WO2017221947A1 - 撮像用の光学系および撮像装置 - Google Patents

撮像用の光学系および撮像装置 Download PDF

Info

Publication number
WO2017221947A1
WO2017221947A1 PCT/JP2017/022755 JP2017022755W WO2017221947A1 WO 2017221947 A1 WO2017221947 A1 WO 2017221947A1 JP 2017022755 W JP2017022755 W JP 2017022755W WO 2017221947 A1 WO2017221947 A1 WO 2017221947A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
negative
optical system
positive
refractive power
Prior art date
Application number
PCT/JP2017/022755
Other languages
English (en)
French (fr)
Inventor
章 澤本
Original Assignee
株式会社nittoh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社nittoh filed Critical 株式会社nittoh
Priority to EP17815415.9A priority Critical patent/EP3474057A4/en
Priority to JP2018524120A priority patent/JP6526335B2/ja
Publication of WO2017221947A1 publication Critical patent/WO2017221947A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length

Definitions

  • the present invention relates to an imaging optical system suitable for an imaging apparatus such as a camera.
  • Japanese Patent Publication No. 2015-194714 provides a single-focus imaging optical system, a lens barrel, an interchangeable lens device, and a camera system that have a small F value, are bright, are small, and have various aberrations suppressed. It is described.
  • the optical system includes, in order from the object side to the image side, a front group including a plurality of lens elements, an aperture stop, and a rear group including a plurality of lens elements.
  • the rear group includes a focusing lens group including at least one lens element that moves along the optical axis during focusing from an infinitely focused state to a close object focused state, and negative power on the most image side.
  • An optical system having a large image circle especially an optical system having a large angle of view, tends to have a large lens size and a relatively short back focus. Therefore, an object is to realize an optical system having a large image circle with a simple configuration, a small lens diameter, and a compact size.
  • One aspect of the present invention includes a first lens group having a positive refractive power as a whole disposed on the object side with an aperture stop interposed therebetween, and a negative refractive power as a whole disposed on the image plane side.
  • An imaging optical system including the second lens group.
  • the first lens group includes a first negative lens that is concave on the object side that is disposed closest to the object side, and a first positive refractive power that is convex on the object side that is disposed adjacent to the first negative lens.
  • the radius of curvature R1 of the object-side surface of the first negative lens and the focal length f of the optical system satisfy the following conditions. -1.5 ⁇ R1 / f ⁇ -0.6 (1)
  • This optical system as a whole is not a retrofocus type with a negative-positive power arrangement used for wide-angle lenses, but generally has a positive-negative power arrangement with a narrow angle of view and a compact configuration.
  • the telephoto type (telephoto type, reverse retrofocus type) is adopted, and the angle of view is widened by using a negative lens that is concave on the object side as the preceding most object side lens.
  • the long focal length which is an advantage of the telephoto type, a relatively long back focus can be realized.
  • it is desirable that the radius of curvature R1 of the object-side surface of the first negative lens is small.
  • the aberration correction is difficult because the angle of the incident light changes greatly.
  • the lower limit of the condition (1) If the lower limit of the condition (1) is not reached, the absolute value of the radius of curvature R1 increases, the lens diameter increases, and the power decreases, making it difficult to correct field curvature and spherical aberration. If the upper limit of the condition (1) is exceeded, the absolute value of the radius of curvature R1 becomes too small, and it becomes difficult to correct curvature of field, spherical aberration, and distortion.
  • the lower limit of condition (1) may be -1.3, -1.25, the upper limit may be -0.8, or -1.0.
  • the first lens group includes a first negative lens, a first meniscus lens, and a first lens composed of two positive and negative lenses having a positive refractive power as a whole and facing the aperture stop. And a combination thereof.
  • the second lens group has a positive refractive power as a whole arranged facing the aperture stop, and is a second lens composed of two positive and negative lenses arranged so as to be symmetric with the first combination. Combinations may be included.
  • the second lens group may include a meniscus lens having a negative refractive power convex toward the image surface side and a meniscus lens having a negative refractive power convex toward the object side, which are arranged in order from the image surface side.
  • the second lens group of this optical system includes a second combination of positive and negative lenses or two negative and positive lenses, a lens having a positive refractive power convex toward the image plane side, and a negative refractive power convex toward the object side. 5 meniscus lenses and a meniscus lens having a negative refractive power convex toward the image surface side, and this optical system may have a total of 9 lenses including the first lens group. Good.
  • the focusing mechanism can be simplified.
  • the total length LA and back focus BF of the optical system may satisfy the following condition (2). It is possible to provide a compact imaging optical system in which the total lens length is small with respect to the back focus length. 1.5 ⁇ LA / BF ⁇ 2.5 (2)
  • the lower limit of condition (2) may be 1.6, and the upper limit may be 2.3.
  • the effective diameter (diameter) De1 of the object side surface of the first negative lens closest to the object side and the back focus BF satisfy the following condition (3), and the lens diameter is smaller than the back focus length.
  • the optical system can be provided. 0.6 ⁇ De1 / BF ⁇ 1.5 (3)
