收发信台(base transciver station,BTS),又如,CO设备可为服务器等,而通信节点可为交换机,又如,CO设备可为基带处理单元(building baseband unit,BBU),通信节点可为射频拉远模块(radio remote unit,RRU),又如,CO设备可为交换机,而通信节点可为监控摄像头等终端设备。又如图2所示,环形组网所包括的CO设备可为光线路终端(optical line terminal,OLT),通信节点可为光网络单元(optical network unit,ONU)。
本申请所应用的环形组网可参见图2所示,其中,图2为本申请实施例提供的环形组网的第一种结构示例图。该环形组网包括OLT1,OLT2以及依次连接在OLT1以及OLT2之间的N个ONU。其中,OLT1和OLT2可为同一OLT所包括的两个通信单板。又如,OLT1和OLT2可为两个独立且具有连接关系的两个独立的OLT。本实施例所示的环形组网中,任意相邻的两个ONU之间无需通过分光器连接,而且OLT1与相邻的ONU(即图2所示的ONU1)之间也无需通过分光器连接,OLT2与相邻的ONU(即ONU2)之间也无需通过分光器连接。例如,以ONU1为例,ONU1具有两个通信端口,ONU1的一个通信端口直接与OLT1之间通过光纤连接,ONU1具有的另一通信端口直接与ONU2之间通过光纤连接。在ONU1 与第一OLT201直接连接的情况下,有效降低了通信时延,而且因环形组网无需布局分光器,降低了环形组网的部署难度,提高了部署效率,降低了环形组网的插损。本实施例以N的取值为2为例,对N的具体取值不做限定。以OLT1,N个ONU和OLT2组成环形组网为例,不做限定,例如,OLT1,N个ONU和OLT2也可组成链形组网或树形组网等。
基于图2所示的环形组网,以下结合图3所示对本申请实施例提供的数据传输方法的执行过程进行说明,其中,图3为本申请实施例提供的数据传输方法的第一种步骤流程图。采用本实施例所示的方法,环形组网所包括的任一通信节点能够同时与OLT1和OLT2进行上下行业务的传输。
步骤301、OLT1生成第二下行数据流。
本实施例所示的第二下行数据流为发送至环形组网的各ONU的下行数据流。具体结合图4a所示对OLT1生成第一下行数据流的过程进行说明,其中,图4a为本申请实施例提供的OLT1的第一种结构示例图。OLT1包括业务处理模块402。该业务处理模块402获得发送至环形组网各ONU的下行业务,该下行业务可为来自因特网、公共交换电话网络(public switched telephone network,PSTN),交互式网络电视(IPTV),基于IP的语音传输(voice over internet protocol,VoIP)等网络的业务。
业务处理模块402将下行业务发送至下行处理模块403,下行处理模块403将发送至各ONU的下行业务封装至第二下行数据流中。其中,第二下行数据流包括多个下行数据帧。结合图5所示对下行数据帧的结构进行说明,其中,图5为本申请实施例提供的下行数据帧的结构示例图。下行数据帧500包括物理同步块(physicalsynchronization block,PSBd)501和物理层帧有效载荷(physical layer frame payload)502。该payload502用于承载下行业务。PSBd501包括字段物理同步(physical synchronization,PSync)字段511,超帧计数器(superframe counter,SFC)字段512以及操作控制(operation control,OC)字段513以及上行带宽地图(upstream bandwidth map,US BWmap)字段514。
其中,Psync字段511为物理层同步字段,可用于承载下行帧同步指示符号。SFC字段512用于承载超帧号,SFC字段512承载的超帧号实质为一个30比特(bit)宽度的帧循环计数器,当超帧号为0时表示一个超帧的开始。US BWmap字段514为本实施例所示的第一时隙调度消息。所述第一时隙调度消息用于指示各ONU向OLT1发送上行业务的时隙。具体的,US BWmap字段514用于承载用户的带宽映射(bandwidth map,BWMAP)信息。US BWmap字段514包括N个分配结构(Allocation Structure)。每个Allocation Structure包括带宽分配标识(allocation identifier,Alloc-ID)字段521,时隙起始时刻(start time)字段522以及授权尺寸(Grant size)字段523。以Allocation ID1字段为例,Allocation ID1字段用于承载授权发送的ONU1的标识符(Identity,ID),start time字段用于指示OLT1为ONU1分配的时隙的起始时刻,Grant size字段523用于指示授权给ONU1的时隙长度。Allocation ID2字段为OLT1分配给ONU2的字段,依次类推,Allocation IDN字段为OLT1分配给ONUN的字段,对各Allocation ID字段的说明,请参见Allocation ID1字段的说明,具体不做赘述。本实施例对下行数据帧的说 明为可选的说明,不做限定,只要环形组网所包括的各个ONU能够根据该下行数据帧获得到对应的时隙即可。例如,各Allocation Structure1字段可包括结束时刻,该结束时刻用于指示时隙的结束时刻。
本实施例所示的第二下行业务数据流为连续的数据流,该第二下行业务数据流中,两个下行数据帧之间可连续,或两个下行数据帧之间承载填充信息,以保证第二下行业务数据流的连续,其中,填充信息可为一段规律或随机的字节串。
步骤302、OLT1生成第二上行数据流。
本实施例所示的第二上行数据流携带环形组网的各ONU发送至OLT2的上行业务。为此,OLT1可生成用于携带各ONU发送至OLT2的上行业务的第二上行数据流。继续参见图4a所示,OLT1的上行处理模块404生成第二上行数据流。图4a所示的示例中,第二上行数据流为连续的数据流,且该第二上行数据流承载的全部为填充信息。
本实施例所示的OLT1的结构还可参见图4b所示,图4b为本申请实施例提供的OLT1的第二种结构示例图。本示例所示的下行处理模块403与业务处理模块402连接。在本示例中,OLT1可通过该第二上行数据流向OLT2发送上行业务。上行处理模块404从业务处理模块402获得需要发送给OLT2的上行业务。上行处理模块404在第二上行数据流的上行时隙中,承载需要发送给OLT2的上行业务。具体的,上行处理模块404获得第二时隙调度消息,该第二时隙调度消息用于指示该上行时隙。上行处理模块404根据第二时隙调度消息的指示,在第二上行数据流的上行时隙中,承载需要发送给OLT2的上行业务。本实施例所示的第二时隙调度消息为OLT2生成的,OLT2生成的第二时隙调度消息的说明,请参见步骤301所示的OLT1生成的第一时隙调度消息的说明,具体不做赘述。可以理解,OLT1接收OLT2依次经由ONU2以及ONU1的下行数据流,该下行数据流中承载该第二时隙调度消息。
步骤303、OLT1复用第二上行数据流和第二下行数据流,获得一路第二复用数据流。
本实施例所示的第二复用数据流的速率大于第二上行数据流的速率,且第二复用数据流的速率大于第二下行数据流的速率。例如,第二复用数据流为第二上行数据流的K倍,且第二复用数据流为第二下行数据流的J倍。为保证第二下行数据流所携带的下行业务能够及时传输至通信节点,以及保证第二上行数据流所携带的上行业务能够及时传输至OLT2,则本实施例所示的K与J均为大于1的任意数值。
图6a为本申请实施例提供的第二复用数据流的速率,第二上行数据流的速率以及第二下行数据流的速率之间的第一种关系示例图。图6a所示以第二复用数据流的速率等于第二上行数据流速率和第二下行数据流速率之和。图6a所示以J=K=2为例。具体的,第二上行数据流包括多个上行数据帧,第二下行数据流包括多个下行数据帧。其中,上行数据帧和下行数据帧的帧长均为125微秒(microsecond,us)。第二复用数据流包括多个复用数据帧。OLT1复用上行数据帧601和下行数据帧602,获得复用数据帧603。在J=K=2的情况下,复用数据帧603的帧长也为125us,可以理解,在下行数据帧602的速率和上行数据帧601的速率相同的情况下,复用数据帧603的速率为下行数据帧602的速率 的二倍,且复用数据帧603的速率为上行数据帧601的速率的二倍。
OLT1可基于比特交织(bitinterleaving)方式,将上行数据帧601和下行数据帧602复用为复用数据帧603。比特交织是指,采用时分复用的方式,在时间上分离上行数据帧601的码元,介于其间的时间可以由下行数据帧602的码元来填充。
复用数据帧603包括一个比特分组,该比特分组包括上行数据帧601帧长为125us的全部比特,该比特分组还包括下行数据帧602帧长为125us的全部比特。因此,图6a所示的的复用数据帧603的速率为下行数据帧602的速率的二倍,且复用数据帧603的速率为上行数据帧601的速率的二倍。
图6a所示以J=K=2,且以复用数据帧包括一个比特分组为例,不做限定,又如图6b所示,J=K=2,且复用数据帧包括两个比特分组。其中,图6b为本申请实施例提供的第二复用数据流的速率,第二上行数据流的速率以及第二下行数据流的速率之间的第二种关系示例图。