  • the lower limit of condition (3) may be 0.8, and the upper limit may be 1.3 or 1.1.
  • Another aspect of the present invention is an image pickup apparatus having the above optical system and an image pickup element disposed on the image plane side of the optical system.
  • the optical system may be an interchangeable lens
  • the imaging device includes a digital camera, a video camera, a TV camera, and an action camera. Since a large-diameter and compact optical system can be provided, the imaging device can also be miniaturized.
  • summary of the imaging device containing the optical system for imaging The figure which shows the lens data of the optical system shown in FIG. The figure which shows the focal distance of the optical system shown in FIG. The figure which shows the various aberrations of the optical system shown in FIG. The figure which shows the lateral aberration of the optical system shown in FIG. The figure which shows the outline
  • the figure which shows the lens data of the optical system shown in FIG. The figure which shows the focal distance of the optical system shown in FIG.
  • FIG. 1 shows an example of an imaging device (camera, camera device) provided with an imaging optical system.
  • the camera 1 includes an optical system (imaging optical system, imaging optical system, lens system) 10 and an imaging device (imaging device) disposed on the image plane side (image side, imaging side, imaging side) 12 of the optical system 10. ) 5.
  • the optical system 10 is disposed on the object side 11 with the aperture stop (stop) St interposed therebetween, and has a first lens group G1 having a positive refractive power as a whole and a negative lens as a whole disposed on the image plane side 12. It is composed of a second lens group G2 having a refractive power.
  • the first lens group G1 has a four-lens configuration and is arranged in order from the object side 11 along the optical axis 15, and is a biconcave negative lens (first negative lens) L1, and is convex to the object side 11.
  • a positive power meniscus lens (first meniscus lens) L2, a biconvex positive lens L3, and a negative meniscus lens L4 convex on the image plane side 12 are included.
  • a combination (first combination lens) C1 of the positive lens L3 and the negative meniscus lens L4 is a cemented lens, and is disposed facing the aperture stop St.
  • the positive power meniscus lens L2 is disposed adjacent to the negative lens L1, and a part of the object side 11 of the meniscus lens L2 enters a concave portion on the image plane side of the biconcave negative lens L1. ing.
  • the first lens group G1 has a four-lens configuration having a negative-positive-positive-negative-symmetrical power arrangement.
  • the second lens group G2 has a five-lens configuration, and is arranged in order from the object side 11 along the optical axis 15, and is a biconcave negative lens L5, a biconvex positive lens L6, and a biconvex positive lens L7. And a negative power meniscus lens L8 convex toward the object side 11 and a negative power meniscus lens L9 convex toward the image plane side 12.
  • a combination (second combination lens) C2 of the negative lens L5 and the positive lens L6 closest to the object side 11 is a cemented lens, and is disposed facing the aperture stop St.
  • the second lens group G2 has a five-lens configuration with a relatively symmetrical power arrangement of negative-positive-positive-negative-negative.
  • the entire optical system that is, the first lens group G1, the aperture stop St, and the second lens group G2 arranged in order from the object side 11 are arranged. And move relative to the image plane (imaging element) 5 without changing the mutual air gap.
  • the optical system 10 includes a negative-positive-positive-negative first lens group G1 and a negative-positive-positive-negative-negative second lens group G2 with an aperture stop St interposed therebetween.
  • the optical system has nine lenses as a whole and includes two lens groups each having a symmetrical power array.
  • FIG. 2 shows the data of each lens constituting the optical system 10.
  • the radius of curvature (R) is the radius of curvature (mm) of each surface of each lens arranged in order from the object side 11, the distance d is the distance (mm) between the lens surfaces, and the effective diameter De is the effective diameter ( (Diameter, mm), refractive index nd represents the refractive index (d line) of each lens, and Abbe number ⁇ d represents the Abbe number (d line) of each lens.
  • the final interval, in this example, d17 indicates the distance (back focus, BF) between the optical system 10 and the imaging device 5.
  • FIG. 3 shows the d-line reference focal length (mm) of each lens, the combined focal length (mm) of each combination lens (junction lens), and the combined focal length (mm) of each lens group. .
  • the focal length and the like are obtained on the d-line basis.
  • FIG. 4 shows spherical aberration, astigmatism, and distortion of the optical system 10.
  • the spherical aberrations are as follows: wavelength 435.8340 nm (two-dot chain line), wavelength 486.1330 nm (long broken line), wavelength 546.0740 nm (solid line), wavelength 587.5620 nm (one-dot chain line), and 656.2730 nm (short dashed line). It shows.
  • Astigmatism indicates a tangential ray T and a sagittal ray S.
  • FIG. 5 shows lateral chromatic aberration (lateral aberration) of the optical system 10 for each of the tangential ray and the sagittal ray at the respective wavelengths. The same applies to the aberration diagrams shown below.
  • This imaging optical system 10 is a telephoto type having a positive-negative power arrangement in which a first lens group G1 having a positive power, a diaphragm St, and a second lens group G2 having a negative power are arranged from the object side 11.
  • (Telephoto type, reverse retrofocus type) optical system which can generally increase the focal length but has a small angle of view.
  • this optical system 10 has a characteristic that the angle of view is widened by making the preceding lens L1 closest to the object side 11 a negative negative lens on the object side 11, while having a long focal length, which is an advantage of the telephoto type. Is utilized to provide an optical system 10 having a large back angle BF and a relatively long back focus BF.
  • the two lenses on the object side 11 are negative- With a positive power and a retro focus type configuration suitable for wide-angle lenses, aberration correction is performed, the range of curvature radius R1 is set to the range of condition (1), and the angle of view is a half angle of view with a small lens diameter.
  • a large optical system 10 of 32.6 degrees is realized.
  • the optical system 10 has a large image circle of 56 mm in diameter corresponding to the large image sensor 5 and a long back focus BF of 26.88 mm, and can be applied as an interchangeable lens.
  • the image circle is large and the back focus BF is long, the effective diameter of the lens L1 on the object side 11 with the largest aperture is as small as 24.4 mm, and the total length is as short as 47.48 mm. Number) is as bright as 3.5, and the overall optical system 10 is compact and bright.
  • the first lens group G1 has two positive and negative lenses L3 with a positive refractive power as a whole arranged facing the aperture stop St. And a first combination lens (in this example, a cemented lens) C1 made of L4.
  • the second lens group G2 includes two negative and positive lenses L5 disposed so as to be symmetrical with the first combination C1 with a positive refractive power as a whole disposed facing the aperture stop St.
  • a second combination lens (in this example, a cemented lens) C2 made up of L6 is provided, and these aberrations are corrected satisfactorily including chromatic aberration.
  • the second lens group G2 includes a meniscus lens L9 having a negative refractive power convex toward the image surface side, which is arranged in order from the image surface side 12, and a meniscus lens having a negative refractive power convex toward the object side 11. L8.
  • the combination of symmetrical negative power meniscus lenses L8 and L9 in which the final lens L9 on the image plane side 12 is convex toward the image plane side 12 and the adjacent lens L8 is convex in the reverse direction provides a relatively long back focus BF.
  • the number of lens surfaces for aberration correction can be secured, and an increase in Petzval sum can be suppressed. Therefore, the optical system 10 can obtain a good aberration correction capability including curvature of field. Therefore, as shown in FIGS. 3 and 4, an optical system 10 that is compact and has high aberration correction capability is realized.
  • FIG. 6 shows an example of the camera 1 provided with different imaging optical systems 10.
  • This optical system 10 is also disposed on the object side 11 with the aperture stop (stop) St interposed therebetween, and is disposed on the object side 11 as a whole and disposed on the image plane side 12 as a whole.
  • a second lens group G2 having a refractive power of.
  • the first lens group G1 has a four-lens configuration and is arranged in order from the object side 11 along the optical axis 15, and is a biconcave negative lens (first negative lens) L1, and is convex to the object side 11.
  • a positive power meniscus lens (first meniscus lens) L2, a negative power meniscus lens L3 convex on the object side 11, and a biconvex positive lens L4 are included.
  • the combination (first combination lens) C1 of the negative meniscus lens L3 and the positive lens L4 in this example is not a cemented lens but is disposed adjacent to each other with an air interval close to the minimum.
  • the first lens group G1 has a four-lens configuration that is suitable for a wide range of negative-positive-negative-positive and combines a retrofocus type power arrangement that easily ensures back focus.
  • the second lens group G2 has a five-lens configuration, and is arranged in order from the object side 11 along the optical axis 15, and is a biconvex positive lens L5, a biconcave negative lens L6, and a biconvex positive lens L7. And a negative power meniscus lens L8 convex toward the object side 11 and a negative power meniscus lens L9 convex toward the image plane side 12.
  • the combination (second combination lens) C2 of the positive lens L5 and the negative lens L6 on the most object side 11 is not a cemented lens but is disposed adjacently with a minimum air gap. Similar to the above embodiment, the second combination lens C2 has a symmetrical power arrangement with the first combination lens C1 and the diaphragm St interposed therebetween.
  • the second lens group G2 has a five-lens configuration including a power array in which positive-negative-positive-negative-negative telephoto types are combined. Therefore, the optical system 10 is composed of nine lenses having a symmetrical power array with the stop St interposed therebetween, and as a whole, the optical system has a good aberration correction.
  • FIG. 7 shows data of each lens constituting the optical system 10.
  • FIG. 8 shows the d-line reference focal length (mm) of each lens and the combined focal length (mm) of each lens group.
  • FIG. 9 shows the spherical aberration, astigmatism, and distortion of the optical system 10
  • FIG. 10 shows the lateral chromatic aberration (lateral aberration) of the optical system 10 for each of the tangential and sagittal rays. Show.
  • the basic configuration of the imaging optical system 10 is the same as that of the optical system described above, and is a telephoto type as a whole, but has a large angle of view and image circle, a relatively long back focus BF, and a full length LA.
  • the optical system (lens system) 10 disclosed above is related to an imaging optical device and a digital device, and is used in an interchangeable lens digital camera, a video camera, a TV camera, an action camera, etc.
  • This is a suitable large-diameter and compact optical system 10.
  • it is suitable as a lens system with a large image circle to be used for the large image pickup device 5, and has a simple configuration of 9 lenses and 2 groups, but has performance as a standard lens from a wide angle and has a long back focus BF.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