图6b所示还以上行数据帧,下行数据帧的帧长以及复用数据帧的帧长均为125us为例。OLT1将具有125us帧长的上行数据帧611划分为两个上行子帧,即第一上行子帧612以及第二上行子帧613。可以理解,第一上行子帧612包括上行数据帧611的前62.5us的比特。第二上行子帧613包括上行数据帧611的后62.5us的比特。OLT1将具有125us帧长的下行数据帧614划分为两个下行子帧,即第一下行子帧615以及第二下行子帧616。可以理解,第一下行子帧615包括下行数据帧614的前62.5us的比特。第二下行子帧616包括下行数据帧614的后62.5us的比特。
OLT1复用第一上行子帧612和第一下行子帧615,获得第一比特分组,该第一比特分组的帧长为62.5us。同样的,OLT1复用第二上行子帧613和第二下行子帧616,获得第二比特分组,该第二比特分组的帧长为62.5us,OLT1复用的说明,请参见图6a所示的OLT1复用的说明,具体不做赘述。需明确的是,以第一下行子帧615为例,该第一下行子帧615包括下行数据帧614的前62.5us的比特。在其他示例中,该第一下行子帧615可包括下行数据帧614的任意位置的比特,只要提取出的第一下行子帧615的帧长为62.5us即可。
图6b所示以复用数据帧包括两个比特分组为例,具体不做限定,例如,复用数据帧可包括三个比特分组,或四个比特分组等任意数量的比特分组。
本实施例所示的第二上行数据流和第二下行数据流可基于不归零码(not return to zero,NRZ)编码而成,则经过OLT复用后的第二复用数据流可维持NRZ编码。例如,第二上行数据流和第二下行数据流基于对称无源光网络(10-gigabit-capable symmetric passive optical network 10G,XGS-PON)的NRZ编码,而速率提升后的第二复用数据流也基于XGS-PON的NRZ编码。本示例以速率提升前的第二上行数据流、第二下行数据流和速率提升后的第二复用数据流的编码方式相同为例,在其他示例中,也可不同,例如,第二上行数据流和第二下行数据流基于NRZ编码而成,而第二复用数据流的编码方式可为第四代脉冲幅度调制(4pulse amplitude modulation,PAM4)。
步骤304、OLT1向ONU1发送第二复用数据流。
结合图4a所示,OLT1的复用模块405向光模块401发送第二复用数据流,该光模块401用于对该第二复用数据流进行电光转换以输出呈光信号的第二复用数据流。因本实施例所示的OLT1已将第二上行数据流和第二下行数据流复用为一路第二复用数据流,则光模块401所输出的呈光信号的第二复用数据流可仅具有一个波长,例如,第二复用数据流的波长为λ1。光模块401通过连接在光模块401和ONU1之间的光纤,仅向ONU1发送一个波长的光信号,即可承载第二上行数据流以及第二下行数据流。因OLT1无需通过两路不同的波长向ONU1发送第二上行数据流以及第二下行数据流,降低了OLT1向ONU1发送的波长的数量,降低了OLT1以及ONU1的光模块需要支持的波长数量,进而降低了光模块处理光信号的复杂度。
可选的,本实施例所示的OLT1获得到该第二复用数据流的情况下,OLT1可对该第二复用数据流进行前向纠错(forward error correction,FEC)编码,以向ONU1发送FEC编码后的第二复用数据流。FEC编码是通过对第二复用数据流进行编码,使接收端(ONU1)能够直接从FEC编码后的第二复用数据流中检查出数据传输发生的错误,并能够一定程度的纠正传输误码。采用FEC编码能降低误码率,可以在同样的接收结果下节省OLT1向ONU1发送该第二复用数据流的发送功率。
本实施例所示的OLT1所包括的各个模块,可以是一个或多个芯片,或一个或多个集成电路。例如,OLT1所包括的各个模块可以是一个或多个现场可编程门阵列(field-programmable gate array,FPGA)、专用集成芯片(application specific integrated circuit,ASIC)、系统芯片(system on chip,SoC)、中央处理器(central processor unit,CPU)、网络处理器(network processor,NP)、数字信号处理电路(digital signal processor,DSP)、微控制器(micro controller unit,MCU),可编程控制器(programmable logic device,PLD)或其它集成芯片,或者上述芯片或者处理器的任意组合等。又如,OLT1所包括的各个模块,还可部分或全部通过软件实现。例如,OLT1所包括的复用模块405通过软件实现复用的功能,则OLT1所包括的业务处理器读取并执行OLT1所包括的存储器中存储的计算机程序,以实现复用模块405对应的功能。
步骤305、ONU1解复用第二复用数据流,获得第二上行数据流和第二下行数据流。
在ONU1接收到该第二复用数据流的情况下,ONU1解复用该第二复用数据流,获得第二上行数据流以及第二下行数据流,对第二上行数据流和第二下行数据流的说明,请参见步骤301以及步骤302所示,具体不做赘述。
具体结合图7所示对ONU1处理第二复用数据流的过程进行说明,其中,图7为本申请实施例提供的ONU1的第一种结构示例图。ONU1所包括的各个模块实现方式的说明,请参见图4a对应的OLT1所包括的各个模块实现方式的说明,具体不做赘述。ONU1的光模块701通过光纤与OLT1的光模块401连接。该光模块701接收到波长为λ1的第二复用数据流。光模块701对第二复用数据流进行光电转换以输出呈电信号的第二复用数据流。光模块701向解复用模块702发送该第二复用数据流。解复用模块702解复用该第二复用数据流以输出第二上行数据流和第二下行数据流。
可选的,若ONU1所接收到的第二复用数据流为经过FEC编码的数据流,则ONU1对该第二复用数据流进行FEC解码后,再执行解复用过程。通过ONU1对第二复用数据流的FEC解码,以检查出第二复用数据流传输所发生的错误,并能够一定程度的纠正传输误码。
步骤306、ONU1根据第二上行数据流获得第一上行数据流。
本实施例所示的ONU1可从第二下行数据流中获得第二时隙调度消息,又如,ONU1可接收来自OLT2的下行数据流,来自OLT2的下行数据流包括该第二时隙调度消息。具体的,OLT2可依次经由连接在OLT2和ONU1之间的ONU的转发向ONU1发送已承载第二时隙调度消息的下行数据流。对第二时隙调度消息的说明,具体参见步骤301所示的第一时隙调度消息的说明,具体不做赘述。ONU1根据第二时隙调度消息在第二上行数据流包括的第一时隙上承载ONU1的上行业务,获得第一上行数据流,该ONU1的上行业务为发送至OLT2的上行业务。参见图7所示,ONU1的解复用模块702向上行处理模块704发送第二上行数据流,解复用模块702还向下行处理模块703发送第二下行数据流。
来自OLT2的下行数据流所包括的Alloc-ID1字段承载了ONU1的标识,ONU1从来自OLT2的下行数据流中获得包括Alloc-ID1的Allocation Structure1。ONU1对接收到的Allocation Structure1进行CRC校验。如果校验结果正确,ONU1获得第一上行时隙。其中,第一上行时隙的起始时刻为已获得的Allocation Structure1字段所包括的start time,第一上行时隙的持续时间长度为Allocation Structure1字段所包括的Grant size。为使得各个ONU向OLT2发送业务的情况下,不会发生冲突,则第二时隙调度消息所指示的各个ONU所分配的上行时隙之间,不存在重叠。例如,第二时隙调度消息所指示的多个上行时隙中,任意相邻的两个上行时隙之间存在保护时间(Guard time)。参见图7所示,ONU1的上行处理模块704在第二上行数据流中的第一上行时隙上承载ONU1的上行业务,获得第一上行数据流。
步骤307、ONU1获得第二下行数据流已承载的第一下行业务。
参见图4a所示,下行处理模块403接收到第二下行数据流的情况下,获得该第二下行数据流已承载的第一下行业务,对获得该第一下行业务的可选方式进行说明:第二下行数据流已承载的第一下行业务为发送给ONU1的下行业务,该第一下行业务为ONU1需要处理的来自OLT1的下行业务。图6c为本申请实施例提供的ONU1获得第一下行业务的第一种示例图。本示例所示的ONU1所接收到的第二下行数据流已承载发送给ONU1的第一下行业务。该第一下行业务来自OLT1。
ONU1从第二下行数据流620的下行时隙621中,获得发送给ONU1的第一下行业务。具体的,ONU1在第二下行数据流620所包括的多个下行数据帧中,获得用于承载发送给ONU1的第一下行业务的下行数据帧。其中,用于承载该第一下行业务的下行数据帧的目的地址是ONU1的地址。ONU1从该下行数据帧中获得该第一下行业务。
步骤308、ONU1复制第二下行数据流获得第一下行数据流。
ONU1复制该第二下行数据流,获得第一下行数据流。可以理解,第一下行数据流和 第二下行数据流所承载的内容完全相同。继续参见图7所示,下行处理模块703复制该第二下行数据流,获得第一下行数据流。下行处理模块703处理该第二下行数据流,获得该第二下行数据流已承载的发送给ONU1的下行业务。具体的,下行处理模块703基于ONU1的标识,从第二下行数据流中获得承载ONU1标识的下行数据帧帧,ONU1从承载ONU1标识的下行数据帧帧的payload中获得发送给ONU1的下行业务。下行处理模块703还向复用模块705发送第一下行数据流。
步骤309、ONU1复用第一上行数据流和第一下行数据流,获得一路第一复用数据流。
继续参见图7所示,ONU1的复用模块705在获得到第一下行数据流以及第一上行数据流的情况下,复用模块705复用第一下行数据流以及第一上行数据流以输出第一复用数据流。本实施例所示的ONU1复用第一上行数据流以及第一下行数据流,获得第一复用数据流的过程的说明,请参见步骤303所示的OLT1复用第二上行数据流和第二下行数据流,获得第二复用数据流的过程,具体不做赘述。
可选的,本实施例所示的ONU1获得到该第一复用数据流的情况下,ONU1可对该第一复用数据流进行FEC编码,以向ONU2发送FEC编码后的第一复用数据流。ONU1对第一复用数据流进行FEC编码的说明,请参见上述所示的OLT1对第二复用数据流进行FEC编码的说明,具体不做赘述。
步骤310、ONU1向ONU2发送第一复用数据流。
结合图7所示,ONU1的复用模块705向光模块706发送第一复用数据流,该光模块706用于对该第一复用数据流进行电光转换以输出呈光信号的第一复用数据流。因本实施例所示的ONU1已将第一上行数据流和第一下行数据流复用为一路第一复用数据流,则光模块706所输出的呈光信号的第一复用数据流的波长为λ1。光模块706通过连接在光模块706和ONU2之间的光纤,仅向ONU2发送一个波长的光信号,即可承载第一上行数据流以及第一下行数据流。
步骤311、ONU2解复用第一复用数据流,获得第一上行数据流和第一下行数据流。
步骤312、ONU2根据第一上行数据流获得第四上行数据流。
步骤313、ONU2获得第一下行数据流已承载的第二下行业务。
步骤314、ONU2复制第一下行数据流获得第四下行数据流。
步骤315、ONU2复用第四上行数据流和第四下行数据流,获得一路第四复用数据流。
步骤316、ONU2向OLT2发送第四复用数据流。
本实施例所示的步骤311至步骤316所示的ONU2向OLT2发送第四复用数据流的过程的说明,请参见步骤305至步骤310所示的ONU1向ONU2发送第一复用数据流的过程的说明,具体不做赘述。
本实施例以环形组网中,连接在OLT1和OLT2之间有两个ONU为例,本实施例对连接在OLT1和OLT2之间的ONU的数量不做限定。
步骤317、OLT2解复用第四复用数据流,获得第四上行数据流和第四下行数据流。
在OLT2接收到该第四复用数据流的情况下,OLT2解复用该第四复用数据流,获得第四上行数据流以及第四下行数据流,对OLT2解复用第四复用数据流的说明,请参见步骤305所示的ONU1解复用第一复用数据流的说明,具体不做赘述。
具体结合图8a所示对OLT2处理第四复用数据流的过程进行说明,其中,图8a为本申请实施例提供的OLT2的第一种结构示例图。OLT2所包括的各个模块实现方式的说明,请参见图4a对应的OLT1所包括的各个模块实现方式的说明,具体不做赘述。OLT2的光模块801通过光纤与ONU2的光模块706连接。该光模块801接收到波长为λ1的第四复用数据流。光模块801对第四复用数据流进行光电转换以输出呈电信号的第四复用数据流。光模块801向解复用模块802发送该第四复用数据流。解复用模块802解复用该第四复用数据流以输出第四上行数据流和第四下行数据流。
步骤318、OLT2根据第四上行数据流获得上行业务。
本实施例所示的第四上行数据流的各时隙,承载了环形组网的各个ONU需要发送给OLT2的上行业务。OLT2从第四上行数据流的各个时隙中,获得已承载的上行业务。具体参见图8a所示,OLT2的解复用模块802向上行处理模块804发送该第四上行数据流,上行处理模块804从第四上行数据流中解析出上行业务。上行处理模块804向OLT2的业务处理模块805发送该上行业务,对业务处理模块805的具体说明,请参见图4a对应的OLT1的业务处理模块的说明,具体不做赘述。
步骤319、OLT2终结第四下行数据流的传输。
本实施例所示的OLT1向ONU1发送的第二下行数据流,用于承载OLT1发送给ONU1的下行业务。ONU1向ONU2发送的第一下行数据流,用于承载OLT1发送给ONU2的下行业务。可以理解,环形组网所包括的各个ONU,已通过所接收到的来自OLT1的下行数据流,成功获得到了来自OLT1的下行业务,为此,OLT2在接收到该第四下行数据流的情况下,可终结该第四下行数据流的传输。
例如图8a所示,下行处理模块803接收来自解复用模块802的第四下行数据流。下行处理模块803终结该第四下行数据流的传输。可选的,若OLT1发出的第二下行数据流还承载了发送给OLT2的下行业务,则OLT2需要从第四下行数据流中获得发送给OLT2的下行业务。参见图8b所示,图8b为本申请实施例提供的OLT2的第二种结构示例图。下行处理模块803接收来自解复用模块802的第四下行数据流,并从该第四下行数据流中提取OLT1发送给OLT2的下行业务。OLT2从第四下行数据流中提取下行业务的说明,请参见步骤307所示的ONU1从第二下行数据流提取第一下行业务的过程,具体不做赘述。在下行处理模块803获得到发送给OLT2的下行业务的情况下,下行处理模块803向业务处理模块805发送该下行业务。
采用本实施例所示的方法,环形组网中各ONU在所分配的时隙上承载自身需要发送给OLT2的上行业务,环形组网所包括的各个ONU发送上行业务是基于时分多址(time division multiple access,TDMA),避免了不同的ONU所分配的时隙的冲突,保证了各 ONU所发送的上行业务的时延不会出现恶化等情况。而且本实施例所示的承载上行业务的上行数据流为信号连续的数据流,降低了对各ONU的光模块以及OLT的光模块所处理的光信号的功率以及性能要求,降低了各光模块处理上行数据流的复杂度,提高了光模块处理上行数据流的效率。该环形组网可应用至吉比特无源光网络(gigabit-capable passive optical network,GPON)、10G比特无源光网络(10-gigabit-capable passive optical networks,XG-PON)、10G对称无源光网络(10-gigabit-capable symmetric passive optical network,XGS-PON)、时分波分混合复用无源光网络(time and wavelength division multiplexed PON,TWDM-PON)、以太无源光网络(ethernet passive optical networks,EPON)、10G以太无源光网络(10Gbit/s ethernet passive optical network,10G-EPON)等各种时分复用技术(time-division multiplexing,TDM)的无源光纤网络(passive optical network,PON)。
以ONU1为例,ONU1接收到第二下行数据流的情况下,先复制该第二下行数据流,获得第一下行数据流,因ONU1无需执行从第二下行数据流获得业务的相关操作,有效的降低了ONU1向ONU2发送第一下行数据流的时延,保证了环形组网所包括的各个ONU获得下行业务的及时性。
因本实施例所示的环形组网所包括的两个节点之间,所传输的为复用数据流,例如,ONU1和ONU2之间传输的是一路第一复用数据流,该第一复用数据流已复用第二上行数据流和第二下行数据流,则使得ONU1和ONU2之间仅通过一个波长的光信号,即可传输已复用的第二上行数据流和第二下行数据流,无需通过两个不同的波长分别传输第二上行数据流和第二下行数据流。可以理解,本实施例所示的方法,环形组网所包括的两个节点之间,无需通过波分的方式传输上行数据流和下行数据流,降低了对各节点的光模块所处理的光信号的波长的数目和复杂度,进而降低了各节点对光模块性能的需求。
而且在第一复用数据流的速率等于第一下行数据流速率与第一上行数据流速率之和的情况下,有效的保证了环形组网上行业务和下行业务的及时传输,降低了上行业务或下行业务发生重传的可能。
图3所示的实施例,以OLT1向OLT2发送复用数据流为例,本实施例所示的方法,OLT1能够向OLT2发送复用数据流,OLT2也能够向OLT1发送复用数据流。结合图9a和图9b所示,其中,图9a为本申请实施例提供的OLT1的第三种结构示例图。
OLT1的光模块901将来自复用模块405的第二复用数据流,电光转换为波长为λ1的第二复用数据流。对OLT1所包括的业务处理模块402、下行处理模块403、上行处理模块404以及复用模块405的说明,请参见图4a或图4b所示,具体不做赘述。OLT1将波长为λ1的第二复用数据流传输至ONU1的光模块921。ONU1将经由光模块921所接收到的第二复用数据流进行处理,以获得第一复用数据流,该第一复用数据流的说明,请参见图3对应的步骤309所示,具体不做赘述。ONU1的光模块922向ONU2的光模块931发送波长为λ1的第一复用数据流。ONU2将经由光模块931所接收到的第一复用数据流进行处理,以获得第四复用数据流,该第四复用数据流的说明,请参见图3对应的步骤315所示,具体不做赘述。ONU2的光模块932向OLT2的光模块941发送波长为λ1的第 四复用数据流。