光学系(10)は、開口絞り(St)を挟んで物体側(11)に配置された、全体として正の屈折力の第1のレンズ群(G1)と、像面側(12)に配置された、全体として負の屈折力の第2のレンズ群(G2)とから構成される。第1のレンズ群(G1)は、最も物体側に配置された、物体側に凹の第1の負レンズ(L1)と、第1の負レンズ(L1)に隣接して配置された物体側に凸の正の屈折力の第1のメニスカスレンズ(L2)とを含み、第1の負レンズ(L1)の物体側の面の曲率半径R1と、当該光学系の焦点距離fとが以下の条件(1)を満たす。 -1.5<R1/f<-0.6・・・(1)

Description

撮像用の光学系および撮像装置
 本発明は、カメラなどの撮像装置に好適な撮像用の光学系に関するものである。
 日本国特許公開2015-194714号には、F値が小さくて明るく、かつ、小型で、諸収差の発生が抑制された単焦点撮像光学系、レンズ鏡筒、交換レンズ装置及びカメラシステムを提供することが記載されている。この光学系は、物体側から像側へと順に、複数のレンズ素子からなる前群と、開口絞りと、複数のレンズ素子からなる後群とを備え、前記前群は、物体側から像側へと順に、負のパワーを有するレンズ素子と、負のパワーを有するレンズ素子と、正のパワーを有するレンズ素子とを含み、かつ、最像側に正のパワーを有するレンズ素子を含み、前記後群は、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に光軸に沿って移動する、少なくとも1枚のレンズ素子からなるフォーカシングレンズ群と、最像側に負のパワーを有するレンズ素子とを含む。
 カメラなどの撮像装置に大型の撮像素子が採用されつつあり、それに対応したイメージサークルの大きい撮像用のレンズシステム(光学系)が要望されている。イメージサークルの大きな光学系で、特に画角が大きな光学系は、レンズサイズが大きくなり、バックフォーカスも相対的に短くなりやすい。このため、イメージサークルが大きな光学系を、簡易な構成で、レンズ径が小さく、コンパクトに実現することを目的としている。
 本発明の態様の1つは、開口絞りを挟んで物体側に配置された、全体として正の屈折力の第1のレンズ群と、像面側に配置された、全体として負の屈折力の第2のレンズ群とから構成される撮像用の光学系である。第1のレンズ群は、最も物体側に配置された物体側に凹の第1の負レンズと、第1の負レンズに隣接して配置された物体側に凸の正の屈折力の第1のメニスカスレンズとを含み、第1の負レンズの物体側の面の曲率半径R1と、当該光学系の焦点距離fとが以下の条件を満たす。
-1.5<R1/f<-0.6 ・・・(1)
 この光学系は、全体として、広角レンズなどに使用される負-正のパワー配置を持つレトロフォーカスタイプではなく、一般的に、画角が狭い正-負のパワー配置を持ち、コンパクトな構成となる望遠タイプ(テレフォトタイプ、逆レトロフォーカスタイプ)を採用しつつ、先行する最も物体側のレンズを物体側に凹の負レンズとすることにより画角を広げている。その一方、テレフォトタイプの利点である焦点距離が長い特性を活かして、比較的長いバックフォーカスを実現できるようにしている。画角を広げるためには、第1の負レンズの物体側の面の曲率半径R1が小さいことが望ましい。しかしながら、入射光線の角度が大きく変わるために収差補正が困難となり、一方、曲率半径R1の絶対値が大きいと、広角にするためにレンズ径が大きくなってしまいコンパクトな光学系を提供できない。このため、この光学系においては、第1の負レンズに隣接して、物体側に凸の正のパワーの第1のメニスカスレンズを配置することにより、物体側の2枚のレンズを負-正のパワーのレトロフォーカスタイプで広角レンズに適した構成にするとともに、収差補正を行い、曲率半径R1の範囲を条件(1)の範囲に設定し、小さなレンズ径で画角の大きな光学系を実現している。
 条件(1)の下限を下回ると、曲率半径R1の絶対値が大きくなりレンズ径が大きくなってしまい、また、パワーが小さくなるので像面湾曲、球面収差の補正が難しくなる。また、条件(1)の上限を上回ると、曲率半径R1の絶対値が小さくなりすぎるので像面湾曲、球面収差、歪曲収差の補正が難しくなる。条件(1)の下限は-1.3であってもよく、-1.25であってもよく、上限は-0.8であってもよく、-1.0であってもよい。
 第1のレンズ群は、第1の負レンズと、第1のメニスカスレンズと、開口絞りに面して配置された全体として正の屈折力で、正負または負正2枚のレンズからなる第1の組み合わせとから構成されていてもよい。第1のレンズ群を、物体側の2枚のレンズを負-正のパワーで広角レンズに適した構成と、色収差の補正に適した第1の組み合わせレンズとの最小限の構成とすることで簡易およびコンパクトで収差補正が良好な光学系を提供できる。
 第2のレンズ群は、開口絞りに面して配置された全体として正の屈折力で、第1の組み合わせと対称となるように配置された負正または正負2枚のレンズからなる第2の組み合わせを含んでもよい。開口絞りを挟んで、第1の組み合わせレンズと対称な構成の第2の組み合わせレンズを配置することで、簡易およびコンパクトな構成で収差補正の良好な光学系を提供できる。
 第2のレンズ群は、最も像面側から順番に配置された像面側に凸の負の屈折力のメニスカスレンズと、物体側に凸の負の屈折力のメニスカスレンズとを含んでもよい。撮像側に2枚の負のパワーのレンズを配置することによりバックフォーカス長を確保でき、さらに、面の向きが異なるメニスカスレンズを組み合わせることにより収差補正に必要な面の数を確保しつつ、ペッツバール和を小さくして像面湾曲を小さくできる。
 この光学系の第2のレンズ群は、正負または負正2枚のレンズからなる第2の組み合わせと、像面側に凸の正の屈折力のレンズと、物体側に凸の負の屈折力のメニスカスレンズと、像面側に凸の負の屈折力のメニスカスレンズとの5枚構成であってもよく、この光学系は第1のレンズ群を含めて全体として9枚構成であってもよい。
 この光学系においては、フォーカシングの際に、第1のレンズ群と、開口絞りと、第2のレンズ群とを相互の間隔(空気間隔)は変えずに一体で像面に対して移動してもよく、フォーカシングの機構を簡易にできる。
 光学系の全長LAとバックフォーカスBFとが以下の条件(2)を満たしてもよい。バックフォーカス長に対してレンズ全長が小さくコンパクトな撮像用の光学系を提供できる。