OLT2依次经由OLT2的光模块942、ONU2的光模块932、ONU2的光模块931、ONU1的光模块922、ONU1的光模块921,向OLT1的光模块902发送波长为λ1的第三复用数据流。OLT2向OLT1发送第三复用数据流的过程的说明,请参见OLT1向OLT2发送第一复用数据流的说明。可以理解,该第三复用数据流已复用第三下行数据流和第三上行数据流。其中,第三下行数据流用于承载来自OLT2的下行业务。第三上行数据流用于承载发送至OLT1的上行业务。
OLT1的光模块902对第四复用数据流进行光电转换,以将呈电信号的第四复用数据流发送给解复用模块421。解复用模块421对第四复用数据流进行解复用以获得第三下行数据流和第三上行数据流。OLT1解复用的说明,请参见图3对应的步骤305所示的ONU1解复用的说明,具体不做赘述。本实施例所示的第三下行数据流已承载第二时隙调度消息,该第二时隙调度消息用于指示OLT1向OLT2发送上行业务所占用的时隙,对第二时隙调度消息的说明,请参见图3对应的说明,具体不做赘述。下行处理模块422从第三下行数据流获得到第二时隙调度消息的情况下,下行处理模块422向下行处理模块403发送该第二时隙调度消息,以使上行处理模块404根据该第二时隙调度消息,在OLT2所分配的时隙上,向OLT2发送上行业务。下行处理模块422将从第三下行数据流提取的第二下行业务发送至业务处理模块402。上行处理模块423将从第三上行数据流提取的发送至OLT1的第二上行业务发送至业务处理模块402。
可见,OLT1向OLT2发送的复用数据流所使用的波长(如本示例所示的λ1),与OLT2向OLT1发送的复用数据流所使用的波长(如本示例所示的λ2)不同,从而使得若OLT1和OLT2之间的波长1的数据通道出现故障的情况下,环形组网可使用λ2进行通信,保证了环形组网的正常通信,以实现对环形组网的Type C保护。其中,波长λ1的数据通道出现故障可出现下述至少一项事件:
波长λ1的数据通道内的光模块出现故障(如OLT1、ONU1、ONU2或OLT2的光模块出现故障),或者,波长λ1的数据通道内的光纤出现故障(如连接于OLT1和ONU1之间的光纤、连接于ONU1和ONU2之间的光纤、或连接于ONU2和OLT2之间的光纤出现故障)等。
图3所示的实施例中,OLT1出射的数据流为复用后的数据流为例,图10a所示的实施例中,OLT1出射的数据流为未经过如图3所示的复用过程为例。其中,图10a为本申请实施例提供的数据传输方法的第二种步骤流程图。
步骤1001、OLT1生成第二下行数据流。
本实施例所示的步骤1001的执行过程的说明,请参见图3对应的步骤301所示,具体不做赘述。
步骤1002、OLT1向ONU1发送第二下行数据流。
本实施例所示的OLT1向ONU1发送第二下行数据流的过程,请参见图3对应的步骤304所示的OLT1向ONU1发送第二复用数据流的过程,具体不做赘述。
步骤1003、ONU1生成第二上行数据流。
为使得环形组网所包括的各个ONU,能够向OLT2发送上行业务,则ONU1生成用于承载各个ONU的上行业务的第二上行数据流。本实施例所示的ONU1生成第二上行数据流的过程的说明,请参见图3对应的步骤302所示的OLT1生成第二上行数据流的过程的说明,具体不做赘述。
参见图10b所示,其中,图10b为本申请实施例提供的ONU1的第二种结构示例图。ONU1的光模块1021接收来自OLT1的波长为λ1的第二下行数据流。光模块1201将该第二下行数据流进行光电转换,以向ONU1的下行处理模块1023发送呈电信号的第二下行数据流。ONU1的上行处理模块1024生成该第二上行数据流。该上行处理模块1024可持续生成该第二上行数据流。或者,下行处理模块1023接收到第二下行数据流时,向上行处理模块1024发送生成指令。上行处理模块1024根据该生成指令生成该第二上行数据流。
具体的,环形组网中,与OLT1直接连接的第一个ONU(即ONU1)生成该第一上行数据流。上行处理模块1024可预先存储配置指示消息,该配置指示消息用于指示ONU1为与OLT1直接连接的第一个ONU,则ONU1根据配置指示消息的指示,持续生成该第二上行数据流。还可选的,下行处理模块1023可检测所接收到的数据流的速率,若下行处理模块1023检测到已接收的第二下行数据流的速率小于或等于预设速率M,则下行处理模块1023确定其为与OLT1直接连接的第一个ONU,则下行处理模块1023向上行处理模块1024发送生成指令。因与OLT1间接连接的ONU(例如ONU2)出射的数据流为通过复用加速后的复用数据流,则与OLT1间接连接的ONU检测所接收到的数据流的速率均大于预设速率M。由此,ONU可检测所接收到的数据流的速率,以确认自身是否为与OLT1直接连接的ONU。
步骤1004、ONU1根据第二上行数据流获得第一上行数据流。
步骤1005、ONU1获得第二下行数据流已承载的第一下行业务。
步骤1006、ONU1复制第二下行数据流获得第一下行数据流。
步骤1007、ONU1复用第一上行数据流和第一下行数据流,获得一路第一复用数据流。
本实施例所示的步骤1004至步骤1007的执行过程的说明,请参见图3对应的步骤306至步骤309的执行过程的说明,具体不做赘述。
参见图10b所示,ONU1的复用模块1025接收来自下行处理模块1023的第一下行数据流以及接收来自上行处理模块1024的第一上行数据流。复用模块1025复用第一下行数据流以及第一上行数据流以获得第一复用数据流。
步骤1008、ONU1向ONU2发送第一复用数据流。
步骤1009、ONU2解复用第一复用数据流,获得第一上行数据流和第一下行数据流。
步骤1010、ONU2根据第一上行数据流获得第四上行数据流。
步骤1011、ONU2获得第一下行数据流已承载的第二下行业务。
本实施例所示的步骤1004至步骤1011的执行过程的说明,请参见图3对应的步骤306至步骤313的执行过程的说明,具体不做赘述。
本实施例所示的ONU2作为环形组网中,与OLT2直接连接的ONU,且ONU2为与OLT1连接的最后一个ONU,则ONU2从第一下行数据流中获得到需要发送给ONU2的第二下行业务之后,ONU2可终结第一下行数据流的传输,即本实施例所示的ONU2无需向OLT2发送该第一下行数据流。具体的,ONU2可预先存储配置指示消息,该配置指示消息用于指示ONU2为与OLT2直接连接的ONU。
步骤1012、ONU2向OLT2发送第四上行数据流。
本实施例中,ONU2无需向OLT2发送复用后的数据流,而是直接向OLT2发送第四上行数据流,由上述所示可知,该第四上行数据流已承载ONU1需要发送给OLT2的上行业务以及已承载ONU2需要发送给OLT2的上行业务。
步骤1013、OLT2根据第四上行数据流获得上行业务。
本实施例所示的步骤1013的执行过程的说明,请参见图3对应的步骤318所示,具体不做赘述。
采用本实施例所示的方法,因OLT出射的数据流为无需经过复用的数据流,则无需改动OLT以使该OLT正常出射承载发送给各ONU的下行业务的第二下行数据流即可,降低了实现本实施例所示的方法的环形组网的改动程度。
本实施例所示的方法,实现Type C保护的说明,请参见图3对应的实施例的说明,具体不做赘述。
结合图11所示的已有环形组网的结构说明上述实施例的有益效果。其中,图11为已有方案提供的环形组网的第二种结构示例图。图11所示以环形组网包括ONU1,ONU2,ONU3至ONUN。以分光器1101为例,ONU1与分光器1101的第一端口连接,分光器1101的第二端口与分光器1102连接,分光器1101的第三端口与OLT1连接。对分光器1102,分光器1103以及分光器1104的连接的说明,请参见分光器1101的说明,具体不做赘述。若需要OLT1向各个ONU发送下行业务,则OLT1将下行数据流发送给分光器1101,分光器1101对下行数据流进行分光,获得第一分光数据流和第二分光数据流,第一分光数据流和第二分光数据流所承载的业务一致。第一分光数据流的光功率小于第二分光数据流的光功率。分光器1101向ONU1发送第一分光数据流。分光器1101向分光器1102发送第二分光数据流。分光器1102也对第二分光数据流再次进行分光,分光器1102分光的说明,请参见分光器1101分光的说明,具体不做赘述。可知,已有的环形组网,OLT1为向各ONU(例如ONU1)发送下行业务,需要经由分光器的分光,造成了光功率的损失,例如,ONU2所接收到的下行数据流的光功率,已分出一部分分光给了ONU1,光功率的损失导致各ONU获得下行业务的难度以及准确性。而且图11所示的各分光器为不等比分光器,若环形组网连接了较多数量的分光器,则提高了环形组网的插损。
而本申请实现图3以及图10a所示的实施例的环形组网所包括的任意相邻的两个节点之间直接通过光纤连接,例如,OLT1与ONU1直接通过光纤连接,ONU1与ONU2直接通过光纤连接,无需采用不等比分光器进行连接,降低了环形组网的插损。而且OLT1所发送的下行数据流,各ONU将下行数据流进行光电转换,并对呈电信号的下行数据流进行处理(如上述所示的复制),降低了各ONU所接收到的下行数据流的光功率的损失。
上述实施例中,环形组网为实现上下行业务的传输,则需要对上行数据流和下行数据流进行复用,获得一路复用数据流,例如图3对应的第二复用数据流和第一复用数据流的说明,具体不做赘述。而环形组网生成和传输复用数据流,提高了各节点获得复用数据流的复杂度,需要各节点配置性能较好的用于生成复用数据流的模块,提高了成本。而本实施例所示的各节点在无需复用上行数据流和下行数据流的情况下,即可实现Type C保护。
以下结合图12所示对本实施例所示的ONU1的结构进行说明,其中,图12为本申请实施例提供的ONU1的第三种结构示例图。需明确的是,图12所示的通信节点的结构为ONU1为例,图12所示的ONU的结构可为环形组网所包括的任一ONU。
本实施例所示的ONU1包括光模块1201和光模块1202。其中,光模块1201包括第一发送端口(transport,TX)和第一接收端口(receive,RX)。光模块1202包括第二TX和第二RX。本实施例对ONU1所包括的光模块的数量不做限定,例如,第一TX,第一RX,第二TX以及第二RX均为同一光模块所具有的不同的端口。又如,ONU1可包括两个以上的任意数量的光模块,在第一RX和第一TX为ONU1所包括的一个光模块的收发端口,而第二RX和第二TX为ONU1所包括的另一个光模块的收发端口。
本实施例所示的ONU1还包括开关装置,开关装置包括检测器1210和与该检测器1210连接的开关阵列1230。开关阵列1230包括M个输入端口和M个输出端口,本实施例所示的M为大于或等于2的任意正整数,本实施例以ONU1包括两个光模块为例,则本实施例所示的开关阵列1230包括四个输入端口,即第一输入端口1211,第二输入端口1222,第三输入端口1213以及第四输入端口1224。开关阵列1230包括四个输出端口,即第一输出端口1221,第二输出端口1212,第三输出端口1223以及第四输出端口1214。
需明确的是,本实施例所示的开关阵列1230所包括的输入端口和输出端口的数量,不做限定。本实施例所示的检测器1210用于将开关阵列1230所包括的任一输入端口与开关阵列1230所包括的第一输出端口连接。
本实施例所示的OLT1为主OLT,OLT2为从OLT,ONU1与主OLT1之间实现上行数据流和下行数据流的传输,在OLT1为主OLT的情况下,本实施例所示的检测器1210使得开关阵列1230的第一输入端口1211与第一输出端口1221导通,且第一输出端口1221与业务处理器1240的第一处理端口1241连接。检测器1210还使得开关阵列的第四输出端口1214和第四输入端口1224导通,且第四输入端口1224与业务处理器1240的第二处理端口1242连接。而第一输入端口1211和第四输出端口1214均与光模块1201导通。同样的,检测器1210使得开关阵列1230的第二输出端口1212与第二输入端口1222导通,且第二输入端口1222与业务处理器1240的第三处理端口1243连接。检测器1210 使得开关阵列1230的第三输入端口1213与第三输出端口1223导通,且第三输出端口1223与业务处理器1240的第四处理端口1244连接。
本实施例所示的检测器1210可以是一个或多个芯片,或一个或多个集成电路。例如,检测器1210可以是一个或多个FPGA、ASIC、SoC、CPU、NP、DSP、MCU,PLD或其它集成芯片,或者上述芯片或者业务处理器的任意组合等。对业务处理器1240的说明,请参见对检测器1210形态的说明,具体不做赘述。本实施例所示的检测器1210和业务处理器1240可为分立式的两个器件,或者,检测器1210和业务处理器1240可为同一器件,具体在本实施例中不做限定。
基于图12所示的ONU1的结构,结合图13所示说明ONU1进行上下行业务传输的过程进行说明,其中,图13为本申请实施例提供的数据传输方法的第三种步骤流程图。
本实施例中,OLT1和OLT2均正常发出下行业务数据流,本实施例所示的ONU1从来自OLT1的下行数据流和来自OLT2的下行数据流中,选择一路进行上下行业务的传输。
步骤1301、ONU1选定第一RX和第一TX。
在ONU1连接两个OLT,即ONU1通过第一RX和第一TX连接OLT1,ONU1通过第二RX和第二TX连接OLT2。ONU1选择一个OLT作为进行上下业务传输的主OLT。若ONU1确定OLT1作为主OLT,则ONU1选定与主OLT连接的第一RX和第一TX。若ONU1确定OLT2作为主OLT,则ONU1选定与主OLT连接的第二RX和第二TX。本实施例以ONU1选定OLT1作为主OLT为例,在其他示例中,ONU1也可选定OLT2作为主OLT,ONU1选定OLT2作为主OLT的说明,请参见本实施例所示的ONU1选定OLT1作为主OLT的说明,具体不做赘述。本实施例以ONU1包括两个RX为例,在其他示例中,ONU1可包括两个以上的任意数量的RX。以下对ONU1选定第一RX的几种可选方式进行说明:
可选方式1
业务处理器1240通过第一RX和第二RX均尝试接收下行数据流,在第一RX接收到来自OLT1的下行业务数据流,而第二RX未接收到来自OLT2的下行业务数据流的情况下,业务处理器1240确定OLT1作为主OLT。
可选方式2
业务处理器1240通过第一RX和第二RX均尝试接收下行数据流,在第一RX接收到来自OLT1的下行业务数据流,且第二RX接收到来自OLT2的下行业务数据流的情况下,业务处理器判断第一RX所接收到的下行数据流的信号质量是否优于第二RX所接收到的下行数据流的信号质量。在业务处理器确定第一RX接收到的下行数据流的信号质量优于第二RX接收到的下行数据流的信号质量的情况下,业务处理器确定OLT1作为主OLT。
第一RX接收到的信号质量优于第二RX接收到的信号质量是指如下所示的至少一项:
第一RX接收到的下行业务数据流的误码率低于第二RX接收到的下行业务数据流的误码率、第一RX接收到的下行业务数据流的光功率大于第二RX接收到的下行业务数据流的光功率、第一RX接收到的下行业务数据流的时延低于第二RX接收到的下行业务数 据流的时延或第一RX接收到的下行业务数据流的串扰低于第二RX接收到的下行业务数据流的串扰等。
步骤1302、ONU1通过第一RX接收第一下行业务数据流。
本实施例中,在业务处理器确定OLT1作为主OLT的情况下,业务处理器1240通过检测器1210控制开关阵列1230所包括的各个输入端口和各个输出端口处于第一导通模式,对第一导通模式的说明,请参见图12所示,具体不做赘述。ONU1的第一RX接收来自OLT1的第一下行业务数据流。光模块1201将该第一下行业务数据流进行光电转换以获得呈电信号的第一下行业务数据流。该第一下行业务数据流依次经由第一输入端口1211以及第一输出端口1221传输至业务处理器1240的第一处理端口1241。业务处理器1240用于对来自第一处理端口1241的第一下行业务数据流获得来自OLT1的第一下行业务。
具体的,业务处理器1240从第一下行业务数据流的下行时隙中,获得发送给ONU1的第一下行业务。ONU1在第一下行业务数据流所包括的多个下行数据帧中,获得用于承载发送给ONU1的第一下行业务的下行数据帧。其中,用于承载该第一下行业务的下行数据帧的目的地址是ONU1的地址或标识。ONU1从该下行数据帧中获得该第一下行业务。对下行数据帧的具体说明,请参见图5所示,具体不做赘述。
步骤1303、ONU1通过第二TX发送第二下行业务数据流。
可选的,在ONU2也以OLT1为主OLT的情况下,则ONU1根据第一下行业务数据流获得待发送给ONU2的第二下行业务数据流。以下对ONU1获得第二下行业务数据流的几种可选方式进行说明:
可选方式1
ONU1从第一下行业务数据流的下行时隙中,提取出发送给ONU1的第一下行业务的情况下,ONU1在该下行时隙中承载填充信息以获得该第二下行业务数据流。
可选方式2
ONU1从第一下行业务数据流中提取第二下行业务。该第二下行业务为第一下行业务数据流已承载的下行业务。ONU1判断出该第二下行业务也需要发送给ONU2。例如,若ONU1判断出该第二下行业务为OLT1广播发送的业务。又如,该第二下行业务包括的标识为ONU2的标识等。ONU1重新在第一下行业务数据流上承载第二下行业务以获得该第二下行业务数据流。
可选方式3
ONU1接收到第一下行业务数据流后,ONU1复制该第一下行业务数据流以获得第二下行业务数据流。ONU1从该第一下行业务数据流中提取发送给ONU1的第一下行业务。ONU1直接向ONU2发送该第二下行业务数据流,降低了ONU1向ONU2发送第二下行业务数据流的时延。
参见图12所示,业务处理模块1240的第三处理端口1243输出该第二下行业务数据 流,该第二下行业务数据流依次经由第二输入端口1222以及第二输出端口1212传输至光模块1202。光模块1202对该第二下行业务数据流进行电光转换以获得呈电信号的第二下行业务数据流。光模块1202通过第二TX向ONU2发送该第二下行业务数据流。
步骤1304、ONU1通过第二RX接收第二上行业务数据流。
可选的,在ONU2也以OLT1为主OLT的情况下,ONU2获得第二下行业务数据流已承载来自OLT1的时隙调度消息。该时隙调度消息用于指示OLT1为ONU2分配的第二上行时隙。ONU2在第二上行数据流的第二上行时隙上,承载ONU2需要发送给OLT1的第二上行业务。对时隙调度消息的说明,请参见图3对应的实施例的说明,具体不做赘述。