1.5<LA/BF<2.5 ・・・(2)
条件(2)の下限は1.6であってもよく、上限は2.3であってもよい。
 また、最も物体側の第1の負レンズの物体側の面の有効径(直径)De1とバックフォーカスBFとが以下の条件(3)を満たし、バックフォーカス長に対してレンズ径の小さな撮像用の光学系を提供できる。
0.6<De1/BF<1.5 ・・・(3)
条件(3)の下限は0.8であってもよく、上限は1.3であってもよく、1.1であってもよい。
 本発明の他の態様の1つは、上記の光学系と、光学系の像面側に配置された撮像素子とを有する撮像装置である。光学系は交換用レンズであってもよく、撮像装置は、デジタルカメラ、ビデオカメラ、TVカメラ、アクションカメラを含む。大口径でコンパクトな光学系を提供できるので、撮像装置も小型化できる。
撮像用の光学系を含む撮像装置の概要を示す図。 図1に示す光学系のレンズデータを示す図。 図1に示す光学系の焦点距離を示す図。 図1に示す光学系の諸収差を示す図。 図1に示す光学系の横収差を示す図。 撮像用の異なる光学系を含む撮像装置の概要を示す図。 図6に示す光学系のレンズデータを示す図。 図6に示す光学系の焦点距離を示す図。 図6に示す光学系の諸収差を示す図。 図6に示す光学系の横収差を示す図。
発明の実施の形態
 図1に、撮像用の光学系を備えた撮像装置(カメラ、カメラ装置)の一例を示している。カメラ1は、光学系(撮像光学系、結像光学系、レンズシステム)10と、光学系10の像面側(画像側、撮像側、結像側)12に配置された撮像素子(撮像デバイス)5とを有する。光学系10は、開口絞り(絞り)Stを挟んで物体側11に配置された、全体として正の屈折力の第1のレンズ群G1と、像面側12に配置された、全体として負の屈折力の第2のレンズ群G2とから構成されている。第1のレンズ群G1は、4枚構成で、光軸15に沿って物体側11から順番に配置された、両凹の負レンズ(第1の負レンズ)L1と、物体側11に凸の正のパワーのメニスカスレンズ(第1のメニスカスレンズ)L2と、両凸の正レンズL3と、像面側12に凸の負のメニスカスレンズL4とを含む。正レンズL3と負のメニスカスレンズL4との組み合わせ(第1の組み合わせレンズ)C1は接合レンズであり、開口絞りStに面して配置されている。正のパワーのメニスカスレンズL2は、負レンズL1に隣接して配置されており、メニスカスレンズL2の物体側11の一部が両凹の負レンズL1の像面側の凹部に入り込んだ構成となっている。この例では、第1のレンズ群G1は、負-正-正-負の対称的なパワー配列を備えた4枚構成である。
 第2のレンズ群G2は5枚構成で、光軸15に沿って物体側11から順番に配置された、両凹の負レンズL5と、両凸の正レンズL6と、両凸の正レンズL7と、物体側11に凸の負のパワーのメニスカスレンズL8と、像面側12に凸の負のパワーのメニスカスレンズL9とから構成されている。最も物体側11の負レンズL5と正レンズL6との組み合わせ(第2の組み合わせレンズ)C2は接合レンズであり、開口絞りStに面して配置されている。この例では、第2のレンズ群G2は、負-正-正-負-負の比較的対称的なパワー配列を備えた5枚構成である。
 この光学系10は、焦点調整(フォーカシング)の際に、光学系全体が、すなわち、物体側11から順番に配置された第1のレンズ群G1と、開口絞りStと、第2のレンズ群G2とが相互の空気間隔を変えずに一体で像面(撮像素子)5に対して移動する。また、この光学系10は、開口絞りStを挟んで、負-正-正-負の第1のレンズ群G1と負-正-正-負-負の第2のレンズ群G2とが配置され、それぞれ対称的なパワー配列を備えた2つのレンズ群を備えた全体として9枚構成の光学系である。
 図2に光学系10を構成する各レンズのデータを示している。曲率半径(R)は物体側11から順に並んだ各レンズの各面の曲率半径(mm)、間隔dは各レンズ面の間の距離(mm)、有効径Deは各レンズ面の有効径(直径、mm)、屈折率ndは各レンズの屈折率(d線)、アッベ数νdは各レンズのアッベ数(d線)を示している。なお、最終の間隔、本例においてはd17が光学系10と撮像デバイス5との距離(バックフォーカス、BF)を示す。図3には、各レンズのd線基準の焦点距離(mm)と、各組み合わせレンズ(接合レンズ)の合成焦点距離(mm)と、各レンズ群の合成焦点距離(mm)とを示している。以下に示すレンズデータにおいても同様である。なお、実施例において焦点距離等はd線基準で求めている。
 図4に、光学系10の球面収差、非点収差、歪曲収差を示している。球面収差は、波長435.8340nm(二点鎖線)と、波長486.1330nm(長破線)と、波長546.0740nm(実線)、波長587.5620nm(一点鎖線)と、656.2730nm(短破線)とを示している。非点収差はタンジェンシャル光線Tとサジタル光線Sとを示している。図5に、光学系10の倍率色収差(横収差)をタンジェンシャル光線およびサジタル光線のそれぞれについて上記のそれぞれの波長で示している。以下に示す収差図においても同様である。
 この光学系10の主な性能を示す数値は以下の通りである。
全体の合成焦点距離(f): 45.027mm
F値: 3.5
最大画角(半画角): 32.6度
イメージサークル: φ56mm
バックフォーカス(BF): 26.88mm
全体のレンズ長(LA): 47.48mm
 この撮像光学系10は、物体側11から、正のパワーの第1のレンズ群G1、絞りStおよび負のパワーの第2のレンズ群G2が並んだ、正-負のパワー配置を持つ望遠タイプ(テレフォトタイプ、逆レトロフォーカスタイプ)の光学系であり、一般的に焦点距離を長くできるが、画角が小さいタイプである。しかしながら、この光学系10においては、先行する最も物体側11のレンズL1を物体側11に凹の負レンズとすることにより画角を広げ、一方、テレフォトタイプの利点である焦点距離が長い特性を活かして、画角が大きく、比較的長いバックフォーカスBFを備えた光学系10を提供している。
 さらに、最も物体側11の第1の負レンズL1に隣接して、物体側に凸の正のパワーの第1のメニスカスレンズL2を配置することにより、物体側11の2枚のレンズを負-正のパワーで広角レンズに適したレトロフォーカスタイプの構成にするとともに、収差補正を行い、曲率半径R1の範囲を条件(1)の範囲に設定し、小さなレンズ径で画角が半画角で32.6度と大きな光学系10を実現している。
 また、この光学系10は大型の撮像素子5に対応してイメージサークルが直径56mmと大きく、バックフォーカスBFも26.88mmと長く、交換レンズなどとしても適用可能な設計となっている。イメージサークルが大きく、バックフォーカスBFも長いにもかかわらず、最も口径が大きくなる物体側11のレンズL1の有効径は24.4mmと小さく、また、全長も47.48mmと短く、F値(Fナンバー)は3.5と明るく、全体としてコンパクトで明るい光学系10となっている。
 この光学系10の条件(1)~(3)の値は以下の通りであり、いずれの条件も満足している。
条件(1)(R1/f):  -1.213
条件(2)(LA/BF): 1.766
条件(3)(De1/BF):0.908
 また、第1のレンズ群G1は、第1の負レンズL1および第1のメニスカスレンズL2に加え、開口絞りStに面して配置された全体として正の屈折力で、正負2枚のレンズL3およびL4からなる第1の組み合わせレンズ(本例においては接合レンズ)C1とから構成されている。また、第2のレンズ群G2は、開口絞りStに面して配置された全体として正の屈折力で、第1の組み合わせC1と対称となるように配置された負正2枚のレンズL5およびL6からなる第2の組み合わせレンズ(本例においては接合レンズ)C2を備えており、これらにより色収差を含めて各収差が良好に補正されている。
 さらに、第2のレンズ群G2は、最も像面側12から順番に配置された像面側に凸の負の屈折力のメニスカスレンズL9と、物体側11に凸の負の屈折力のメニスカスレンズL8とを含んでいる。像面側12の最終レンズL9が像面側12に凸で、隣接するレンズL8が逆方向に凸の対称な負のパワーのメニスカスレンズL8およびL9の組み合わせは、比較的長いバックフォーカスBFを得るのに好適であるとともに、収差補正のレンズ面の数を確保し、ペッツバール和が増加するのを抑制できる。したがって、像面湾曲を含めて良好な収差補正能力が得られる光学系10となっている。このため、図3および図4に示すように、コンパクトで収差補正能力の高い光学系10を実現している。
 図6に、異なる撮像用の光学系10を備えたカメラ1の例を示している。この光学系10も、開口絞り(絞り)Stを挟んで物体側11に配置された、全体として正の屈折力の第1のレンズ群G1と、像面側12に配置された、全体として負の屈折力の第2のレンズ群G2とから構成されている。第1のレンズ群G1は、4枚構成で、光軸15に沿って物体側11から順番に配置された、両凹の負レンズ(第1の負レンズ)L1と、物体側11に凸の正のパワーのメニスカスレンズ(第1のメニスカスレンズ)L2と、物体側11に凸の負のパワーのメニスカスレンズL3と、両凸の正レンズL4とを含む。本例の負のメニスカスレンズL3と正レンズL4との組み合わせ(第1の組み合わせレンズ)C1は接合レンズではなく、最小に近い空気間隔で隣接して配置されている。この例では、第1のレンズ群G1は、負-正-負-正の広角に適し、バックフォーカスを確保しやすいレトロフォーカス型のパワー配置を組み合わせた4枚構成である。
 第2のレンズ群G2は5枚構成で、光軸15に沿って物体側11から順番に配置された、両凸の正レンズL5と、両凹の負レンズL6と、両凸の正レンズL7と、物体側11に凸の負のパワーのメニスカスレンズL8と、像面側12に凸の負のパワーのメニスカスレンズL9とから構成されている。最も物体側11の正レンズL5と負レンズL6との組み合わせ(第2の組み合わせレンズ)C2は接合レンズではなく最小空気間隔で隣接して配置されている。第2の組み合わせレンズC2が、第1の組み合わせレンズC1と絞りStを挟んで対称なパワー配置となっていることは上記の実施例と同様である。さらに、この例では、第2のレンズ群G2は、正-負-正-負-負のテレフォトタイプを組み合わせたパワー配列を備えた5枚構成である。したがって、この光学系10は、絞りStを挟んで対称的なパワー配列の9枚のレンズで構成されており、全体として収差の補正が良好な光学系となっている。
 この光学系10も、焦点調整(フォーカシング)の際に、光学系全体が、すなわち、物体側11から順番に配置された第1のレンズ群G1と、開口絞りStと、第2のレンズ群G2とが一体で像面5に対して移動する。図7に光学系10を構成する各レンズのデータを示している。図8には、各レンズのd線基準の焦点距離(mm)と、各レンズ群の合成焦点距離(mm)とを示している。図9に、光学系10の球面収差、非点収差、歪曲収差を示し、図10に、光学系10の倍率色収差(横収差)をタンジェンシャル光線およびサジタル光線のそれぞれについて上記のそれぞれの波長で示している。
 この光学系10の主な性能を示す数値は以下の通りである。
全体の合成焦点距離(f): 44.246mm
F値: 4.0
最大画角(半画角): 32.4度
イメージサークル: φ56mm
バックフォーカス(BF): 21.88mm
全体のレンズ長(LA): 49.99mm
 この撮像光学系10の基本的な構成は上記に示した光学系と同様であり、全体としてテレフォトタイプでありながら、画角およびイメージサークルが大きく、比較的長いバックフォーカスBFを備え、全長LAが短く、レンズ径が小さく、そして、F値が小さく明るいという、コンパクトで明るい撮像光学系10を提供している。また、収差補正も良好である。
 この光学系10の条件(1)~(3)の値は以下の通りであり、いずれの条件も満足している。
条件(1)(R1/f):  -1.197
条件(2)(LA/BF): 2.285
条件(3)(De1/BF):1.090
 このように、上記において開示した光学系(レンズシステム)10は撮像光学装置およびデジタル機器に関連し、風景や被写体を撮像素子に取り込むレンズ交換式デジタルカメラ、ビデオカメラ、TVカメラ、アクションカメラなどに適した大口径でコンパクトな光学系10である。特に、大型の撮像素子5に使用するイメージサークルの大きなレンズシステムとして適しており、9枚、2群構成という簡易な構成でありながら、広角から標準レンズとして性能を備え、長いバックフォーカスBFを有しながら、レンズ径およびレンズ全長LAが小さく、かつ、良好に収差補正がされた光学系10を提供できる。