步骤1305、ONU1通过第一TX发送第一上行业务数据流。
ONU1获得第一下行业务数据流已承载来自OLT1的时隙调度消息。该时隙调度消息用于指示OLT1为ONU1分配的第一上行时隙。ONU1在第二上行数据流的第一上行时隙上,承载ONU1需要发送给OLT1的第一上行业务以获得第一上行业务数据流。
结合图12所示,第二RX所接收到的第二上行业务数据流发送至光模块1202。该光模块1202对该第二上行业务数据流进行光电转换以获得呈电信号的第二上行业务数据流。该第二上行业务数据流依次经由第三输入端口1213以及第三输出端口1223,传输至第四处理端口1244。业务处理器1240对来自第四处理端口1244的第二上行业务数据流进行处理以获得该第一上行业务数据流。业务处理器1240依次经由第二处理端口1242、第四输入端口1224以及第四输出端口1214传输至光模块1201。光模块1204对该第一上行业务数据流进行电光转换以获得呈电信号的第一上行业务数据流。ONU1通过第一TX向OLT1发送该第一上行业务数据流。
结合图14所示说明ONU1进行上下行业务传输的过程进行说明,其中,图14为本申请实施例提供的数据传输方法的第四种步骤流程图。本实施例中,OLT1能够正常发出下行业务数据流,而OLT2和ONU1之间出现了故障事件,导致OLT2和ONU1之间无法正常进行上下行业务传输。
步骤1401、ONU1检测到第二RX和OLT2之间出现故障事件。
例如图15所示,其中,图15为本申请实施例提供的ONU1的第四种结构示例图。ONU1的检测器1410可与光模块1432连接,检测器1410检测光模块1432的第二RX是否能够正常接收到光信号。若检测器1410超过预设时间段内,持续无法检测到第二RX成功接收到光信号的事件或持续检测到的光信号的光功率小于预设阈值,则确定OLT2和ONU1的第二RX之间出现故障事件。又如,检测器1410连接于光模块1432和第三输入端口1413之间的线路。检测器1410基于该线路获得光模块1432所输出的电信号,检测器1410检测电信号是否包括连续的有效帧头,若否,则确定OLT2和ONU1的第二RX之间出现故障事件。又如,检测器1410检测到该电信号的误码率超过预设阈值。本实施例对检测器1410如何确定OLT2和ONU1的第二RX之间出现故障事件不做限定,只要在OLT2和ONU1的第二RX之间存在故障事件的情况下,来自OLT2的下行数据流无法成功传输至ONU1。可以理解,ONU1在确定第二RX和OLT2之间出现故障事件的情况下,ONU1确定OLT1为 主OLT。
步骤1402、ONU1的检测器将开关阵列由第二导通模式切换至第一导通模式。
开关阵列1430处于第一导通模式的说明,请参见图12所示,具体不做赘述。在开关阵列1430处于第二导通模式的情况下,则开关阵列1430的第一输入端口1411与第三输出端口1423导通,且第三输出端口1423与第四处理端口1444连接。开关阵列1430的第四输出端口1414与第二输入端口1422导通,且第二输入端口1422与第三处理端口1443连接。开关阵列1430的第二输出端口1412与第四输入端口1424连接,且第四输入端口1424与第二处理端口1442连接。开关阵列1430的第二输入端口1413与第一输出端口1421连接,且第一输出端口1421与第一处理端口1441连接。在开关阵列1430处于第二导通模式的情况下,来自OLT2的下行数据流能够经由光模块1432的第二RX、第三输入端口1413以及第一输出端口1421,传输至业务处理器1440,以使该业务处理器1440对来自OLT2的下行业务进行处理。
在检测器1410检测到OLT2和第二RX之间出现故障事件,则检测器1410将开关阵列的导通模式由图15所示切换至图12所示,以使OLT1为主OLT,而OLT2为从OLT。切换后的ONU1能够接收来自OLT1的第一下行业务数据流。
本示例以基于OLT2和ONU1之间出现故障事件以被动倒换为例,在其他示例中,也可由OLT1和OLT2协商进行主动倒换,以使OLT1切换为主OLT,OLT2切换为从OLT。
步骤1403、ONU1选定第一RX和第一TX。
在开关阵列1430处于第一导通模式的情况下,则ONU1确定第一RX为接收主OLT(即OLT1)的下行数据流的接收端口。
步骤1404、ONU1通过第一RX接收第一下行业务数据流。
本实施例所示的步骤1404的执行过程的说明,请参见图13对应的步骤1302所示,具体不做赘述。
步骤1405、ONU1通过第二TX发送第二下行业务数据流。
本实施例中,在ONU1检测到OLT2和ONU1之间出现故障事件的情况下,ONU1可向ONU2发送第二下行业务数据流,以保证在ONU1和ONU2之间未出现故障事件的情况下,ONU2能够成功与OLT1进行上下行业务传输。本实施例所示的步骤1405的执行过程,请参见图13对应的步骤1303所示,具体不做赘述。
步骤1406、ONU1通过第二RX接收第二上行业务数据流。
步骤1407、ONU1通过第一TX发送第一上行业务数据流。
本实施例所示的步骤1406至步骤1407的执行过程的说明,请参见图13对应的步骤1304至步骤1305所示,具体不做赘述。
采用本实施例所示的方法,ONU的开关阵列处于不同导通模式的情况下,能够选定不同的OLT作为主OLT进行上下行业务的传输,有效的保证了ONU与OLT之间上下行业务的成功传输。 而且本实施例所示无需通过波分的方式或如图3所示复用的方式,降低了ONU执行上下行业务传输过程中的复杂度和成本。
本申请实施例还提供了一种通信设备,所述通信设备的结构请参见图16所示,其中,图16为本申请实施例提供的通信设备的结构示例图。本实施例所示的通信设备1600包括收发器1601和业务处理器1602。其中收发器1601和业务处理器1602连接。本实施例所示的通信设备可为OLT,该OLT包括的收发器1601用于执行图3、图10a、图13以及图14所示的实施例中,由OLT执行的与收发相关的流程。该OLT包括的业务处理器1602用于执行图3、图10a、图13以及图14所示的实施例中,由OLT执行的与处理相关的流程。
本实施例所示的通信设备可为环形组网所包括的任一ONU。该ONU包括的收发器1601用于执行图3、图10a、图13以及图14所示的实施例中,由ONU执行的与收发相关的流程。该ONU包括的业务处理器1602用于执行图3、图10a、图13以及图14所示的实施例中,由ONU执行的与处理相关的流程。
具体的,本实施例所示的ONU具体可参见图12或图15所示的ONU1。更具体的,该通信设备1600的收发器1601可包括图12或图15所示的光模块。需明确的是,本实施例以收发器1601包括两个光模块为例,在其他示例中,收发器1601也可仅包括一个光模块,或两个以上的光模块。在通信设备1600包括两个以上的光模块的情况下,能够实现复杂结构的组网,本实施例对具体组网类型不做限定。例如图17所示,包括三个光模块的通信设备能够组成双环形组网,其中,图17为本申请实施例所提供的双环形组网结构示例图。
该双环形组网1700包括OLT1以及与OLT1连接的ONU1。其中,ONU1的业务处理器1702分别与光模块1701,光模块1703以及光模块1704连接。光模块1701与OLT1连接,光模块1703与ONU2连接,光模块1701与ONU3连接,对ONU1所包括的每个光模块以及业务处理器的说明,请参见图12或图15对应的光模块的说明,具体不做赘述。该双环形组网1700还包括与OLT2连接的ONU4。该ONU4包括业务处理器1714,业务处理器1714分别与光模块1711,光模块1712以及光模块1713连接。光模块1711与ONU2连接。光模块1712与ONU3连接。光模块1713与OLT2连接,对ONU4所包括的每个光模块以及业务处理器的说明,请参见图12或图15对应的光模块的说明,具体不做赘述。需明确的是,本实施例以通信设备包括三个光模块以组建双环形组网为例,本实施例对组网的具体类型不做限定。可以理解,本实施例所示能够实现任意形状的灵活组网,降低了组网后续增设通信节点的难度,提高了组网后续的可扩展性。
本实施例所示的通信设备还可包括如图12或图15所示的检测器以及开关阵列,具体说明,请参见图12或图15对应的说明,具体不做赘述。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (28)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    通信节点获得第一下行数据流,所述第一下行数据流用于承载来自第一中心局设备的第一下行业务;
    所述通信节点获得第一上行数据流,所述第一上行数据流用于承载发送至第二中心局设备的第一上行业务;
    所述通信节点复用所述第一上行数据流和所述第一下行数据流,获得一路第一复用数据流;
    所述通信节点发送所述第一复用数据流。