Claims (9)

  1.  開口絞りを挟んで物体側に配置された、全体として正の屈折力の第1のレンズ群と、物体側に対して反対側の像面側に配置された、全体として負の屈折力の第2のレンズ群とから構成される撮像用の光学系であって、
     前記第1のレンズ群は、最も物体側に配置された、物体側に凹の第1の負レンズと、前記第1の負レンズに隣接して配置された、物体側に凸の正の屈折力の第1のメニスカスレンズとを含み、
     前記第1の負レンズの物体側の面の曲率半径R1と、当該光学系の焦点距離fとが以下の条件を満たす、光学系。
    -1.5<R1/f<-0.6
  2.  請求項1において、
     前記第1のレンズ群は、前記第1の負レンズと、前記第1のメニスカスレンズと、前記開口絞りに面して配置された全体として正の屈折力で、正負または負正の2枚のレンズからなる第1の組み合わせとから構成されている、光学系。
  3.  請求項2において、
     前記第2のレンズ群は、前記開口絞りに面して配置された全体として正の屈折力で、前記第1の組み合わせと対称となるように配置された負正または正負2枚のレンズからなる第2の組み合わせを含む、光学系。
  4.  請求項1ないし3のいずれかにおいて、
     前記第2のレンズ群は、最も像面側から順番に配置された像面側に凸の負の屈折力のメニスカスレンズと、物体側に凸の負の屈折力のメニスカスレンズとを含む、光学系。
  5.  請求項2において、
     前記第2のレンズ群は、前記開口絞りに面して配置された正負または負正2枚のレンズからなる第2の組み合わせと、像面側に凸の正の屈折力のレンズと、物体側に凸の負の屈折力のメニスカスレンズと、像面側に凸の負の屈折力のメニスカスレンズとから構成されている、光学系。
  6.  請求項1ないし5のいずれかにおいて、
     フォーカシングの際に、前記第1のレンズ群と、前記開口絞りと、前記第2のレンズ群とを相互の間隔は変えずに一体で像面に対して移動する、光学系。
  7.  請求項1ないし6のいずれかにおいて、
     当該光学系の全長LAとバックフォーカスBFとが以下の条件を満たす、光学系。
    1.5<LA/BF<2.5
  8.  請求項1ないし7のいずれかにおいて、
     前記第1の負レンズの物体側の面の有効径De1とバックフォーカスBFとが以下の条件を満たす、光学系。
    0.6<De1/BF<1.5
  9.  請求項1ないし8のいずれかに記載の光学系と、
     前記光学系の像面側に配置された撮像素子とを有する撮像装置。
     