  2. 根据权利要求1所述的方法,其特征在于,所述第一下行数据流为连续的数据流,所述第一下行数据流包括所述第一下行业务和/或填充信息,所述第一上行数据流为连续的数据流,所述第一上行数据流包括所述第一上行业务和/或填充信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一复用数据流的速率等于所述第一下行数据流速率与所述第一上行数据流速率之和。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述第一上行数据流速率等于所述第一下行数据流速率,所述第一复用数据流的速率等于所述第一上行数据流速率的二倍,且所述第一复用数据流的速率等于所述第一下行数据流速率的二倍。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述通信节点复用所述第一上行数据流和所述第一下行数据流,获得一路第一复用数据流包括:
    所述通信节点通过比特交织的方式,将所述第一上行数据流和所述第一下行数据流复用成一路所述第一复用数据流,其中,所述第一复用数据流包括至少一个比特分组,每个所述比特分组包括所述第一上行数据流中的至少部分比特以及所述第一下行数据流中的至少部分比特。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述通信节点获得第一下行数据流包括:
    所述通信节点接收第二下行数据流;
    所述通信节点获得所述第二下行数据流已承载的所述第一下行业务;
    所述通信节点复制所述第二下行数据流,获得所述第一下行数据流。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述通信节点获得第一上行数据流包括:
    所述通信节点获得第二上行数据流;
    所述通信节点根据时隙调度消息在所述第二上行数据流的目标时隙上承载所述第一上行业务,获得所述第一上行数据流,所述第一上行业务为所述通信节点发送至所述第二中心局设备的上行业务,所述时隙调度消息用于指示所述目标时隙。
  8. 根据权利要求7所述的方法,其特征在于,所述通信节点获得第二上行数据流包括:
    所述通信节点接收第二复用数据流,所述第二复用数据流为已复用所述第二上行数据流和第二下行数据流的一路数据流,所述第二下行数据流用于获得所述第一下行数据流;
    所述通信节点解复用所述第二复用数据流,获得所述第二上行数据流和所述第二下行数 据流。
  9. 根据权利要求7所述的方法,其特征在于,所述通信节点获得第二上行数据流包括:
    所述通信节点生成所述第二上行数据流。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述方法还包括:
    所述通信节点获得第三下行数据流,所述第三下行数据流用于承载来自所述第二中心局设备的第二下行业务;
    所述通信节点获得第三上行数据流,所述第三上行数据流用于承载发送至所述第一中心局设备的第二上行业务;
    所述通信节点复用所述第三上行数据流和所述第三下行数据流,获得一路第三复用数据流;
    所述通信节点发送所述第三复用数据流。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述通信节点发送所述第一复用数据流包括:
    所述通信节点向所述第二中心局设备或下游通信节点,发送所述第一复用数据流,所述下游通信节点连接于所述通信节点和所述第二中心局设备之间。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,所述方法应用于光通信系统,所述光通信系统包括第一中心局设备和第二中心局设备,所述光通信系统还包括连接在所述第一中心局设备和所述第二中心局设备之间的至少一个通信节点,所述第一通信节点为所述至少一个通信节点中的一个。
  13. 一种数据传输方法,其特征在于,所述方法包括:
    中心局设备生成上行数据流,所述上行数据流用于承载发送至另一中心局设备的上行业务;
    所述中心局设备生成下行数据流,所述下行数据流用于承载来自所述中心局设备的下行业务;
    所述中心局设备复用所述上行数据流和所述下行数据流,获得一路复用数据流;
    所述中心局设备向通信节点发送所述复用数据流。
  14. 根据权利要求13所述的方法,其特征在于,所述上行数据流为连续的数据流,所述上行数据流包括所述上行业务和/或填充信息,所述下行数据流为连续的数据流,所述下行数据流包括所述下行业务和/或填充信息。
  15. 根据权利要求13或14所述的方法,其特征在于,所述复用数据流的速率等于所述下行数据流速率与所述上行数据流速率之和。
  16. 根据权利要求13至15任一项所述的方法,其特征在于,所述上行数据流速率等于所述下行数据流速率,所述复用数据流的速率等于所述上行数据流速率的二倍,且所述复用数据流的速率等于所述下行数据流速率的二倍。
  17. 根据权利要求13至16任一项所述的方法,其特征在于,所述中心局设备复用所述上行数据流和所述下行数据流,获得一路复用数据流包括:
    所述中心局设备通过比特交织的方式,将所述上行数据流和所述下行数据流复用成一路所述复用数据流,其中,所述复用数据流包括至少一个比特分组,每个所述比特分组包括所述上行数据流中的至少部分比特以及所述下行数据流中的至少部分比特。
  18. 一种数据传输方法,其特征在于,所述方法应用于通信节点,所述通信节点包括多个接收端口RX和多个发送端口TX,所述方法包括:
    所述通信节点选定第一RX和第一TX,所述第一RX为所述多个RX中的一个,所述第一TX为所述多个TX中的一个,且所述第一RX和所述第一TX与第一中心局设备连接;
    所述通信节点通过所述第一RX接收来自所述第一中心局设备的下行业务数据流,所述下行业务数据流用于承载来自所述第一中心局设备的下行业务;
    所述通信节点通过所述第一TX向所述第一中心局设备发送上行业务数据流,所述上行业务数据流用于承载所述通信节点发送至所述第一中心局设备的上行业务。
  19. 根据权利要求18所述的方法,其特征在于,所述多个RX还包括第二RX,所述多个TX还包括第二TX,所述第二RX和所述第二TX与第二中心局设备连接,所述通信节点选定第一RX和第一TX包括:
    所述通信节点在所述第一RX和所述第二RX中,选定所述第一RX。
  20. 根据权利要求19所述的方法,其特征在于,所述通信节点在所述第一RX和所述第二RX中,选定所述第一RX包括:
    所述通信节点检测到经由所述第一RX所接收到的信号质量优于经由所述第二RX所接收到的信号质量。
  21. 根据权利要求19所述的方法,其特征在于,所述通信节点在所述第一RX和所述第二RX中,选定所述第一RX包括:
    所述通信节点检测到所述第二RX和所述第二中心局设备之间出现故障事件。
  22. 根据权利要求18至21任一项所述的方法,其特征在于,所述通信节点还包括开关阵列,所述开关阵列与所述第一RX以及所述第一TX连接,所述开光阵列还与业务处理器连接,所述通信节点通过所述第一RX接收来自所述第一中心局设备的下行业务数据流之前,所述方法还包括:
    所述开关阵列将所述第一RX切换为与所述业务处理器连接,且用于接收所述下行业务数据流的接收端口,所述业务处理器用于处理所述下行业务数据流;
    所述通信节点通过所述第一TX向所述第一中心局设备发送上行业务数据流之前,所述方法还包括:
    所述开关阵列将所述第一TX切换为与所述业务处理器连接,且用于发送所述上行业务数据流的发送端口,所述业务处理器用于获得所述上行业务数据流。
  23. 一种通信节点,其特征在于,所述通信节点包括收发器以及业务处理器,所述收发器与所述业务处理器连接;
    所述业务处理器用于获得第一下行数据流,所述第一下行数据流用于承载来自第一中心局设备的第一下行业务,还用于获得第一上行数据流,所述第一上行数据流用于承载发送至第二中心局设备的第一上行业务,还用于复用所述第一上行数据流和所述第一下行数据流,获得一路第一复用数据流;
    所述收发器用于发送所述第一复用数据流。
  24. 一种中心局设备,其特征在于,所述中心局设备包括收发器以及业务处理器,所述收发器与所述业务处理器连接;
    所述业务处理器用于生成第二上行数据流,所述第二上行数据流用于承载发送至另一中心局设备的第一上行业务,还用于生成第二下行数据流,所述第二下行数据流用于承载来自所述中心局设备的第一下行业务,还用于复用所述第二上行数据流和所述第二下行数据流,获得一路第二复用数据流;
    所述收发器用于发送所述第二复用数据流。
  25. 一种通信节点,其特征在于,所述通信节点包括多个接收端口RX、多个发送端口TX以及业务处理器,所述多个RX中的每个RX与所述业务处理器连接,所述多个TX中每个TX与所述业务处理器连接:
    所述业务处理器用于选定第一RX和第一TX,所述第一RX为所述多个RX中的一个,所述第一TX为所述多个TX中的一个,且所述第一RX和所述第一TX与第一中心局设备连接;
    所述业务处理器用于通过所述第一RX接收来自所述第一中心局设备的下行业务数据流,所述下行业务数据流用于承载来自所述第一中心局设备的下行业务;
    所述业务处理器用于通过所述第一TX向所述第一中心局设备发送上行业务数据流,所述上行业务数据流用于承载所述通信节点发送至所述第一中心局设备的上行业务。
  26. 一种光通信系统,其特征在于,所述光通信系统包括依次连接的第一中心局设备,通信节点以及第二中心局设备;
    所述第一中心局设备用于向所述通信节点发送第二复用数据流,所述第二复用数据流为已复用第二上行数据流和第二下行数据流的一路数据流;