PCT/JP2017/022755 2016-06-21 2017-06-20 撮像用の光学系および撮像装置 WO2017221947A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17815415.9A EP3474057A4 (en) 2016-06-21 2017-06-20 OPTICAL SYSTEM FOR IMAGE CAPTURE, AND IMAGE CAPTURE DEVICE
JP2018524120A JP6526335B2 (ja) 2016-06-21 2017-06-20 撮像用の光学系および撮像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-122594 2016-06-21
JP2016122594 2016-06-21

Publications (1)

Publication Number Publication Date
WO2017221947A1 true WO2017221947A1 (ja) 2017-12-28

Family

ID=60784074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022755 WO2017221947A1 (ja) 2016-06-21 2017-06-20 撮像用の光学系および撮像装置

Country Status (3)

Country Link
EP (1) EP3474057A4 (ja)
JP (2) JP6526335B2 (ja)
WO (1) WO2017221947A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019117422A (ja) * 2016-06-21 2019-07-18 株式会社nittoh 撮像用の光学系および撮像装置
TWI761625B (zh) * 2018-05-31 2022-04-21 光芒光學股份有限公司 鏡頭及其製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238416A (ja) * 1989-03-10 1990-09-20 Canon Inc ズームレンズ
JPH0667092A (ja) * 1992-08-17 1994-03-11 Minolta Camera Co Ltd ズームレンズ
JPH07253542A (ja) * 1994-03-15 1995-10-03 Canon Inc ズームレンズ
JPH09152549A (ja) * 1995-11-29 1997-06-10 Olympus Optical Co Ltd ズームレンズ
JPH11281890A (ja) * 1998-03-27 1999-10-15 Konica Corp 2群ズームレンズ
JP2000321490A (ja) * 1999-05-13 2000-11-24 Cosina Co Ltd 写真レンズ
JP2001201683A (ja) * 2000-01-19 2001-07-27 Olympus Optical Co Ltd ズームレンズ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6563130B2 (ja) * 2016-06-21 2019-08-21 株式会社nittoh 撮像用の光学系および撮像装置
EP3474057A4 (en) * 2016-06-21 2020-02-19 Nittoh Inc. OPTICAL SYSTEM FOR IMAGE CAPTURE, AND IMAGE CAPTURE DEVICE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238416A (ja) * 1989-03-10 1990-09-20 Canon Inc ズームレンズ
JPH0667092A (ja) * 1992-08-17 1994-03-11 Minolta Camera Co Ltd ズームレンズ
JPH07253542A (ja) * 1994-03-15 1995-10-03 Canon Inc ズームレンズ
JPH09152549A (ja) * 1995-11-29 1997-06-10 Olympus Optical Co Ltd ズームレンズ
JPH11281890A (ja) * 1998-03-27 1999-10-15 Konica Corp 2群ズームレンズ
JP2000321490A (ja) * 1999-05-13 2000-11-24 Cosina Co Ltd 写真レンズ
JP2001201683A (ja) * 2000-01-19 2001-07-27 Olympus Optical Co Ltd ズームレンズ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3474057A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019117422A (ja) * 2016-06-21 2019-07-18 株式会社nittoh 撮像用の光学系および撮像装置
TWI761625B (zh) * 2018-05-31 2022-04-21 光芒光學股份有限公司 鏡頭及其製造方法

Also Published As

Publication number Publication date
EP3474057A4 (en) 2020-02-19
JP2019117422A (ja) 2019-07-18
EP3474057A1 (en) 2019-04-24
JP6526335B2 (ja) 2019-06-05
JPWO2017221947A1 (ja) 2019-01-31

Similar Documents

Publication Publication Date Title
KR101826332B1 (ko) 단초점 렌즈계 및 이를 구비한 촬영 장치
KR102018812B1 (ko) 망원렌즈 시스템
US9952405B2 (en) Imaging lens and imaging apparatus
US9638891B2 (en) Imaging lens and imaging apparatus
US11036059B2 (en) Imaging lens and imaging apparatus
JP6563130B2 (ja) 撮像用の光学系および撮像装置
US11029488B2 (en) Rear converter lens and imaging apparatus
US11480774B2 (en) Optical system and imaging apparatus having the same
WO2013099213A1 (ja) 撮像レンズおよび撮像装置
WO2018216789A1 (ja) 撮像用の光学系および撮像装置
US10274704B2 (en) Imaging lens and imaging apparatus
WO2017221948A1 (ja) 撮像用の光学系および撮像装置
KR20160069389A (ko) 촬영 렌즈 광학계
US11036060B2 (en) Imaging lens and imaging apparatus
JP7148153B2 (ja) 撮像用の光学系および撮像装置
US9638890B2 (en) Imaging lens and imaging apparatus
KR20160059239A (ko) 촬영 렌즈 광학계
WO2018052113A1 (ja) 撮像用の光学系および撮像装置
WO2017221947A1 (ja) 撮像用の光学系および撮像装置
CN109923458B (zh) 物镜光学系统
KR101578647B1 (ko) 촬영 렌즈 광학계
US20180217359A1 (en) Zoom lens and imaging apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018524120

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017815415

Country of ref document: EP

Effective date: 20190121