    所述通信节点用于解复用所述第二复用数据流,获得所述第二上行数据流和所述第二下行数据流;
    所述通信节点用于获得所述第二下行数据流已承载的第一下行业务,所述第一下行业务为来自所述第一中心局设备的下行业务;
    所述通信节点用于复制所述第二下行数据流,获得第一下行数据流;
    所述通信节点用于根据时隙调度消息在所述第二上行数据流的目标时隙上承载第一上行业务,获得第一上行数据流,所述第一上行业务为所述通信节点发送至所述第二中心局设备的上行业务,所述时隙调度消息用于指示所述目标时隙;
    所述通信节点用于复用所述第一上行数据流和所述第一下行数据流,获得一路第一复用数据流;
    所述通信节点用于发送所述第一复用数据流。
  27. 一种光通信系统,其特征在于,所述光通信系统包括依次连接的第一中心局设备,通信节点以及第二中心局设备;
    所述第一中心局设备用于向所述通信节点发送第二下行数据流;
    所述通信节点用于获得所述第二下行数据流已承载的第一下行业务,所述第一下行业务为来自所述第一中心局设备的下行业务;
    所述通信节点用于复制所述第二下行数据流,获得第一下行数据流;
    所述通信节点用于生成第二上行数据流;
    所述通信节点用于根据时隙调度消息在所述第二上行数据流的目标时隙上承载第一上行业务,获得第一上行数据流,所述第一上行业务为所述通信节点发送至所述第二中心局设备的上行业务,所述时隙调度消息用于指示所述目标时隙;
    所述通信节点用于复用所述第一上行数据流和所述第一下行数据流,获得一路第一复用数据流;
    所述通信节点用于发送所述第一复用数据流。
  28. 一种光通信系统,其特征在于,所述光通信系统包括依次连接的中心局设备以及通信节点,所述通信节点包括多个接收端口RX和多个发送端口TX:
    所述通信节点用于选定第一RX和第一TX,所述第一RX为所述多个RX中的一个,所述第一TX为所述多个TX中的一个,且所述第一RX和所述第一TX与所述中心局设备连接;
    所述通信节点用于通过所述第一RX接收来自所述中心局设备的下行业务数据流,所述下行业务数据流用于承载来自所述中心局设备的下行业务;
    所述通信节点用于通过所述第一TX向所述中心局设备发送上行业务数据流,所述上行业务数据流用于承载所述通信节点发送至所述中心局设备的上行业务。
PCT/CN2023/102514 2022-08-31 2023-06-26 一种数据传输方法,相关设备以及光通信系统 WO2024045812A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211058806.7 2022-08-31
CN202211058806.7A CN117676393A (zh) 2022-08-31 2022-08-31 一种数据传输方法,相关设备以及光通信系统

Publications (1)

Publication Number Publication Date
WO2024045812A1 true WO2024045812A1 (zh) 2024-03-07

Family

ID=90075808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102514 WO2024045812A1 (zh) 2022-08-31 2023-06-26 一种数据传输方法,相关设备以及光通信系统

Country Status (2)

Country Link
CN (1) CN117676393A (zh)
WO (1) WO2024045812A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2593891A1 (en) * 2006-07-17 2008-01-17 University Of Ottawa Wavelength reconfigurable optical network
CN101212255A (zh) * 2006-12-29 2008-07-02 华为技术有限公司 一种光接入网络带宽动态调整及故障保护的方法和装置
US20120230689A1 (en) * 2009-09-29 2012-09-13 Luca Baldini Passive Optical Network Apparatus and Methods
CN113169799A (zh) * 2018-09-24 2021-07-23 丹麦科技大学 具有增强灵活性的光线路终端和光纤接入系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2593891A1 (en) * 2006-07-17 2008-01-17 University Of Ottawa Wavelength reconfigurable optical network
CN101212255A (zh) * 2006-12-29 2008-07-02 华为技术有限公司 一种光接入网络带宽动态调整及故障保护的方法和装置
US20120230689A1 (en) * 2009-09-29 2012-09-13 Luca Baldini Passive Optical Network Apparatus and Methods
CN113169799A (zh) * 2018-09-24 2021-07-23 丹麦科技大学 具有增强灵活性的光线路终端和光纤接入系统

Also Published As

Publication number Publication date
CN117676393A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US10484098B2 (en) Channel bonding in passive optical networks
US10735836B2 (en) Passive optical network communications method, apparatus and system
ES2427357T3 (es) Un método, sistema y dispositivo para transmisión de datos
US8126335B2 (en) Methods and apparatus for next generation access passive optical networks
US7949255B2 (en) System, device and method for transporting signals through passive optical network
US9178713B1 (en) Optical line termination in a passive optical network
CN105075177A (zh) 无源光网络中下行突发传输
US9602311B2 (en) Dual-mode network
CN111049865B (zh) 一种建链方法、装置和系统
JP2017516406A (ja) 波長切り換えのための方法、装置、及びシステム
US20100183316A1 (en) Methods and Systems for Dynamic Equalization Delay Passive Optical Networks
JP2010028696A (ja) 光アクセスシステム、光通信路切替装置及び光回線装置
US20240098392A1 (en) Intelligent fiber to the room (fttr) gateway
JP2007074256A (ja) 複数llid処理装置
CN112671462B (zh) 一种业务数据的传输方法、相关设备以及数字处理芯片
CN112640482B (zh) 无源光网络(pon)中的多速率交织下行帧
CN111316575B (zh) Pon系统中的数据发送和接收方法、网络设备及系统
WO2024045812A1 (zh) 一种数据传输方法,相关设备以及光通信系统
WO2012071828A1 (zh) 一种全保护模式下无源光网络中的传输数据的方法及系统
WO2024045813A1 (zh) 一种数据传输方法,相关设备以及系统
JP2007281979A (ja) Ponシステム
WO2017049429A1 (zh) 传输信息的方法、装置和无源光网络系统
WO2024045814A1 (zh) 一种数据传输方法,相关设备以及光通信系统
WO2024045815A1 (zh) 一种注册方法,相关设备以及光通信系统
RU2809182C1 (ru) Способ передачи служебных данных, соответствующее устройство и микросхема цифровой обработки

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858850

Country of ref document: EP

Kind code of ref document: A1